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Abstract

Loess is a powerful but simple strategy for fitting smooth curves to empirical data. The
term “loess” is an acronym for “local regression” and the entire procedure is a fairly direct
generalization of traditional least-squares methods for data analysis. Loess is nonparametric
in the sense that the fitting technique does not require an a priori specification of the relation-
ship between the dependent and independent variables. Although it is used most frequently
as a scatterplot smoother, loess can be generalized very easily to multivariate data; there are
also inferential procedures for confidence intervals and other statistical tests. For all of these
reasons, loess is a useful tool for data exploration and analysis in the social sciences. And,
loess should be particularly helpful in the field of elections and voting behavior because
theories often lead to expectations of nonlinear empirical relationships even though prior sub-
stantive considerations provide very little guidance about precise functional farni€99
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1. Introduction

The purpose of this paper is to discuss the loess procedure for fitting smooth curves
to scatterplots. Loess provides a graphical summary of the relationship between a
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dependent variable and one or more independent variables. The distinctive feature
of this procedure is that it “allows the data to speak for themselves”. Loess is non-

parametric, so the fitted curve is obtained empirically rather than through stringent

prior specifications about the nature of any structure that may exist within the data.

Therefore, loess-enhanced scatterplots often reveal relatively complex relationships
that could easily be overlooked with traditional statistical modeling procedures.

Loess and other nonparametric estimation strategies are useful in social scientific
research because current substantive theories usually provide little detail about the
kinds of structural patterns that should exist within empirical data. In other words,
hypotheses suggesthich variables should be related to each other, and often, the
direction of any such relationships: For example, “education levels should be posi-
tively related to voting turnout”. Beyond statements like this, however, there are
generally no predictions about functional forms. Researchers therefore fall back on
simple specifications, for want of theory-based directions to the contrary — a situ-
ation that Beck and Jackman (1998) have recently called “linearity by default”. This
creates a potentially serious problem because those detailed theoriesdolagist
suggest that nonlinear relationships are pervasive throughout the field of elections,
voting, and mass political behavior (e.g. Przeworski and Soares, 1971; Zaller, 1992;
Brown, 1995). Thus, a nonparametric technique like loess should be very useful for
discerning such nonlinearities and explicating their forms.

The rest of this paper provides a detailed presentation of the loess method, along
with the major practical considerations involved in its use. Most of the discussion
will focus on the simplest case — using loess as a descriptive, exploratory tool for
fitting smooth curves to scatterplots. This is undoubtedly the kind of situation where
loess is employed most frequently. However, the technique is much more general
than this. So, some attention will also be given to statistical inference and multivari-
ate loess. Overall, loess is a very useful tool for discerning systematic structure within
empirical data. As such, this technique should help researchers develop theories that
provide accurate, powerful representations of real-world phenomena.

2. Scatterplot smoothing

The two-dimensional scatterplot is the basic graphical display method for bivariate
data. At the same time, the scatterplot is the “building block” for more complex
graphical depictions of multivariate data (Jacoby, 1998). One of the great strengths
of the scatterplot is that it enables visual assessments of relationships or functional
dependencies between the variables included in the diddlayoperational terms,
functional dependence exists when points that have different coordinates on one scale

1 The visual nature of this assessment is very important because it avoids the a priori assumptions that
provide the basis for more traditional, numerical summaries of statistical relationships, such as the linearity
assumption underlying the use of Pearson product-moment correlations. Instead, direct visualization of
bivariate data facilitates the identification of relationships and underlying patterns that may not conform
to any simple structure (Chambers et al., 1983).
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axis of the scatterplot also tend to exhibit systematically different coordinates on the
other scale axis. If two variables are related to each other (that is, they are func-
tionally dependent), then the plotted points will not be distributed uniformly through-
out the entire plotting area. Instead, the point cloud will form some discernible pattern
or shape.

Evaluating functional dependence in a scatterplot should be a straightforward task.
However, it is often quite difficult in practice. The problem is that noisy data values,
sparse data points, and weak interrelationships can inhibit visual identification of
any such patterns. Furthermore, even if a general pattern can be discerned in the
graph, it is almost impossible to characterize its precise nature through visual inspec-
tion of the scatterplot, alone.

One useful strategy for dealing with the preceding problems involves fitting a
smooth curve to the points in the scatterplot. The purpose of the curve is to summar-
ize the central tendency of thévariable’s distribution at different locations within
the X variable’s distribution. If the two variables are unrelated to each other, then
the smooth curve will be a flat line (the center of thdistribution does not change,
regardless of th& value). If the two variables are related, then the smooth curve
should exhibit some other, non-horizontal shape.

There are two general strategies for fitting a smooth curve: parametric and non-
parametric fitting (Cleveland, 1993). The former, parametric fitting, requires the ana-
lyst to specify the functional form of the relationship in advance. The fitting algor-
ithm then optimizes the correspondence between the specified form and the empirical
data, usually by estimating the set of equation coefficients that produce the best fit
between the two. Regression analysis is, by far, the best-known parametric smoothing
procedure. It uses the least-squares criterion to fit a straight line to a set of data points.

Parametric fitting is a very effective way to summarize a relationship when the
structure in the data conforms to the type of function that is fitted by the smoothing
algorithm. But, this is exactly the problem — the “correct” functional form is almost
always unknown, at least at the outset of the analysis. As a result, the researcher
runs a serious risk of fitting a smooth curve that misrepresents the structure within
the data.

Nonparametric smoothers directly address the preceding problem. They can be
used to locate a smooth curve among the data points without requiring any advance
specification of the functional relationship between the variables. Instead, the fitting
algorithm simply tries to follow the empirical concentration of the plotted points.
The resultant fitted “line” should pass through the most dense areas of the data region
in the scatterplot, regardless of the shape of the curve that is required in order to
do so.

Currently, the most popular nonparametric smootheioess (Cleveland and
Devlin, 1988)? As William S. Cleveland notes, “... loess has some highly desirable
statistical properties, (it) is easy to compute, and... (it) is easy to use” (Cleveland,
1993, p. 94). The term ‘loess’ is an acronym focally weighted regesson. The

2 Goodall (1990) provides a useful and succinct overview of many other nonparametric smoothers.
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method to which it refers is a generalization of the technique known as ‘lowess’,
for locally weghted scatterplotsmoother (Cleveland, 1979).

3. An example of loess smoothing

In order to demonstrate the utility of the loess procedure, we will examine a sub-
stantive example, using state-level data on education and voter turnout in the 1992
American presidential election. This is an ideal topic for our present purposes,
because it epitomizes the ambiguities that often exist in our theoretical propositions.
The relationship between education and mass political participation is widely
acknowledged by social scientists. However, Nie et al. (1996) point out that even
though we know these variablese related, we still do not knowvhy or how edu-
cation affects participatory activity like voting. Accordingly, it is not clear exactly
what the proper functional specification should be. Some aggregate-level analyses
have used linear models (e.g. Kim et al., 1975; Patterson and Caldeira, 1983) while
others have allowed for nonlinearities (at least implicitly, through the use of dummy
independent variables) in the relationship between education and voter turnout (e.g.
Powell, 1986).

Fig. 1 shows 1992 state voter turnout rates plotted (on the vertical axis) against
the percentage of high school graduates in the respective state populations (on the
horizontal axis). The general diagonal orientation of the point cloud suggests that
education levels and voter turnout are positively related to each other. But, with no
further information, it is impossible to provide any more detail about the exact nature
of this relationship from the visual information alone.

Fig. 2 shows the same scatterplot, but it also contains a loess curve superimposed

among the data points. The procedure used to fit this curve will be explained below.
For now, it is merely necessary to emphasize two things. First, the curve does follow
the central tendency of th¥ variable’s values across the range of Kevariable.
In doing so, the curvilinear nature of the relationship between education level and
voter turnout is revealed immediately. Second, this curve was obtained without any
prior specification about the functional form of the relationship. Instead, the sigmoid
(i.e. ‘S-like’) shape of the smooth curve was produced by the loess procedure, with
very little in the way of ‘instructions’ from the analy3t.

The curvilinear fit shown in Fig. 2 is important in substantive terms. As one would
expect, states with more highly educated populations tend to exhibit higher voter
turnout levels. But, this relationship is not constant. The impact of education on
electoral participation is most pronounced among those states with moderate gradu-
ation rates; the slope of the fitted curve is steepest in the interval between about

3 A note of reassurance for skeptics: the nonlinearitpas due to unusual observations such as the
four states with low graduation percentages and high turnout rates in the upper-left area of the plotting
region. For one thing, the loess curve is fitted with a robust estimation procedure that decreases the
influence of such outliers. For another, the sigmoid curve remains even if these four data points are
eliminated from the scatterplot and the loess calculations.
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Fig. 1. Basic scatterplot showing the relationship between state education levels and state turnout rates
in 1992. Data source: 1993 Statistical Abstract of the United States.

74% and 78% on the horizontal axis. In contrast, the slope becomes very shallow
near the right and left sides of the curve. Hence, the precise high school graduation
rate makes little difference among states with either poorly- or well-educated popu-
lations. Average voter turnout tends to be quite low among the former (the mean
turnout for these states hovers between about 59% and 62%) and high among the
latter (with mean turnout rates of about 68%).

The loess curve in Fig. 2 is also important from a methodological perspective. It
clearly shows that a linear model would provide a misleading depiction of the
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Fig. 2. Loess curve fitted to data on 1992 state education levels and voter turnout rates. Note: the loess
curve is fitted witha=0.65, locally linear functional formA=1), and robustness iterations.

relationship between education levels and voter turnout faBag, the relatively
simple shape of the empirical curve also suggests that a logistic transformation of
the dependent variable might be appropriate. Indeed, if one is willing to make an
ecological inference, then these results may also provide some support for the use
of logistic or probit specifications in individual-level models of voter turnout. Thus,

4 When ordinary least squares is employed to fit a linear model to these data, the resultant equation
is: Turnouf=19.910.59 Educatiofte, where Turnoytis the voter turnout rate and Educatigsmthe high
school graduation rate for théh state. TheR? for this equation is 0.31. The value of tlfestatistic is
20.72 (1 and 47 degrees of freedom), witp-galue of 0.00004. While this equation represents the best-
fitting line for these data, it fails to incorporate any aspects of the curvilinear structure.
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the nonparametric smooth curve provides useful information that could be incorpor-
ated into a parametric model specification for these (or other) data.

Despite its potential importance, the curvilinearity in the relationship between edu-
cation and voter turnout would have been completely invisible in a standard, linear
regression analysis — at least until an examination of the residuals. Unfortunately,
the latter step is often omitted from empirical research efforts. And even when
residual plots are produced, it is easy to overlook patterns that may exist within
them. The loess procedure helps the researcher avoid the intermediate step of fitting
a model that turns out to be an inaccurate representation of the data. Instead, the
evidence from the loess curve can be used to formulate a more accurate description
of the data in the first place.

4. Fitting a loess smooth curve

The loess procedure is computationally intensive; in other words, there is a large
number of distinct steps involved in fitting even a simple loess curve to a small
dataset. Nevertheless, the calculations themselves are straightforward. They should
be readily understandable to anyone who is familiar with ordinary least squares
regression analysis. The discussion in this section will provide a brief overview of
the methodology underlying loess. Complete details and a simple, step-by-step
example of the fitting procedure can be found in the Appendix.

Assume that the data consist miobservations on two variableX,andY. These
data are displayed in a bivariate scatterplot, with the scaleXfon the horizontal
axis and the scale for on the vertical axis. The plotted points are the ordered pairs
(X%, ¥), wherei ranges from 1 ton.

The procedure starts by selecting a seriesndbcations or evaluation points;,
with j running from 1 tom. These evaluation points are equally-spaced across the
range ofX.®> Next, loess performs a series of weighted regression analyses, one
at each of thes. These regressions are “local” in the sense that each one only uses
the subset of observations that fall closest to that evaluation point along the horizontal
axis of the scatterplot. The researcher specifies the proportion of the total data that
is included within each subset using a loess parameter callé@ be explained
below). The local regressions can use either linear or quadratic equations. The
researcher specifies the functional form using the ldeparameter (also explained
below). In either case, the observations included in each local regression are inversely
weighted according to their distance from the evaluation point aloné ives. The
weights insure that observations closentavill have more influence on the place-
ment of the local regression line (or curve, with the quadratic form) than observations
that fall farther away within the local region. The local regressions can also incorpor-

5 The exact number of evaluation points is relatively unimportant, so long as there are enough of them
to provide sufficient detail about the variability in the conditional distributions of Yheariable. In
practice, the value ofn is usually determined by the software employed to fit the loess curve.
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ate an optional robust estimation procedure in order to reduce the influence of unusual
data points.

The coefficients from each local regression are used to estimate a predicted or
fitted value, designatedy(v;) for that evaluation point. After all of the local
regressions are completed, timedifferent ordered pairsy{,8(v;)) are plotted in the
scatterplot, superimposed over thalata points that are already shown in the plot.
Finally, adjacent fitted points — that is, the,(v;)) for successive;s — are connec-
ted by line segments. The evaluation points are located relatively close to each other
along the horizontal axis, so the series of connected line segments actually appears
to be a smooth curve passing through the data points.

The loess procedure is sometimes conceptualized as a “vertical sliding window”
that moves across the horizontal scale axis of the scatterplot. The window stops and
estimates a separate regression equation (using weighted least squares) at each of
the m differenty;s. Since the regressions only involve the data points that fall within
the window, the estimated slopes (and hence, the fitted values) can change to follow
the contours of the data. This is precisely the feature that gives loess the flexibility
to conform to relatively complicated, nonlinear shapes within the point cloud of
a scatterplot.

5. Fitting parameters for the loess smooth curve

The loess procedure is nonparametric in the sense that the analyst does not specify
the functional form of the final smooth curve. However, there are some parameters
that must be supplied prior to the fitting procedure in order to guarantee that the
loess curve really does pass through the center of the empirical data points. Selecting
the values for these parameters is a subjective process, but the considerations that
are involved in the decisions are quite straightforward.

5.1. The smoothing parametez,

In a loess fit, thex parameter determines the width of the sliding window. More
specifically, o gives the proportion of observations that is to be used in each local
regression. Accordingly, this parameter is specified as a value between 0 and 1. The
o value used for the loess curve in Fig. 2 is 0.65; so, each of the local regressions
used to produce that curve incorporates 65% of the total data points. Fig. 3 shows
the effect of changing the parameter. The four panels show loess curves that are
fit to exactly the same data (again, the information on state high school graduation
and voter turnout rates that was used in Figs. 1 and 2); howeveu, tradues are
varied from 0.15 in the first panel, up to 1.00 in the last.

Obviously, the fitted curve becomes smoother with larger values of this parameter.
This occurs for two reasons. First, wider fitting windows (i.e. larggmean that
idiosyncratic observations will tend to cancel each other out, and therefore have
proportionately less influence on the local regressions. Second, angdues mean
that fewer observations will change when moving from one fitting window to the
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Fig. 3. Effect of theo: parameter on the loess smooth curve.

next. Both of these factors should tend to stabilize the local regression lines and
fitted values, thereby producing a smoother loess curve.

Informally, one could think of the loess curve as a string that is laid across the
range of theX values within the data. The value controls the “slackness” of this
string, with larger values pulling it tighter and therefore producing a straighter curve.
For this reasong is sometimes called the “tension” parameter in the loess fit.

With these different possibilities, which loess curve is the “best” or “most appro-
priate” smoothed version of these data? The curves in Fig. 3A and B are probably
not very useful. Withe set to low values like 0.15 or 0.35, the window width is
extremely narrow, and the local regressions are highly sensitive to “noise” variation
within the data values. This produces the undulating curves, both of which obscure
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the overall structure in the data. At the other extreme, the curves in Figs. 3C and D
are very smooth, but they also fail to pass through the center of the entire point
cloud; most of the data points in the central regionXofalues fall below the loess
curve. The problem is that the wide windows producedbyalues of 0.75 or 1.00
prevent the local regressions from adjusting enough to follow curvilinearity within
the daté An intermediate value ofr should provide a compromise between the
“over-fitting” of the first two panels in Fig. 3, and the “lack of fit” that occurs in
the last two panels. This is precisely why the loess curve back in Fig. 2 is based on
an o of 0.65.

Decisions about the proper value must be made on a case-by-case basis. The
general objective is to produce a loess curve that is as smooth as possible, but still
captures all of the important structure that exists within the data. A strategy for doing
so will be presented below, in the section on residual plots.

5.2. The degree of the loess polynomial,

The A parameter specifies the degree of the polynomial that the loess procedure
fits to the data. IfA=1, then linear equations are fit within each of the windows.
When A=2, quadratic equations are used. The latter complicate the fitting process
somewhat, but they are sometimes necessary in order to produce a smooth curve
that follows the data to an acceptable degree.

Fig. 4 illustrates how locally quadratic fitting can produce a more accurate loess

(A) - : ' : (B) . , . :

40

Percent for Mondale Minus Percent for Hart
T
Percent for Mondale Minus Percent for Hart
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Number of Days into the 1984 Primary Campaign Number of Days into the 1984 Primary Campaign

Fig. 4. Effect of thel parameter on a loess smooth curve: (A) loess curve fitted Awithand=0.50;

(B) loess curve fitted witl=2 and «=0.50. Note: the data show public preferences between Walter
Mondale and Gary Hart (among Democrats only) during the 1984 presidential primary campaign. Data
are adapted from the 1984 CPS Continuous Monitoring Survey.

6 Beginners often think that a loess curve fitted withoawmalue of 1.0 should always produce a straight
line. However, this imottrue, in general. Even though the ‘local’ regressions each incorporate 100% of
the data, the neighborhood weights guarantee that observations close to each evaluation point will have
greater influence on the fitted value at that point than do observations farther away. This, in turn, allows
enough flexibility to produce a nonlinear loess curve, given the appropriate data.
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curve in certain situations. The figure shows data on public preferences (among self-
identified Democrats only) between Walter Mondale and Gary Hart, over the course
of the 1984 presidential primary campaign. The first panel contains a loess curve
with A=1. Even though the smoothing parameter is set to a reasonable &ali&Q),

the curve fails to track the data points accurately in the ‘peaks’ and ‘valleys’ that
occur in the scatterplot. Specifically, note that the fitted line has a negative slope
near the left side of the plot even though most of the data points at the extreme left
fall below the line. Another serious problem exists in the interval ranging from about
50 to 100 on the horizontal axis. Here, the curve does not dip low enough to follow
closely the sizable set of data points that occur in that region of the scatterplot.

The second panel in Fig. 4 shows the same scatterplot. However, the loess curve
has now been fitted with=2 (the o remains at 0.5). With this modification, the
curve tends to pass through the center of the point cloud at all locations throughout
the set of plotted points. And, exactly as expected, the most pronounced changes
occur in the regions at the extreme left, and in the center of the plot. The smooth
curve in this plot suggests that Mondale’s support peaked and then fell off during
the early days of the 1984 campaign. This differs markedly from the locally linear
fit, which seemed to indicate that Mondale simply began the campaign with steadily
declining support among Democrats. The locally-quadratic fit also shows that the
decline in Mondale’s support was very sharp during the middle of the campaign
period; this feature is much more pronounced than it was in the loess fit based upon
locally linear equations.

In practice, the specification of tlleparameter is usually fairly easy; the decision
can often be made upon visual inspection of the scatterplot, alone. If the point cloud
conforms to a generally monotonic pattern (either increasing or decreasing), then
should be set to 1 for locally linear fitting. If the data exhibit some nonmonotone
pattern, with local minima and/or maxima, th&rshould be set to a value of 2 for
locally quadratic equations.

The reasoning behind these recommendations is as followsaiid Y exhibit a
monotonic relationship, then the point clouds within the local fitting windows should
always exhibit the same general orientation. When this occurs, varying the intercepts
and slopes of the locally linear regressions should be sufficient to produce a smooth
curve that follows the data accurately. On the other hand, a nonmonotonic relation-
ship implies that the general orientation of the bivariate point cloud changes direction
somewhere within the data region of the scatterplot. And, such reversals cannot be
handled very effectively with linear equations. The quadratic specification allows for
sharper inflections within the locally-fitted curve. This, in turn, produces the flexi-
bility that is required to insure that the final loess curve passes through the center
of a nonmonotone point cloud.

5.3. The robustness step in the loess smoother
The robustness step in the loess fitting procedure is, strictly speaking, optional.

Nevertheless, it is often included in the calculation of loess smooth curves. Like other
least-squares methods, loess can be adversely and strongly influenced by unusual



588 W.G. Jacoby / Electoral Studies 19 (2000) 577-613

observations (e.g. Belsley et al., 1980). This problem is exacerbated by the fact that
the local regressions typically involve a subset of the overall data. Therefore, any
discrepant data points will comprise a sizable proportion of the observations used
in the local estimation and their degree of influence will also increase accordingly.
The robustness step of the loess procedure downweights the observations that are
most likely to have an adverse effect on the local regressions — those with large
residuals. After doing so, the smooth curve is more likely to track the more concen-
trated areas of data points, rather than ‘chasing the outliers’ in the scatterplot.

Fig. 5 provides an example that illustrates how the robust fitting option can affect

50

H
o)
|

H
o))
-

H
H
|

N

N
|
T

Percent state vote for Clinton in 1992

T I T T I !

-0.10 -0.05 0.0 0.05 0.10 0.156
State electorate partisanship in 1992

Fig. 5. The effect of robustness weights on a loess curve. Notes: the solid line shows the robust loess
curve. The dotted line shows the loess curve obtained when the robustness weights are omitted from the
fitting procedure. Data source: Clinton vote percentages are obtained from the 1993 Statistical Abstract
of the United States. Data on state electoral partisanship are provided by Gerald C. Wright.
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a loess curve. The display shows information about partisanship and 1992 presiden-
tial voting in ten northeastern states. Specifically, Clinton’s vote percentages in each
state are plotted against state electorate partisanship scores. The latter variable is
coded so that larger values indicate states whose citizens are more likely to identify
themselves as Democrats rather than Republicans, and vice versa for smallef values.
The solid line in the figure represents a loess curve with the optional robustness
weights incorporated into the fitting process. The dotted line shows the loess curve
obtained without the robustness step. Both of these curves are fibvgét at 0.75

and al of 2.

First, let us consider the robust loess curve. It shows a relatively simple (although
unexpectedly nonmonotonic) functional relationship between electorate partisanship
and Clinton voting. Specifically, the pattern in the data could be approximated using
a second-degree polynomial with an inflection point at approximat€lyd4 on the
horizontal axis. In substantive terms, Clinton’s support was strongest within the most
Democratic states; this is shown by the positive slope of the solid curve in the right
side of Fig. 1. But, Clinton’s vote percentages also increased among the states with
the most Republican electorates; this is signalled by the negative slope of the solid
curve near the left side of the display. This latter result is certainly a little surprising,
and it signals the need to incorporate other factors besides partisanship into any
explanations of 1992 presidential voting pattétns.

Next, consider the loess curve fitted without the robustness weights (the dotted
line in Fig. 5), which ‘undulates’ across the range of partisanship scores. A fourth-
degree polynomial would be required to fit a smooth function to these data. This
would be excessively complex, since there are only ten data points in the first place.
Therefore, an unwary observer might conclude that there is no coherent relationship
between state partisanship and Clinton voting. But, closer inspection shows that the
local minima and maxima in the interior of the curve are entirely due to two data
points. These correspond to states with moderately Democratic electorates, but
extremely high and low Clinton vote percentages, respectively. The nonrobust loess
curve exhibits two sharp reversals which are caused by these points. In contrast, the
robust loess fitting procedure effectively ‘ignored’ the outliers, as a result of the
downweighting procedure for the observations with large residuals.

When the objective is to produce a parsimonious graphical summary of the bivari-
ate data, then it is probably best to routinely include the robustness weights in the
loess fitting procedure. The only potential disadvantage of robust loess estimation is
that the residuals may not be ‘well-behaved’; that is, they may not be normally
distributed with a mean of zero and constant variance. But, this is really only a
serious concern in situations where the analyst is trying to accomplish more than a
simple graphical summary of bivariate data (e.g. statistical inference, as discussed

7 This variable is created using state-level public opinion data. Specifically, the proportion of survey
respondents within each state who called themselves ‘Republican’ is subtracted from the proportion calling
themselves ‘Democratic’. These data were provided by Gerald C. Wright and they are discussed in greater
detail in Erikson et al. (1993).

8 In fact, electorate ideology accounts for the inflection among Republican states.
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below). Omitting the robustness weights definitely entails certain risks. At the very
least, a nonrobust loess fit may generate a summary of the data that is more compli-
cated than it really needs to be. At worst, a nonrobust loess fit can produce a mislead-
ing representation of the predominant structure within the data.

6. Plotting loess residuals

The residuals from a loess fit can be employed as a useful diagnostic tool in order
to determine whether the smooth curve adequately incorporates all of the interesting
structure in the data. The strategy for doing so is identical to that used in traditional,
linear regression analysis. The residuals are scrutinized for systematic patterns that
may remain after an hypothesized structural representation has been fitted to the
empirical data.

The loess residuals are defined as the difference between the observed values of
the Y variable, and the corresponding fitted values for the respective occurrences of
the X variable values:

&=Yi—9(x) 1)
Eq. (1) is very similar to the familiar formula for calculating residual values in
regression analysis. However, there is one important difference nThealuation
points used to find the loess curve ()8) are imaginary values which are usually
different from then observed values of the independent variableTherefore, the
fitted values for the empirical observatio§$x) are typically obtained by interpolat-
ing between the two closest occurrences of the equally-spaced evaluation points.

Once the loess residuals are calculated, they are plotted against either the corre-
sponding fitted values or (more commonly) the values of the origihahriable.

Then, a loess curve is fitted to the points within the residual plot. This new appli-
cation of the loess smoother should produce a flat line located at the zero value on
the vertical axis in the residual plot. The reasoning is as follows. The loess residuals
measure the variability ilY that remains after the dispersion of the fitted values (and
hence, the smooth curve) is taken into account. Any systematic functional depen-
dencies betweeX and Y should be picked up by the original smooth curve fitted

to the bivariate data. To the extent that the loess fitting process does so successfully,
there should be no discernible patterns of any kind among the residuals; this, in turn,
would produce a horizontal line when a smooth curve is fitted to the residual plot
(Cleveland, 1993).

Fig. 6 shows the residual plot from the original loess curve that was fitted to the
data on state education level and voter turnout (shown in Fig. 2). The points in this
figure are obtained by plotting the loess residual values (on the vertical axis) against
state high school graduation percentages (on the horizontal axis) for each state. The
dotted horizontal line is a visual baseline, corresponding to a residual value of zero.
The loess fit to these residuals is shown as a solid curve, which is fairly straight
and horizontal. This result provides strong evidence that the simple curvilinear
relationship depicted in Fig. 2 does provide an adequate representation of the struc-
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Fig. 6. Residual plot from loess curve fitted to state education and vote turnout data. Note: the values
on the vertical axis are the residuals from the loess curve in Fig. 2 (that is, fitted to the date=®i@5,
A=1, and robustness weights). The dotted horizontal line is a baseline, located at the origin on the vertical
axis. The solid line is a loess curve, fitted to the residuals wih.75,A=1, and robustness weights.

ture in the bivariate data. The original loess curve picked up all significant shifts in
the central tendencies of the conditiorvatlistributions across the entire range>of
variable values. There is no ‘left-over’ structure to be found within the residuals, so
the loess curve that fitted to them in Fig. 6 looks nearly flat and featureless.
Residual plots can provide the analyst with useful guidance for controlling the
loess fitting process (Cleveland 1993, 1994). This is particularly important for sel-
ecting the proper value of the smoothing parameterbecause the appropriale
value and the need for the robustness weights can often be determined through visual
inspection of the original scatterplot. An effective general strategy for finding the
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best smoothing parameter value is to start with a curve based upon a relatively small
o (say, 0.25). The residual plot for this smooth curve will almost always indicate
an adequate fft.The problem is that the fitted curve will not be very smooth, since
some of this fit will involve the uninteresting noise component of the data. Therefore,
gradually increase the value (by about 0.10), repeat the loess estimation procedure,
and check the new residual plot (including its own loess curve) for patterns. Continue
this process until the residual plots begin to indicate that the loess curve is missing
important features in the data points. The approprat@lue should be the one just
before a non-horizontal loess curve begins to appear in the residual plot. The loess
curve (in the scatterplot of the andY variables) associated with thisvalue should

be the smoothest fit that still tracks all of the important structural features within
the data.

Fig. 7 shows two examples of residual plots obtained from loess curves fitted with
the wrongo value. Once again, the figure uses the data on state education and voter
turnout. The first panel (Fig. 7A) shows the residuals obtained whisrset to 0.15.

The loess curve fitted to these residuals is flat and located at the origin of the vertical
axis, indicating that all of the structure has, indeed, been removed from the bivariate
data. However, the ‘over-fitted’ loess curve that produced these residuals (shown in
Fig. 3A) is unsatisfactory because it is very complicated and difficult to interpret.

The second panel (Fig. 7B) shows the residuals obtained when a loess curve is fitted
with =1.00. Here, the data have been ‘over-smoothed’ and there is lack of fit,

signalled by the clear, curvilinear pattern in the loess curve that is superimposed
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Fig. 7. Residual plots for loess curves fitted with the wrongalue: (A) 2=0.15; (B) «=1.00. Note: the
panels in this figure show residual plots obtained for the loess curves from Figs. 3A and D, respectively. In
each panel, the dotted line is a baseline and the solid line is a loess curve fitted to the residuals, with
=0.75,A=1, and robustness iterations.

9 If the loesso parameter is set to a low value and the residual plot still indicates an inadequate fit
to the data, then it is probably necessary to employ locally-quadratic fitting, robustness weights, or both
in the estimation process. Again, however, this is usually apparent before the researcher gets to this stage
of the analysis.
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over the residuals. This reveals structure that was not incorporated into the smooth
curve fitted to the original data. In general, the objective is to find a nonparametric
fit that falls in between these two extremes, with a relatively simple curve that still
represents the important features of the data. The loess curve fitted to the state voter
turnout data withoe=0.65 seems to achieve this goal.

It is difficult to provide useful guidelines for a priori selection of thevalue.
Typically, o values will fall somewhere between about 0.40 and 0.80, depending
upon the nature of the bivariate relationship and the amount of noise that exists within
the data. But, there are many exceptions to this generalization. In actual practice, the
o value is almost always determined using the iterative process described here.

7. Goodness of fit for a loess smooth curve

When a loess smooth curve is fitted to data, attention is usually focused on the
shape of the resultant curve because that feature is most revealing of the structure
within the data. However, it is also useful to consider how well the smooth curve
characterizes the empirical data values. This latter phenomenon is usually called
‘goodness of fit’, although that term is only partially appropriate in the case of non-
parametric smoothers like loess.

A summary fit statistic similar to aR? value can be obtained by taking the ratio
of the sum of squares in the loess fitted values to the total sum of squares in the
dependent variable:

> (@00)-56))°
Rlzoess:I:ln—_ (2)
2 vi—Y)?

i=1

On the right-hand side of Eq. (2§(x) is the loess fitted value for observation
9(x) is the mean of the loess fitted valugsg,is the dependent variable value for
observation, andY is the sample mean for the dependent variable.

The R2 .. for the smoothed relationship between high school graduate rate and
voter turnout (as shown in Fig. 2) is 0.361. This indicates that the variance in the
loess fitted values is slightly more than one-third the size of the total variance in
state voter turnout figures. Such a relatively 18..value would lead to the con-
clusion that the smooth curve summarizes part, but not all, of the total dispersion
in the dependent variable.

There are three important caveats that must be kept in mind whenever one tries
to interpret anR2 .. value. First, theR2 .. cannot, strictly speaking, be interpreted
asvariance explainedecause the loess fitting procedure does not partition the total
sum of squares ilY neatly into additive components representing the sums of squares
in the fitted values and the residuals, respectively. Therefore, it is inappropriate to
say that theRZ.. value gives the proportion of variance that is, in any way,
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‘accounted for’ by theX variable. Still, this does not imply that the statistic is useless
or meaningless. Users should simply give g value a more limited interpret-
ation. It conveys the size of the fitted value variance, expressed as a ratio of the
total variance inY. While the latter is not really variance explained in the traditional
sense, it does provide an effective summary of the degree to which the loess fitted
values track the empirical data points in the scatterplot.

Second, theR2 . statistic can produce misleading or even meaningless results
when robustness weights are used in the fitting process. The difficulties arise when
there are outliers in the data, but the exact nature of the problem can vary markedly.
For example, univariate outliers ¥is distribution can inflate the total sum of squares
in Y relative to the sum of squares for the fitted values. In this sense, reliance on
the traditional conception ofariance(which is, of course, based upon summing the
squared deviations from the center of a distribution) produces a misleading represen-
tation of the actual amount of interesting, meaningligpersionwithin the data
values. Alternatively, bivariate outliers can lead to a sum of squares for the fitted
values that is larger than the total sum of square¥férThis would, in turn, produce
an R2 ... value larger than 1.00 which is uninterpretable. In both of these situations,
the R2 .. value would fail to produce an accurate measure of the degree to which
the loess curve summarizes the empirical data.

Third, there is usually no reason to expect thatRe..value will be particularly
large. The very purpose of nonparametric smoothing is to uncover structural patterns
within relatively noisy data. This implies that the residuals from any smooth curve
fitted to the data points will tend to be fairly large and that the value of any goodness-
of-fit statistic will be small. Stated differently, if the nature of the functional depen-
dency between th¥ andY variables was clear, then there would be no need for the
loess fitting procedure in the first place.

The general problem is that the loess smoother differs from parametric fitting
procedures (like OLS regression) in a fundamental way: it does not fit a particular,
narrowly-defined model to the data (Weisberg, 1996). Therefore, the very concept
of ‘goodness of fit' is problematic. With a nonparametric smoother, the variance
explained inY is less important than the degree to which the resultant smooth curve
follows the prominent features of the bivariate data. As a resultRfe.is seldom
reported in the results of analyses that employ the loess fitting procedure.

8. Loess and statistical inference

The discussion so far has assumed that loess is being used as a strictly descriptive
tool. However, the statistical theory for local regression models has been worked
out, so it is possible to incorporate an inferential component into a loess analysis.

10 Bivariate outliers can be defined as observations that fall within the extreme tails conidéional
distribution ofY, given a particulax; value. These kinds of outliers are often not apparent in the univariate
distributions ofX or Y.
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Doing so facilitates generalizations about the structure of the population from which
the observed data were drawn. Inferential tools also enable the researcher to assess
the degree of uncertainty about the precise form of the smooth curve fitted to the
bivariate data.

Statistical inference with a loess smooth curve is usually grounded in least-squares
theory (Cleveland and Devlin, 1988), and it requires several assumptions. Specifi-
cally, the observed fitted value§(x), are now viewed as estimates that should
approximate, as closely as possible, the true but unobserved fitted vg(xjesur-
thermore, the residuals about these fitted values should be gaussian. That is, the
yi—g(x) should be independently and identically distributed according to a normal
distribution, with a mean of zero and a constant variance. When these assumptions
are met, direct generalizations of traditional least-squares methods can be employed
to perform statistical tests.

For example, analysis of variance can be used to compare two nested loess fits
to a common dataset. Assume that ‘loess,1’ refers to a smooth curve fitted using
parameters that are nested within those of another smooth curve, designated ‘loess,?2’.
Then, just as in traditional linear regression, a test statistic can be constructed to
measure the improvement in fit across the two loess curves (adjusted by degrees of
freedom) relative to the lack of fit remaining in the more complicated of the two
loess curves:

:(RSSoess,l_RSSoess,a/(dfloess,z_dfloess,) (3)
(RSSoess)/(n_dfloess)

In Eq. (3), RSQess1and RSGcss are the sums of squared loess residuals for the
two curves while dfess,and df,ess .are the degrees of freedom associated with the
respective curves. As usual,is the total number of observations. Under the null
hypothesis of no improvement in fit across the two models, the preceding test statistic
follows anF distribution with (df,ess 5~ fioess.) @nd fi—dfi,ess 9 degrees of freedom.

A special case of Eq. (3) arises when a single loess curve is tested against the null
hypothesis of no functional dependence betw¥end X:

_(TSS{_RSSoess)/(dfloess_l) 4
T (RSSeeodl(N-Gfoe) @

In Eq. (4), TSS is the total sum of squares ¥ and the remaining terms are
defined as in Eq. (3). The various residual sums of squares are calculated just as
they are in linear regression. But, the degrees of freedom associated with the loess
curves are a bit trickier. They do not correspond to readily observable quantities
(like the number of independent variables in a linear regression equation) and the
computational details are fairly complex. But, the calculations are direct mathemat-
ical generalizations of those employed in OLS regression (Cleveland et al., 1988,
1993). And, the degrees of freedom have a straightforward interpretation: They corre-
spond to theequivalent number of parametefia the loess curve. This is the number
of terms that would be required to produce a parametric function similar to the fitted
loess curve. A curve with df.=2 looks like a quadratic function (a curve with one
reversal in direction), a curve with gf.=3 approximates a third-degree polynomial

F

F
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(a curve with two inflection points), and so on. Note, however, that thg dfalues
are usually noninteger quantities, so the interpretation should only be regarded as a
heuristic convenience.

Let us go back to the loess curve from the voter turnout data (in Fig. 1). Inspection
of the residuals indicates that they do, in fact, conform to the necessary assumptions
even though the curve was fitted with robustness iterafib8®, the first inferential
question is whether this curve really measures anything more than ‘noise’ due to
sampling variability. The TS§1612.32, RSS..£985.17, df..=3.5, andh=48. Sub-
stituting these values into Eq. (4):

~ (1612.32:985.17)/(3.51)
~ (985.17)/(483.5)

The critical value of thé- statistic at the 0.05 level, with degrees of freedom rounded

to 4 and 44, is only 2.58. Thus, the null hypothesis of no relationship can be rejected.
The next question is whether the curvilinear loess fit provides any improvement

over the simpler, linear fit obtained through OLS. Fox (1999) points out that a linear

model is nested within a nonlinear model for a given dataset. Therefore, Eq. (3) can

be used to compare the loess curve and the OLS regression fitted to the state voter

turnout data. Fig. 8A shows the OLS line for the dataset. The residual sum of squares

for this OLS fit is 1106.34, and there are 2 degrees of freedom for a bivariate

regression equation. These values are substituted fop,RS8nd df,css 11N EQ. (3).

The values for RSSss2and df,ess 2are taken from the bivariate loess fit, so they

=11.33
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Fig. 8. Alternative smooth curves fitted to 1992 state education levels and voter turnout rates: (A) OLS
regression line; (B) loess curve fitted wigt¥0.65,A=2 and robustness iterations.

11 Specifically, they appear to approximate a normal distribution, and the spread does not change very
much across the range of the independent variable. Details on the loess residual diagnostics for these
data are available from the author.
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are 985.17 and 3.5, just as before. Substituting these values into Eq. (3) produces
the following F test statistic:

~ (1106.34-985.17)/(3.52)
~ (985.17)/(483.5)

The critical value ofF for the 0.05 level, with 2 and 44 degrees of freedom (once
again, rounding to integers), is 3.21. Thus, we can safely reject the null hypothesis
of no improvement in fit in the bivariate loess curve, relative to the linear regression
model. Stated somewhat differently, the nonlinearity in the functional dependence
of voter turnout on education levels is probably not due to noise variability emanating
from sampling error.

One could next ask whether quadratic fitting improves the representation of the
data. In order to address this question, we can fit a loess curve to the turnout data
with ¢=0.65 andA=2; this is shown in Fig. 8B. The RS for the local-quadratic
curve is 980.14 and ¢f.=5.6. The inflections are a bit more pronounced in this
curve, but the basic shape remains quite similar to that shown in Fig. 2. The loess
curve withA=1 is nested within the curve fitted with=2, so the various summary
statistics and degrees of freedom for the two curves can be used to calcul&te the
statistic as follows:

_ (985.17980.14)/(5.63.5)
~ (980.18)/(485.6)

The critical value ofF at the 0.05 level, with 2 and 43 degrees of freedom (once
again, rounding to integers), is 1.65. So, the null hypothesis cannot be rejected. The
more complicated loess curve obtained through quadratic fitting does not seem to
provide a significant improvement over the simpler curve, obtained Awth

Once the appropriate fitting parameters have been determined, it is often useful
to construct a confidence interval around a loess smooth curve. In principle, this is
accomplished by viewing each loess fitted value as a predicted value from a
regression equation. For each of timepredicted values (recall that one predicted
value is obtained for each of thg), the standard error is calculated, and it is multi-
plied by the appropriate value in order to find the confidence limits for thi#,).

This procedure is carried out for the entire senofitted values. Then, all adjacent
upper and lower confidence limits are simply connected with line segments in order
to produce the final confidence battd.

Fig. 9 shows the 95% confidence band for the loess smooth curve fitted to the
data on state welfare spending and electorate ideologies. Notice that the band is
narrowest in the center of the point cloud, and becomes wider near the edges of the
plotting region. This is basically a curved version of the ‘hourglass’ shape that would

3.65

=0.10

12 Strictly speaking, the ‘pointwise’ confidence limits described here do not define the ‘global’ confi-
dence band for the full loess curve. However, the former are much easier to calculate than the latter.
Furthermore, they seem to work very well, in practice, for summarizing the uncertainty involved in the
location of the loess curve (Hastie and Tibshirani, 1990; Beck and Jackman, 1997).
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Fig. 9. 95% confidence band around loess smooth curve fitted to data on state education and voter
turnout rates. Notes: the solid line is the loess curve, fitted with.65,4=1, and robustness weights.

The dotted lines show the limits of the 95% confidence band. The band is constructed from the pointwise
least-squares confidence limits for the loess fitted values.

be obtained with a traditional regression analysis of these data, and it reflects the
greater uncertainty about observations that fall near the edges of the independent
variable’s distribution. The band generally follows the contours of the loess curve,
providing visual confirmation of the results from the fikstest reported above. From
this evidence it appears unlikely that the nonlinear features in the curve (e.g. the
relatively flat segments near the left and right sides of the plot, along with the rela-
tively steep portion of the curve in the middle) are due to sampling fluctuations alone.
There are at least two potential problems with the preceding approach to statistical
inference with loess. First, the assumption of gaussian residuals is relatively stringent;
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it seems to contradict the general ‘spirit’ of nonparametric smoothing, which is based
upon minimal a priori specifications about the structure within the data (Tukey,
1977). Second, the loess residuals will often be non-gaussian when robustness
weights are included in the estimation procedure (as they were in the original smooth
curve fitted to the state voter turnout data), particularly when the data contain serious
outliers. Therefore, it is important to investigate the loess residuals very closely, in
order to determine whether the gaussian assumptions are tenable. If they are not,
then alternative strategies for statistical inference should be employed. For example,
Efron and Tibshirani (1993) demonstrate the use of a bootstrap confidence band
around a loess smooth curve, and this approach shows great promise for more com-
plex local regression models as well. The general point is that statistical inference
is possible with a loess smooth curve. The widely-held belief that loess is strictly
an exploratory tool is, to put it bluntly, wrong. Indeed, the statistical tractability of
loess is precisely one of the features that provides it with powerful advantages over
other nonparametric smoothing procedures.

9. Loess and multivariate data

Although the discussion so far has focused on bivariate scatterplot smoothing,
loess can also be a useful tool for situations where a dependent variable is hypothes-
ized to be a function of several independent variables. In fact, there are at least two
different approaches that can be useulltivariate loesgor, more precisely, ‘local
multiple regression’) andeneralized additive modeltet us briefly consider each
of these strategies.

9.1. Multivariate loess

The principles of multivariate loess smoothing are identical to the bivariate case.
The only changes involve relatively minor details. Specifically, the fitting window,
the distances from the evaluation points (ih®) to the observations (thes), and
the local weights (thew;s) are now calculated within &dimensional subspace
spanned by th& independent variabless;, X,..., X, rather than along the single
horizontal dimension of the bivariate scatterplot.

The general objective of the multivariate loess fitting procedure is the same as
most other multivariate modeling strategies: to assess the functional dependence of
a dependent variable on each of a set of independent variables, while simultaneously
taking the effects of all other independent variables into account. The end result of
a multivariate loess analysis is a smooth surface that tends to coincide with the center
of the data point cloud, throughout the entivel dimensional space formed by the
independent variableX; through X, and the dependent variabl¥, The consider-
ations about loess fitting parameters, robustness weights, residual plots, goodness of
fit, and statistical inference all remain identical to those discussed earlier, for the
bivariate case.

The most difficult aspects of multivariate loess do not stem from the estimation
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procedure; rather, they involve the presentation of the final results. The problem is
that the central output from a loess fit is graphical, rather than numerical in nature.
And, it can be very tricky to produce an accurate and easily-interpretable visual
representation of multivariate information in a static, two-dimensional display
medium like a printed page or a computer screen.

If there are two independent variables, then the fitted loess surface can be illus-
trated directly, using a three-dimensional wireframe plot. Specifically, the fitted
values,g(v;), are plotted in three-dimensional space, for each evaluation pgit,
the plane formed by the two independent variables; if therevaexaluation points
for each independent variable, then there will be a totaifgblotted points. Adjacent
points parallel to each of the independent variable axes are connected with line seg-
ments, thereby forming the wireframe surfdée.

Fig. 10 shows an example of a wireframe plot, using 1992 state voter turnout as
a function of high school graduation rates and the proportion of African-Americans
in the state population. Note that the latter variable is logged in order to correct for
positive skewness in its distribution. This graph shows that the state-level relationship
between education and voter turnout remains nonlinear, even after state racial compo-
sition is taken into account. However, the nature of the curve varies somewhat: it
‘flexes’ in opposite directions while moving from the front-right facet of the plotting
cube to the left-rear facet. In states with small African-American populations, voter
turnout increases with high school graduation rates, until the latter reach a value of
about 75%. After that, further increases in education have no apparent effect on voter
turnout. Among states with relatively large black populations, low education levels
are unrelated to voter turnout. But, when high school graduation rates reach 70% or
so, the slope of the surface turns sharply upward. Thus, in states with high pro-
portions of African-Americans, high levels of education are strongly related to voter
turnout rates.

13 The great attraction of three-dimensional wireframe plots is their ease of interpretation, even by
relatively unsophisticated observers. Nevertheless, these graphs do have some drawbacks: First, the per-
spective view used to create the illusion of three dimensions may impair accurate visual perception of the
guantitative information in the plotting region (Cleveland and McGill, 1984). A second, related concern is
that details of the functional dependence among the variables may be hidden by ‘folds’ in the loess
surface. Third, it is almost impossible to include the data points in the three-dimensional plot along with
the wireframe surface; doing so produces a very cluttered graph that is quite difficult to interpret. And
fourth, the wireframe plot is obviously limited to analyses with only two independent variables. Fortu-
nately, all of the preceding problems can be handled very easily. For exaniyeaanicdisplay, i.e. a
three-dimensional graph in which the plotting region seems to spin or rotate, enables the analyst to change
the viewing perspective in real time. This overcomes most of the limitations involving visual perception
of the information in the graph (Becker et al., 1988). At the same tooaditioning plotscan be used
to handle multiple independent variables. These are multipanel graphical displays that show the relation-
ship between an independent variable and a dependent variable at specific values of one or more additional
independent or control variables. Conditioning plots literally ‘hold other variables constant’ while illustrat-
ing the functional dependence of one variable on another. Thus, there are several strategies that can be
used to ‘look into’ the multidimensional space that is formed by a given set of multivariate data
(Cleveland, 1993; Jacoby, 1998); all of these are potentially useful for showing the results of a multivariate
loess analysis.
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Fig. 10. Multivariate loess surface summarizing the functional dependence of 1992 state voter turnout
on high school graduation rate and logged percentage African-American in state population. Notes: the
data are obtained from the 1993 Statistical Abstract of the United States. The loess surface is fitted with
«=0.65,1=1, and robustness weights.

The relationship between logged percentages of African-Americans and voter turn-
out, controlling for education, is relatively weak. At the lowest and highest levels
of education (i.e. near the front-left and back-right facets of the plotting cube), turn-
out seems to be highest among states with lamgemall black populations, while
it is somewhat lower among states with intermediate numbers of African-Americans.
Among states with intermediate high school graduation rates (i.e. around 75%), the
relationship between race and turnout seems to be negative: within this subset of
states, voter turnout declines with increasing log proportions of African-Americans.
Again, however, there is a slight upturn among those states with the largest black
populations. Overall, the predominant slope of the loess curve in Fig. 10 shows that
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state education level has a much more pronounced effect on state voter turnout than
does the racial composition of the state population.

The statistical inference strategies discussed in the previous section can be applied
to multivariate loess surfaces. The loess curve fitting turnout to high school gradu-
ation rates is nested within the surface fitted with graduation rates and logged pro-
portion African-Americans. So, we can examine whether the addition of this second
independent variable really provides a significant improvement over the original,
bivariate loess curve. The multivariate loess surface shown in Fig. 10 produces an
RSSess0f 923.11. The df.ssiS 5.6. Substituting these values, along with the corre-
sponding quantities from the bivariate loess curve, into Eq. (3) produces:

~ (985.17923.11)/(5.63.5)
~ (923.11)/(485.6)

The critical value ofF at the 0.05 level, with 6 and 42 degrees of freedom (once
again, rounding to integers) is 2.32. Since the empirical test statistic fails to exceed
this value, we cannot reject the null hypothesis. Thus, the racial composition of a
state’s population does not seem to make a significant contribution to the explanation
of voting turnout rates, beyond that based upon education levels alone.

From a conceptual perspective, multivariate loess is a straightforward generaliz-
ation of bivariate smoothing and multiple regression analysis. In practice, however,
there are several caveats and potential problems that must be recognized. First, the
multivariate loess surface is usually quite complex; that is, the smooth curve with
respect to one variable changes across all combinations of values on the other vari-
ables. Second, the data points are generally spread out very sparsely throughout
the k+1 dimensional space that contains them. This means that the local fitting win-
dow must cover a large area, even though doing so compromises the ‘local’ nature
of the smooth curve. Third, the jury still seems to be out on the utility of multivariate
graphics. Some authors are enthusiastic proponents of visualization strategies for
multivariate data (e.g. Becker et al., 1996; Jacoby, 1998); others are more circum-
spect about the complexity of such graphical displays and the difficulties involved
in their interpretation (e.g. Wainer, 1988; Fox, 1999). Because of limitations like
these, multivariate loess fitting will probably never become a widely-used modelling
strategy in the social sciences.

=1.36

9.2. Generalized additive models

In contrast to multivariate loess, generalized additive models take a somewhat
more complicated computational approach in order to generate graphical depictions
of functional dependence that are easier to view and interpret. The basic form of a
generalized additive model depicting the relationship between variabbesd X,

Koy X IS @s follows (for observation):

k

n(Y)=a+2 (%) +& (5)

j=1
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The n term on the left-hand side of Eq. (5) represents a transformationaailled

a link function It specifies how the conditional mean of the dependent variable is
related to specific values of the independent variables. Examples include the logit
and probit functions for categorical variables. For present purposes, we will focus
on the identity link, which simply specifies tha{Y)=Y. This is a reasonable choice
when the dependent variable is relatively continuous and measured at the interval
level. In that case, Eq. (5) is sometimes calledadlitive regression model

On the right-hand side of Eq. (5) is an intercept, and, is a disturbance (which
is subject to the usual assumptions). The most interesting terms are those contained
within the summation, which represent the effects of khimdependent variables.
Specifically, eaclf; is a smooth function of its correspondiXg The specific nature
of these functions is left entirely to the analyst and loess is often used when nonpara-
metric fitting is desired. In any event, these functions are estimated in a way that
optimizes a fitting criterion, such as minimizing the sum of squares in the esti-
mated disturbances.

The distinctive feature of an additive model is that it expressesrihiivariate
structure in the data as a sum loflifferent bivariate relationships, each of which
expresses the impact of ag on Y with the effects of the othek—1 independent
variables removed. Stated somewhat differently, for any observatitine value of
the dependent variablé ] is a sum ofk loess fitted values, along with the intercept
and the disturbance term for that observation:

Y= 0040 (%1) +0o(Xi2) + ..+ G () + ...+ 8() +E; (6)

In Eq. (6), 8.(x4) is the fitted value from the bivariate loess 6fon X,, with the
effects of X, throughX, removed;§,(x,) is the fitted value from the bivariate loess
of Y on X,, with the effects ofX; and X; through X, removed, and so on.

The major output from an additive model is a setkadcatterplots. Each one of
these contains a smooth curve (e.g. a loess curve) depicting the net impact of one
independent variable on the dependent variable (again, controlling for the remaining
independent variables). In other words, for independent varigblthe graph may
contain the data points, the;( y*); the asterisk indicates that the effects of the
other independent variables have been removed fYowa the additive modelling
estimation procedure (which is usually called ‘backfitting”). Note that these points
are often omitted, since the values plotted on the vertical axis are not directly inter-
pretable (see below). The graph will definitely plot the points that define the smooth
curve, that is thex;,g,(x;)), and connect the adjacent points with line segments to
form a ‘smooth’ curve. The curve is then interpreted just as in any other bivariate
relationship.

The additive modelling strategy can be used to examine the impact of high school
graduation rates and African-American proportion on 1992 state voter turnout levels.
Specifically, turnout rates are fitted to the education variable using a loess curve
with =0.65 andA=1, and to the racial composition variable using a loess curve
with «=0.5 andA=2 (these values of the fitting parameters were obtained through
trial and error). Fig. 11 shows the two scatterplots that are produced by this additive
model. In each panel, the horizontal axis shows the scale of values for the corre-
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Fig. 11. Loess curves fitted to 1992 state voter turnout data by additive regression model: (A) the
relationship between state education levels and state voter turnout; (B) the relationship between proportion
of African-Americans in the state population (logged) and state voter turnout.

sponding independent variable. The vertical axes in both panels are labelled as voter
turnout rates; but, it is important to emphasize that thdseot correspond to the

raw Y values. Instead, they show the ‘partial residuals’; that is, transformations of
the Y values that remove the effect of the other independent variable, and center the
values to a mean of zero. The fitted loess curves (shown by the solid line in each
panel) are drawn into each plot, along with the approximate 95% confidence bands
(dotted lines).

Very briefly, the graph in Panel A of the figure suggests that turnout rates increase
with education levels in states with relatively low to moderate high school graduate
rates. However, in states with high graduation rates (i.e. those above 78% or so0),
this effect levels off. Notice that the ‘floor effect’” which was evident in Fig. 2 (i.e.
the relatively flat portion of the loess curve in the lower-left region of the graph)
largely disappears when the racial composition of state populations is taken into
account. Turning to Panel B, race shows a very slight negative effect on voter turnout
in most states. But, there is a distinct drop, followed by an even sharper increase
in turnout among states with the highest proportions of African-Americans. Closer
inspection of the plot reveals that these latter features are largely due to the influence
of two unusual observations (the upper-rightmost points in the display). Overall, the
effect of state racial composition is not statistically significant. Thus, the substantive
conclusions are quite similar to those reported from the multivariate loess surface.
Here, though, it is much easier to convey the results, it being necessary only to
inspect two simple scatterplots, rather than to describe an undulating surface within
a three-dimensional space.

A broader introduction to generalized additive models is contained in Beck and
Jackman (1997), while Hastie and Tibshirani (1990) provide a more comprehensive
and technical treatment of the topic. For now, an informal statement of the connection
between generalized additive models and loess might be the following. The backfit-



W.G. Jacoby / Electoral Studies 19 (2000) 577-613 605

ting estimation procedure underlying the additive modelling approach isolates the
effects onY that are associated with each of théndependent variables. Once this

is accomplished, loess can be used to summarize and illustrate the functional depen-
dence ofY on each of theX;s. The important point is that bivariate loess fitting can

be used, through the mechanism of additive modelling, to summarize multivariate
structure within data.

10. Software for loess

Because of its computationally intensive nature, loess smoothing is effectively
impossible to carry out by hand. Therefore, most potential users (at least non-
programmers) are constrained by the options that are provided by the available
software. Fortunately, loess fitting is now widely incorporated into statistical software
packages. However, the exact nature, capabilities and flexibility of the routines vary
markedly from one program to the next.

Some packages only provide basic scatterplot smoothing, usually as a graphical
enhancement to their bivariate scatterplot routine. Thus, SPSS for Windows i&\orus
1993) and SYSTAT (Wilkinson, 1998) both have LOWESS options that provide
robust, locally-linear fitting* The user can specify the value far but none of the
other fitting parameters can be changed.

Other software packages provide a bit more flexibility in the loess smoothing
process. STATA (StataCorp, 1997), SAS/INSIGHT — a dynamic, interactive graph-
ics module in the SAS system (SAS Institute Inc., 1995), and the R-CODE — a
small but powerful program for regression graphics (Cook and Weisberg, 1994) all
contain bivariate loess fittin. SAS/INSIGHT and the R-CODE allow interactive
specification of o, using a slider bar displayed along with the scatterplot.
SAS/INSIGHT also contains several options for automatically selecting the ‘sest’
value for the data. All three of these programs output loess fitted values. Hence,
users can calculate loess residuals and construct the various diagnostic plots that are
based upon them.

But once again, each of these packages has limitations. For example, STATA and
the R-CODE are both restricted to locally-linear fitting (SAS/INSIGHT allows the
user to sefl to either 1 or 2). Similarly, none of these programs allows the user any
choice with respect to robust estimation. The R-CODE always includes the robust-
ness weights, while STATA and SAS/INSIGHT do not. Thus, STATA,

14 SYSTAT and SPSS are both available from SPSS, Inc., 444 North Michigan Avenue, Chicago, IL
60611-3962, USA. Worldwide web: http://www.spss.com.

15 STATA is available from the Stata Corporation, 702 University Drive East, College Station, TX
77840, USA. Worldwide web: www.stata.com. SAS/INSIGHT is part of the SAS system, which is avail-
able from SAS Institute Inc., SAS Campus Drive, Cary, NC 27513, USA. Worldwide web: www.sas.com.
The R-CODE is a copyrighted software package that is available to anyone who purchases the book ‘An
introduction to regression graphics’ by R. Dennis Cook and Sanford Weisberg. Full citation information
is given in the references and the web site is http://www.stat.unm.edu/-rcode/.
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SAS/INSIGHT, and the R-CODE all go beyond basic scatterplot smoothing, but none
of them really provide the user with complete control over the loess fitting process.

EViews (Quantitative Micro Software, 1997)— a package designed primarily
for econometric analysis — contains a very flexible loess routine for enhancing scat-
terplots. Users can specify virtually all of the loess fitting parameters, including the
o andA values, the use of robustness weights, and the number of evaluation points.
The routine can also output loess fitted values. Thus, EViews overcomes most of
the limitations in the packages mentioned above. Like the others, however, it is
limited to descriptive applications and bivariate data.

Currently, and probably for the foreseeable future, the most powerful loess
software is contained in S-PLUS (Statistical Sciences Inc., 1995is package
provides the analyst with control over virtually all aspects of the loess fitting process.
S-PLUS also contains two other features that set it apart from all other statistical
software packages. First, it contains an extensive set of tools for statistical inference
with loess smooth curves and surfaces. Second, S-PLUS is the only package that
currently estimates generalized linear models and performs loess smoothing for
multivariate data. All of these capabilities, along with a set of very powerful and
flexible graphics routines, make S-PLUS truly the ‘software of choice’ for loess
analyses.

There is one other software possibility that should be mentioned. For anyone with
even a minimal amount of programming experience, it is a fairly straightforward
task to write special-purpose loess routines in a programming language or in the
programming environments that are now included within several statistical software
packages (Stine and Fox, 1996). Examples of the former include LISP-STAT
(Tierney, 1990) and APL2STAT (e.g. Fox and Friendly, 1996). The primary
examples of the latter include PROC IML (fomteractiveMatrix Language) in SAS
(SAS Institute Inc., 1990), ADO files in STATA, and the MATRIX routine in SPSS
for Windows. Various analysts have already made a great deal of progress along
these lines, and their programs are readily available to interested users. For example,
AXIS, a graphical user interface for LISP-STAT, contains commands for scatterplot
smoothing with bootstrap resampling (Stine, 1996). And, a SAS/IML macro for
bivariate loess has been published by Friendly (199Binally, | have written a
number of SAS/IML routines for loess fitting (e.g. bivariate smoothing with user
control of the fitting parameters, multivariate loess smoothing, bootstrap confidence
intervals for a loess curve, etc.), and they are available to readers upon request.

It is important to emphasize that software discussions on any subject tend to
become outdated very quickly. This is particularly true with a topic like loess, since
graphical presentations of quantitative data currently represent a major area of devel-

16 EViews is available from Quantitative Micro Software, 4521 Campus Drive, Suite 336, Irvine, CA
92612, USA. Worldwide web: http://www.eviews.com.

17 S-PLUS is available from Statistical Sciences Inc., a Division of MathSoft, 1700 Westlake Ave., N.
Seattle, WA 98109, USA. Worldwide web: http://www.mathsoft.com/splus.html.

18 This macro is also available through his Worldwide Web home page, at:
http://www.math.yorku.ca/SCS/friendly.html.
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opment in the statistical sciences. Nevertheless, the brief discussion presented in this
section clearly demonstrates that software for loess smoothing and fitting is already
widely available. One can only expect that the routines will continue to evolve,
becoming more flexible and powerful in the future.

11. Conclusions

Loess has recently received a great deal of attention in statistical circles, where
it is recognized as one member from a broader family of procedures cellguara-
metric regression model&Green and Silverman, 1994; Fan and Gijbels, 1996; Fox,
1999). However, loess is far less well known among political scientists. This is
unfortunate, because it provides a very flexible approach to the problem of rep-
resenting structure within a dataset. Accordingly, loess fitting is a useful addition to
the social scientist’s repertoire of techniques for investigating empirical data.

When loess is employed merely as a scatterplot smoother, it can be very helpful
for a number of important research tasks, including the exploration of bivariate and
multivariate data, assessment of functional forms for relationships among variables,
examination of model assumptions in regression analysis, and representation of com-
plex structures within empirical data. But, extensions of basic loess fitting have utility
beyond these relatively simple applications. Indeed, | would argue that loess can be
regarded as a fairly comprehensive strategy for modelling functional dependence in
many kinds of data analysis contexts.

At the same time, it is important to emphasize that loess is not, in any way, a
panacea. Nonparametric smoothers like loess should be viewed as a complement to,
rather than a replacement for, traditional parametric smoothing methods (e.g. OLS).
These two general approaches — parametric and nonparametric smoothing — should
be used together, since they each have their own distinctive strengths and weak-
nesses.

The strengths of parametric smoothing include the following. Procedures based
upon this approach usually result in an equation that provides a concise, easily-
understandable summary of the structure underlying the data (assuming the specified
model fits well enough). The fitting methods are well-known and understood. And
there is usually statistical theory available to incorporate sampling variability into
the precision of the smoothed fit.

These strengths of parametric smoothing strategies are offset by some weaknesses.
Parametric fitting procedures are not very flexible. That is, they do not handle mis-
specifications very well. At the same time, they rely on global, rather than local,
fitting routines. This makes the final smooth curve relatively sensitive to outliers,
discrepant observations, and patterns that may only exist within a limited subset of
the data.

The strength of nonparametric smoothers is that they are very flexible about the
exact nature of the relationship between the variables. They are also relatively local,
in that the position and orientation of the fitted curve in any vicinityXofalues is
primarily dependent upon the data points in that vicinity. ObservationsXwtalues
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that are relatively distant have little or no effect on that segment of the curve

(although they do, of course, affect the placement of the smooth curve in their own
vicinity). This property tends to make nonparametric smoothers less sensitive to dis-
crepant points within the scatterplot.

The major weakness of nonparametric smoothers is that they cannot be used to
characterize the data in terms of a simple equation. Also, the statistical theory is less
well-developed for nonparametric smoothing algorithms than for more traditional
fitting methods. And finally, nonparametric fitting methods require the analyst to
make several partially arbitrary decisions about the fitting parameters.

Nevertheless, nonparametric smoothers still let the data ‘speak for themselves’ to
a greater extent than traditional, parametric methods. This is particularly important
in the field of elections and voting behavior. Theories often lead to expectations of
nonlinear empirical relationships, but prior substantive considerations usually provide
very little guidance about precise functional forms. Loess smoothing can be used to
resolve precisely this kind of dilemma.
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Appendix. The details of fitting a loess smooth curve

Fig. 12 shows an example of loess smoothing, using hypothetical bivariate data
on 20 observations. The first panel (Fig. 12A) shows the basic scatterplot. In order
to keep the example simple, the data form a clear, curved pattern within the plot.
The steps of the loess fitting procedure are as follows.

A.1. Preliminaries

First, definem equally-spaced locations across the rang&X efalues. Call these
v;, where the subscrigtranges from 1 tan. The loess curve will be evaluated at
each of they;s. The loess fitted value (i.e. the vertical coordinate for the curve) at
v; is designated ag(v,).

Second, supply values for two parametersandA. o is a value between 0 and
1, which gives the proportion of observations that are used in each of the local
regressions. This is used to find the number of observations used in each local
regression (called ‘the window’). The latter is definedjaan, wheren is the number
of empirical data points, and is truncated to an integer value, if necessary. The
value of A is either 1 or 2; it gives the degree of the polynomial that is actually
fitted to the data.

For the example data, there are 2Walues (that ism=21), uniformly spaced in
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the closed interval from 0 to 10.0; henegs0.0, v,=0.5, and so on, up t@,,=10.0.
The locations of the variougs are shown as tick marks on the horizontal scale of
Figure 12B. Note that thgs would usually range only across the observed values
of the X variable. For this example, the evaluation points are evenly spaced across
the interval from O to 10, in order to keep thgs at simple, round values.

In this caseq is set to 0.6, sexn=12. Thus, the window will always enclose the
12 empirical data points that fall closest to the currgnon the horizontal axis.
Figure 12B shows the window for=5.5 (an arbitrarily-selected value, located by
the asterisk along the horizontal axis in the figure). Note that the physical width of
this window will change at different values @f as the distance to the twelfth closest
data point changes. Also, evaluation points close to either the maximum or minimum
X values will be asymmetric; to pick some obvious examplgsyill have all 12
points in its window arrayed to the right, whilg, will have all 12 points arrayed
to its left. In any event, the window will always contain the 12 closest empirical
data points, regardless of their direction and/or distance from

A.2. For each y calculate neighborhood weights

Let A;(v)=Ix—V;|, the distance from the point of evaluation) (o theith obser-
vation, .. The brackets around the subscript indicate that these distances are sorted
from smallest to largest.

Then, Ay (V) =An(v)/Ag(v) is the same distance, expressed as a proportion of
the distance frony, to the farthest data point within the window. Thus;(v;)*=
1.0 if x; falls within the current window, and;(v;)*>1.0 if x, falls outside the win-
dow.

The neighborhood weight for observatioris defined using the tricube weight
function, as follows:

(1-[Ay(v)=3)® for Apy(v) <1

. (A1)
0 otherwise

Wi(Vj):{
Neighborhood weights are calculated for all observations, frelrto n. The shape
of the tricube weight function, as well as the specific weights assigned to the 20
observations, are shown in Figure 12C. Note how the observationsXmthlues
close to 5.5 have large weights, near 1.0. The weights fall off fairly quickly for
observations witlX values substantially different (in either direction) from the cur-
rent evaluation point of;=5.5.

A.3. For each y estimate the fitted valué, (;)

First, find the coefficientsh,, that minimize the following:

Z\Ni (V) (yi - [E By Xik] ) (A2)

Since the value oft was set to 1, a linear equation is fit to the weighted data,
and Eqg. (A2) can be expressed as:
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> W) (i — by — by x,)? (A3)
i=1
Once the coefficients of the preceding equation are found, the fitted value is
obtained by taking the predicted value fat v;:

A
8(v)= 2 bVt (A4)
k=0
Fig. 12D shows the line fitted a4=5.5, along with the pointy, §(v;)), which is
plotted as the solid circle superimposed over the line. Note how the slope of the
fitted line is positive, but relatively shallow. This reflects the orientation and shape
of the point cloud in that region of the scatterplot. Evaluation points at different
locations within the data rectangle would produce different results. For example, if
v; were closer to the left side of the plot (at, say, 2.0), the slope of the fitted line
would be positive, but much steeper.

A.4. Optional robustness step for eagh v

In most loess smooths, the initial local regression line and fitted value are replaced
by another line and fitted value that are obtained using a robust estimation procedure.
In order to do this, first obtain the residuals from the preceding local regression, for
all n observations. For observation

A
&=Yi— E o X (A5)
k=0
Then, defineg* as follows:
. €
6 Median|g| (A6)

Use the bisquare weight function to define the robustness weight for each obser-
vation, as follows:

1-|(e")?)? for |e*|<1
ri:{( (&) | ' (A7)
0 otherwise

The shape of the bisquare weight function and the robustness weights assigned to
the 20 observations are both shown in Fig. 12E. Use the robustness weights to esti-
mate a new set of coefficientls;, which minimize the following expression:

Zriwi(v,»)(yi—[szmk]) (A8)

i=1

Use the newly-estimatelf values to obtain a new fitted valug(v,):
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a(v)= >, bivk (A9)

k=0

Repeat the robustness steps until the values of the estimated coefficients converge.
This usually occurs very quickly, after one or two iterations. Fig. 12F shows the
robust line and final fitted value fof=5.5. In this case, the robust fitted line is not
very different from the original line. This occurs because there are no serious outliers
or unusual data points within the scatterplot. If there were, then the initial and final
fitted lines could differ quite substantially.

A.5. Repeat steps 2, 3, and (optionally) 4 for all m values; of v

Fig. 12G shows the pointsy;(§(v;)) obtained by carrying out the preceding steps
for all of the m=21 evaluation points. The plot shows the actual data points as open
circles and the loess fitted points as solid circles. Finally, use line segments to connect
the adjacenty,9(v;)) points (as shown in Fig. 12H for the example data) and elimin-
ate the points themselves. The latter are superfluous, since they are just a function
of the arbitrarily-chosen evaluation points, rather than the actual data values.
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