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Abstract

This paper describes a novel pedagogical software program that can be
seen as an online companion to one of the standard textbooks of formal nat-
ural language semantics, Heim and Kratzer (1998). The Penn Lambda Cal-
culator is a multifunctional application designed for use in standard graduate
and undergraduate introductions to formal semantics: Teachers can use the
application to demonstrate complex semantic derivations in the classroom
and modify them interactively, and students can use it to work on problem
sets provided by the teacher. The program supports demonstrations and ex-
ercises in two main areas: (1) performing beta reduction in the simply typed
lambda calculus; (2) application of the bottom-up algorithm for computing
the compositional semantics of natural language syntax trees. The program
is able to represent the full range of phenomena covered in the Heim and
Kratzer textbook by function application, predicate modification, and lambda
abstraction. This includes phenomena such as intersective adjectives, rela-
tive clauses and quantifier raising. In the student use case, emphasis has been
placed on providing “live” feedback for incorrect answers. Heuristics are
used to detect the most frequent student errors and to return specific, interac-
tive suggestions.

1 Introduction

1.1 Background

For almost ten years now, the textbook by Heim and Kratzer (1998) (henceforth
HK) has enjoyed a remarkable success as the textbook of choice for many intro-
ductory courses in natural language formal semantics. The semantic framework it
presents can be seen as a standardization of Montague-style semantics (Montague,
1974) when applied to Generative Grammar syntax, with lexical items correspond-
ing to simply typed lambda calculus expressions and with a very small number of
composition rules. This framework has become a de facto standard in which much
formal semantic work has been expressed over the last decade.

Teaching formal semantics can be a challenging classroom experience both to
instructors and to students. Anyone who has ever taught a course on formal se-
mantics will be familiar with the problem of drawing ever larger derivations, and
changing them on the fly as the class goes on. A sentence of just ten words can eas-
ily fill an entire blackboard and take half an hour to draw (see Figure 4 below for an
example). As for students, once they have left the classroom, they are often on their
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own with their homework exercises. In our experience, however, early feedback is
crucial for student performance on lambda calculus and HK derivations.

For both these problems, the use of educational software suggested itself to
us. Experiences with linguistic learning environments such as the Trees program
(Kroch and Crist, 2002) in syntax courses at the University of Pennsylvania have
been positive throughout (Anthony Kroch, p.c.) However, we were surprised to
find that there does not seem to exist any educational software suited for our task.
While some semantics- or logic-oriented educational programs exist (see Section
4), they are geared towards different (though related) applications, and not specific
to the HK framework. Looking beyond natural language semantics, there appears
to exist (apart from software geared towards students with a programming back-
ground) no training software for the more general field of the lambda calculus.

The present work describes our attempt at filling this much needed gap.

1.2 What It Does

The Penn Lambda Calculator is a multifunctional tool, designed for supporting
both the instructor and the student in a variety of scenarios. The application is
available as a “teacher edition” and a “student edition”. The main difference is that
the student edition is limited so that it does not provide automatic answers to the
exercises the student is working on.

The following functionality is available in both editions of the application:

• Interactive exercise solving. Typically, the instructor will prepare exercises
ahead of time in the form of a file, though the application also contains a
graphical interface (“Scratch Pad”) that allows users to input problem state-
ments of their own. In each case, the program reads in the problem statement,
internally generates a solution as applicable, displays the exercise and waits
for student input. As the student progresses through the exercise, his or her
answers are checked for correctness and the program gives appropriate feed-
back. The application currently supports the following kinds of exercises:
type checking, reduction of lambda terms and bottom-up semantic deriva-
tions. Section 2 discusses them in further detail.

In addition, the teacher edition provides the following functions:

• Visual presentation of semantic derivations. This mode is intended to be
used with a digital projector in class. The instructor provides the program
with the tree and the lexical entries of the terminal nodes. The applica-
tion then computes the denotations of nonterminal nodes automatically in
a bottom-up fashion. At any point in time, the instructor can interrupt or
rewind the derivation and/or modify any of the lexical entries involved. See
section 3.1 for details.



• Automatic scoring and grade management. Students submit their com-
pleted work to their instructors electronically. Section 3.3 describes the tools
the program provides to instructors to inspect and grade submitted work.

1.3 What We Aimed For

In the development of this program, we have adopted a few specific goals that go
beyond best practices in software development.

• We view the textual feedback as a central component of the functionality of
the application. Accordingly, we have made extended efforts to keep this
feedback informative without constraining the range of admissible inputs
more than absolutely necessary.

• The program has been designed so that it can be used by students with min-
imal outside instruction beyond the semantics that is needed to complete the
exercises. Unlike related software (Barwise and Etchemendy, 1999; Larson
et al., 1997), we do not presuppose that students read program documenta-
tion. We have performed extensive usability testing to ensure that the student
interface is easy and intuitive to use for students at the introductory level of
formal semantics with little background in computer usage.

1.4 How to Get It

The Penn Lambda Calculator is a stand-alone application available as a platform-
independent Java Jar file, which is directly executable on Mac OS X and on most
Unix systems. It is also available as a Microsoft Windows executable. All files
are downloadable from the project’s website. The student edition of the program
is open source, licensed with the common GNU GPL license (Stallman, 2007),
and the source code is linked from the website. In addition, the “engine” of the
program, a fine-grained object-oriented model of simply typed lambda calculus
expressions, is also downloadable as a separate library. The special edition for
instructors is not provided on our website and is not open source, as this would
make cheating very easy — see section 6.2. Instructors should contact the authors
for a copy via the project website. The project website is http://www.ling.
upenn.edu/lambda

2 Kinds of Exercises

As mentioned in the previous section, the application supports three kinds of exer-
cises to be completed by the student. These three exercise kinds — type checking,
reduction of lambda terms, and semantic derivations — are first presented by way
of a walkthrough to the program. Later on we return to them in greater detail.



2.1 Walkthrough

This section is a detailed walkthrough that allows you to start working with the
program and get an idea of its functionality as it presents itself to the student.

Here and in the following, we refer to version 1.0.5, the current version at the
time of writing. We assume that you have the student edition available. If not, you
can download the appropriate version from http://www.ling.upenn.edu/
lambda, together with the sample exercise files on this website (right-click and
save in most browsers). Even if you do not have access to the application, you can
follow this section and refer to the figures to get an idea of how it works.

Double-click the program to start it and select “Interactive Exercise Solver”.
Click on File in the menu, then Open. Select the file example1.txt and click
Open.

The first exercise is displayed as in Figure 1.1 It consists of the term λx.[P (x)∧
Q(x)], of which you are asked to enter the type, based on the typing conventions
displayed in the lower left hand corner of the window. Specifically, here P and Q
are one-place predicate constants, and x is a variable of type e. The correct answer
is therefore 〈e, t〉. Type this in and press Return to confirm, and again to move on
to the next exercise.

The program now goes to a second type of exercise: reduction of lambda terms.
It displays the term λx.[P (x) ∧ Q(x)] (a), which you are asked to simplify by
lambda conversion. Click Paste to copy the term into your answer box, then mod-
ify it, or start writing the reduced term from scratch if you prefer. To enter special
characters like λ and ∧, refer to the instructions in the middle left hand box. You
can try various incorrect responses such as [P (x) ∧ Q(x)] (a) to observe the pro-
gram’s responses.

When you are done (or bored) with the exercises in this file, open the next
file example2.txt (see Figure 2). This third kind of exercise is very different.
What you see is a syntax tree with some of the lexical entries already supplied.
As explained in the instructions at the top of the main area of the window, your
task consists in adding a lexical entry to the terminal α that is lacking one. As the
text points out, the author of the exercise has used α to represent a reflexivizing
morpheme.

To do this, click on that terminal α, then click into the text field below the tree
and enter a lambda expression, conforming to the typing conventions displayed in
the lower left hand corner. For example, to enter a variable of type 〈e, 〈e, t〉〉, use
the letter R.

Confirm your choice of a lexical entry (the correct answer, in this case, is
λR.λx.R(x)(x)) by hitting Return. It should now appear in the tree, under the
terminal α. The tree is now ready to be semantically computed. Click on the VP
node. You are now presented with a choice of three composition rules taken from

1These screenshots have been taken within the Mac OS X operating system. The corresponding
windows look slightly different on other operating systems.
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HK: function application, predicate modification, and lambda abstraction. Select
the correct rule. The VP denotation will now change to the unreduced term

λR.λx.[R(x)(x)] (λx.λy.[shaves(y, x)]). (1)

At this point, you are asked to reduce this lambda term. This corresponds to the
second kind of exercise described above, and the program reacts to your input by
feedback and error messages in exactly the same way as before. After three steps,
this expression reduces to λx.shaves(x)(x), and you are asked to click on another
node to continue. Click on the IP node and repeat the operation. You should end up
with the formula shaves(c, c) at the root. You are now free to go back and reassign
lexical entries to terminal nodes or to select another exercise.

This completes our first overview of the Penn Lambda Calculator as it presents
itself to the student. This walkthrough has not touched at all on several important
features of the program, in particular the teacher-oriented functions. All of these
will be described below. We begin by turning to a more systematic discussion of
the kinds of exercises that the program supports.

2.2 Type Checking

The first kind of exercise, expected only to be used for a short time at the start of
introductory semantics courses, asks the user to identify the semantic type (e, 〈e, t〉,
〈〈e, t〉, 〈e, t〉〉, etc.) of expressions. The instructor provides a list of expressions for
the student. The instructor does not need to provide the program with the answers,
i.e. the type of each expression — this is computed by the program automatically
based on typing conventions for constants and variables (either default conventions
or ones provided by the instructor).

Some example problems are:

Problem Answer
P (x) ∧ ∀y[Q(y)] t
λx.P (x) ∧ ∀y[R(x, y)] 〈e, t〉
λx.λy.λz.P (x) (c) 〈e, 〈e, t〉〉
λx.λw.sleeps(x,w) 〈e, 〈s, t〉〉

When the user provides an answer, the program first checks that the answer is
a syntactically well-formed description of a type. For instance, 〈ett〉 is not well-
formed. While the program does accept two common shortcuts (both et and 〈et〉
are acceptable), it is otherwise fairly strict with respect to how to enter semantic
types. User answers that could not be understood as types are returned with a
hopefully helpful diagnosis as to the problem. In the case of 〈ett〉, for which the
user probably meant 〈e, 〈tt〉〉 or 〈〈et〉, t〉, the program suggests that the user add
brackets.



2.3 Reduction of Lambda Terms

Reduction of lambda terms (or lambda conversion as called in the program, i.e.
β-reduction together with α-conversion) is one of the primary kinds of exercises
in the program. For these exercises, the user is presented with a lambda expres-
sion and is asked to simplify it by performing lambda conversions one at a time.
The centerpiece of the program is its informative feedback provided to students
when incorrect answers are provided, and this is explained below. Special key-
board shortcuts are available to enter logical symbols. As with the type checking
exercises, the instructor provides the program ahead of time with the problem, a
lambda expression, but the program will compute the answer and any intermedi-
ate steps automatically. Intermediate steps may be necessary both because of the
presence of multiple lambdas in the expression and because of the need to create
an alphabetical variant:

Problem Expected Answer
λx.[P (x) ∧ ∀x[Q(x)]] (a) P (a) ∧ ∀x[Q(x)]
λx.λy.R(x, y) (a) (b) Step 1: λy.R(a, y) (b)

Step 2: R(a, b)
λx.∀y[R(x, y)] (y) Step 1 (e.g.): λx.∀y′[R(x, y′)] (y)

Step 2: ∀y′[R(y, y′)]

Student inputs are first checked for whether they are syntactically well-formed
lambda expressions. If they are not, feedback is provided as to the nature of the
problem. For instance, the expression λ.P (x) is returned with feedback indicating
that a lambda must be followed by a variable. The expression P (a)∧Q(a)∨P (b)
is returned indicating that the expression is ambiguous and requires parentheses.
(Issues that arose in parsing and providing feedback for lambda expressions are
described in section 6.1.)

If the student input has passed the test of syntactic well-formedness, it is then
checked for well-typedness according to the typing conventions in place. For in-
stance, assume that x is associated with type e and Q is associated with a type other
than e. A user response of λx.P (x) (Q) will be returned to the user explaining that
λx.P (x) denotes a function whose range is over expressions of type e, but it cannot
be applied to Q because Q is of another type.

If the student input is well-typed but incorrect, the program checks it to see if
the student fell into a number of common pitfalls. These pitfalls are captured by
about a dozen abstract triggers applied to the answer roughly in order of decreasing
specificity. They represent the most common student errors as observed in a decade
of teaching introductory semantics courses.

If a known pitfall is encountered, appropriate feedback is provided. Whenever
possible, we generate constructive hints which do not give away the answer but
suggest to the student how to proceed with the reduction. If the student input is
detected to be wrong but none of the triggers are activated, a generic error message
informs the student about this limitation (“I’m afraid I can’t help you here.”).



The response that is displayed to the student is a collection of diagnoses and
hints that may be produced by different triggers. Experience has shown that stu-
dents confronted with a list of error messages tend to read only the first. For this
reason, the diagnoses and hints are rendered as a single paragraph in an attempt to
obscure their origin as separate entities. If more than one diagnosis is displayed,
they are ordered with the most specific diagnosis first, and joined by discourse
connectives such as “also”.

Some of the possible feedback responses are given below, preceded by an in-
correct attempt at lambda conversion that would activate the corresponding trigger.

PROBLEM: λx.P (x) (a)
EXPECTED ANSWER: P (a)
STUDENT INPUT: P (a) (a)
PROGRAM RESPONSE: “After each λ-conversion, exactly one argument should

be gone on the right hand side. Also, note that your expression also has a problem
with types: P (a) cannot be applied as a function to what looks like an argument to
its right (a) because P (a) is of type t according to the typing conventions in effect
and therefore is not a function.”

PROBLEM: λx.λy.R(x, y) (a) (b)
EXPECTED ANSWER: Step 1: λy.R(a, y) (b) Step 2: R(a, b)
STUDENT INPUT: λx.R(x, a) (b)
PROGRAM RESPONSE: “When doing λ-conversion, start with the outermost

λ. Remember, the leftmost λ-slot corresponds to the leftmost argument to be λ-
converted.”

PROBLEM: λx.∀x[P (x)] (a)
EXPECTED ANSWER: ∀x[P (x)]
STUDENT INPUT: ∀x[P (a)]
PROGRAM RESPONSE: “Remember to substitute the argument for all in-

stances of the λ variable that are free in the body of the λ expression, and for
nothing else. That is, make sure that you substituted into all and only the variable
slots that were bound by the λ.”

PROBLEM: λx.∀y[R(x, y)] (y)
EXPECTED ANSWER: Step 1: λx.∀y′[R(x, y′)] (y) Step 2: ∀y′[R(y, y′)]
STUDENT INPUT: ∀y[R(y, y)]
PROGRAM RESPONSE: “Your answer changed the truth conditions of the

expression because a free variable in the argument was accidentally bound during
substitution. Go back and try to make an alphabetical variant.”

PROBLEM: as in the previous example
EXPECTED ANSWER: as in the previous example
STUDENT INPUT: λx.∀y[R(x, y)] (y′)



PROGRAM RESPONSE: “This is an incorrect alphabetical variant. Only bound
variables can be rewritten as other variables while preserving truth conditions. Try
making another alphabetical variant.”

2.4 Semantic Derivations

Semantic derivations are another important part of our program. In this kind of
exercise, a Logical Form syntax tree is presented to the user, who is expected to
provide lexical entries for terminal nodes, choose the applicable composition rule
at each nonterminal (function application, predicate modification, or lambda ab-
straction), and evaluate and simplify the nonterminal nodes in a bottom-up fashion.
(Top-down evaluation is planned for future work.) The program displays the tree
visually, with the user-provided denotations of each node displayed at each node in
the tree. The user enters lexical entries and denotations at the bottom of the screen.
A blue box shows which node is to be acted on next, and this box can be moved
through the tree by clicking a node with the mouse (see Figure 2).

Lambda expressions are parsed and checked for well-typedness as described
above for lambda conversion exercises. During the simplification of the denotation
of a nonterminal node, the same lambda conversion pitfalls as in those exercises
are detected and reported as feedback. Additionally, the choice of an incorrect
composition rule, such as the choice of function application on two nodes typed
〈e, t〉 each, is reported.

Currently, instructors do not provide the correct solutions for lexical entry ques-
tions. The mistake of the student providing the wrong lexical entry for a terminal
node is expected to be found by the user on his or her own once either 1) the user
gets stuck at a nonterminal node that cannot be evaluated because, for instance,
the types of the children do not allow for any composition rule, or 2) the tree is
fully evaluated, but the student realizes the denotation arrived at for the root node
is incorrect. In either case, the user can go back and revise the incorrect lexical
entry, and then re-evaluate the affected part of the tree.

One common student error in providing lexical entries is the confusion of the
Predicate Logic two-place predicate R, as in R(x, y), and the predicate R denoting
a Schönfinkelized (or Curried) function from individuals to functions from indi-
viduals to truth values, as in R(x)(y). (Only the latter term is of type 〈e, 〈e, t〉〉.)
For instance, the student may be required to provide a function from a predicate
of the latter type to a truth value and may incorrectly submit λR.R(x, x). In this
case, the application recognizes the type mismatch and gives the feedback “R is a
function that takes (first) a single e-type argument alone, but you provided more
than one argument. Rewrite your expression so that R is Schönfinkelized (i.e. each
argument to R is surrounded by a separate pair of brackets).”

The following section describes the “teacher edition”, which can be used for
performing semantic derivations in class.



3 Instructor Tools

3.1 Class Presentation Mode for Tree Derivations

The “teacher edition” of the Penn Lambda Calculator enhances the bottom-up
derivation exercises (see previous section) with on-screen buttons to evaluate nodes
in the tree automatically, rather than requiring the user to enter the denotation of
each node and simplify it manually. Moreover, the type of each node is displayed
in addition to its denotation. This mode is designed for in-class presentations as an
alternative to the instructor writing out each step on a blackboard. It can also be
used by the instructor to debug exercises he or she is writing for the students. The
program can step forward and backward through simplification steps:

[[VP]]g ([[Carlos]]g) ↔ λx.shaves(x, x) (c) ↔ shaves(c, c) (2)

and can fill in entire subtrees with their denotations in one step to move quickly
through the derivation.

To prepare to use the presentation mode for tree derivations, the instructor cre-
ates a file containing the syntactic tree in labeled bracket notation, typing conven-
tions for terms used in denotations, and any lexical entries that the instructor wants
available ahead of time. (Additional lexical entries can be added while the program
is running as well.) Because the program has the ability to simplify and combine
lambda expressions, the instructor need not prepare the denotations of nonterminal
nodes ahead of time. The appropriate composition rule at each step (e.g. function
application versus predicate modification) is also chosen by the program based on
the evaluated types of the daughter expressions, following the HK algorithm.

The program is able to represent the full range of phenomena covered in the
HK textbook by function application, predicate modification, and lambda abstrac-
tion. This includes phenomena such as intersective adjectives, relative clauses and
quantifier raising. As an example, derivations that illustrate different issues arising
in connection with quantifiers are displayed in Figure 3. Figure 4 displays a com-
plex noun phrase with two relative clauses of the kind that could easily take half
an hour to draw on a blackboard. The simplification history of each node can be
displayed in another box in the program (not shown in the figure).

3.2 Creating Exercise Files

Exercises are provided by instructors to students in file form (e.g. via email or a
webpage). Currently, exercise files are plain text files in which the instructor writes
the title of the assignment, instructions, and each exercise one per line. Point values
can be assigned to each problem in order to allow the program to compute grades
automatically in the teacher review tool described in the next section. Plain text
files can be created using any simple text editor (or word processor). The format
of exercise files is documented on the website, which also provides samples.

Although a plain text file format was chosen for exercise files for simplicity for
the instructor, one drawback is that once sent to the students, the contents of these



(a) A QNP that works in subject position . . . (b) . . . does not work as an object unless . . .

(c) . . . you use quantifier raising or . . . (d) . . . flexible types, i.e. another lexical entry.

Figure 3: Displaying various treatments of quantifiers using the teacher edition
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files can be viewed by the students as well. For this reason, the instructor must be
careful not to put the answers or any other such information in the file.

3.3 Homework and Teacher Review Tool

Students using the application for homework assignments can submit their work to
their instructor by saving their progress to a file, which can then be e-mailed to the
instructor. When saving, the program asks the student for his or her name, which is
written into the saved-work file, along with the student’s answers to the questions.
This makes it easy for instructors to keep track of students’ performance.

As with any submitted homework, there is, of course, no guarantee that a saved-
work file actually represents any particular student’s efforts. It was not a goal of
the project to anticipate all of the many ways one might cheat using the program.
The exercise files sent to students by instructors are plain-text files, as explained in
the previous section. However, saved-work files are in binary format to make it at
least non-trivial for students to modify a saved-work file once it has been created
by the program, such as to put a different student’s name in the file.

Saved-work files received by the instructor can be reviewed using the appli-
cation. The review component of the program, called “Teacher Tool”, displays
detailed information on the student’s answers to each individual exercise. A score
is computed for those exercises whose answer can be automatically checked for
correctness (all but the bottom-up derivations where the student needs to define a
new lexical entry) and for which the exercise file has specified a score value. The
application can also collect the scoring information of all the students and present
it in a table along with mean and standard deviation for the final scores. The tool
shows each student’s final response to each of the questions in the homework, as
well as the percentage of students who answered each problem correctly, and it
allows the instructor to enter comments into the saved-work file for his or her own
reference later. This table of student scores can be copied and imported into other
programs such as spreadsheet applications for further processing.

4 Related Work

We were not able to find any software that would work as a companion to the HK
textbook the same way as ours. However, some applications exist that do resemble
ours, be it because they are also written for the linguistics classroom or because
they support formal natural language semantics as well. In this section, we review
and compare some of them to the Penn Lambda Calculator.2

2Space prevents us from doing justice to a number of additional related programs, such as CURT
(Clever Use of Reasoning Tools), a collection of tools for first-order inference and translation from
natural language that accompanies a textbook (Blackburn and Bos, 2005); and CLEARS (Konrad
et al., 1996), an “interactive graphical environment for computational semantics” that supports vari-
ous semantic formalisms such as Discourse Representation Theory (DRT) and situation semantics.



4.1 Semantica

Semantica (Larson et al., 1997) is perhaps the closest relative of the Penn Lambda
Calculator. Like our program, it is an interactive, graphics-oriented application
designed for assisting the student in learning to use a truth-conditional semantic
derivation system. The original release of Semantica ran on the now defunct oper-
ating system NeXTstep, but its authors have since then re-released it for Windows.

The most important difference between the two programs is a difference in the
underlying semantic theories. The HK framework, on which our program is based
and which it faithfully reproduces, stands in the tradition of type-driven translation.
This concept, introduced by Klein and Sag (1985) and Jacobson (1982) (see also
(Dowty, 2006, p. 10)), denotes a semantic translation system in which the types of
the expressions on the daughters of a syntactic tree node determine which semantic
composition rule applies at that node. This allows one to decouple semantic rules
from the syntax and to have only very few semantic rules. A pithier term for this
idea, which Klein and Sag credit to Emmon Bach, is shake’n’bake semantics.

By contrast, many semantic translation systems have taken the grammar to
include a set of rule pairs consisting of a phrase structure rule and a semantic
composition rule. The best known example of this style of system is likely to
be classical Montague semantics (Montague, 1974). Klein and Sag contrast this
idea, termed rule-to-rule hypothesis by Bach (1976), to type-driven translation.

This dichotomy is also at the core of the main difference between the Penn
Lambda Calculator and Semantica. Only the latter allows (and requires) the user
to specify a different semantic composition rule for each syntactic phrase structure
rule.3 In contrast, the Penn Lambda Calculator implements a system that is only
equipped with a small collection of composition rules. Due to the type-driven
nature of the HK computation system, these rules are sufficient to model a wide
range of semantic phenomena in English.4

Both programs complement each other by offering important functions that the
other one lacks:

• On the one hand, Semantica not only converts a syntactic tree to a logical for-
mula, it also has the ability to evaluate that formula against a model, which
consists of one or several worlds connected by modal and temporal relations.
Each world is populated with individual objects of different kinds that stand
in spatial relations to one another. The program contains an editor that al-
lows the user to create and edit these models. This editor is quite easy to
use. It is similar to and was modeled on the logic teaching program Tarski’s
World (see next section). Semantica can thus act as a simple theorem prover.
The Penn Lambda Calculator is not able to do any of this.

3In practice, the Semantica user may load a file that contains a number of predefined rule-to-rule
mappings of this kind.

4It is currently not possible for the user to add rules to this collection.



• On the other hand, Semantica’s emphasis on pedagogical issues and class-
room management is not as strong. The program does not display the indi-
vidual steps of the computation of a sentence’s truth conditions, nor does it
require the student to enter these steps. When the computation fails, only
a generic error message is displayed that does not indicate the origin of the
failure. (“Recheck rules and input tree.”) Support for grading homework
files in the style of our teacher tool is absent in Semantica. Perhaps for these
reasons, using Semantica in the classroom has been reported to result in a
“heavy initial burden” for the students and to require “considerably heav-
ier time commitment than a traditional lecture-based course, both in terms
of preparation and support” (Larson, 1997). Our experience with the Penn
Lambda Calculator has been more encouraging (see Section 5).

Finally, a central difference is that Semantica’s underlying formalism does not
make use of types nor of the lambda calculus, while the core functionality of the
Penn Lambda Calculator consists in assisting students learning how to assign types
to lambda terms and to reduce them.

4.2 Tarski’s World

Tarski’s World (released for Windows and Mac OS) is a pedagogical software pro-
gram that helps students become fluent in first-order predicate logic. It displays
logical formulae alongside graphical depictions of worlds (models) and asks the
student to indicate whether any given formula is true in the world. Alternatively,
the student could also be directed to build a world from scratch that makes a for-
mula or collection of formulae true. Unlike Semantica, this program does not al-
low for models of modal or temporal logics, i.e. models in which several possible
worlds are connected to each other by modal or temporal accessibility relations.

Tarski’s World is similar to the Penn Lambda Calculator in that it focuses on
providing helpful feedback to the student and on classroom management functions.
It provides automatic grading via a central server, the Grade Grinder, to which
students can electronically submit their files. However, this is where the similarities
end: Tarski’s World does not touch on natural language syntax or semantics.

4.3 Nessie

To conclude this section, we mention the Nessie project (Blackburn and Hinderer,
2007) as a recent example of an application created in the context of natural lan-
guage formal semantics. Unlike the other programs presented here, Nessie’s ap-
proach is not pedagogical, and it is neither graphics-based nor interactive. The
novelty of this project consists in its attempt at providing a generic framework for
large-scale natural language semantic computation, based on the TYn family of
logics, which has been suggested as a uniform framework for virtually any kind
of semantic analysis (Muskens, 1996). TYn is based on the simply typed lambda



calculus and is therefore very similar to the logic underlying HK and our sys-
tem. Furthermore, TYn provides flexible support for any number of basic kinds of
entities such as ordinary individuals, belief states, times, and situations. Nessie, a
platform-independent application, fully implements TYn and is developed with the
aim of providing “a systematic way of combining the insights from many different
approaches, ranging from DRT through situation semantics and classical possible
world semantics, to event based semantics” (Blackburn and Hinderer, 2007, p. 5).

5 Field Experience

An early version of this program has been field-tested in the Spring 2007 graduate
student introductory course to formal semantics at the University of Pennsylvania
and has later undergone extensive usability testing in order to improve its user in-
terface. In its current form (the result of about 400 man-hours of work), it has been
deployed for the first time in the introductory course to semantics at the Linguistic
Society of America Summer Institute 2007, at Stanford. Both courses have been
taught by one of us (Romero). We have offered an internet forum in order to col-
lect feedback from the students and to provide technical support. We expected to
have to make changes to the program and to redeploy it several times as the course
proceeded, but this turned out not to be necessary. Students used the same version
of the application throughout the course. The forum was used primarily to clar-
ify questions in the exercises rather than to ask questions about the program itself.
Numerous minor improvements to the application were suggested and bugs were
collected. As a result, we expect its basic design to remain stable in the near future.

The teacher edition’s ability to demonstrate a derivation on the screen turned
out extremely helpful in the classroom. Even if one does it slowly enough so that
the students have time to assimilate what is on the screen, it looks cleaner and saves
time compared to writing the same derivation on the blackboard. A derivation that
used to take us 30 minutes on the blackboard takes about 5-10 minutes using the
application, depending on how much explanation is needed.

6 Issues in Program Development

6.1 Robust Parsing of a Formal Language

The syntax of the lambda calculus is usually given as a collection of CFG or BNF
rules or as a recursive definition to that effect, together with the statement that
when the formulae are presented to a human reader, parentheses can be dropped for
convenience. To parse typed lambda calculus expressions entered by students and
teachers, we needed to implement a “robust” syntax, able to handle these omitted
parentheses and similar pitfalls. (We soon discovered that it was not advisable to
force users to disambiguate every formula with parentheses, since this soon led to
frustration, and it distracted users from the task at hand.)



Informally, parentheses may be dropped just in case the resulting expression
appears unambiguous to the human reader. The exact conditions for this, as well
as the rules that disambiguate these expressions, turned out surprisingly difficult to
determine. Even our own experience with the typed lambda calculus did not allow
us to define the rules we seemed to have unconsciously mastered, and so we had to
discover them empirically.5 We discuss a few examples here.

The most striking phenomenon was the significance of spaces in expressions
of function application. For instance, when the type of M was not specified, the
expression λx.M(x) (a) was most likely to be interpreted as intending λx.M(x)
to be applied to the argument a. However, the expression λx.M(x)(a) was under-
stood as having a as the second argument of M itself (where M is now understood
as a Schönfinkelized two-argument function). The difference is one of scope, with
(a) in the first case having wide scope relative to the lambda, and in the second
case narrow scope. Apparently, though, these structural preferences can be over-
ridden: in our experience, most people would be reluctant to interpret the first x to
be bound and the second x to be free in the expression λx.M(x) (x), regardless
of the presence of space.

In some cases, we are able to use the fact that parentheses are regularly omitted
because there is only one well-typed bracketing. λx.T (x)(a) ∧ U(b) is an exam-
ple of this. Without knowing the types of T and U , the program will reject this
expression on the grounds that it is ambiguous. However, if T is known to be of
type 〈e, t〉, the program will give the user the benefit of the doubt and understand
the expression as [(λx.T (x)) (a)] ∧ U(b). If T is instead entered as 〈e, 〈e, t〉〉, the
expression will be treated as λx.(T (x)(a) ∧ U(b)).

6.2 Issues in Distribution

In designing this application, we made the decision early on to make as much func-
tionality available for free under a GPL-like license (Stallman, 2007), including the
source code. At the same time, some of the functionality cannot be distributed to
students. In this section, we discuss some issues that arise from this conflict. At
the time of writing, these are open and serious problems for us, and we are grateful
for any suggestions.

As mentioned above, we are currently only offering the student edition of the
application on the project website. The reason for this is that the teacher edition has
capabilities that would easily allow students to solve any exercise with almost no
effort at all. Therefore we feel its distribution must be restricted. We are currently
exploring different ways to manage this restriction:

• One option we are considering is making the teacher edition available as a re-
stricted download. Only individuals who can document to us their affiliation
as university faculty would be given access to the program. While this will
create a certain delay in distribution, we anticipate that the added work for us

5The parallel to natural language syntax has not escaped our attention.



will be manageable and the delay short. However, this has the problem that a
single instructor who, for whatever reason, makes the teacher edition avail-
able to some student might result in both versions being effectively freely
available to all students.

• Another option, which avoids this problem, would consist in making the
teacher edition available only as a password-protected web-based applica-
tion. However, this would require that the instructor have Internet access
during class sessions.

• A related issue concerns the extent to which we can release the source code.
While we would like the full program to be available to be modified and
reused by others, providing the full source code would allow others to com-
pile and make the teacher edition available to students. We prefer to err on
the side of caution and are currently making the source code available only
partially. We will be happy to release the full source code to those that we
would provide the teacher edition to.

7 Future Work

The Penn Lambda Calculator is usable in its current state; however, improvements
are planned in several areas. Lambda expressions understood by the program will
continue to be extended and refined to accommodate nonstandard ways of entering
lambda expressions and to address pedagogical concerns. We will allow the pro-
gram to accept expressions containing mathematical, set, and modal operators not
yet considered, and situation variables as superscripts on interpretation functions.
The set of semantic computation rules, which is hard-coded into the program at the
moment, could be made user-extensible. We also plan to add support for top-down
HK derivations.

A drawback of the rigid distinction between “teacher” and “student” editions of
the application is that it is impossible for the instructor to allow the students to step
through derivations at their own pace, unless he or she wants to give students access
to the “teacher” edition. Currently, students can only watch the derivations as the
instructor steps through them in class. If they try to replicate them in the “student”
edition, they have to re-enter by hand all the lambda conversions involved in the
derivation. This problem has emerged in the classroom and was not foreseen by
us. We plan to address it by providing the instructor with a means to selectively
unlock the student edition’s features for certain derivations only.

Finally, we intend to improve the integration of our program with related soft-
ware. In particular, we plan to add the ability to exchange syntactic trees between
the Penn Lambda Calculator and the Trees program, a learning environment for
syntactic theory (Kroch and Crist, 2002), as well as the LATEX tree-drawing pack-
age qtree. We may also link up the program with Tarski’s World and/or Semantica



(see section 4) in order to provide students with a way to check the truth of their
sentences in a self-constructed model.
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