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Abstract

Today’s type-safe low-level languages rely on garbage collection to recycle heap-allocated
objects safely. We present LTAL, a safe, low-level, yet simple language that “stands on its
own”: it guarantees safe execution within a fixed memory space, without relying on external
run-time support. We demonstrate the expressiveness of LTAL by giving a type-preserving
compiler for the functional core of ML. But this independence comes at a steep price: LTAL’s
type system imposes a draconian discipline of linearity that ensures that memory can be reused
safely, but prohibits any useful kind of sharing. We present the results of experiments with a
prototype LTAL system that show just how high the price of linearity can be.

1 Background and Motivation

Safety certification systems such as Java or MSIL bytecode verification make it possible to verify the
safety of code obtained from an untrusted provider or over an untrusted network [13, 7]. Refinements
like proof-carrying code and typed assembly language [19, 18] make it possible to check and execute
machine code directly rather than through interpretation. However, all widely used systems for
verifying low-level code require a trusted run-time environment to provide safe memory management.
Furthermore, each of these systems takes a rather ad hoc approach to initialization of heap-allocated
objects.

Recently, Wang and Appel [32] and Monnier, Saha, and Shao [16] have shown how to build
a type-safe garbage collector based on the ideas of the Capability Calculus [29], thus eliminating
most of the memory management from the trusted computing base. However, some trusted code
is still required to implement the region primitives, and the region calculi on which these systems
are based are relatively complicated. Furthermore, the region-based approaches do not address the
initialization problem.

In this paper, we step back and examine a more foundational approach to the issues of initial-
ization and memory management for low-level code. In particular, we use a linear type system to
provide a clean, elegant solution to both problems. More specifically, we present:

1. A linear type system for a conventional, MIPS-style assembly language called LTAL.

2. Theorems that show every well-typed LTAL program is sound and “leak-free” (i.e., uses
bounded memory).

3. An encoding of memory management operations malloc and free within LTAL.

4. Techniques for compiling unrestricted (i.e., non-linear) high-level functional languages to LTAL
in a type-preserving fashion.

It is important to note that we do not consider the resulting system to be practical. The price of
LTAL’s simplicity and elegance is that it does not support shared data structures. At first, such
a restriction seems to preclude the use of LTAL as a target for high-level languages. However,
we show that there is a type-preserving translation for a high-level ML-like language to LTAL
based on explicit copying. Unfortunately, our experiments show that this naive translation is far
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from practical. Nonetheless, we think that LTAL can serve as an important core for more realistic
systems.

Of course, the idea of employing linearity is not new—many researchers have proposed linear
languages and implementation techniques for implementing functional languages without garbage
collection or using bounded space [12, 4, 8, 11]. But none of these approaches carry type information
all the way down to a realistic assembly language as we do. Recently, Aspinall and Compagnoni [2]
have developed Heap Bounded Assembly Language (HBAL), a variant of TAL that employs linearity
to guarantee finite heap usage with direct memory management. HBAL was tailored to serve as a
safe target language for Hofmann’s first-order linear functional programming language LFPL [11].
However, HBAL includes many pseudo-instructions for memory and data structure management and
assumes the presence of an unbounded stack, but supports neither polymorphism nor higher-order
functions.

Previous proposals for typed resource-conscious intermediate and low-level languages include
Walker, Crary, and Morrisett’s Capability Calculus [29], Smith, Walker and Morrisett’s Alias Types
[25, 30], and Walker and Watkins’ linear region calculus [31]. These systems are clearly more powerful
than LTAL while permitting some form of direct control over memory. However, all these techniques
are disappointingly complex: each involves some combination of type-level named memory locations,
singleton name types, and bounded quantification. Yet none of the above provide an unconditional
guarantee of safety: all rely on some outside run-time support for memory management, such as a
trusted implementation of regions. In contrast, with LTAL we aim for simplicity while still obtaining
strong memory management and safety guarantees.

In the remainder of this paper, we first give an overview of the LTAL language, emphasizing the
departures from TAL. Section 3 describe a simple compiler from a non-linear, ML-like functional
language to LTAL via a linear intermediate language. We summarize the proofs of the relevant
soundness and memory preservation properties of LTAL in Section 4. Section 5 describes several
extensions to LTAL such as polymorphism, recursion, and datatypes, as well as non-extensions
like references and laziness, at an informal level. In Section 6 we describe an implementation of a
typechecker for LTAL and a compiler based on the translation in Section 3. which serves as a proof
of concept, and present microbenchmark results. Finally, we give an overview of related work and
future directions for safe low-level memory management.

2 Overview of Linear TAL

2.1 Syntax

The syntax for LTAL code is as follows:

operands op ::= r | i | f
instructions ι ::= add r, r′, op | bnz r, op | ld r, s[i] | mov r, op |

mul r, r′, op | st r[i], r′ | sub r, r′, op
blocks I ::= ι; I | jmp op | halt

Operands include register names r, integer values i, and code labels f . The instructions are a rep-
resentative subset of MIPS assembly language with the usual interpretation. For instance, ld r, s[i]
loads the word in memory at the effective address computed by adding the contents of register s
with the offset i, and places the word into the destination register r. We give a formal operational
semantics for this instruction and the others in Section 2.2 where we introduce a suitable abstract
machine. Following TAL, we group instructions into blocks, which are jmp- or halt-terminated
sequences of instructions.

LTAL does not include any pseudo-instructions such as alloc, free, cons/nil, or case. LTAL
programs also cannot refer to heap data (as opposed to code) via labels. Some support for global
data can be added to LTAL programs, with the references to linear types do not “escape” to global
types (see Section 5.1.5).
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2.2 Operational semantics

We call the sets of integer constants, register names, data labels, code labels, and instruction blocks
by the names Int, Reg, Lab, CLab, and Block respectively. We write A]B for disjoint union, and
A ⇀ B for (finite) partial maps from A to B. If F is a partial map, we write F{x 7→ y} for the
partial map resulting from updating F at x to y, F#G to indicate that dom(F )∩ dom(G) = ∅, and
F ]G for F ∪G if F#G holds. The other components of the operational semantics are defined as
follows:

values v ∈ V al = Int ] CLab ] Lab
heap values h ∈ HV al = {0, 1} → V al

heaps H ∈ Heap = Lab ⇀ HV al
register files R ∈ RegFile = Reg ⇀ V al

code sections C ∈ CodeSec = CLab ⇀ Block

Given an operand op (that is, a register, code label, or integer), we write R̂(op) for the value of op
in register file R.

The operational semantics of LTAL is essentially the same as that of TAL, except for the omission
of a built-in malloc instruction. A program state P is a triple (H,R, I) consisting of the current
heap, current register file contents, and current remaining instruction sequence. We write P −→C P ′

to indicate that a program with code section C steps from state P to P ′ in one step. This relation
is defined by:

(H,R, I) −→C P where
if I = then P =
add r, s, op; I ′ (H,R{r 7→ R(s) + R̂(op)}, I ′)

bnz r, op; I ′
{

(H,R, I ′) if R(r) = 0
(H,R, C(R̂(op))) if R(r) 6= 0

ld r, s[i]; I ′ (H,R{r 7→ H(R(s))[i]}, I ′)
mov r, op; I ′ (H,R{r 7→ R̂(op)}, I ′)
mul r, s, op; I ′ (H,R{r 7→ R(s) ∗ R̂(op)}, I ′)
st r[i], s; I ′ (H{R(r) 7→ H(R(r)){i 7→ R(s)}}, R, I ′)
sub r, s, op; I ′ (H,R{r 7→ R(s)− R̂(op)}, I ′)
jmp op (H,R, C(R̂(op)))

None of the instructions affect the domains of the heap, register file, or code section. That is,
memory, code, and registers are neither created nor destroyed during execution.

A program state P is stuck if the instruction sequence remaining is not halt and there is no
transition that the program can take. This can only happen in two ways. First, a register, code
label, or data label may not be in the domain of the register file, code section, or data section. In
a real machine, this would result in a hardware exception or memory protection fault. Second, the
contents of a register or memory location may be of an unexpected sort. In a real machine, the sorts
may not be distinguishable at run time, so the program might put memory into an inconsistent state
rather than failing immediately. Thus, stuckness in our abstract machine corresponds to undesirable
behavior in real machines.

2.3 Type system

LTAL includes operand types ω, τ which describe the contents of a register or instruction operand.

unrestricted types τ ::= ∀α.τ | int | word | code(Γ)
operand types ω ::= α | τ | ?〈σ〉 | @〈σ〉 | ∃α.ω | µα.ω
memory types σ ::= ω1 ⊗ ω2

register contexts Γ ::= {r1 : ω1, . . . , rn : ωn}

Machine words interpreted as integers have type int. The cell type word indicates an uninterpreted
machine word. The difference between int and word is that only int may be used in arithmetic or
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conditional branch instructions; word values may only be overwritten. Words interpreted as code
addresses have types of the form ∀α.code(Γ), where Γ is a register file typing context. Such a type
indicates that a value is an address which can be called when the current register context matches
Γ, for appropriate instantiations of the type variables α. Code labels of procedures typically include
a register with another code label type, indicating that the register contains the return address.
These types are unrestricted ; that is, their values may be copied or ignored (that is, cast to word)
as desired.

The restricted (or linear) types include type variables, reference types, existential, and recursive
types. Type variables are restricted because they might be instantiated with restricted types. Ref-
erences come in two flavors: @〈σ〉 indicates a reference to a memory block having type σ, and ?〈σ〉
indicates a reference that might be NULL (that is, zero). Memory types include only simple pairs,
written using ⊗ to emphasize their linear nature. Existential types have their usual form, except
that abstract types are restricted. Recursive types are also standard. We do not include explicit
pack/unpack or roll/unroll forms; instead we leave type reconstruction or annotation design choices
to implementations.

An LTAL program is a collection of labeled blocks C = {l1 = I1, . . . , ln = In} together with a
code typing context Ψ = {l1 : τi, . . . , ln : τn}. As in TAL, we typecheck a program by typechecking
each block against the context of all blocks, and typecheck a block by updating the typing context
with the effect of each instruction on the register types. Here we present some special cases of LTAL’s
typing judgments in a simplified form. We write {Γ}i{Γ′} to indicate that in register context Γ,
instruction i is well-formed and changes the context to Γ′. The general rules are given in the
appendix. The typing rules for arithmetic instructions are straightforward:

{Γ, rd : τ, rs : int, rt : int} arith rd, rs, rt {Γ, rd : int, rs : int, rt : int}

where arith denotes one of add, mul, sub. The source registers must be of type int and the target
register must have some unrestricted type (and in this case may be one of the source registers).
After the operation, all three registers have type int.

The control flow instruction typings are also similar to those for TAL. When we encounter a
jump, we check if the branch target has a type that matches the current context, possibly modified
to take into account any new type information arising from a conditional branch. It is possible to
perform a bnz instruction with either a word or reference type as an argument. Branching on a
reference type lets us distinguish at run-time whether a nullable reference is actually null or not.

{Γ, r : int, s : code Γ} bnz r, s {Γ}
{Γ, r : ?〈σ〉, s : code(Γ, r : @〈σ〉)} bnz r, s {Γ, r : int}

The main novelty is in the typing of mov instructions and memory accesses ld, st. For move
instructions, we have

{Γ, r1 : word, r2 : ω} mov r1, r2 {Γ, r1 : ω, r2 : word}

if ω is linear (otherwise r2 : ω still after the move). Loads must load into a register with unrestricted
type, and render the loaded component of the memory cell unusable as an alias by giving it type
word.

{Γ, r1 : word, r2 : @〈ω0 ⊗ ω1〉} ld r2[0], r1 {Γ, r1 : ω0, r2 : @〈word⊗ ω1〉}
{Γ, r1 : ω0, r2 : @〈word⊗ ω1〉} st r1, r2[0] {Γ, r1 : word, r2 : @〈ω0 ⊗ ω1〉}

Although these rules swap the types of the memory cell and register, the actual operational behavior
does not swap the values; that is, the behavior of the move, load and store instructions is as usual.
Only the typing forbids reusing the source value. We could clearly introduce a more CISC-like swap
instruction subsuming the behavior of ld and st as well as supporting exchange of types besides
word.

Previous versions of TAL included initialization flags on types, junk values, and a simple sub-
typing system to bridge the gap between allocation and initialization. In LTAL, this machinery is
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not necessary. Instead, uninitialized-but-allocated memory cells have type word, which can only be
initialized.1

Using recursive types we can define a freelist type flist = µα.?〈word⊗ α〉, and we can implement
allocation and deallocation operations rather than taking them as primitive. For example, the
following code constructs the pair 〈1, 2〉, allocating from the freelist, terminating the program if no
more memory is available:

{r0 : word, rf : flist}
bnz rf , l1
halt

l1 : {r0 : word, rf : @〈word⊗ flist〉}
mov r0, rf

ld rf , r0[1]
st r0[0], 1
st r0[1], 2
{r0 : @〈int⊗ int〉, rf : flist}

In typing the branch instruction, we first unroll the definition of flist to ?〈word ⊗ flist〉 in order to
expose the nullable reference. The type of l1 reflects the change in the typing information arising
from the fact that rf is non-NULL. The rest of the block containing the branch is typed with
rf : word. Frequently, allocation happens right after deallocation, and we can optimize away the
branch since we can tell from the type that it will always succeed.

3 Compiling to Linear TAL

We begin with a primitive source language, the call-by-value, simply-typed λ-calculus with integers
and pairs (abbreviated λ→×). The syntax of the language is given by:

types τ ::= int | τ1 → τ2 | τ1 × τ2

terms e ::= x | i | λx:τ.e | e1 e2 | 〈e1, e2〉 | π1 e | π2 e
values v ::= i | λx:τ.e | 〈v1, v2〉

contexts Γ ::= • | Γ, x:τ

where i ranges over integer constants, and x ranges over a denumerable set of variables. As usual,
the free occurrences of x within e are bound in λx:τ.e, and we consider terms to be the same modulo
α-equivalence. We write e[e1/x] for the capture-avoiding substitution of e1 for the free occurrences
of x within e. We omit integer operations and conditionals, but they can easily be added.

A large-step semantics for the programming language is given by the following rules which define
a judgment e ⇓ v meaning the expression e evaluates to the value v.

v ⇓ v
e ⇓ 〈v1, v2〉
π1 e ⇓ v1

e ⇓ 〈v1, v2〉
π2 e ⇓ v2

e1 ⇓ λx:τ.e e2 ⇓ v2 e[v2/x] ⇓ v

e1 e2 ⇓ v

The typing judgment Γ ` e : τ is defined below.

Γ ` x : Γ(x) Γ ` i : int

Γ ` e : τ1 × τ2

Γ ` πi e : τi

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2

Γ, x:τ1 ` e : τ2

Γ ` λx:τ1.e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

1Arguably, initialization flags and subtyping have not really disappeared, only been replaced by slightly cleaner
implementations: initialization flags and junk values the word type, and general register-file subtyping by rules like
∆; Γ, r : τ ` r : cell. We are willing to concede this point, but believe that it is still an improvement
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3.1 Linear Closure Conversion

We introduce a linear intermediate language (LIL) whose type system requires precise accounting for
dynamically allocated data structures. In particular, values of pair type cannot be freely duplicated
or forgotten. Rather, each such value must be used exactly once. However, integer or function values
may be copied and forgotten without restrictions. This corresponds to the fact that we do not need
to dynamically allocate space for primitive values that fit into registers, only for pairs.

Following Minamide et al. [15], we represent closures as a data structure consisting of closed code
and an environment. The type of the environment is held abstract using an existential to ensure that
the translation of closures is uniform. Source-level closures with the same type might have different
environments, so we use an existential type to abstract these environment types so that the target
language, which makes environments explicit, can have a uniform type for the closures.

The source language supports arbitrary duplication or forgetting of resources such as pairs or
closures. Our translation to the linear intermediate language realizes this by explicitly copying or
deallocating data structures as needed. For instance, building 〈x, x〉 : (int ⊗ int) ⊗ (int ⊗ int) from
x : int⊗ int involves doing a deep copy of x and then constructing the desired pair from the resulting
separate copies x1 and x2. Unrestricted types such as integers and functions can be copied and freed
without restriction.

In the absence of abstract types (type variables), we can copy (or free) a data structure by
crawling over it in a type-directed fashion. However, this no longer works when we need to copy
a value of abstract type. Although our source language does not have abstract types, it does have
closures and our translation introduces abstract types to give a uniform translation for closure
environments. Therefore, we augment each closure with two additional methods, one for copying
the environment, and one for deallocating the environment.

The syntax for the linear intermediate language is given by:

τ ::= unit | int | σ1 ⇒ σ2

σ ::= α | τ | σ1 ⊗ σ2 | ∃α.σ
e ::= 〈〉 | i | x | λx:σ.e | e1 e2 | 〈e1, e2〉

| pack[σ, e] as σ′ | let [α, x] = e1 in e2

| let 〈x1, x2〉 = e1 in e2 | let x = e1 in e2

v ::= 〈〉 | i | λx:σ.e | 〈v1, v2〉 | pack[σ, v] as ∃α.σ′

We abbreviate let x = e1 in e2 by e1; e2 when x is not free in e2.
Types are split into unrestricted types unit, int, and function types, which are not associated

with tracked memory resources, versus linear types α, σ ⊗ σ′, ∃α.σ which may be. These in turn
correspond to restricted or linear types at the LTAL level. The function type σ1 ⇒ σ2 deserves
explanation. It is neither linear implication −◦ nor intuitionistic implication →. Instead, it denotes
a function which must use its argument linearly, but is itself reusable. Thus, in linear logic terms,
σ1 ⇒ σ2

∼= !(σ1 −◦ σ2). Therefore, ⇒ functions must be (linearly) closed ; that is, they may only
refer to other closed functions and their linear argument.2

The operational semantics is similar to that for the source language, but includes rules for let
forms:

e1 ⇓ v′ e2[v′/x] ⇓ v

let x = e1 in e2 ⇓ v

e1 ⇓ 〈v1, v2〉 e2[v1/x1][v2/x2] ⇓ v

let 〈x1, x2〉 = e1 in e2 ⇓ v

e1 ⇓ pack[σ, v′] as ∃α.σ′ e2[σ/α][v′/x] ⇓ v

let [α, x] = e1 in e2 ⇓ v

The type system for the intermediate language ensures that linear values are used exactly once.
Judgments for terms are of the form ∆;Γ ` e : σ where ∆ is the set of type variables in scope, and
Γ is the set of variables in scope together with their types. Contexts are again order-sensitive.

2Actually, it would also be safe to permit closed functions to refer to global data of unrestricted type, but in the
current system this seems to be of limited utility.
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∆; • ` 〈〉 : unit ∆; • ` i : int

FTV (σ) ⊆ ∆
∆; •, x:σ ` x : σ

∆; Γ ` x : σ FTV (τ) ⊆ ∆
∆; Γ, y:τ ` x : σ

•; Ψ, x:σ1 ` e : σ2

•; Ψ ` λx:σ1.e : σ1 ⇒ σ2

∆; Γ1 ` e1 : σ1 ⇒ σ2 ∆; Γ2 ` e2 : σ1

∆; Γ1 1 Γ2 ` e1 e2 : σ2

∆; Γ1 ` e1 : σ1 ∆; Γ2 ` e2 : σ2

∆; Γ1 1 Γ2 ` 〈e1, e2〉 : σ1 ⊗ σ2

∆; Γ1 ` e1 : σ1 ⊗ σ2 ∆; Γ2, x1:σ1, x2:σ2 ` e2 : σ

∆; Γ1 1 Γ2 ` let 〈x1, x2〉 = e1 in e2 : σ

∆; Γ ` e : σ[σ1/α]
∆; Γ ` pack[σ1, e] as ∃α.σ : ∃α.σ

∆; Γ1 ` e1 : ∃α.σ1 ∆, α; Γ2, x:σ1 ` e2 : σ α 6∈ FTV (σ)
∆; Γ1 1 Γ2 ` let [α, x] = e1 in e2 : σ

∆; Γ1 ` e1 : σ1 ∆; Γ2, x:σ1 ` e2 : σ

∆; Γ1 1 Γ2 ` let x = e1 in e2 : σ

Figure 1: Type system for LIL

We use Γ1 1 Γ2 to mean for all x ∈ Dom(Γ1) either (a) x 6∈ Dom(Γ2) or (b) if x ∈ Dom(Γ2) then
there exists an τ such that Γ1(x) = Γ2(x) = τ . In other words, the “1” operation allows duplication
of variables that have unrestricted type. Weakening for unrestricted assumptions is made explicit
through an additional rule. We write Ψ for a context that contains only function-typed variables.

Figure 1 gives the typing rules for LIL. The rule for code types ensures that the code is closed
(i.e., only depends upon its parameter and other functions in scope). The other rules are variants
of typical linear type rules.

The type translation used by the source-to-LIL translation is shown in Figure 2. A source level
closure of type τ1 → τ2 is translated to a target-level term of consisting of four components:

1. an environment whose type is held abstract (α),

2. an “apply” method which takes the argument and environment and produces the result
(T1[[τ1]]⊗ α ⇒ T1[[τ2]]),

3. a “copy” method which consumes the environment and produces two copies (α ⇒ α⊗α), and

4. a “free” method which consumes the environment and returns linear unit (α ⇒ unit).

We lift the type translation to type assignments as follows:

T1[[Γ]] = T1[[|Γ|]]

where the auxiliary definition |Γ| is given by:

| • | = unit
|Γ, x:τ | = τ × |Γ|

The term translation is given in Figure 3.
The translation assumes that a distinguished variable env refers to a data structure that holds

the values of the free variables needed to evaluate the expression. We forbid reordering of the source
type environment Γ during translation. The resulting translated expression produces a value of type
T1[[τ ]] together with a copy of the environment. The critical invariant is
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T1[[int]] = int
T1[[τ1 × τ2]] = T1[[τ1]]⊗ T1[[τ2]]

app(σ1, σ2, σ) = σ1 ⊗ σ ⇒ σ2

copy(σ) = σ ⇒ σ ⊗ σ
free(σ) = σ ⇒ unit

T1[[τ1 → τ2]] = ∃α.(α⊗ (app(T1[[τ1]], T1[[τ2]], α)⊗
(copy(α)⊗ free(α))))

Figure 2: λ→× to LIL type translation

if σΓ = T1[[Γ]], e′ = E1[[Γ ` e : τ ]], and σ = T1[[τ ]], then env:σΓ ` e′ : σ ⊗ σΓ.

The term translation depends on the auxiliary meta-level functions Copy and Free, shown in
Figure 4, which are defined by induction on the structure of source-language types. These functions
make the implicit reuse and discarding of context components in the source language explicit as
copying and deletion in the linear language.

3.2 Correctness

The proofs of type and semantic correctness of the translation to LIL draw on the proofs of similar
results for Minamide et al.’s typed closure conversion translations [15].

Lemma 3.1. If Γ ` e : τ is derivable, then E1[[Γ ` e : τ ]] exists and env:T1[[Γ]] ` E1[[Γ ` e : τ ]] :
T1[[τ ]]⊗ T1[[Γ]].

Proof. Straightforward induction on the derivation.

To prove semantic equivalence, we define several type-indexed simulation relations between source
terms and substitutions on one hand, and target terms on the other.

Definition 3.2. Define ground simulation relations ≈τ relating closed source and target values and
∼τ relating closed source and target expressions as follows:

• e ∼τ e′ iff e ⇓ v and e′ ⇓ v′ and v ≈τ v′

• i ≈int i

• 〈v1, v2〉 ≈τ1×τ2 〈v′1, v′2〉 iff vi ≈τi v′i

• v ≈τ1→τ2 v′ iff

– for all v1 ≈τ1 v2, we have v v1 ∼τ2 App(v′, v2)

– Copy[[τ1 → τ2]](v′) ⇓ 〈v′, v′〉
– Free[[τ1 → τ2]](v′) ⇓ 〈〉

Because our translation makes the environment explicit, we need an unusual simulation relation
γ  e ∼Γ,τ e′ between source substitutions and expressions γ, e and target expressions e′.

Definition 3.3. Let γ be a substitution mapping source variables to source terms. We write ` γ : Γ
to indicate that Dom(γ) = Dom(Γ) and ` γ(x) : Γ(x) for each x ∈ Dom(Γ). We write γ̂(e)
for the result of applying a substitution to an expression. We extend ground value equivalence to
substitutions satisfying ` γ : Γ as follows:

• • ≈• 〈〉

• γ, {x 7→ v} ≈Γ,x:τ 〈v′, env〉 if γ ≈Γ env and v ≈τ v′.
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E1[[Γ ` i : int]] = 〈i, env〉

E1[[Γ, x:τ ` x : τ ]] =
let 〈x, env〉 = env in
let 〈x1, x2〉 = Copy[[τ ]](x) in
〈x1, 〈x2, env〉〉

E1[[Γ, y:τ ′ ` x : τ ]] =
let 〈y, env〉 = env in
let 〈x, env〉 = E1[[Γ ` x : τ ]] in
〈x, 〈y, env〉〉

E1[[Γ ` 〈e1, e2〉 : τ1 × τ2]] =
let 〈x1, env〉 = E1[[Γ ` e1 : τ1]] in
let 〈x2, env〉 = E1[[Γ ` e2 : τ2]] in
〈〈x1, x2〉, env〉

E1[[Γ ` π1 e : τ1]] =
let 〈p, env〉 = E1[[Γ ` e : τ1 × τ2]] in
let 〈x1, x2〉 = p in
Free[[τ2]](x2);
〈x1, env〉

E1[[Γ ` π2 e : τ2]] =
let 〈p, env〉 = E1[[Γ ` e : τ1 × τ2]] in
let 〈x1, x2〉 = p in
Free[[τ1]](x1);
〈x2, env〉

E1[[Γ ` e1 e2 : τ2]] =
let 〈c, env〉 = E1[[Γ ` e : τ1 → τ2]] in
let 〈x, env〉 = E1[[Γ ` e2 : τ1]] in
〈App(c, x), env〉

E1[[Γ ` λx:τ1.e : τ1 → τ2]] =
let 〈cenv, env〉 = Copy[[|Γ|]](env) in
let copy = λenv.Copy[[|Γ|]](env) in
let free = λenv.Free[[|Γ|]](env) in
let app = (λenv.

let 〈r, env〉 = E1[[Γ, x:τ1 ` e : τ2]] in
Free[[|Γ, x:τ1|]](env);
r) in

let d = 〈cenv, 〈app, 〈copy, free〉〉〉 in
let c = pack[T1[[Γ]], d] as T1[[τ1 → τ2]] in
〈c, env〉

App(e1, e2) =
let [α, 〈cenv, 〈app, 〈copy, free〉〉〉] = e1 in
app〈e2, cenv〉

Figure 3: λ→× to LIL translation
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Copy[[τ ]] : T1[[τ ]] ⇒ T1[[τ ]]⊗ T1[[τ ]]
Copy[[int]](x) = 〈x, x〉
Copy[[τ1 × τ2]](p) =
let 〈x, y〉 = p in
let 〈x1, x2〉 = Copy[[τ1]](x) in
let 〈y1, y2〉 = Copy[[τ2]](y) in
〈〈x1, y1〉, 〈x2, y2〉〉

Copy[[τ1 → τ2]](c) =
let [α, d] = c in
let 〈env, 〈app, 〈copy, free〉〉〉 = d in
let 〈e1, e2〉 = copy(env) in
let d1 = 〈e1, 〈app, 〈copy, free〉〉〉 in
let d2 = 〈e2, 〈app, 〈copy, free〉〉〉 in
let c1 = pack[α, d1] in
let c2 = pack[α, d2] in 〈c1, c2〉

Free[[τ ]] : T1[[τ ]] ⇒ unit
Free[[int]](x) = 〈〉
Free[[τ1 × τ2]](p) =
let 〈x, y〉 = p in
Free[[τ1]](x) ; Free[[τ2]](y)

Free[[τ1 → τ2]](c) =
let [α, d] = c in
let 〈env, 〈app, 〈copy, free〉〉〉 = d in free(env)

Figure 4: Definitions of Copy[[ · ]] and Free[[ · ]]

Finally, we define contextual simulation ·  · ≈Γ;τ · and ·  · ∼Γ;τ · as follows:

• γ  v ≈Γ;τ 〈v′, env〉 iff γ ≈Γ env and v ≈τ v′.

• γ  e ∼Γ;τ e′ iff γ̂(e) ⇓ v, e′ ⇓ v′, and γ  v ≈Γ;τ v′.

We first need to show that the Copy and Free macros work as advertised for the translations of
source terms. It suffices to check that they work properly on closed values:

Lemma 3.4. Assume v ∼τ v′. Then Copy[[τ ]](v′) ⇓ 〈v′, v′〉 and Free[[τ ]](v) ⇓ 〈〉.

The proof is straightforward by induction on the definition of τ . The real insight here is that
the invariants needed to prove the case for function types need to be built into ≈τ1→τ2 . Now we can
prove simulation:

Theorem 3.5. Suppose Γ ` e : τ , ` γ : Γ, and γ ≈Γ env are derivable and e′ = E1[[Γ ` e : τ ]]. Then
γ  e ∼Γ;τ e′.

Proof. By induction on the derivation Γ ` e : τ . The interesting cases are those for variables,
applications, and abstraction.

3.3 Generating Linear TAL Code

We will describe a simple translation to assembly language that performs minimal register allocation
and other optimizations, though to some extent these are possible with Linear TAL just as with
ordinary assembly language. We assume there are at least six registers rs (stack register), ra (answer
register), rt, ru (temporary registers), rf (freelist register), and rr (return address register). Our
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type translation is as follows:

T2[[unit]] = word
T2[[int]] = int

T2[[σ1 ⊗ σ2]] = @〈T2[[σ1]]⊗ T2[[σ2]]〉
T2[[∃α.σ]] = ∃α.T2[[σ]]

T2[[α]] = α
flist = µα.?〈word⊗ α〉

CC(ωs, ωa, ωu, τ) = code{rs : ωs, ra : ωa, ru : ωu,
rt : word, rf : flist, rr : τ}

T2[[σ1 ⇒ σ2]] = ∀α, β.CC(@〈T2[[σ1]]⊗ α〉,word, β,
CC(α, T2[[σ2]], β,word))

Integers are represented as words, pairs as pointers to memory blocks, and existentials and type
variables as their corresponding forms in LTAL. The translation of functions expresses a simple
calling convention. In a procedure call,

• the argument is passed on the stack, which also consists of unspecified additional contents α

• the result register ra and “caller-save” temporary register rt must not point to anything im-
portant

• the “callee-save” temporary ru may refer to any type β

• the freelist register rf must point to a freelist

• and the return register must contain an appropriate return address, which requires:

– the function’s argument must have been popped off the stack and disposed of, leaving the
stack remainder α

– the result must be in the return register ra

– rr and rt must not refer to anything important

– rf must still point to a freelist

– and ru must contain its original contents β.

The translation of a restricted or unrestricted LIL type is a restricted or unrestricted LTAL type,
respectively. As before, the translation of a context is an iterated tuple:

T2[[Γ, x : σ]] = @〈T2[[σ]]⊗ T2[[Γ]]〉
T2[[ • ]] = word

We introduce several macros in Figure 5 that greatly simplify the translation. The alloc and
free macros assume only that rf 6= r and points to a freelist; the other macros assume that rf , rt, r, s
are all distinct and rt does not point to anything important. To be completely precise, the label in
the alloc macro needs a type that depends heavily on context; we omit that level of detail in favor
of clarity. Also, if we can tell from the type of rf that there is at least one cell at the head of the
list, then the branch operation in alloc can be removed.

We assume that all functions have been lifted to the top level; thus, a program is a sequence of
let-bindings of functions to variables f followed by a the program body. All function applications are
of function variables to data. We introduce auxiliary judgments Ψ ` e ↑ σ (for toplevel expressions)
and Ψ;∆; Γ ` e ↓ σ (for function and program bodies), where Ψ is a context binding top-level
function names to their types. The rules for ↑ judgments are:

Ψ; •; •, x : σ1 ` e ↓ σ2 Ψ, f : σ1 ⇒ σ2 ` e′ ↑ σ′

Ψ ` let f = λx : σ1.e in e′ ↑ σ′

11



alloc r = bnz rf , L;
halt;

L : mov r, rf ;
ld rf , r[1]

free r = st r[1], rf ;
mov rf , r

push r, s = alloc rt;
st rt[0], s;
st rt[1], r;
mov r, rt

pop r, s = mov rt, s;
ld r, rt[0];
ld s, rt[1];
free rt;

drop r = ld rt, r[0];
free rt;
mov r, rt;

rot r, s = ld rt, s[1];
st s[1], r;
mov r, s;
mov s, rt;

Figure 5: LTAL Macros

Ψ; •; Γ ` e ↓ σ

Ψ ` e ↑ σ

The rules for ↓ judgments are the same as the ordinary typing rules except the ⇒-introduction
rule is omitted. This guarantees that all application heads are function variable names bound in Ψ
or Γ.

Figures 6 and 7 show the code generation translation from LIL to LTAL. We fix a specific label
LS as the entry point for the entire program. We also generate a canonical label Lf for each
LIL let-bound function name f , and we generate a fresh local “return address” label LR for each
translated application. We have taken the liberty of presenting a simple, but not completely accurate
translation: for terms like 〈e1, e2〉, we re-use the same context Γ in translating each branch rather
than split the Γ up into the parts Γ1,Γ2 used to typecheck the two subexpressions e1, e2. This is
because we want the shape of the environment to stay the same; that is, we don’t want to have to
split the stack up whenever the linear environment splits. To be completely formal about this we
would have to have a type system with judgments like ∆; Γ ` e : τ | Γ′, where Γ′ has the same shape
(domain) as Γ but some of its linear types may have been “flattened” (replaced with unit). This is
essentially how our implementation works.

The translation of variable accesses is slightly tricky. We treat the context as an ordered list,
implemented as nested memory cells. In our linear setting, it is not possible to traverse this list
without modifying it. Thus, to look up a variable x in the environment Γ, x,Γ′, we must traverse
the initial segment corresponding to Γ′, saving it in an auxiliary list, then copy x, then restore the
environment. This is accomplished with the aid of the macro rot r, s, which moves the head cons
cell of a nonempty list starting at s onto another, possibly empty list starting at r. This is an
extremely inefficient way to accomplish a simple task: if we ignore the linearity restriction, it is easy
to do lookups in approximately n = |Γ| instructions on average rather than 8n. And since lookups
are very common, this turns out to be an important source of inefficiency in LTAL.

3.4 Correctness

We have presented a highly schematic description of the translation from LIL to LTAL. To make
the type-correctness of the translation precise, we need to be more explicit about the form of the
translation. We view the results of ↓ translation as a triple (I, C, Ψ) of instruction sequence, code
section, and code type context (over the same set of labels). The result of ↑ translation is a pair
(C,Ψ).

Definition 3.6. A code section C ′ and signature Ψ′ are well-formed with respect to Ψ if for any
code section C disjoint from C ′ satisfying at least ` C : Ψ, we have ` C ] C ′ : Ψ ] Ψ′. We write
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E2[[Ψ ` let f = λx:σ1.e in e′ ↑ σ]] =
Lf : T2[[σ1 ⇒ σ2]]

E2[[Ψ; •, x : σ1 ` e ↓ σ2]];
drop rs;
jmp rr;
E2[[Ψ, f : σ1 ⇒ σ2 ` e′ : σ′]]

E2[[Ψ ` e ↑ σ]] =
LS : ∀αβ.CC(α, word, β, CC(α, T2[[σ]], β,word))

E2[[Ψ; •; • ` e ↓ σ]];
jmp rr

E2[[Ψ;∆; Γ ` i ↓ int]] = mov ra, i

E2[[Ψ;∆; Γ ` 〈〉 ↓ unit]] = mov ra, 0
E2[[Ψ;∆; Γ1 ` e1; e2 ↓ σ]] =

E2[[Ψ;∆; Γ ` e1 : unit]]
E2[[Ψ;∆; Γ ` e2 : σ]]

E2[[Ψ, f : σ1 ⇒ σ2;∆; Γ ` f ↓ σ1 ⇒ σ2]] = mov ra, Lf ;
E2[[Ψ;∆; Γ, x : σ ` x ↓ σ]] = ld ra, rs[0]
E2[[Ψ;∆; Γ, y : σ ` x ↓ σ′]] =

rot ru, rs

E2[[Ψ;∆; Γ ` x ↓ σ′]];
rot rs, ru

E2[[Ψ;∆; Γ ` f e ↓ σ2]] =
E2[[Ψ;∆; Γ ` e ↓ σ1]];
push ru, ra;
E2[[Ψ;∆; Γ ` f ↓ σ1 ⇒ σ2]];
push rs, rr;
rot rs, ru;
mov rr, LR;
jmp ra

LR : CC(T2[[Γ]], T2[[σ2]], ω,word)
pop rr, rs;

Figure 6: LIL to LTAL term translation (I)
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E2[[Ψ;∆; Γ ` 〈e1, e2〉 ↓ σ1 ⊗ σ2]] =
E2[[Ψ;∆; Γ ` e1 ↓ σ1]];
push ru, ra;
E2[[Ψ;∆; Γ ` e2 ↓ σ2]];
rot ra, ru;

E2[[Ψ;∆; Γ ` let 〈x1, x2〉 = e in e′ ↓ σ]] =
E2[[Ψ;∆; Γ ` e ↓ σ1 ⊗ σ′2]];
rot rs, ra;
push rs, ra;
E2[[Ψ;∆; Γ, x1 : σ1, x2 : σ2 ` e′ ↓ σ]];
drop rs;
drop rs;

E2[[Ψ;∆; Γ ` pack[σ1, e] ↓ ∃α.σ]] =
E2[[Ψ;∆; Γ ` e ↓ σ[σ1/α]]];

E2[[Ψ;∆; Γ ` let [α, x] = e in e′ ↓ σ]] =
E2[[Ψ;∆; Γ ` e ↓ ∃α.σ]];
push rs, ra;
E2[[Ψ;∆, α; Γ, x : σ ` e ↓ σ]];
drop rs;

E2[[Ψ;∆; Γ ` let x = e in e′ ↓ σ′]] =
E2[[Ψ;∆; Γ ` e ↓ σ]];
push rs, ra

E2[[Ψ;∆; Γ, x : σ ` e′ ↓ σ′]];
drop rs;

Figure 7: LIL to LTAL term translation (II)
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this as Ψ ` C ′ : Ψ′.

Theorem 3.7. If Ψ ` e ↑ σ is derivable then (C,Ψ′) = E2[[Γ ` e ↑ σ]] satisfies T2[[Ψ]] ` C : Ψ′.
If Ψ;∆; Γ ` e ↓ σ is derivable then (I, C, Ψ′) = E2[[Γ ` e ↑ σ]] satisfies T2[[Ψ]] ` C : Ψ′, and for

any type ω satisfying ∆ ` ω,

∆; CC(T2[[Γ]],word, ω, CC(T2[[Γ]], T2[[σ]], ω,word)) ` I

relative to code context T2[[Ψ]] ]Ψ′.

We believe that it is possible to show that the translation from IL to LTAL preserves operational
behavior also (that is, that our compiler is correct). Indeed, the type-correctness argues in favor of
this. However, formalizing and proving this seems hard, so we defer it to future work.

4 Formal Results

Like TAL, LTAL satisfies type soundness relative to its operational semantics: no type-safe program
can get stuck. This requires checking not only that the program is well-formed, but that the heap
and register file typecheck with respect to the current register context. We handle this by defining
judgments H |= R : Γ, H |= v : ω, and H |= h : σ which characterize the single pointer property we
need. Soundness also entails memory conservation: if a program terminates normally, then all the
memory not used by the result of the computation can be reused. It is worth pointing out that the
judgment H |= R : Γ is a special case of the “heaps as possible worlds” view used in Kripke-style
semantics of Bunched Implications [23]; this is an interesting connection we plan to investigate in
future work. Our choice of the notation |= is based on this observation and a similar choice made
in HBAL [2].

In what follows, let C be some fixed code section and Ψ be its signature, that is, ` C : Ψ.

Lemma 4.1 (Progress). If ` P then there exists P ′ such that P −→C P ′.

The key to proving Type Preservation is to ensure that whenever the type of the register file
changes, the register file and heap also change in a way that is compatible with the single-pointer
property.

Lemma 4.2 (Conservation). If •; Γ ` i | ∆; Γ′, H |= R : Γ, and (H,R, i; I) −→C (H ′, R′, I) then
there exists a type substitutiuon δ : ∆ such that H ′ |= R′ : δ(Γ′).

Lemma 4.3 (Preservation). If ` P and P −→C P ′ then ` P ′.

Theorem 4.4 (Soundness). If ` P and P −→∗
C P ′ then P ′ is not stuck.

It is easy to verify that memory cells are never created or destroyed. Programs that terminate
successfully (i.e. by calling their exit continuation) are guaranteed to leave memory in a consistent
state; that is, all memory not used by the answer is restored to the freelist. Conversely, execution
never becomes stuck as a result of a memory management error such as accessing “freed” memory
through a dangling pointer. Naturally, the usual kind of type errors are prohibited also.

Of course, programs can halt at any time, leaving the heap in a mess, so this result is a little
unsatisfying. However, our translation only uses halt to terminate the program when it runs out of
memory. We consider how to deal with situations like running out of memory more gracefully via
exception handling in the next section.

5 Extensions

Our source language λ→× doesn’t deal with any really interesting features of functional languages:
datatypes with pattern matching, recursive functions, polymorphism, control operators, laziness,
or references. Dealing with recursion is straightforward, perhaps surprisingly in a linear setting.
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E2[[Γ ` fix f(x:τ1):τ2.e : τ1 → τ2]] =
let mkc =

(λp.
let copy = λenv.Copy[[|Γ|]](env) in
let free = λenv.Free[[|Γ|]](env) in
let 〈app, env〉 = p in
let 〈cenv, env〉 = Copy[[|Γ|]](env) in
let d = 〈cenv, 〈app, 〈copy, free〉〉〉 in
let c = pack[T2[[Γ]], d] as T2[[τ1 → τ2]] in
〈c, env〉) in

let app =
(fix app’(env) =>

let 〈x, env〉 = env in
let env = mkc(〈app’, env〉) in
let env = 〈x, env〉 in
let 〈r, env〉 = E2[[Γ′ ` e : τ2]] in
Free[[|Γ′|]](env);
r) in

mkc(〈app, env〉)

where Γ′ = Γ, f :τ1 → τ2, x:τ1

Figure 8: Translation of recursive functions

Datatypes and polymorphism are also fairly easy to deal with, if complicated in implementation.
In this section we describe these simple extensions. References and laziness, which rely crucially
on sharing, seem difficult or impossible to accommodate in LTAL as-is. We discuss options for
supporting them as well. LTAL’s memory model is very primitive, supporting essentially only “cons
cells,” whereas real languages employ a wide variety of memory models, and we discuss possible
extensions to LTAL to support these models.

5.1 Easy-to-handle features

5.1.1 Recursion

LTAL already supports recursion, since blocks are typechecked in the context of all code labels.
However, our source and intermediate languages do not. It is easy to add standard syntax for
recursively-defined functions to the source and intermediate languages, with the usual typing and
operational semantics rules. In LIL, we require that the function refer only to function labels, f ,
and x. Thus, like ordinary functions, recursive functions can refer only to other functions.

Γ, f :τ1 → τ2, x:τ1 ` e : τ2

Γ ` fix f(x:τ1):τ2.e : τ1 → τ2

•; Ψ, f :σ1 ⇒ σ2, x:σ1 ` e : σ2

•; Ψ ` fix f(x:σ1):σ2 => e : σ1 ⇒ σ2

Recursive functions translate to closures whose application function copies the environment and
constructs a new closure before proceeding with the body of the function. The source-to-LIL trans-
lation for recursive functions is given in Figure 8. Since the activity of constructing a closure recurs
at the top-level closure construction as well as inside the application function, we introduce a new
function mkc which given an application function and an environment constructs a closure. To copy
the environment during an application, we first need to split the function argument off from the rest
of the environment. Extending this to mutually recursive functions is straightforward, if tedious.
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T2[[list[τ ]]] = µα.?〈T2[[τ ]]⊗ α〉
T2[[∀α.τ ]] = ∀α.copy(α)⊗ free(α) ⇒ T2[[τ ]]
T2[[∃α.τ ]] = ∃α.τ ⊗ copy(α)⊗ free(α)

T2[[α]] = α

Figure 9: Type translations for extensions

One drawback to this simplistic encoding of recursive functions is that the closure is copied once
per recursive call. An alternative, possibly better approach is to define app(τ1, τ2, τe) as τ1 ⊗ τe ⇒
τ1 ⊗ τe, and require the caller of a function to free its environment after the call. This permits
recursive functions to be implemented by threading a single context through the recursive calls.

5.1.2 Lists and Datatypes

Lists over arbitrary types can easily be added both to the source and linear IL. The type translation
of lists in LTAL is shown in Figure 9. Extending the term translation to deal with cons, nil,
and case expressions is easy. To deal with arbitrary, user-defined datatypes, we could introduce
singleton integer types and union types along the lines of the encoding of recursive types in Alias
Types [30] or DTAL [33].

5.1.3 Polymorphism

Another important feature which we have not shown how to implement is parametric polymorphism.
LTAL already supports polymorphism; however, our source and intermediate languages do not. We
can easily add universally quantified types to the source and LIL in the usual way. The main problem
is how to translate polymorphic source-level types and values to the LIL, because abstract types may
be freely copied and forgotten in the source language but not in LIL. The approach we take is to
translate polymorphic terms to functions that also abstract copy and free operations for their type
arguments. The type translation is augmented as shown in Figure 9. Unfortunately, this encoding
does not interact well with closure conversion. Closure conversion is integral to the translation
to LIL, while translating polymorphic code introduces new functions. Although these features do
not seem difficult to handle in isolation, so far a good solution to handling them simultaneously
has evaded us. We currently are looking for a way to simplify the translation by splitting it into
two phases: a linearization phase that adds copy and free functions and abstractions to the source
language, then closure conversion.

Abstract (existential) types can also be supported. Unlike for polymorphism, the source-to-LIL
translation of existentials is straightforward, since we already handle closures as a special case.

5.1.4 Exceptions and Continuations

LTAL includes a halt instruction for escaping from situations like running out of memory without
cleaning up. We’d prefer to have some exception handling mechanism by which programs that run
into unexpected situations can backtrack and attempt to recover. This kind of behavior is a necessity
in any systems program which is expected to do something reasonable no matter what happens. It
would also be nice to be able to handle first-class continuations (callcc).

Unsurprisingly, the answer is continuation-passing style conversion. However, in our linear set-
ting, there are several complications. First, before calling an exception handler, LTAL programs
have to dispose of all storage that has been allocated since the handler was installed. Second, as
noted in [6], some forms of control flow, such as exceptions and coroutines, can be accomplished
using linear CPS translations, whereas other forms such as first-class callcc cannot. Intuitively the
reason is that copying continuations requires “copying the world”. In light of this result, we expect
the former kinds of control flow to be easier to implement in LTAL, whereas the latter would require
maintaining “copy the world” and “free the world” functions throughout computation.
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5.1.5 Garbage collection and reference counting

As much as LTAL tries to pretend otherwise, garbage collection is part of the functional programming
world, so it is important for LTAL to at least co-exist with it peacefully. Fortunately, linear logic
already provides a bridge back to intuitionistic logic that fits our purposes: the exponential modality
! (“of course”). In linear logic, !A is an “always valid” proposition, thus can be copied and forgotten
without restriction, and this models garbage-collected values perfectly. We can easily add a new
unrestricted types !ω to LTAL and !σ to LIL, and allow @〈τ1 ⊗ τ2〉 to be coerced to !@〈τ1 ⊗ τ2〉 for
any unrestricted τ1, τ2. Aliases of linear data may not escape into garbage-collected memory: all the
components of a heap cell we want to make unrestricted also have to be unrestricted. This prevents
us from accidentally recycling a shared cell.

An alternative approach that would permit both sharing and reclamation would be to interpret
! types as reference-counted pointers. However, previous work [8] on reference-counting readings
of linear logic is at a higher level of abstraction than LTAL, and it is not clear how to push the
reference counting interpretation all the way down to the linear level without introducing reference
counting pseudo-instructions.

5.2 Hard-to-handle features

5.2.1 References and Laziness

Although we have presented a compiler for a call-by-value language, it is not difficult to support
call-by-name evaluation in LTAL by translating source expressions to suspensions using standard
techniques. But a more efficient call-by-need implementation is not easy because sharing is not
allowed. References are also not easy to incorporate into LTAL. We group laziness and references
together because they seem roughly equivalent in terms of difficulty: thunks can be implemented in
a strict language like ML using references, whereas references can be simulated in a lazy language
like Haskell using monads. The real problem in dealing with both in LTAL is sharing, addressed in
the next section. But first we discuss an intriguing alternative.

O’Hearn and Reynolds [20] described translations from the languages Idealized Algol (IA) and
Syntactic Control of Interference (SCI) to a polymorphic call-by-name linear λ-calculus similar to
our LIL. IA and SCI are higher-order imperative languages with stack allocation, call-by-name
parameter passing, and integer references. Although their target language includes ! types, they are
used only on function types in the translation. Thus, we believe that it is possible to compile their
target language to LTAL. However, IA and SCI provide only statically-scoped integer references,
ducking the problems of higher-order storage and unrestricted reference deallocation.

5.2.2 Sharing

Functional languages expect data to be sharable, so copying can be accomplished by copying pointers.
LTAL specifically forbids sharing. This is quite draconian. There are several known techniques for
controlling aliasing which could be added to LTAL.

The most heavyweight approach would probably be to augment LTAL with a type system based
on Alias Types [25, 30], a very powerful but complex approach to dealing with aliasing. In Wadler’s
approach to linear typing [27], linear values may be temporarily shared using a let! operator, as
long as aliases to them do not escape from the body of the expression. Walker and Watkins’
linear region calculus [31] focuses on tracking regions rather than individual cells, but includes a
sharing operation similar to let! that uses type-level region names to guarantee that aliases cannot
escape. There are additional variations on this theme in the Vault, Clean, and Cyclone programming
languages [9, 10, 22].

Recent work on using separation logics for reasoning about pointer programs [24] may offer
a more compelling alternative to name-based sharing. It has been repeatedly observed that Alias
Types are similar in many ways to such pointer logics. We believe that investigating this relationship
may lead to more powerful and less ad hoc sharing mechanisms. It is interesting to note that the
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aforementioned analysis of O’Hearn and Reynolds on IA and SCI using linear logic has already been
superseded by interpretations employing separation/bunched logics [23].

5.3 Beyond Cons-Cells

Our model of memory is very primitive, in that it assumes that all memory is only used in blocks
of two words. This makes our presentation and proofs of soundness and memory preservation
relatively simple, yet many functional languages execute using this simple architecture. Nevertheless
it is desirable to be able to flatten large data structures. Our approach can easily be extended to
accommodate this need by allowing arbitrary n-tuples of words as memory types. The price of this
flexibility would be slightly more complicated (but essentially the same) typing rules.

One serious defect in LTAL is that lookups into the environment are not constant time, but
instead require traversing a linked list. Incorporating n-tuples rather than pairs would defray this
cost somewhat, at the cost of less transparent memory management. Moreover, managing temporary
data storage (such as the intermediate values generated during construction of a pair) requires the
relatively heavyweight alloc approach. It is far more convenient to use a flat stack to store the
environment. Then lookups and temporary stack allocation become constant time operations, and
stack allocation/deallocation of multiple cells can be coalesced into a single operation. We have
experimented with incorporating a simplified form of stack types [17] in to Linear TAL, yielding
Linear Stack TAL (LSTAL). Currently, LSTAL performs no stack overflow checking, so memory use
is not bounded in LSTAL, but typical performance is much better. We compare LSTAL with LTAL
in the following section.

Another unrealistic aspect of LTAL is that programs expect memory to be organized into freelist
prior to execution. It would be better to view all memory as a contiguous segment of words, i.e.
a page provided by the operating system, that can be broken up into blocks of desired sizes as
needed, and restored when adjacent blocks are freed. This approach is related to that taken in the
orderly linear lambda calculus of [21] and the stack logic of [1]; however, neither approach addresses
general dynamic memory management. The former focuses on a garbage collection architecture in
which deallocation is implicit and the latter describes stack allocation and deallocation but not heap
deallocation. Yu et al. [34] have shown how to build a certified malloc/free memory manager using
separation logic. Their approach is based on PCC, so is very expressive but also much more complex
than the type-based system we would like to develop.

6 Implementation

We have implemented a typechecker and interpreter for LTAL and a certifying compiler from our
source language to LTAL based on the translations described in Section 3. The implementation3

is written in OCaml 3.06 and consists of about 6000 lines of code. Our implementation includes
recursive functions, lists, and a partial implementation of polymorphism as outlined in Sections 5.
This is a toy implementation, intended as a proof of concept and to shake the bugs out of the type
system, not to run real programs. Nevertheless, in the rest of this section, we describe experiments
that suggest that LTAL programs are just as inefficient as we feared. We realize that this does
not prove anything: anyone can write a bad compiler. However, we believe that these results shed
enough light on the relevant issues to be worth presenting.

The implementation performs several optimization phases on LIL prior to generating the LTAL
code. The optimizations include copy propagation, inlining, and dead code elimination. The im-
plemented LIL makes copy and free operations explicit temporarily in order to perform “copy-free
elimination” (that is, optimizing away copies whose results are just freed afterward). These op-
timizations seem crucial in reducing the inefficiency of the resulting code (and the complexity of
typechecking it) to an acceptable level.

We have also implemented a stack-based variant of LTAL, called LSTAL. It includes a downward-
growable stack type along with push and pop instructions. In LSTAL, the environment is stored

3http://www.cs.cornell.edu/talc/releases/ltal 0 1.tgz
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LTAL LSTAL
File Cs Hp Cycs Cs Hp Stk Cycs
fact 0.9 2 10 0.4 1 1 3
ack 2.3 1 620 0.8 1 1 197
fib 2.6 2 77 0.9 1 1 22
tabulate 7.5 6 465 1.9 2 3 99
map 14 16 2,050 3.6 11 3 705
filter 17.8 27 5,100 4.6 21 3 1,900
rev 11.7 26 5,400 3.3 21 3 2,200
sum 9.0 13 1,700 2.4 9 3 600

Table 1: LTAL performance microbenchmarks.

flat on the stack, so environment accesses take only O(1) rather than O(|Γ|) instructions; thus, we
expected LSTAL programs to be much smaller and faster than pure LTAL ones.

We have written several microbenchmarks for LTAL to gauge its impracticality. The benchmarks
include simple arithmetic functions like factorial, Ackermann’s function, and Fibonacci sequence,
as well as list examples including constructing, reversing, filtering, mapping, and summing lists.
We include code size Cs (thousands of instructions), total number of instructions executed Cycs
(thousands), and heap size Hp (rounded up to the nearest 4096-byte page). For LSTAL, we also
indicate how many pages of stack space Stk were needed. The list examples work on lists of size
100. The results are shown in Table 1.

The results show, first of all, that LTAL programs are remarkably space- and time-inefficient.
Naively compiling higher-order functional programs down to linear closures which are copied and
freed once per recursive call results in far too much “bookkeeping” (copying and freeing) relative to
actual computation. Since this bookkeeping crosses abstraction boundaries, it is difficult to optimize
away. Even simple functions like list traversals incur memory overheads (and concomitant slowdowns
from copying) far in excess of what is really needed for simple functions like map, filter and rev.
However, many of these problems are more the fault of the simplistic source-to-LIL translation
than LTAL: it is possible to hand-code many of these functions efficiently in LTAL. For example
it is not hard to hand-code a factorial function in approximately 10 instructions that requires no
heap-allocated memory.

As we can see by comparing with LSTAL, environment lookups are also a big part of the prob-
lem. Storing the environment on a growable stack results in dramatic improvements in code size
and running time. In LSTAL, code size typically shrinks to 20-50% of the heap-only LTAL size,
and running times improve by a factor of 2-4. The improvement in memory footprint is not very
pronounced. For the small examples, any improvement is below the resolution of our page metric
to capture; for larger examples, typically we save only a page or two. This makes some sense given
the intermediate language’s exclusive reliance on pairs.

Compiling from an explicitly linear source language (such as LFPL) or performing more advanced
analyses to detect existing linearity would almost certainly result in significant improvement. Prelim-
inary experiments with compiling an LFPL-like language to LTAL indicate that exploiting existing
linearity can decrease code size by a factor of 3-5 and decrease memory usage and running time by
at least a factor of 10. However, for most of our examples there is no direct comparison because
higher-order functions like filter and map cannot be expressed in LFPL.

7 Related Work

The idea of using linearity to implement functional languages without garbage collection has a long
history. Here we focus on work that is closely related to or strongly influenced ours. Lafont’s
Linear Abstract Machine [12] was an early approach showing how to translate linear functional
programs to the instructions of a linear abstract machine that recycled memory directly. Wadler
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[27] was an early proponent of using linearity to support imperative features in purely functional
languages, and Wakeling and Runciman [28] studied the practical advantages and drawbacks to
linear implementation techniques. Baker [4] proposed employing linearity in Lisp to manage memory
without garbage collection. Chirimar, Gunter and Riecke [8] gave a reference counting interpretation
of linear logic, in which explicit copies and frees corresponded to reference counting operations.
Maraist et al. [14] compared interpretations of call-by-name, -need, and -value calculi into linear
logic, and Turner and Wadler[26] studied the memory-management properties of the call-by-value
and call-by-need interpretations.

Hofmann’s LFPL [11] is a linear first-order functional language with list and tree data structures
where space usage is tracked; LFPL programs can be compiled to C programs that do not allocate
any new memory. Aspinall and Compagnoni have shown how to translate LFPL to HBAL [2], a
variant of TAL that also provides some space usage guarantees. However, data structures like lists
and trees are dealt with using built-in instructions rather than “plain” assembly language as in
LTAL. In recent work, Aspinall and Hofmann [3] have incorporated “usage annotations” to allow
some sharing in LFPL.

Our approach to encoding duplicatable closures in a linear language seems (at least superficially)
related to Benton’s encoding of a linear term calculus in System F, in which exponentials were
encoded as coinductive datatypes using existential quantification [5]. There, the objective was to
prove strong normalization, rather than compile programs.

8 Summary and Conclusions

Linear TAL is a safe, low-level language that “stands on its own”: it does not require any outside
run-time support from a garbage collector or operating system to guarantee safe execution within
a fixed memory space. Moreover, LTAL is relatively simple, yet expressive enough to compile the
functional core of ML. As far as we know, no other certified code technique combines these levels of
transparency, independence and expressiveness.

But this independence comes at a steep price. LTAL’s linearity discipline prohibits any useful
kind of sharing. This has disastrous consequences for naive compilation from high-level, non-linear
functional languages, where the ability to copy is taken for granted. Furthermore, LTAL cannot ac-
commodate language features like references or laziness that rely on sharing. We intend to generalize
LTAL to support both sharing and safe low-level memory management in future work.
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A Typing Rules

A.1 Type Well-Formedness

Formally, type contexts ∆ map type variables to signs +,−, 0 which we use to restrict recursive type
variables to positive occurrences. We write ∆− for the context ∆ with all +’s and −’s interchanged.
∆ ` τ

∆ ` word ∆ ` int

∆, α0 ` τ

∆ ` ∀α.τ

∆− ` ωi

∆ ` code{r1 : ω1, . . . , rn : ωn}

∆ ` ω

s ∈ {0,+}
∆, αs ` α

∆ ` σ

∆ ` @〈σ〉
∆ ` σ

∆ ` ?〈σ〉

∆, α+ ` ω ω 6= α

∆ ` µα.ω

∆, α0 ` ω

∆ ` ∃α.ω

∆ ` σ

∆ ` ω1 ∆ ` ω2

∆ ` σ1 ⊗ σ2

` Ψ

` •
• ` ∀~α.code(Γ) ` Ψ
` Ψ, f : ∀~α.code(Γ)

A.2 Code Well-Formedness

The remaining rules refer implicitly to a global well-formed context Ψ0.
∆; Γ ` op : τ

∆; Γ, r : τ ` r : τ ∆; Γ ` f : Ψ0(f)

∆; Γ ` i : int ∆; Γ, r : τ ` r : word

∆ ` ω ∆; Γ ` op : ∀α.τ

∆; Γ ` op : τ [ω/α]

∆; Γ ` op : ω | ∆′; Γ′

∆; Γ ` op : τ

∆; Γ ` op : τ | ∆; Γ
∆; Γ, r : ω ` r : ω | ∆; Γ

α /∈ ∆ ∆;Γ ` op : ∃α.ω | ∆′; Γ′

∆; Γ ` op : ω | ∆′, α; Γ′

∆; Γ ` op : ω[ω′/α] | ∆′; Γ′

∆; Γ ` op : ∃α.ω | ∆′; Γ′
∆; Γ ` op : µα.ω | ∆′; Γ′

∆; Γ ` op : ω[µα.ω/α] | ∆′; Γ′

∆; Γ ` op : ω[µα.ω/α] | ∆′; Γ′

∆; Γ ` op : µα.ω | ∆′; Γ′
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∆; Γ ` i | ∆′; Γ′

∆; Γ ` r : τ ∆; Γ ` r′ : int ∆; Γ ` op : int

∆; Γ ` arith r, r′, op | ∆; Γ, r : int

∆; Γ ` r : int ∆; Γ ` op : code(Γ)
∆; Γ ` bnz r, op | ∆; Γ

∆; Γ ` r : ?〈σ〉 | ∆′; Γ′ ∆′; Γ′ ` op : code(Γ′, r : @〈σ〉)
∆; Γ ` bnz r, op | ∆′′; Γ′

∆; Γ ` r : word ∆; Γ ` r′ : @〈ω0 ⊗ ω1〉 | ∆′; Γ′

∆; Γ ` ld r, r′[0] | ∆′; Γ′, r′ : @〈word⊗ ω1〉, r : ω0

∆; Γ ` r : word ∆; Γ ` r′ : @〈ω0 ⊗ ω1〉 | ∆′; Γ′

∆; Γ ` ld r, r′[1] | ∆′; Γ′, r′ : @〈ω0 ⊗ word〉, r : ω1

∆; Γ ` r : word ∆; Γ ` op : ω | ∆′; Γ′

∆; Γ ` mov r, op | ∆′; Γ′, r : ω

∆; Γ ` r : @〈word⊗ ω1〉 | ∆′; Γ′ ∆′; Γ′ ` r′ : ω0 | ∆′′; Γ′′

∆; Γ ` st r[0], r′ | ∆′′; Γ′′, r : @〈ω0 ⊗ ω1〉, r′ : word

∆; Γ ` r : @〈ω0 ⊗ word〉 | ∆′; Γ′ ∆′; Γ′ ` r′ : ω1 | ∆′′; Γ′′

∆; Γ ` st r[1], r′ | ∆′′; Γ′′, r : @〈ω0 ⊗ ω1〉, r′ : word

∆; Γ ` I

∆; Γ ` op : code(Γ)
∆; Γ ` jmp op

∆; Γ ` halt

∆; Γ ` i | ∆′; Γ′ ∆′; Γ′ ` I

∆; Γ,` i; I

A.3 State Well-Formedness

H |= R : Γ

• ` R : •
H |= R : Γ H ′ |= R(v) : ω

H,H ′ |= R : Γ, r : ω

H |= h : σ

H |= v1 : ω1 H ′ |= v2 : ω2

H,H ′ |= 〈v1, v2〉 : ω1 ⊗ ω2
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H |= v : ω

• |= v : τ
H |= h : σ

H, l 7→ h |= l : @〈σ〉

• |= 0 : ?〈σ〉 H |= v : @〈σ〉
H |= v : ?〈σ〉

H |= v : ω[µα.ω/α]
H |= v : µα.ω

• ` ω H |= v : ω[ω′/α]
H |= v : ∃α.ω

A.4 Program Well-Formedness

` C : Ψ

` • : •
` C : Ψ ~α; Γ ` I

` C, f 7→ I : Ψ, f :∀~α.code(Γ)

` P

` C : Ψ0 H |= R : Γ •; Γ ` I

` (H,R, I)
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