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Piecewise and Local Image Models for Regularized
Image Restoration Using Cross-Validation
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Abstract—We describe two broad classes of useful and physi-
cally meaningful image models that can be used to construct novel
smoothing constraints for use in the regularized image restoration
problem. The two classes, termedpiecewise image models(PIM’s)
and local image models(LIM’s), respectively, capture unique
image properties that can be adapted to the image and that reflect
structurally significant surface characteristics. Members of the
PIM and LIM classes are easily formed into regularization oper-
ators that replace differential-type constraints. We also develop
an adaptive strategy for selecting the best PIM or LIM for a given
problem (from among the defined class), and we explain the con-
struction of the corresponding regularization operators. Consid-
erable attention is also given to determining the regularization pa-
rameter via a cross-validation technique, and also to the selection
of an optimization strategy for solving the problem. Several re-
sults are provided that illustrate the processes of model selection,
parameter selection, and image restoration. The overall approach
provides a new viewpoint on the restoration problem through the
use of new image models that capture salient image features that
are not well represented through traditional approaches.

Index Terms—Cross-validation, image restoration, local mono-
tonicity, regularization.

I. INTRODUCTION

ONE OF THE classic problems in image processing is
the restoration of a linearly degraded and noisy optical

image to a pristine state. In this problem, an ideal image
that has been digitized has been distorted by a lowpass blur
arising from the motion of objects or of the sensor, defocus, or
deficiencies in the optical system, for example. The problem of
reconstituting the ideal image from the blurred observation can
be greatly complicated by various factors such as nonlinearities
in the blurring process, noninvertibility of the linear distortion
(frequency destruction), and the addition of broadband or high-
frequency noise to the blurred image. The noise may arise
from, e.g., thermal effects, transmission noise in a channel,
recording errors, or imperfections in the process of digitization.
In this paper, we restrict our attention to the problem of
reducing linear image blur in the presence of additive noise.
The goals of sharpening and smoothing are conflicting, and
any linear filtering approach is problematic: the reversion
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of image blur requires a highpass sharpening of the image,
whereas noise reduction ordinarily implies a degree of lowpass
smoothing. Intermediate (bandpass techniques) that attempt to
mediate this conflict, e.g., Wiener filtering, generally fail to
satisfy the viewer.

Thus, a great number of optimization-based strategies have
been developed that achieve better results; see [16] for a
compendium of recent work. A fundamental guiding principle
behind most of this work is the realization that the restoration
problem is inherently ill-posed, hence strategies that regularize
the problem, or make it well-posed, have been in the forefront
of this research [16], [17]. The regularization approach poses
the two conflicting goals, deblurring and noise eradication,
as separate constraints to be simultaneously satisfied. Adata
constraintattempts to force a blurred version of the solution to
resemble the degraded image that was acquired. In this way,
the data constraint encourages deconvolution of the signal.
A smoothing constraintpenalizes solutions that deviate from
smoothness. The smoothing constraint typically fills several
roles: as a regularization operator that guarantees a unique,
stable solution, as a model of the ideal image’s local character-
istics, and as a means for suppressing noise. Generally, the data
and smoothing constraints are both expressed as functionals
to be minimized over the space of images. Simultaneous
minimization is most usually attained by linearly combining
them into a single cost or energy functional to be minimized.
The balance between the two constraints is dictated by the
linear weight orregularization parameter.

The background literature on regularized image restoration
has become quite large. Several studies examine techniques
used to define the data constraint [16] and to evaluate the
regularization parameter [6], [8], [13]–[15], [22], [24], [29].
Other works report progress on developing more effective
methods of optimization for regularization [3], [4], [7], [9],
[20], [31]. Recently, spatially and temporally adaptive methods
of balancing the data constraint and the smoothing constraint
have been explored [11], [12], [17], [18], [21]. Adaptive
solutions, such as that of Kang and Katsaggelos [12], allow
weighting that may change between pixel sites and that may
also change between iterations.

Methods for defining the data constraint and methods for de-
termining the regularization parameter have been well studied.
Indeed, the choice of a data constraint that seeks deconvolution
is not really open to argument, provided that the linear
degradation assumption is accurate. Compared to the study
of regularization parameter, less scrutiny has been given to
the smoothing constraint. Indeed, it is nearly always taken to
be a linear highpass operator, such as the integral (sum) of the
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Laplacian magnitude or the gradient magnitude over the image
domain. Minimizing this kind of constraint presupposes a
certain image model, orcharacteristic property, which usually
does not hold everywhere in the image, e.g., near critical,
information-bearing discontinuities. Recognizing this limita-
tion, several researchers have proposed refined regularization
strategies that enforce smoothness on a piecewise basis, using
line processes to inhibit oversmoothing [4], [7], [9], [23], [31].
While improved efficacy in restoration has often been shown
using these techniques (for low noise levels, generally), the
introduction of a line process approach is concomitant to using
an edge detector on the image; such strategies always have
problems in a significant noise environment.

We take the position that insufficient attention has been paid
to the development of more specialized smoothing constraints
that attempt to model the image as something other than a
function that has small derivatives almost everywhere. Instead,
images should be modeled with descriptions that reflect more
sophisticated surface properties that embody smoothness in a
more interesting way. Of course, such a goal is quite ambitious
owing to the considerable diversity of images and the surfaces
from which they project. Therefore, the models used must also
admit some degree of generality, although specificity may be
attained in application-dependent circumstances.

In this paper, we propose two broad classes of useful image
models that can be used to construct novel smoothing con-
straints for use in the regularized image restoration problem.
Of course, “smoothness” is taken in a different sense in these
classes. The two classes, referred to here, respectively, as the
piecewise image models(PIM’s) and thelocal image models
(LIM’s), each capture unique image properties. Members
of the PIM and LIM classes can be easily formed into a
regularization operator and used in place of differential-type
constraints. In this paper, we propose and define the PIM and
LIM classes, and for a given blurred and noisy image, we
provide a method to select the proper PIM or LIM, to con-
struct the corresponding regularization operator, and to set the
regularization parameter. The overall approach provides a new
avenue that uses novel image models for image restoration.

In the following section, the restoration problem is intro-
duced and notation is made. The PIM’s and LIM’s are defined
in Section III, along with the corresponding regularization
operators. Selection of the regularization parameter and selec-
tion of the proper PIM/LIM for regularization are discussed
in Section IV. Then, the minimization of the regularization
functional is treated. Finally, parameter selection and image
restoration results are provided in Section VI.

II. THE IMAGE RESTORATION PROBLEM

Image restoration algorithms of the type considered here
seek to compute an image estimatefrom blurred, corrupted
image data. The observed imageis the result of degrada-
tion by a spatially invariant convolution operator and the
addition of noise So

(1)

where is assumed to be block Toeplitz. The matrices
and have the same size and contain a total ofelements
(pixels).

Since the image restoration problem presented by (1) is ill-
posed, an image estimatecan be computed by a regularization
procedure. The problem may be considered an optimization
problem under two constraints. The first constraint forces
consistency with the observed data, and essentially reverses the
blurring process through deconvolution. Since this deconvolu-
tion operation is sensitive to noise and typically does not yield
a smooth result, a second constraint is included that enforces
“smoothness” on the solution. Typically, smoothness is inter-
preted as an integral (sum) of absolute spatial derivatives (dif-
ferences) being small. In this paper, we replace this standard
notion of smoothness with conformity to a specified image
model in one of two classes: the PIM class or the LIM class.

In the classical Tikhonov approach [30], regularization is
established by minimizing to enforce smoothness,
subject to the constraint to enforce consis-
tency with the observed image data. Here, increases
with a decrease in the smoothness ofOr the two constraints
may be simultaneously minimized, as suggested here, using
(the Miller approach) [19]:

(2)

and

(3)

So, the two constraint problem may be formed using the Miller
approach. The two terms may be combined into a single
cost functional termed theenergy functional. Then,
the quality of two solutions can be compared by evaluating
their respective energies. The solution to the image restoration
problem, once is formed, corresponds to a minimization
problem. The energy functional is given by

(4)

with an optimal solution at

(5)

In (4), is the regularization parameter. The data constraint
enforces deconvolution by penalizing greater

distances between the solution imagedegraded by and
the observed image defined by an appropriate distance norm

This distance norm is selected according toa priori
information about the noise process[25]. Note that it is not
necessary to know the actual statistics (the variance) of the
noise process to select an appropriate norm—only the type
of noise distribution is needed. For example, thenorm is
optimal for Laplacian-distributed noise, where thenorm is
the best choice for Gaussian-distributed noise [25].

The term is often referred to as theregularization
operator. This operator typically enforces smoothness of the
resulting solution by penalizing high-frequency content on a
local basis. However, in the approach proposed here,
instead assesses an energy penalty for local deviation from
a characteristic propertydefined by a PIM or LIM. The
characteristic property may or may not conform to the tra-
ditional definition of smoothness. In fact, special-purpose
PIM’s and LIM’s may be constructed that do not enforce
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smoothness. This paper attempts to broaden the definition of
the regularization operator beyond standard derivative-based
kernels, enabling new constraints that enforce consistency
with a specified image model. With the PIM’s and LIM’s,
regularization can be specialized to retain certain structural
features.

Along with the potential advantages of the specialized
regularization operators come additional difficulties in solving
the image restoration problem. First, regularization operators
that depend continuously on the data must be constructed
for each PIM and LIM (Section III). Due to the nonlinearity
of these operators, the standard methods of selecting the
regularization parameter cannot be employed, and a new
approach must be adopted (Section IV). Furthermore, given
more than one choice for potential regularization operators,
the problem of selecting the most appropriate model must be
addressed (Section IV). Finally, an efficient method that gener-
ates high quality solutions to the nonconvex energy functional

containing the nonlinear regularization operator must be
suggested (Section V).

III. T HE PIM/LIM M ODELS AND

REGULARIZATION OPERATORS

We divide the models used in regularization into two classes:
the PIM’s and the LIM’s. The PIM’s differ from the LIM’s in
that PIM’s enforce the characteristic property on a piecewise
basis, while LIM’s enforce the characteristic property in each
local neighborhood. With PIM’s, the characteristic property
is not enforced across region boundaries, given regions of
sufficient size. The LIM properties hold across region bound-
aries. In this paper, two PIM’s and two LIM’s are described,
along with the corresponding regularization operators. The
four models introduced here by no means form an exhaustive
set of image models for image restoration. The two PIM’s
described in this paper are thepiecewise constant(PICO)
image model andpiecewise linear(PILI) image model, and the
two LIM’s are the locally monotonic(LOMO) image model
and thelocally convex/concave(LOCO) image model.

Here, each model will be defined and a regularization
operator that can be used as a constraint in regularization will
be expressed. Because the models depend strongly on local
interactions, it is necessary to introduce a compact notation
for local orientation. With respect to let be
the th difference in the th direction. The four orientations are
enumerated as follows: denotes the south-north direction
(only change in denotes the east-west direction
(only change in denotes the southwest-northeast
direction, and denotes the southeast-northwest direction.
For direction the th difference between successive pixels
is defined by the pixel that is pixels away from
in the th direction, less the pixel that ispixels away. For
example,

etc. Pixel intensities can also be denoted by the
distance from a given pixel Let represent

the pixel intensity pixels away from in direction
For example, for any

etc.

A. Piecewise Image Models for Regularization

The two PIM’s discussed here are formed from the char-
acteristic properties ofpiecewise constancyand piecewise
linearity. Of course, many other PIM’s may be envisioned, for
example, piecewise polynomials, piecewise exponential, etc.
However, these two PIM’s are the simplest and illustrate well
the principle. Using these PIM’s in the restoration problem
as a type of smoothness constraint implies that the image
being restored obeys or nearly obeys the PICO or PILI
characteristic property, which is of course, not generally
justifiable. The PICO property, in particular, should be applied
only to images that were originally flat nearly everywhere
(except at separating boundaries); such applications certainly
exist. Both the PICO and the PILI models smooth interior
image regions without sacrificing edges, as the PIM proper-
ties are not enforced across region boundaries. A difference
does exist—where the PILI images can contain a variety
of step and ramp edges (sharp and slowly varying inten-
sity transitions), the PICO images are restricted to steplike
edges separating constant regions. The more restrictive PICO
model is most useful when restoring images from man-made
scenes containing steplike edges, such as with document
processing or in certain automated visual inspection tasks
in manufacturing. Nevertheless, for each image restoration
problem, we do not makead hocdecisions on the selection
of the proper model. Using the cross-validation technique
described in Section IV,the most effective model can be chosen
automatically.

The PIM definitions can be given simultaneously. First, a
one-dimensional (1-D) definition of piecewise constancy and
piecewise linearity will be stated. Then, the 1-D definitions
can be used to form two-dimensional (2-D) definitions for use
in image restoration. A 1-D signal is piecewise constant
(piecewise linear) of degree or PICO- (PILI- if the
length of the shortest constant (affine linear) subsequence in
is greater than or equal to If the definition holds, then each
sample is part of a constant (linear) segment of length greater
than or equal to where determines the spatial extent
of the neighborhood and is called thedegreeof the model.
The lowest degree 1-D PICO (PILI) regression of interest is
PICO-2 (PILI-3), since all signals are PICO-1 (PILI-2).

The 1-D definitions are more straightforward than the 2-D
definitions, since the question of orientation must be addressed
in two dimensions. An image is PICO- (PILI- if
is PICO- (PILI- along every contiguous 1-D path for a
set of prescribed orientations. A two-orientation PICO (PILI)
definition enforces piecewise constancy (linearity) along im-
age columns and rows, where the four-orientation definition
includes the diagonal orientations and tends to limit streak-
ing artifacts. Our empirical studies indicate that the four-
orientation definition is most appropriate for the PIM’s, due
to the reduction of artifacts.
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1) The Piecewise Constant Model:For each model, it is
necessary to define a function that penalizes deviation from
the characteristic property of the model. This function is
used in the regularization operator For piecewise
constancy, should penalize the deviation of
from its neighbors. We can use the absolute value of the
difference signal, to define In
the directions are defined by the orientations used in the PIM.
The extent of the spatial neighborhood used (the parameter

is a function of the model order To construct the
regularization operator, the following function is computed at
each image location

(6)

Note that (6) does not induce any particular norm, since
the metric is applied as the final step in the construction of

The penalty in (6) has four separate subpenalties
corresponding to potential violation of the PICO constraint
in any of the four prescribed orientations. Within the penalty
for each orientation, the product terms give a separate penalty
for each non-PICO subsequence of length only one of
the possible subsequences [containing ] needs to be
constant, so a product is used rather than summation. A
subsequence along a given path with an error of zero forces
the error for all subsequences along that path to zero, since
the penalties are multiplied. In forming the use of the
product in (6) is a fundamental difference in form between
the PIM’s and LIM’s. The LIM’s force each subsequence
to obey the given property and do not allow a piecewise
interpretation. Although the expression in (6) may appear
to be computationally expensive, only addition
operations and multiplication operations are required for
the entire -pixel image. By contrast, for an Laplacian
kernel, the equivalent regularization operator requires

addition operations and multiplication operations.
2) The Piecewise Linear Model:Piecewise linearity may

also be used to enforce smoothness on corrupted signals. In
the spirit of 1-D PILI models used to model statistical data [5]
and in the spirit of topological models [27], we apply the PILI
models in the image restoration process. For regularization,
the PILI PIM allows intraregion image smoothing without
degrading intensity discontinuities. Within each image region,
the PILI model enforces smoothing while retaining intensity
trends, which are approximated by linear functions. When
extended to two dimensions, the PILI signal is in essence
a piecewise planar surface. Although more liberal than the
PICO model in terms of the preservation of both step and
ramp edges, the PILI is less well-suited for extreme cases of
additive noise. When using the PILI model, high-amplitude
noise processes often contain local groupings of outliers that
approximate linear segments and are retained erroneously
in regularization. However, for lower-variance noise, the
PILI-constrained image restoration results are often very good.

For the PILI PIM, the regularization operator incorporates
a localized linear regression. Then, may be com-
puted by penalizing locations where deviates from

piecewise linearity. Consider the 1-D function with ordinate
representing pixel intensity, and abscissa representing

the distance from pixel location in direction Let
be defined as the least squares estimate for the

slope for the linear regression of the-length subsequence in
direction and displacement with respect to location
in the image. is the corresponding -intercept.
Since the values represent the displacement from the pixel at

the -intercept represents the best estimate for
to minimize the least squares error (for that particular PILI-
subsequence). The 1-D linear regression is formed by

(7)

(8)

(9)

and

(10)

In (7)–(9), is excluded from the summations to remove
the effect of the pixel in question, When
is a member of a linear subsequence in theth direction
with displacement it should equal Then the
regularization operator is defined by

(11)
Again, four separate penalties are applied for the four defined
image orientations. Within each penalty for the 1-D paths
centered at penalties are multiplied for each non-PILI
subsequence containing The penalties are multiplied,
rather than added, because the PIM only requires the pixel
at to belong to one PILI subsequence in each direc-
tion. So, an error of zero for a particular subsequence in a
particular direction will eliminate all possible penalties for
that direction at that location The inside summation in
(11), gives the deviation of
a particular length- subsequence from its linear regression.
Note that need not be positive, since a norm will be
applied In (11), could be
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replaced by (the nearest integer) to
ensure that PILI- solutions have penalties of exactly zero in
the discrete-range case.

B. Local Image Models for Regularization

Instead of relaxing the characteristic property at region
boundaries, the local image models (LIM’s), enforce the
property atevery point in the image equally. Therefore, the
properties must be sufficiently general to allow for nontrivial
solutions; constancy and linearity obviously are not such
properties! Indeed, it is harder to intuit global properties that
can be described in terms of meaningful local properties.
Two local characteristic properties of interest are studied
here: local monotonicityand local convexity/concavity. Both
the LOMO LIM and the LOCO model provide meaningful
measurements of smoothing for the image restoration problem.
In particular, the LOMO model provides a potent, general-
purpose smoothing constraint that prohibits outliers but allows
edge information to be preserved in a natural way. Many
signals and images may be considered to have an approximate
LOMO structure; indeed, this is why the median filter is of
considerable interest as a signal/image smoothing device: it
attempts to create LOMO signals/images from the input. The
LOCO model is much more specialized; it is effective for
restoring scenes that are inherently smooth and which contain
regions of sustained trends in gray-level derivatives.

The definitions of LOMO and LOCO signals in both 1-D
and 2-D are quite similar, and can again be given together: A
1-D signal is LOMO- (LOCO- if every subsequence of

of length is monotonic (is either convex or concave).
Note that since every 1-D signal is LOMO-2 (LOCO-3),
so that LOMO-3 (LOCO-4) is the smallest property degree
of interest. An image is LOMO- (LOCO- if is
monotonic (is either convex or concave) on every 1-D path
of length along a set of prescribed orientations. Since
image streaking is not a problem with the LIM’s, only two-
orientation versions (along the rows and columns) are used.
Using only two orientations (horizontal and vertical) with a
PIM of degree an image streak of length could be
created (horizontally or vertically) in the restoration process,
since the PIM’s are enforced on a piecewise basis. Since the
LIM’s will enforce the model property without boundaries, an
image streak is impossible, since the pixels of each side of the
streak would be in violation of the LIM.

1) The Locally Monotonic Model:By incorporating the
property of local monotonicity into the solution of the image
restoration problem, we extend the previous 1-D work by
Restrepo and Bovik [25], [26] and Sidiropoulos [28], who
considered the more restricted problem of signal enhancement
(noise without blur). The LOMO model preserves image
structure by allowing monotonically increasing/decreasing
intensity trends including every variety of idealized edge
pattern. At the same time, outliers from noise are regarded as
violating the LOMO property. Local monotonicity is a novel,
very flexible definition of smoothness for digital signals.

To evaluate local monotonicity, we note that each length
subsequence must have successive differences that do not

change sign to be LOMO- We can construct a regularization

operator that exploits this fact. The sign skeleton of the
difference signal can be used in constructing

the penalty for the deviation from local monotonicity
at location The regularization operator for the LOMO
LIM is computed using

(12)

where

(13)

and the term generates a zero penalty for absence of
sign changes in the difference signal, where is a sigmoid
function defined by

(14)

The penalty enforced in (12) is proportional to the difference
that is closest to zero, so that steplike edges are not treated
inequitably. The term gives the minimum change
needed to correct the element in the subsequence which
violates monotonicity on a local basis. A 1-D monotonic
signal is always possible viaflattening—making the signal
constant in the nonmonotonic regions. If the penalty were
based on the magnitude of the greatest difference, then edge
points would receive greater penalties than nonedge points.
In (12), the two innermost summations (with indices of
and add penalties wherever a subsequence of length
[containing has a sign change in its difference signal.
These penalties are summed, not multiplied, for each possible
subsequence containing This shows a fundamental
difference between the LIM’s and PIM’s—with the LIM’s,
each subsequence must obey the LIM rule, whereas the PIM’s
are enforced on a piecewise basis.

2) The Locally Convex/Concave Model:As with the 1-D
LOCO signal model [26], the 2-D LOCO LIM may be
regarded as having a somewhat restricted application domain.
The idea behind the LOCO characteristic property is that
smoothness can be defined as a restriction on the number
of changes in convexity within local neighborhoods. How-
ever, this model precludes steplike edges and can lead to
oversmoothing. But, for images that naturally have a limited
high-frequency content, the LOCO LIM can be quite powerful.
The example provided in Section VI demonstrates such a case.

In the formulation of (4), a regularization operator
is required that penalizes deviations from local convex-
ity/concavity. The LOMO version of exploited the fact
that interpixel differences within a subsequence of length
could not have sign changes. The LOCO LIM can use a
similar property, enforcing the differences of the interpixel
differences to be of the same sign or zero. In other words, the
difference signal of a LOCO signal is LOMO! This restriction
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will guarantee local convexity/concavity. In this case

(15)

where

(16)

and is the sigmoid defined in (14). Here, has the same
effect as in (12), providing a penalty that is proportional to the
distance from the nearest LOCO solution for the neighborhood
of The penalty of (15) has the same form as the LOMO

except that the local monotonicity of the difference
signal is evaluated. For each direction the summation
indexed by gives a potential penalty for each subsequence
of length containing The innermost summations
evaluate the local convexity of the subsequence by penalizing
any sign change in the difference of the difference signal.
So, (15) will penalize non-LOCO subsequences and will not
penalize LOCO subsequences.

IV. CHOOSING THEMODEL AND THE REGULARIZATION

PARAMETER VIA CROSS-VALIDATION

Although the PIM’s and LIM’s provide effective
application-specific smoothing constraints for image
processing problems, the selection of the regularization
parameter to be used is naturally a significant issue, owing
to the unusual and highly nonlinear format of the image
models.

A. Selection of the Regularization Parameter

To form the regularization solution, the proper data con-
straint is selected corresponding to the additive noise distri-
bution and the blurring operator. Then, the most suitable PIM
or LIM may be selected, according to the technique described
below in Section IV-B. Finally, the regularization parameter

must be assigned properly to achieve an equitable balance
between the two constraints.

Under the Miller formulation of the regularization prob-
lem, as in (2) and (3), the regularization parameter can be
determineda priori using [18]

(17)

If the variance of the additive noise is known, then the bound
can be set. the bound on is difficult to obtain

when a nonlinear regularization operator is used, as with
the PIM/LIM regularization operators. A constrained least
squares (CLS) solution is given by Hunt [10]. Givena priori
information on the additive noise, the following equation can
be used to find a solution for

(18)

where

(19)

When the regularization operatoris nonlinear,
is not well defined. So, the straightforward CLS method is
inappropriate for the nonlinear case. Furthermore, the CLS
method of [10] assumes that the error from the deblurring is
independent, identically distributed (i.i.d.) with the error from
the noise, which may not be a reasonable assumption. One
possible solution is to linearize however, this approach
is computationally expensive for images of practical sizes.

Other methods of deriving the regularization parameter
include the mean-squared error (MSE) approach and the pre-
dicted mean-squared error (PMSE) approach [6]. By definition,
the MSE method seeks to minimize

(20)

which reduces to minimizing since
does not depend on When and are known,

the expectation operators can be dropped on and
It has been shown in [6] that minimizing (20) is

equivalent to minimizing

(21)

The PMSE approach is similar to the MSE approach, except
that is minimized. Galatsanos and Katsaggelos
[6] show that this is equivalent to minimizing

(22)

Given a linear regularization operator the regularization
parameter can be determined using (21) or (22). This is also
prohibited when is nonlinear, since is not well defined.

Reeves and Mersereau explored the use of “variable”
regularization operators in [24]. Their application ofcross-
validation to the selection of a regularization parameter
provides a suitable approach for the nonlinear regularization
operators here. In the cross-validation process, the image is
divided into an estimation set and a validation set. The pixels
in the estimation set are used to obtain a result for a given
set of parameters. At the same time, the validation set is
used to evaluate the effectiveness of the parameter set and
model used for regularization. The cross-validation method is
attractive because the original uncorrupted, unblurred image is
not needed to estimate the regularization parameter. Likewise,
image prototypes and information on the corruptive noise
process are not required in cross-validation.

First, the image is divided into sets. Then, the parameter
or model being evaluated can be imposed on all sets, except
the chosen validation set. Let represent the set of all
image coordinates The sets are then given by
the union: Note that membership in the

sets is typically selected using a uniformly-distributed
random number generator. In this way, the local dependencies
between members of the same set should be minimized. An
error measure computed using the validation set can then be
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employed to test the quality of the solution derived with the
given parameters. In traditional cross-validation, this process
can be repeated times, each time choosing a different set
as the validation set, thus using each pixel for both estimation
and validation. The drawback is that the image restoration
problem has to be solved times to complete the evaluation
of validation sets.

Let be the validation set. To perform cross-validation
(using the norm case for both the data constraint and the
smoothing constraint), the following energy functional is then
minimized:

(23)

where is the value of at location Note that
the data constraint (and therefore the regularization parameter)
has no influence on the solution for the validation set pixels.
Let the solution that minimizes (23) for validation set
be defined as To reduce the computational burden of
computing the cross-validation error (CV error), we employ
the data division technique of [23]. In this case, only one
validation set is used and only one minimization of (23) is
required for each parameter value that is tested. Ifis the
validation set, then (23) is minimized to compute and the
CV error is given by

(24)

for an -pixel image. Reeves and Mersereau indicate that the
use of ten sets (so that the validation set contains 1/10 of
the pixels) is a sufficient sampling to yield a reliable result
[23]. Our experiments verify this assumption. Note that the
data division validation error does not have to equal the full
validation error, as long as both functions are minimized
by approximately the same value of So, the appropriate
regularization parameter for the nonlinear PIM’s/LIM’s can
be computed using (24). The selection of the regularization
parameter, in this case, does not depend ona priori knowledge.

B. Selection of the PIM/LIM for Regularization

With the newly introduced classes of PIM’s and LIM’s and
the possible introduction of other application specific models
into these classes, the ability to select the proper model for a
given image restoration problem is critical to the success of
this paradigm. Previously, these models have been selected on
a trial-and-error basis with only intuitive assumptions about the
original image structure in mind [2]. Using cross-validation,
the uncertainty of selecting the model heuristically can be
improved upon.

A model is selected by finding the PIM or LIM that
yields the lowest validation error. This method essentially
allows the characteristic property assumption of each PIM or
LIM to be tested on the pixels that are not members of the
validation set. Of course, the selection of the regularization
parameter still influences the quality of the result. In fact,
the model and the regularization parameter may be selected

TABLE I
IMAGE EXAMPLES

simultaneously, using a validation error that depends both on
the model selected and on the regularization parameter. Let the
characteristic set represent the model selected and the regu-
larization operator enforce the corresponding smoothing
constraint. For each model and regularization parameter tested,
(23) is minimized to find substituting the proper
for Then the data division CV error in (24) becomes
a function of and Remember that the regularization
operator does depend on the model order which
determines the spatial extent of the PIM or LIM. So, it is
necessary to evaluate (24) for different model orders as well
as over different models. It is our experience that the model
degree typically leads to a less desirable (oversmoothed)
result. Therefore, only one or two reasonable model degrees
need to be evaluated for each model.

V. MINIMIZATION OF THE REGULARIZATION FUNCTIONAL

The standard linear regularization operators can be con-
strained so that a convex optimization problem is formed [12],
[14]. With a convex energy topology, simple gradient descent
solutions may be formed to achieve restoration. The need
for convexity is one of the major reasons that the Laplacian
has often been used as the regularization operator. In the
regularization approach presented here, there is no restriction
to convex energy functions. With the nonlinear PIM and LIM
constraints, convexity does not generally hold, hence steep-
est descent approaches to minimization will not avoid local
minima in the regularization functional. Therefore, special
attention has been given in this research to the optimization
technique applied.

For a nonconvex optimization problem, stochastic simulated
annealing (SA) can be used to locate a globally optimal
solution [7]. However, the simulated annealing algorithm,
even with a fast geometric annealing schedule [1], cannot
be used for real-time or near real-time application. To limit
the computational expense of image restoration, we minimize
the regularization functional viageneralized deterministic an-
nealing (GDA), a combinatorial optimization technique that
provides high-quality solutions for time-critical applications
and which can be easily implemented on a parallel architecture
[3]. GDA provides rapid, guaranteed convergence and the
ability to escape undesirable local solutions, and hence is well
suited for these problems.

GDA essentially estimates the stationary distribution of the
SA transition probabilities at each annealing temperature using
a mean field approach. The probability density for intensity
at location is updated via (25), shown at the bottom of
the next page, where is the number of possible solutions
for each pixel intensity is usually a limited subset of
intensities centered at the current solution, e.g., and
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TABLE II
PIM/LIM I MAGE RESTORATION RESULTS

is the annealing temperature (discussed below). The energy
functional value is computed by setting all
pixel intensities to their mean field values (the expected value
given the discrete probability densities) and then setting the
pixel intensity at location to

The annealing process is started at a sufficiently high
temperature where all probabilities are equal (all

The temperature is reduced in a geometric manner until
a singular distribution emerges at each pixel site
for some intensity at each The number of updates
per temperature depends onthe maximum possible change
in the energy functional for a change in one pixel intensity,
and on the number of possible solutions for each pixel. An
upper bound on the number of iterations needed at temperature

to sufficiently estimate the stationary distribution is [3]

(26)

This bound guarantees uniform convergence of each probabil-
ity density within a bound of

Using these guidelines for GDA, image restoration with
GDA requires updates using (25) for an image with

pixels at each temperature. In contrast, the SA algorithm
needs updates at each temperature. In experiments
performed on Sun Sparc Ultra I, image restoration using a
practical SA algorithm required over 9 h, while the GDA
algorithm required 13 min for the same improvement in signal-
to-noise ratio (SNR). Of course linear techniques (that use
the fast Fourier transform, or FFT) will be vastly superior in

computational expense. For example, the CLS method uses
only 18 s of processing time on the same architecture.

VI. RESULTS AND CONCLUSIONS

Here, four example image restoration cases have been
provided, one for each PIM and LIM presented in the paper.
For each image restoration case, the best results for each of
the four models is reported. In the first case, the results are
also compared to those given by a line process approach and
by a linear CLS approach. The image restoration experiments
use a variety of images obtained using different blurring
processes and different additive noise processes, in order to
demonstrate the flexibility of the PIM/LIM approach (see
Table I). The table lists the image used, the blurring kernel
applied in convolution, and the details of the additive noise
process including the distribution, the standard deviation ()
of the additive noise, and the SNR. The results shown reflect
the optimal regularization parameter as computed via cross-
validation.

Although attaining a high SNR does not necessarily imply
that the subjective quality of the restored image is superior
[11], [21], we seek results that at least improve, and that do
not degrade the SNR. The SNR of a noisy image is defined by

SNR (27)

where is the variance of the blurred but uncorrupted image
and is the variance of the noise. To measure the quantitative
improvement in the SNR, the improvement in SNR (ISNR) is
calculated for each result as

ISNR (28)

(25)
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(a) (b)

(c) (d)

(e)

Fig. 1. Example of the LOMO LIM. (a) Original cameraman image. (b) Corrupted image (1� 9 uniform blur with SNR= 15 dB Gaussian noise). (c)
Restoration using the LOMO-3 regularization operator. (d) Restoration using CLS. (e) Restoration using line process model.

where is again the blurred, corrupted image,is the original
image, and is the estimate produced by the image restoration
algorithm.

For each image example, the CV error, MSE, and
ISNR for each of the four PIM’s and LIM’s are tabu-

lated in Table II. Figs. 1–4 provide the original images,
the blurred, noisy images, and the image restoration re-
sults for each case. Figs. 4–8 depict the selection of
the regularization parameter using the cross-validation
technique.
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(a) (b)

(c)

Fig. 2. Example of the LOCO LIM. (a) Original pebbles image. (b) Corrupted image (1� 7 uniform blur with SNR= 20 dB Gaussian noise). (c)
Restoration using the LOCO-4 regularization operator.

For complex natural images, the LOMO LIM provides a
robust measure of smoothness. Using the LOMO-3 regulariza-
tion operator, the cameraman image is restored after motion
blur and severe degradation (Fig. 1). The 2.8 dB improvement
in SNR noted in Table II is provided along with preservation of
the sharp edges between the cameraman and the background.
Among the four PIM’s and LIM’s, the LOMO model gives
the lowest CV error, the lowest MSE, and the highest ISNR.
Even with an original SNR of 15 dB, restoration is possible
with the versatile LOMO model. As with each experiment
performed, the regularization parameter was selected using the
cross-validation technique. From Fig. 5, it may be observed
that the CV error has a minimum value for the sameas the
true MSE of the result. This was confirmed for each PIM/LIM
restoration experiment performed. So, without any statistical
information on the image or on the degradation processes,
the regularization parameter can be reliably chosen for the
nonlinear regularization operators.

The LOMO LIM restoration results (using GDA) are com-
pared to an FFT-based CLS method. In the frequency domain,

we have the following problem:
The CLS technique minimizes the response of the

Laplacian to the solution, giving a restored image

(29)

where is the discrete Fourier transform (DFT) of the
spatial domain Laplacian kernel, andis an unknown regu-
larization parameter. is selected by iterating on (29) until the
minimum value from the data constraint of (4) is discovered.
Although the CLS method is computationally inexpensive, the
edges in the original cameraman image have not been retained
in the result [see Fig. 1(d)], and oversmoothing and ringing
are evident.

To compare the LIM result to another nonlinear approach,
a “line process” model [7] has been implemented. The line
process uses the local image variance to control smoothing
in the regularization process. When the variance exceeds
a threshold, the regularization operator is not enacted. The
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(a) (b)

(c)

Fig. 3. Example of the PICO PIM. (a) Original “books” image. (b) Corrupted image (3� 3 uniform blur with SNR= 15 dB Gaussian noise). (c)
Restoration using the PICO-3 regularization operator.

image shown in Fig. 1(b) has been restored using the energy
functional in (10)–(12) of [23]. The energy functional was
minimized using simulated annealing. Although requiring over

the computational resources as the GDA technique, the
simulated annealing result with the line process model could
not match the visual quality of the LOMO LIM. Near edges,
the line process model has the tendency to retain outliers due
to noise [see Fig. 1(e)].

The smooth stones in the pebbles image are a prime
example of a locally convex/concave image [Fig. 2(a)]. The
outliers from the 15 dB Gaussian noise are suppressed and
the degradation from the motion blur is reversed in the
regularization process, using the LOCO-4 regularization op-
erator [Fig. 2(c)]. The MSE is halved and a 3.4 dB increase
in the SNR is yielded (Table II), which represents the best
results of the four models. The CV error closely follows the
actual MSE behavior, allowing straightforward selection of the
regularization parameter using cross-validation (Fig. 6).

The books image in Fig. 3(a) is a natural selection for
the PICO model, since the surfaces in the scene are nearly

piecewise constant; so it is not surprising that the PICO model
yields the lowest possible CV error of the four PIM’s/LIM’s
presented here (Table II). After convolving the original im-
age with a 3 3 uniform blurring kernel and adding 15
dB Gaussian noise, restoration using the PICO-3 regulariza-
tion operator provided a sharp, smoothed image result [see
Fig. 3(c)] without anya priori knowledge of the signal or
noise statistics.

Fig. 4 furnishes an example of the PILI regularization
operator. Although the observed image [Fig. 4(b)] is severely
degraded by motion blur and 10 dB impulse noise, the lin-
ear straw pattern is recovered using the PILI PIM. This
example also demonstrates the versatility of the overall para-
digm, yielding success in the presence of Laplacian-distributed
additive noise. Here, an norm is applied to the data
constraint for optimality in the Laplacian case [25]. In the
other examples presented, thenorm is applied to optimally
reduce the Gaussian-distributed noise. The PILI result for
the “straw” image allows a 2.9 dB improvement in SNR
(see Table II), while also preserving both ramp and step
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(a) (b)

(c)

Fig. 4. Example of the PILI PIM. (a) Original straw image. (b) Corrupted image (1� 11 uniform blur with SNR= 10 dB Laplacian noise). (c)
Restoration using the PILI-3 regularization operator.

Fig. 5. Graph of MSE and CV error versus regularization parameter� for
LOMO restoration example in Fig. 1.

edges in the restoration result. But, as Table II indicates,
the PILI PIM does not provide the lowest CV error of the
four models. We speculate that the PILI model produces
a higher CV error (and MSE) as compared to the LOCO
model, for example, because the PILI model retains linear

Fig. 6. Graph of MSE and CV error versus regularization parameter� for
LOCO restoration example in Fig. 2.

groupings of outliers due to noise, as may be observed in
Fig. 4(d).

The models of the PIM and LIM classes allow application-
specific image restoration. The PICO, PILI, LOMO, and
LOCO regularization operators extend the structure-preserving



664 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 5, MAY 1999

Fig. 7. Graph of MSE and CV error versus regularization parameter� for
PICO restoration example in Fig. 3.

Fig. 8. Graph of MSE and CV error versus regularization parameter� for
PILI restoration example in Fig. 4.

abilities of the traditional regularization approach. For a
given restoration problem, the most effective PIM or LIM
can be selected via cross-validation, and the regularization
parameter can also be determined, without knowledge of
the original uncorrupted image. With the regularization
functional and parameter in hand, a restored image can
be computed rapidly using the GDA optimization tech-
nique.

In future studies, we plan to evaluate spatially adap-
tive regularization weighting as in [12] in conjunction
with the PIM and LIM regularization operators. Although
cross-validation has proven successful in determining the
regularization parameter and selecting the proper model,
further improvements to the computational efficiency of
the cross-validation implementation is desired. We are also
examining other potentially salient PIM’s and LIM’s, as
well as a method to automatically construct the model for
prototypical data.
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