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ABSTRACT
We demonstrate that structured light-based depth sensing
with standard perception algorithms can enable mobile peer-
to-peer interaction between humans and robots. We posit
that the use of recent emerging devices for depth-based imag-
ing can enable robot perception of non-verbal cues in human
movement in the face of lighting and minor terrain varia-
tions. Toward this end, we have developed an integrated
robotic system capable of person following and responding
to verbal and non-verbal commands under varying lighting
conditions and uneven terrain. The feasibility of our system
for peer-to-peer HRI is demonstrated through two trials in
indoor and outdoor environments.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Operator Inter-
faces; I.4.8 [Image processing and computer vision]:
Scene Analysis—Range data, Tracking; I.5.4 [Pattern Recog-
nition]: Applications—Computer vision

General Terms
Design, Human Factors

Keywords
Human-robot interaction, person following, gesture recogni-
tion
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1. INTRODUCTION
Mobile robots show great promise in assisting people in a

variety of domains, including medical, military, recreational,
and industrial applications [22]. However, if robot assistants
are to be ubiquitous, teleoperation may not be the only an-
swer to robot control. Teleoperation interfaces may require
learning, can be physically encumbering, and are detrimen-
tal to users’ situation awareness. In this paper, we exhibit
an alternative approach to interaction and control.

Specifically, we show the feasibility of active-light based
depth sensing for mobile person-following and gesture recog-
nition; such a sensor has strong potential for reducing the
perceptual (and computational) burden for tasks involving
person following and observation. The most essential aspect
of our system is the reliability from which accurate silhouttes
can be extracted from active depth imaging. Our system is
augmented with voice recognition and a simple state-based
behavior system for when the user is out of visual range.

Existing approaches integrate vision, speech recognition,
and laser-based sensing to achieve human-robot interaction [20,
14, 6, 8]. Other recent approaches focus specifically on peo-
ple following [16, 5], gesture-based communication [10, 7,
23], or voice-based operation [11, 15]. However, these sys-
tems are either typically designed for use in indoor envi-
ronments, or do not necessarily incorporate following and
gesture recognition. Our approach is intended to further the
field with viability in both indoor and outdoor environments,
via the use of active sensing, robust perception mechanisms,
and a ruggedized platform. One promising approach to pose
estimation via range imaging by Knoop et al [9] uses an artic-
ulated model and interative closest point search. However,
their focus is on pose tracking (unlike our gesture recogni-
tion) as they have additional assumptions about initial pose
alignment.

At an abstract level, we strive for environmental tolerance:
the ability of a system to work in a variety of conditions and
locales. Of course, such tolerance can take many forms,
and we do not make blanket claims of robustness against all
forms of environmental variance. Our methods are meant



Figure 1: Our testbed system: an iRobot PackBot
EOD mobile robot, a SwissRanger camera, and a
Bluetooth headset.

to contribute to the environmental tolerance of existing ap-
proaches to person-following and gesture recognition, with
consideration to variations on lighting and uneven terrain.

Enabled by active depth imaging, we present an integrated
robot system for peer-to-peer teaming with the following
properties in mind:

• Proximity maintanance: ability of the robot to stay
within proximity of a moving human user

• Perception of verbal and nonverbal cues: ability
to recognize both gestural and spoken commands

• Minimization of instrumentation: ability to in-
teract with people in their natural environment, with
minimal reliance on markers or fiducials

• Preservation of situation awareness: minimize in-
terruptions to the user that are caused by monitoring
or correcting of the robot’s behavior; for example, the
user should not have to constantly look back to see if
the robot is following

2. TASK DESCRIPTION
Broadly speaking, our robot is designed to (1) automati-

cally accompany a human on mostly flat but uneven terrain,
and (2) allow hands-free supervision by a human user for the
completion of subtasks.

A more specific task description is outlined as follows. To
initiate following, a pre-parameterized gesture must be per-
formed by a person. This user should then be followed at
a certain distance (always maintaining this distance, in case
the person approaches the robot). The next execution of
the same gesture toggles the following behavior to stop the
robot. A second parameterized gesture is used to command
the robot to perform a specialized task: a “door breach”
in our case. Although we only use two gestures, more ges-
tures can be learned from human demonstration and used
for online recognition as in [7]. Voice commands are used
to summon the robot back to the user when out of visual
range.

Figure 2: Sample data returned from SwissRanger
camera.

Our test environments must consist of mostly flat terrain
in two locations: an indoor office space and an paved asphalt
parking lot. It is assumed that the user is not occluded from
the robot’s view and not directly touching any other objects,
although other people can move behind the user from the
robot’s view. Although the user height can vary, it is as-
sumed their physical proportions will roughly conform to a
medium build. The following sections describe our system
in terms of each of its component parts, including the robot
platform, perception, and behavior.

3. ROBOT PLATFORM
Our platform consists of an iRobot PackBot, equipped

with a 2.0Ghz onboard laptop and a CSEM SwissRanger
depth camera as its primary sensor. A Bluetooth headset
(used for voice recognition) is our secondary sensor. Details
on each of these components will now be described.

The PackBot base is a ruggedized platform with all-weather
and all-terrain mobility at speeds of up to 5.8mph. This
robot is well suited for tracking and maintaining close prox-
imity to people in both indoor and outdoor environments.

Next we turn to the topic of our primary sensor. We have
three basic goals for this sensor: it should be insensitive
to global illumination changes; it should not require recali-
bration for new environments; and it should provide a rich
source of data, suitable for detecting and making inferences
about a person. A color camera provides a rich data source,
but modeling color with strong illumination changes can be
difficult, and color calibration is generally required. Stereo
can provide a rich source of depth data, but requires strong
textures to infer depth, and can suffer from specularity prob-
lems. Finally, laser rangefinders are unaffected by global il-
lumination, but (in their typical 1-dimensional form) are not
rich enough to robustly detect people and their gestures.

We have opted to use a CSEM SwissRanger, which per-
forms reasonably in both the categories of data richness and
illumination invariance. By producing its own non-visible
light, and reading the phase-shift of the returned light, this
sensor can function in total darkness or in bright light. And
because this technology is in its infancy, its capabilities are
only bound to improve. Technical specifications for this
camera are available online [21].

The SwissRanger provides a real-time depth map to our
robot in which the intensity of each pixel represents the dis-
tance of the camera from the nearest object along that ray.
Such a depth map may be viewed as an image, as in Fig-
ure 3(a), or as a point cloud, as in Figure 2. Importantly, ex-
tracting human silhouettes from these depthmaps is greatly
simplified by the use of this sensor.



(a) Depth image (b) Segmented image (c) With bounding boxes

Figure 3: Raw depth image data is segmented into labeled regions, which are then categorized as “person”
or “not person.” For “person” regions, bounds for the body and head are then estimated.

(a) Row histogram (b) Column histogram

Figure 4: Row and column histogram signature used
as a descriptor for the segmented human component
in Figure 3(b).

The field of view of the SwissRanger camera is 47.5 x 39.6
degrees, with a maximum range of 7.5 meters. To enable
the robot to detect and track humans, the camera is placed
at height of roughly 1.5 meters to provide visual coverage
of a person’s head, arms and torso. The camera is mounted
on a pan-tilt unit to compensate for the small field of view.
We found the effective distance range to be between 1 and
5 meters: the camera’s field of view required subjects to be
at least 1 meter away, while the camera resolution restricted
subjects to under 5 meters.

Our primary sensor is most useful for people detection,
following, and gesture-based communications. However, if
a person is not in view of the robot, they may still wish to
communicate in a natural fashion.

Speech-based communication is a time-tested modality
for human-robot interaction. We use the VXI Roadwarrior
B150 headset as our secondary sensor. This wireless Blue-
tooth microphone continually streams audio data to the lap-
top onboard the robot, providing the user with a means of
wireless control over the robot over greater distances.

4. PERCEPTION
The next task is to generate features from our sensor in-

puts, and use these features to achieve our task goals. These
goals include human detection, person tracking and follow-
ing, and gesture recognition; each will be described in turn.

4.1 Human Detection and Following
In order to detect humans in varying environments, we

require algorithms to interpret the depth data obtained by
our active lighting system. Our detection algorithm consists
of two functions. The first is a pixel-level routine to find
collections of pixels in the scene representing contiguous ob-
jects. The second function identifies which of the candidate

regions represent humans based on the relative properties of
their silhouette.

Tracking and following of a single moving person are then
performed using a Kalman filter and PID control, respec-
tively. The robot and the pan-tilt head are separately con-
trolled in this manner, in order to keep tracked person cen-
tered in the field of view of our visual sensor.

The first phase of human detection, where all potentially
human objects are found, relies on the observation that con-
tiguous objects have slowly varying depth. In other words,
a solid object has roughly the same depth, or Z-value in
our case, over its visible surface. We have chosen to use a
connected components algorithm, based on its speed and ro-
bustness, to detect objects. This algorithm groups together
pixels in the image based on a distance metric. For our pur-
poses, each pixel is a point in 3D space, and the distance
metric is the Euclidean distance along the Z-axis between
two points. When the distance between two points is less
than a threshold value, the two points are considered to be
part of the same object. The output of the algorithm is a set
of groups where each group is a disjoint collection of all the
points in the image. A simple heuristic of eliminating small
connected components, e.g. those with few points, signifi-
cantly reduces the number of components. The final result
is depicted in Figure 3(b).

The second phase of our human detection algorithm iden-
tifies which of the remaining connected components repre-
sent a human. Motivated by the success of several previous
works [4, 12, 17], we use a Support Vector Machine (SVM)
trained on the head and shoulders profile to identify the hu-
man shape. Our SVM implementation utilizes the libsvm
library [3], configured to use C-support vector classification
and a radial basis kernel.

Our feature vector consists of the shape of the human in
the form of a row-oriented and column-oriented histogram.
For a given connected component, the row-oriented histogram
is computed by summing the number of points in each row of
the connected component. The column-oriented histogram
is computed based on data in the columns of the connected
component. Figures 4(a) and 4(b) depict the row histogram
and column histogram from the connected component found
in the center of Figure 3(b). Before computing the his-
tograms, the components are normalized to a constant size of
200x160 pixels. This technique provides a reasonable means
to detect a wide range of people in both indoor and out-
door environments, and has shown robustness to variations
in person size, clothing, lighting conditions and, to a lesser
extent, clutter in the environment.



Figure 5: Gesture recognition Markov chain.

4.2 Gesture Recognition
To meet the requirements of environmental tolerance, it is

essential that our recognition model be transparent and er-
ror tolerant. A Hidden Markov Model [13] is a natural choice
for the speed and probabilistic interpretation we desire, and
meets our demands for transparency and time-tested relia-
bility. In order to incorporate error tolerance, we include a
state to represent segmentation/sensor failure.

The following sections describe our gesture database, states,
features, training, and inference.

4.2.1 Gesture Database Construction
Each gesture was recorded offline as a set of observed,

ground-truth motions. An actor was asked to perform ges-
tures, and his movements were recorded in a motion capture
laboratory with a Vicon motion-capture system. For each
gesture, a set of time-varying poses were recovered, stored
in 95-dimensional joint angle space.

For the gesture recognition task, it is useful to define ges-
ture progress in terms of the subject’s position. Gesture
progress is defined as a value in the range [0, 1], such that
the boundaries mark the beginning and end of the gesture,
respectively.

4.2.2 Gesture State Definition
At any given time, a person is performing one of a set of

predefined gestures. We divide each gesture into a begin-
ning, middle, and end. A “null” state identifies when a per-
son is not performing a gesture of interest, and a “segmen-
tation failure” state identifies mis-segmented frames (with
unusually high chamfer distance). A Markov chain for these
states is shown in Figure 5.

4.2.3 Observation Feature Definition
To recognize gestures, we must infer something about

poses over time. We begin with the silhouette and three-
dimensional head position introduced in the tracking stage.
This information must be converted to our observation fea-
ture space, since a silhouette image is too high-dimensional
to be useful as a direct observation.

A cylindrical body model is arranged in a pose of inter-
est, and its silhouette rendered. Pose hypotheses are gen-
erated from each gesture model in our database, sampled
directly from actor-generated gesture poses. A pose hypoth-
esis is then be rendered and compared against a silhouette.
Chamfer matching, first proposed in [1] and discussed more
recently in [18] is used to compare the similarity of the sil-
houettes. We opted for a body-model based approach be-
cause it has more potential for invariance (ex. rotational
invariance), intuitive flexibility (body model adjustments),

and the use of world-space and angle-space error (instead of
image-based error).

We then perform a search in the space of each gesture’s
pose database, finding the best matching pose for each ges-
ture by comparing hypothesized silhouettes with the ob-
served silhouette.

Given n gestures in the training database, we are then left
with n “best poses,” each assuming that a particular gesture
was performed. We generate our observation feature space
by using the gesture progress, the change in gesture progress
over time, and the error obtained from the chamfer distance
comparison. Thus, given n poses in the gesture database,
we are left with (n × 3) observation variables. We model
our observations as being distributed according to a state-
specific Gaussian, with a different covariance matrix and
mean for each of the states in Figure 5.

4.2.4 Gesture Training and Inference
The HMM was trained on 16 examples total of each ges-

ture, using one female (5’6”) and three males (5’10”, 5’11”,
and 6’0”) all of medium build. The Viterbi algorithm was
run at each frame to recover the most likely gesture history.
Because the last few items in this history were not stable,
a gesture was only deemed recognized if its “gesture end”
state was detected six frames prior to the last frame. This
resulted in a recognition delay of 0.5 seconds.

4.3 Speech Recognition and Synthesis
Speech recognition is performed using the free HMM-based

Sphinx-3 recognition system [19]. The central challenge for
the speech recognition component is to provide robust and
accurate recognition under the noisy conditions commonly
encountered in real-world environments. Pre-trained speech
recognition systems that are designed for text dictation in
office environments perform poorly under these conditions
as they are unable to distinguish speech from motor and
background noise.

To improve recognition accuracy we train a custom acous-
tic model using the SphinxTrain system. A set of audio
speech files containing an abbreviated vocabulary set are
recorded using the VXI Roadwarrior B150 noise-canceling
headset. Additional audio samples containing common back-
ground noises, such as the sound of the robot’s tread mo-
tors, are used to train the model to differentiate these sounds
from speech. The abbreviated vocabulary set limits the word
choice to those relevant to the robotic task, improving over-
all recognition. Our current vocabulary has been selected
to include a set of basic operational commands and instruc-
tions, such as “stop”, “turn back” and “forward big/little”.
In future work we plan to extend this list to include several
dozen spoken commands and instructions.

Speech synthesis is performed through the Cepstral Text-
to-Speech system [2], which enables any written phrase to
be spoken in a realistic, clear voice. The Cepstral system al-
lows the robot to verbally report its status, confirm received
commands, and communicate with its operator in a natural
way. This mode of communication is invaluable as it allows
detailed information to be shared quickly, with little dis-
traction to the operator, and without requiring a hand-held
device or display unit.



Figure 6: A user’s gesture to stop is followed by a waiting condition, after which the user returns and activates
following again.

Figure 7: A user’s gesture to stop is followed by speech-based control, putting the robot into a waiting
condition. Speech is then used to retrieve the robot, and a gesture is used to reinitiate following.

5. BEHAVIORS
Because our other modules account for varying environ-

mental factors, our behaviors do not require special-case
handling for different physical settings. Input from each
of the system components described above is integrated to
enable the robot to perform useful functions. The robot’s be-
haviors consist of time-extended, goal-driven actions which
are easy to conceptually understand and use. In this work,
we utilize four behaviors, each of which is mapped to a
unique command, see Table 1.

The person-follow behavior enables the robot to track
and follow a user, forward or backward, while attempting to
maintain a distance of 2 meters. This behavior is toggled
on and off by the gesture of raising the right arm into a
right-angle position and then lowering it.

The second behavior, called door-breach, is activated by
raising both arms to form a T. This behavior looks for a
door frame and autonomously navigates across the thresh-
old waiting on the other side for a new command. This ma-
neuver can be particularly useful when exploring structures
in dangerous areas.

Behaviors three and four are voice-activated behaviors
that can be used to control the robot remotely, even out
of view of the operator. The behavior turn-around is acti-
vated when the person speaks the behavior’s name, and as
the name implies the robot rotates 180 degrees in place. The
“forward little” command activates a behavior that drives
the robot forward for two meters. A finite state machine
representing transitions between these behaviors is shown
in Figure 8.

An additional behavior, camera-track, is used in combi-

Figure 8: Behavior finite state machine.

nation with above behaviors to control the robot’s camera.
The camera tracks the robot’s current target, and resets to
a default position when no person is in view.

6. RESULTS
The performance of the system was evaluated within a

winding indoor hallway environment, and an open outdoor
parking lot environment under cloudy conditions. Both en-
vironments were flat in their terrain, and differed principally
in lighting and the degree of openness. The attached video
demonstrates the robot’s ability to perform the following
functions in our test settings:



• Following a person in a closed environment (winding
hallway with sharp turns)

• Following a person in an open environment (outdoors)

• Maintaining focus on user in the presence of passers-by

• Accurately responding to gesture commands

• Accurately responding to verbal commands

• Confirming all commands using the speech interface

• Autonomously locating and breaching a narrow door-
way

• Interacting with different users

Table 2 presents the average performance of the person
and gesture tracking components over multiple runs. Due
to reduced sunlight interference, the person detection com-
ponent accurately detected the user in 91.2% of its sensor
frames in the indoor environment, compared to 81.0% ac-
curacy outdoors. The closed indoor environment, which
contains many more surfaces and objects detectable by the
camera, also resulted in a false positive rate of 1.5%. Both
indoor and outdoor accuracy rates were sufficient to perform
person following and gesture recognition at the robot’s top
speed while maintaining an average distance of 2.8 meters
from the user. Gesture recognition performs with high ac-
curacy in both environments, with statistically insignificant
differences between the two conditions. Note that the ges-
ture recognition rates are only across frames where successful
person recognition took place.

Our system does exhibit certain general limitations. For
example, the person in view must face toward or away from
the robot (as a side view does not allow gestures to be rec-
ognized properly).

Another limitation relates to outdoor operation: although
it works well in overcast conditions, bright direct sunlight
can be a problem for our chosen sensor. Black clothing also
poses an issue, as inadequate light may be returned for depth
recovery.

In general, we found that the SwissRanger has advantages
and drawbacks that are complementary to those of stereo vi-
sion. Indoors, hallway areas are often not densely textured,
which can lead to failure for stereo vision algorithms, but
which do not impede the use of the SwissRanger. On the
other hand, when it works, stereo provides much better res-
olution than our chosen sensor (which, at 176x144, leaves

Num Type Command Behavior

1 Gesture person-follow

2 Gesture breach-door
3 Voice “Turn Around” turn-around
4 Voice “Forward Little” forward-little

Table 1: Gesture and voice commands, with map-
ping to behaviors.

Person Detection
% Accuracy (Per Frame) % False Positives

Indoor 91.2 1.5
Outdoor 81.0 0.0

Gesture Detection
% Accuracy (Per Frame) % False Positives

Indoor 98.0 0.5
Outdoor 100.0 0.7

Table 2: Person and gesture recognition perfor-
mance rates in indoor and outdoor environments.

something to be desired in the face of the multi-megapixel
cameras of today).

A final limitation relates to our motion generation; al-
though we found it to create adequate following behavior,
it is not guaranteed to avoid walls when following around
corners, and may back up into a wall (to maintain distance)
if a user approaches from the front. Problems such as these
could be ameliorated with the introduction of a 360 degree
laser sensor.

7. CONCLUSION
In this paper, we presented a robotic system for natural

human-robot interaction that shows promise in improving
environmental tolerance. We combined a ruggedized physi-
cal platform capable of indoor and outdoor navigation with
active visual and audio sensing, to achieve person following,
gesture recognition, and voice-based behavior. Our choice
of ranging sensor and perceptual methods were described in
the context of our integrated system for peer-to-peer HRI.
Our system demonstrates the feasibility our approach and
depth-based imaging as an enabling technology for HRI.
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