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Piecewise and Local Image Models for Regularized
Image Restoration Using Cross-Validation

Scott T. Acton,Senior Member, IEEEand Alan Conrad BovikFellow, IEEE

Abstract—We describe two broad classes of useful and physi- of image blur requires a highpass sharpening of the image,
cally meaningful image models that can be used to construct novel whereas noise reduction ordinarily implies a degree of lowpass
smoothing constraints for use in the regularized image restoration smoothing. Intermediate (bandpass techniques) that attempt to

problem. The two classes, termegiecewise image mode(®IM’s) . . - . e .
and local image models(LIM's), respectively, capture unique mediate this conflict, e.g., Wiener filtering, generally fail to

image properties that can be adapted to the image and that reflect Satisfy the viewer.

structurally significant surface characteristics. Members of the Thus, a great number of optimization-based strategies have
PIM and LIM classes are easily formed into regularization oper- peen developed that achieve better results; see [16] for a
ators that replace differential-type constraints. We also develop compendium of recent work. A fundamental guiding principle

an adaptive strategy for selecting the best PIM or LIM for a given . . . N .
problerﬁ (from amg)rl]g the definegd class), and we explain tlge con- behind most of this work is the realization that the restoration

struction of the corresponding regularization operators. Consid- Problem is inherently ill-posed, hence strategies that regularize
erable attention is also given to determining the regularization pa- the problem, or make it well-posed, have been in the forefront
rameter via a cross-validation technique, and also to the selection of this research [16], [17]. The regularization approach poses

of an optimization strategy for solving the problem. Several re- o v conflicting goals, deblurring and noise eradication
sults are provided that illustrate the processes of model selection, ! !

parameter selection, and image restoration. The overall approach &S Séparate constraints to be simultaneously satisfiethata
provides a new viewpoint on the restoration problem through the constraintattempts to force a blurred version of the solution to

use of new image models that capture salient image features that resemble the degraded image that was acquired. In this way,

are not well represented through traditional approaches. the data constraint encourages deconvolution of the signal.
Index Terms—Cross-validation, image restoration, local mono- A smoothing constrainpenalizes solutions that deviate from
tonicity, regularization. smoothness. The smoothing constraint typically fills several

roles: as a regularization operator that guarantees a unique,
stable solution, as a model of the ideal image’s local character-
) o ~ Istics, and as a means for suppressing noise. Generally, the data
ONE OF THE classic problems in image processing ignd smoothing constraints are both expressed as functionals
\J the restoration of a linearly degraded and noisy opticid pe minimized over the space of images. Simultaneous
image to a pristine state. In this problem, an ideal imaggjnimization is most usually attained by linearly combining
that has been digitized has been distorted by a lowpass lf§ém into a single cost or energy functional to be minimized.
arising from the motion of objects or of the sensor, defocus, §he palance between the two constraints is dictated by the
deficiencies in the optical system, for example. The problem gfa5, weight orregularization parameter
reconstituting thg ideal image. from the blurred observgtion canThe hackground literature on regularized image restoration
be greatly complicated by various factors such as nonlinearitigss pecome quite large. Several studies examine techniques
in the blurring process, noninvertibility of the linear distortion,saq to define the data constraint [16] and to evaluate the
(frequency de_struction), and the a_lddition of broadband or hig_l'é‘gularization parameter [6], [8], [13]-[15], [22], [24], [29].
frequency noise to the blurred image. The noise may ariggher works report progress on developing more effective
from, e.g., thermalleﬁects, t_ransmssmn noise in ?‘.C,harmﬁ{ethods of optimization for regularization [3], [4], [7], [9],
recordmg errors, or |mpe_rfect|ons in thg process of d|g|t|zat|o[20], [31]. Recently, spatially and temporally adaptive methods
In this paper, we restrict our attention to the problem Qft hajancing the data constraint and the smoothing constraint
reducing linear |mage'blur in the presence of addlltlv'e NOiSgave been explored [11], [12], [17], [18], [21]. Adaptive
The goals of sharpening and smoothing are conflicting, agfjytions, such as that of Kang and Katsaggelos [12], allow
any linear filtering approach is problematic: the revers'%}eighting that may change between pixel sites and that may
Manuscript received November 4, 1996; revised June 19, 1998 Tr?iléso change between iterations.
material is based upon work supporfed in p’art by the U.S. Ar}ny ReéearchM?thOds for defm"?g the data constraint and methods for _de'
Office under Grant DAAH04-95-1-0255. The associate editor coordinating thermining the regularization parameter have been well studied.
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Laplacian magnitude or the gradient magnitude over the imageSince the image restoration problem presented by (1) is ill-
domain. Minimizing this kind of constraint presupposes posed, animage estimatean be computed by a regularization
certain image model, arharacteristic propertywhich usually procedure. The problem may be considered an optimization
does not hold everywhere in the image, e.g., near criticakoblem under two constraints. The first constraint forces
information-bearing discontinuities. Recognizing this limitaconsistency with the observed data, and essentially reverses the
tion, several researchers have proposed refined regularizatunring process through deconvolution. Since this deconvolu-
strategies that enforce smoothness on a piecewise basis, usomgoperation is sensitive to noise and typically does not yield
line processes to inhibit oversmoothing [4], [7], [9], [23], [31]a smooth result, a second constraint is included that enforces
While improved efficacy in restoration has often been showamoothness” on the solution. Typically, smoothness is inter-
using these techniques (for low noise levels, generally), tpeeted as an integral (sum) of absolute spatial derivatives (dif-
introduction of a line process approach is concomitant to usifgrences) being small. In this paper, we replace this standard
an edge detector on the image; such strategies always haggon of smoothness with conformity to a specified image
problems in a significant noise environment. model in one of two classes: the PIM class or the LIM class.
We take the position that insufficient attention has been paidin the classical Tikhonov approach [30], regularization is
to the development of more specialized smoothing constrairistablished by minimizingjq(h)|| s, to enforce smoothness,
that attempt to model the image as something other thars@bject to the constraintg — Bh||p < ¢, to enforce consis-
function that has small derivatives almost everywhere. Insteagihcy with the observed image data. Hefe(h)||»1 increases
images should be modeled with descriptions that reflect maggh a decrease in the smoothnesg:0Dr the two constraints

more interesting way. Of course, such a goal is quite ambitiowsIe Miller approach) [19]:

owing to the considerable diversity of images and the surfaces

from which they project. Therefore, the models used must also llg— Bh|lp < e (2)
admit some degree of generality, although specificity may be
attained in application-dependent circumstances. and

In this paper, we propose two broad classes of useful image llg(h)||a: < E. A3)

models that can be used to construct novel smoothing con-

straints for use in the regularized image restoration problef®©, the two constraint problem may be formed using the Miller
Of course, “smoothness” is taken in a different sense in thegproach. The two terms may be combined into a single
classes. The two classes, referred to here, respectively, asaggs functional E(h), termed theenergy functional Then,
piecewise image mode(®IM’s) and thelocal image models the quality of two solutions can be compared by evaluating
(LIM’'s), each capture unique image properties. Membetbeir respective energies. The solution to the image restoration
of the PIM and LIM classes can be easily formed into problem, onceZ(h) is formed, corresponds to a minimization
regularization operator and used in place of differential-typeroblem. The energy functional is given by

constraints. In this paper, we propose and define the PIM and

LIM classes, and l%rpa givenprErred and noisy image, we E(h) =lg = Bh{lp + Allg(h)]|r ()
provide a method to select the proper PIM or LIM, to conwith an optimal solution at

struct the corresponding regularization operator, and to set the . )

regularization parameter. The overall approach provides a new v = argmin {E(h)}. (5)

avenue that uses novel image models for image restoration. ) L )
In (4), A is theregularization parameterThe data constraint

In the following section, the restoration problem is intro- ) .
duced and notation is made. The PIM’s and LIM’s are definé y Bh||p enforces deconvolution by penalizing greater

in Section lll, along with the corresponding regularizatio Istances betyveen thef'solution ima@]edegraded_ byB and
operators. Selection of the regularization parameter and selec- observed imagg defined by an appropriate distance norm

tion of the proper PIM/LIM for regularization are discussed f [l This (:Dlstan}:]e norm is selected accord;:lga?[@non
in Section IV. Then, the minimization of the regularizatiori"formation about the noise procesg25]. Note that it is not

functional is treated. Finally, parameter selection and imaﬁg_cessary to know the actual statistics (the variance) of the
restoration results are provided in Section VI. oise process to select an appropriate norm—only the type
of noise distribution is needed. For example, thenorm is

II. THE IMAGE RESTORATION PROBLEM optimal for Laplacian-distributed noise, where thenorm is

Image restoration algorithms of the type considered hei? best choice for Gaussian-distributed noise [25].

seek to compute an image estimatrom blurred, corrupted 1€ t€rm|lg(h)||.1 is often referred to as thregularization
image data. The observed imageis the result of degrada- operator. This operator typically enforces smoothness of the

tion by a spatially invariant convolution operatét and the resulting solution by penalizing high-frequency content on a
addition of noisen. So local basis. However, in the approach proposed Hgr@) || v
. instead assesses an energy penalty for local deviation from
g=DBi+n (1)

a characteristic propertydefined by a PIM or LIM. The

where B is assumed to be block Toeplitz. The matrige$, characteristic property may or may not conform to the tra-
andn have the same size and contain a total\dfelements ditional definition of smoothness. In fact, special-purpose
(pixels). PIM’'s and LIM’s may be constructed that do not enforce



654 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 5, MAY 1999

smoothness. This paper attempts to broaden the definitiontled pixel intensity! pixels away from(z,y) in direction d.
the regularization operator beyond standard derivative-badeal examplef(z,y,d,0) = h(x,y) for any d, h(z,y,1,1) =
kernels, enabling new constraints that enforce consistendy:+1,), h(z,y,1,—1) = h(z—1,y), h(x,y,4,1) = h(z+
with a specified image model. With the PIM’s and LIM's, 1,y + 1), h(x, 4,4, —2) = h(z — 2,y — 2), etc.
regularization can be specialized to retain certain structural
features.
Along with the potential advantages of the specialize)- Piecewise Image Models for Regularization
regularization operators come additional difficulties in solving The two PIM’s discussed here are formed from the char-
the image restoration problem. First, regularization operatcisteristic properties opiecewise constancyand piecewise
that depend continuously on the data must be constructggarity. Of course, many other PIM’s may be envisioned, for
for each PIM and LIM (Section Ill). Due to the nonlinearityexample, piecewise polynomials, piecewise exponential, etc.
of these operators, the standard methods of selecting thewever, these two PIM’s are the simplest and illustrate well
regularization parameter cannot be employed, and a newe principle. Using these PIM’s in the restoration problem
approach must be adopted (Section IV). Furthermore, givas a type of smoothness constraint implies that the image
more than one choice for potential regularization operatoisging restored obeys or nearly obeys the PICO or PILI
the problem of selecting the most appropriate model must blearacteristic property, which is of course, not generally
addressed (Section 1V). Finally, an efficient method that genguistifiable. The PICO property, in particular, should be applied
ates high quality solutions to the nonconvex energy functiongly to images that were originally flat nearly everywhere
E(h) containing the nonlinear regularization operator must lfexcept at separating boundaries); such applications certainly
suggested (Section V). exist. Both the PICO and the PILI models smooth interior
image regions without sacrificing edges, as the PIM proper-
ties are not enforced across region boundaries. A difference
. THE PIM/LIM M ODELS AND does exist—where the PILI images can contain a variety
REGULARIZATION OPERATORS of step and ramp edges (sharp and slowly varying inten-
We divide the models used in regularization into two classesity transitions), the PICO images are restricted to steplike
the PIM’s and the LIM’s. The PIM’s differ from the LIM’s in edges separating constant regions. The more restrictive PICO
that PIM’s enforce the characteristic property on a piecewisgodel is most useful when restoring images from man-made
basis, while LIM’s enforce the characteristic property in eactcenes containing steplike edges, such as with document
local neighborhood. With PIM’s, the characteristic propertprocessing or in certain automated visual inspection tasks
is not enforced across region boundaries, given regions inf manufacturing. Nevertheless, for each image restoration
sufficient size. The LIM properties hold across region boungoblem, we do not makad hocdecisions on the selection
aries. In this paper, two PIM’s and two LIM’s are described)f the proper model. Using the cross-validation technique
along with the corresponding regularization operators. Tldescribed in Section I\Mhe most effective model can be chosen
four models introduced here by no means form an exhaust&egtomatically
set of image models for image restoration. The two PIM’'s The PIM definitions can be given simultaneously. First, a
described in this paper are thmecewise constan(PICO) one-dimensional (1-D) definition of piecewise constancy and
image model angiecewise linea(PILI) image model, and the piecewise linearity will be stated. Then, the 1-D definitions
two LIM’s are thelocally monotonic(LOMO) image model can be used to form two-dimensional (2-D) definitions for use
and thelocally convex/concavd OCO) image model. in image restoration. A 1-D signat is piecewise constant
Here, each model will be defined and a regularizatidpiecewise linegr of degreem, or PICO+m (PILI-m) if the
operator that can be used as a constraint in regularization vgihgth of the shortest constant (affine linear) subsequenge in
be expressed. Because the models depend strongly on ldg@reater than or equal te. If the definition holds, then each
interactions, it is necessary to introduce a compact notatisample is part of a constant (linear) segment of length greater
for local orientation. With respect te(z, ), letd(z, y, k,1) be than or equal ton, where m determines the spatial extent
thelth difference in the:th direction. The four orientations areof the neighborhood and is called tldegreeof the model.
enumerated as follows: = 1 denotes the south-north directionThe lowest degree 1-D PICO (PILI) regression of interest is
(only change inz),k = 2 denotes the east-west directiorPICO-2 (PILI-3), since all signals are PICO-1 (PILI-2).
(only change iny),k = 3 denotes the southwest-northeast The 1-D definitions are more straightforward than the 2-D
direction, and: = 4 denotes the southeast-northwest directiodefinitions, since the question of orientation must be addressed
For directionk, the Ith difference between successive pixel#§ two dimensions. An imagé is PICO+mn (PILI-m) if h
is defined by the pixel that is+ 1 pixels away from(x,y) is PICOsm (PILI-m) along every contiguous 1-D path for a
in the kth direction, less the pixel that ispixels away. For set of prescribed orientations. A two-orientation PICO (PILI)

example,d(x,y,1,0) = h(x + 1,y) — h(z,y),d(z,y,1,1) = definition enforces piecewise constancy (linearity) along im-
h(z + 2,y) — h(x + 1,5),d(x,y,1,—1) = h(x,y) — h(z — age columns and rows, where the four-orientation definition
1L,y),d(z,y,1,2) = h(z + 3,y) — h(z + 2,¥),d(x,y,3,1) = includes the diagonal orientations and tends to limit streak-

h(z+2, y—2)—h(z+1,y—1),d(x,y, 3, —4) = h(z—4,y+4)— ing artifacts. Our empirical studies indicate that the four-
h(z—>5,y+5), etc. Pixel intensities can also be denoted by thegientation definition is most appropriate for the PIM's, due
distance from a given pixél(z,y). Let h(z,y, d, 1) represent to the reduction of artifacts.
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1) The Piecewise Constant ModdFor each model, it is piecewise linearity. Consider the 1-D function with ordinate
necessary to define a function that penalizes deviation frarh representing pixel intensity, and abscissarepresenting
the characteristic property of the model. This function ihe distance from pixel locatiofiz, ) in direction d. Let
used in the regularization operatfg(h)||,1. For piecewise u(z,y,d,l) be defined as the least squares estimate for the
constancy,g(z,y) should penalize the deviation @f(x,y) slope for the linear regression of the-length subsequence in
from its neighbors. We can use the absolute value of tl&ectiond and displacemerit with respect to locatioriz, y)
difference signald(x,y, k, 1), to defineg(z,y). Ind(z,y, k,1), in the image.B(z,y,d,l) is the corresponding-intercept.
the directiong; are defined by the orientations used in the PIMsince ther’ values represent the displacement from the pixel at
The extent of the spatial neighborhood used (the parametery), they -intercept represents the best estimate/fgt, %)

I) is a function of the model ordern. To construct the to minimize the least squares error (for that particular PH_I-
regularization operator, the following function is computed aubsequence). The 1-D linear regression is formed by
each image locatiofzx, ):

4 0 jm—1 W, y, k1)
q(x, y) — |d($, v, k, l)| . (6) I+m—1 N I+m—1 , I+m—1 ,
k=1 j=Hm+l lz:; m Z h(.’L’,y,k‘,'L)'L - Z ¢ Z h(.’L’,y,k‘,'L)
i=1,150 i=l,15£0 [J|i=l,i5%0

Note that (6) does not induce any particular norm, since =

.. . . . . +m—1 +m—1
the metric is applied as the final step in the construction of m Z 2 Z ;
[lg(h)||m. The penalty in (6) has four separate subpenalties
corresponding to potential violation of the PICO constraint
in any of the four prescribed orientations. Within the penalty (7)
for each orientation, the product terms give a separate penalty
for each non-PICO subsequence of length only one of

i=l,i20 i=1,i5£0

the possible subsequences [containing:,y)] needs to be l+§:1i

constant, so a product is used rather than summation. A Mt

subsequence along a given path with an error of zero forces Ty, ko) = 8)
the error for all subsequences along that path to zero, since le_l

the penalties are multiplied. In formingz, ), the use of the Z Wz, y, k.5

product in (6) is a fundamental difference in form between 3 iZTi%0

the PIM’s and LIM's. The LIM's force each subsequence g (z,y, k1) =— —3 ©)

to obey the given property and do not allow a piecewise

interpretation. Although the expression in (6) may appeand

to be computationally expensive, onlym(m — 1) addition

operations and Nm multiplication operations are required for B(z,y, k,1) =¥ (x,y, k, 1) — p(z,y, k, )T (z,y, k,1). (10)

the entireN-pixel image. By contrast, for am x m Laplacian

kernel, the equivalent regularization operator requivés:*—  In (7)—(9),7 = 0 is excluded from the summations to remove

1) addition operations and’n? multiplication operations.  the effect of the pixel in questiony(z,y). When h(z,y)
2) The Piecewise Linear ModelPiecewise linearity may is a member of a linear subsequence in fHh direction

also be used to enforce smoothness on corrupted signalswith displacement, it should equalB(z,y,%,1). Then the

the spirit of 1-D PILI models used to model statistical data [Skgularization operator is defined by

and in the spirit of topological models [27], we apply the PILI

models in the image restoration process. For regularization, 4 0 j+m—1

the PILI PIM allows intraregion image smoothing withouy(x,y) = H Z [h(z,y) — Bz, y, k,1)]
degrading intensity discontinuities. Within each image region, k=1 \j=—m+1 =5

the PILI model enforces smoothing while retaining intensity (11)

trends, which are approximated by linear functions. Whehgain, four separate penalties are applied for the four defined
extended to two dimensions, the PILI signal is in esseng®age orientations. Within each penalty for the 1-D paths
a piecewise planar surface. Although more liberal than tieentered atx,y), penalties are multiplied for each non-PILI
PICO model in terms of the preservation of both step arsfibsequence containirigz, ). The penalties are multiplied,
ramp edges, the PILI is less well-suited for extreme casesrafher than added, because the PIM only requires the pixel
additive noise. When using the PILI model, high-amplitudet (z,y) to belong to one PILI subsequence in each direc-
noise processes often contain local groupings of outliers thimn. So, an error of zero for a particular subsequence in a
approximate linear segments and are retained erroneousiyticular direction will eliminate all possible penalties for
in regularization. However, for lower-variance noise, ththat direction at that locatiot, ). The inside summation in
PILI-constrained image restoration results are often very godd1), E{;’;"_l [h(z,y) — B(z,y, k,1)], gives the deviation of
For the PILI PIM, the regularization operator incorporates particular lengthn subsequence from its linear regression.
a localized linear regression. Then(x,y) may be com- Note thatg(z,y) need not be positive, since a norm will be
puted by penalizing locations wherigx,y) deviates from applied(||g(h)||r). In (11), [R(z,y) — B(z,y, k,1)] could be
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replaced byint [2(z,y) — B(z,y, k, )] (the nearest integer) to operator that exploits this fact. The sign skeleton of the
ensure that PILIkn solutions have penalties of exactly zero irdifference signald(x,y,k,I) can be used in constructing

the discrete-range case. q(z,y), the penalty for the deviation from local monotonicity
o at location(z, ). The regularization operator for the LOMO

B. Local Image Models for Regularization LIM is computed using

Instead of relaxing the characteristic property at region ' '

boundaries, the local image models (LIM's), enforce the 2 0 JAm=3 fi4m=2

property ateverypoint in the image equally. Therefore, thet(#: y) = Z ' Z Z Z {1 — sld(x,y,k,1)

properties must be sufficiently general to allow for nontrivial k=1 (j=—m+l | =7 \i=l=t

solutions; constancy and linearity obviously are not such

properties! Indeed, it is harder to intuit global properties that - dlx,y, kD)o, y, k,l,i)) (12)

can be described in terms of meaningful local properties.

Two local characteristic properties of interest are studied

here: local monotonicityand local convexity/concavityBoth ~Where

the LOMO LIM and the LOCO model provide meaningful ) L )
measurements of smoothing for the image restoration problem?(%: ¥ k;1,4) = 3 min {|d(z,y, k, D), [d(z, y, k, 9]} (13)

In particular, the LOMO model provides a potent, general-
purpose smoothing constraint that prohibits outliers but allo@8d thefl —s( )] term generates a zero penalty for absence of

edge information to be preserved in a natural way. Mar9n changes in the difference signal, whe(g is a sigmoid

signals and images may be considered to have an approxinidftion defined by
LOMO structure; indeed, this is why the median filter is of tanh (z) + 1
considerable interest as a signallimage smoothing device: it s(x) = — (14)
attempts to create LOMO signals/images from the input. The
LOCO model is much more specialized; it is effective folhe penalty enforced in (12) is proportional to the difference
restoring scenes that are inherently smooth and which contgiat is closest to zero, so that steplike edges are not treated
regions of sustained trends in gray-level derivatives. inequitably. The termp(z, y, k, 1, ¢) gives the minimum change
The definitions of LOMO and LOCO signals in both 1-Dneeded to correct the element in the subsequence which
and 2-D are quite similar, and can again be given together:vfolates monotonicity on a local basis. A 1-D monotonic
1-D signalz is LOMO-m (LOCO-m) if every subsequence of signal is always possible viflattening—making the signal
z of length < m is monotonic (is either convex or concave)constant in the nonmonotonic regions. If the penalty were
Note that since every 1-D signal is LOMO-2 (LOCO-3)based on the magnitude of the greatest difference, then edge
so that LOMO-3 (LOCO-4) is the smallest property degresoints would receive greater penalties than nonedge points.
of interest. An imageh is LOMO-m (LOCO-m) if h is In (12), the two innermost summations (with indices lof
monotonic (is either convex or concave) on every 1-D patind :) add penalties wherever a subsequence of lemgth
of length < m along a set of prescribed orientations. Sincgontainingh(z,y)] has a sign change in its difference signal.
image streaking is not a problem with the LIM’s, only two-These penalties are summed, not multiplied, for each possible
orientation versions (along the rows and columns) are usetibsequence containingx,y). This shows a fundamental
Using only two orientations (horizontal and vertical) with alifference between the LIM's and PIM’'s—with the LIM’s,
PIM of degreem, an image streak of lengtln — 1 could be each subsequence must obey the LIM rule, whereas the PIM’s
created (horizontally or vertically) in the restoration procesare enforced on a piecewise basis.
since the PIM’s are enforced on a piecewise basis. Since th@) The Locally Convex/Concave Modeks with the 1-D
LIM’s will enforce the model property without boundaries, anOCO signal model [26], the 2-D LOCO LIM may be
image streak is impossible, since the pixels of each side of tlegjarded as having a somewhat restricted application domain.
streak would be in violation of the LIM. The idea behind the LOCO characteristic property is that
1) The Locally Monotonic ModelBy incorporating the smoothness can be defined as a restriction on the number
property of local monotonicity into the solution of the imag®f changes in convexity within local neighborhoods. How-
restoration problem, we extend the previous 1-D work bgver, this model precludes steplike edges and can lead to
Restrepo and Bovik [25], [26] and Sidiropoulos [28], whaversmoothing. But, for images that naturally have a limited
considered the more restricted problem of signal enhancemkigth-frequency content, the LOCO LIM can be quite powerful.
(noise without blur). The LOMO model preserves imag&he example provided in Section VI demonstrates such a case.
structure by allowing monotonically increasing/decreasing In the formulation of (4), a regularization operatgth)
intensity trends including every variety of idealized edgs required that penalizes deviations from local convex-
pattern. At the same time, outliers from noise are regardediggconcavity. The LOMO version of(h) exploited the fact
violating the LOMO property. Local monotonicity is a novelthat interpixel differences within a subsequence of length
very flexible definition of smoothness for digital signals.  could not have sign changes. The LOCO LIM can use a
To evaluate local monotonicity, we note that each leng#imilar property, enforcing the differences of the interpixel
m subsequence must have successive differences that dodifférences to be of the same sign or zero. In other words, the
change sign to be LOM@.. We can construct a regularizationdifference signal of a LOCO signal is LOMO! This restriction
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will guarantee local convexity/concavity. In this case where
2 0 [itm=3 fi+m=2 A\ =(B'B+)\q'B. (19)
Q(xay) = {1 - 3[(d($ayvka1)
kz_:_l jﬂ,z;_l ; <Z§1 When the regularization operatgiis nonlinear,(B’ B+ \q'q)

_ o p is not well defined. So, the straightforward CLS method is
day by t+ 1),y ki) = d(z, g,k i+ 1))} inappropriate for the nonlinear case. Furthermore, the CLS
. method of [10] assumes that the error from the deblurring is
- oz, k’l’z)> (15) independent, identically distributed (i.i.d.) with the error from
the noise, which may not be a reasonable assumption. One
where possible solution is to linearizd(\); however, this approach
N1 is computationally expensive for images of practical sizes.
@y, ki) = 5 min{{d(@, y, k. 1) = d(z,y,k, 1+ 1)), Other methods of deriving the regularization parameter
|d(z,y, ki) —d(z,y, ke +1)[} (16) jnclude the mean-squared error (MSE) approach and the pre-
ands(-) is the sigmoid defined in (14). Herg(-) has the same dicted mean-squared error (PMSE) approach [6]. By definition,
effect as in (12), providing a penalty that is proportional to tH&® MSE method seeks to minimize
distance from the nearest LOCO solution for the neighborhood E[le(V)]13] = [lil|? + E[||k]|?] - 2E[|[#R|[}]  (20)
of (x,y). The penalty of (15) has the same form as the LOMO
q(x,y), except that the local monotonicity of the differencavhich reduces to minimizingg[||h||*] — 2E[||#'A]|?], since
signal is evaluated. For each directidn the summation ¢ does not depend on. When g, B, and ¢ are known,
indexed by; gives a potential penalty for each subsequent@e expectation operators can be droppedEjfk|[?] and
of length m containing h(z, ). The innermost summationsE[||#'A]|’]. It has been shown in [6] that minimizing (20) is
evaluate the local convexity of the subsequence by penalizigguivalent to minimizing
any sign change in the difference of the difference signal. -1 3/2 112 2 —2 2
So, (15) will penalize non-LOCO subsequences and will not llg™ = BAN] / 9lI" = o7 te{g™ [ = BAN}-

penalize LOCO subsequences. (21)
The PMSE approach is similar to the MSE approach, except
IV. CHOOSING THE MODEL AND THE REGULARIZATION that E[||Be()\)||?] is minimized. Galatsanos and Katsaggelos
PARAMETER VIA' CROSSVALIDATION [6] show that this is equivalent to minimizing

Although the PIM's and LIM's provide effective 17217 2 _ 2. _
application-specific  smoothing constraints for imag [BANIH = BAN]g|I” = o7 tr ABACVI = BAL-

processing problems, the selection of the regularization (22)
parameter\ to be used is naturally a significant issue, owingjen a linear regularization operatgr the regularization

to the unusual and highly nonlinear format of the imagg,rameter can be determined using (21) or (22). This is also
models. prohibited wheny is nonlinear, sincei(\) is not well defined.

Reeves and Mersereau explored the use of “variable”
regularization operators in [24]. Their application cfoss-

To form the regularization solution, the proper data corvalidation to the selection of a regularization parameter
straint is selected corresponding to the additive noise distprovides a suitable approach for the nonlinear regularization
bution and the blurring operator. Then, the most suitable Pltperators here. In the cross-validation process, the image is
or LIM may be selected, according to the technique describdivided into an estimation set and a validation set. The pixels
below in Section IV-B. Finally, the regularization parametein the estimation set are used to obtain a result for a given
A must be assigned properly to achieve an equitable balaiset of parameters. At the same time, the validation set is
between the two constraints. used to evaluate the effectiveness of the parameter set and

Under the Miller formulation of the regularization prob-model used for regularization. The cross-validation method is
lem, as in (2) and (3), the regularization parameter can b#ractive because the original uncorrupted, unblurred image is

A. Selection of the Regularization Parameter

determineda priori using [18] not needed to estimate the regularization parameter. Likewise,
2 image prototypes and information on the corruptive noise
A= (E) . (17) process are not required in cross-validation.

First, the image is divided int& sets. Then, the parameter
model being evaluated can be imposed on all sets, except
the chosen validation set. Lep represent the set of all

the PIM/LIM regularization operators. A constrained Iea%'m:guemgﬁ?[?}natgs(x’_y)'QThNeof; fﬁ; r?]reemg];gh%vienn tE)e/
Upm1 @p = Q.

squares (CLS) solution is given by Hunt [10]. Givarpriori P sets is typically selected using a uniformly-distributed

information on the addl'gve noise, the following equation A% ndom number generator. In this way, the local dependencies
be used to find a solution fok:

between members of the same set should be minimized. An
llg — Bh||* = || — BAM)]g||? = ||n|]|> = No®  (18) error measure computed using the validation set can then be

If the variance of the additive noise is known, then the bou%c;
€ can be setE, the bound orl|g(h)|| s+ is difficult to obtain
when a nonlinear regularization operagdh) is used, as with
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employed to test the quality of the solution derived with the TABLE |

given parameters. In traditional cross-validation, this process IMAGE EXAMPLES

can be repeated times, each time choosing a different S€yample Blumring Kernel | Dist. of Noise | & SNR

as the validation set, thus using each pixel for both estimatiGrimeraman __{ Uniform (1x9) | Gaussian 10.0 15dB

and validation. The drawback is that the image restoratio'}i?bfl’(lcs gnﬁiofm E;Xg gaﬂssia" Zé)o g‘;};
H H 00KS niorm (33X aussian ,

problem has to be solveR times to complete the evaluation Straw Uniform (1x 115 | Laplacian 7 TodB

of P validation sets.
Let @, be the validation set. To perform cross-validation

(using thel, norm case for both the data constraint and tHgmultaneously, using a validation error that depends both on

smoothing constraint), the following energy functional is theffe model selected and on the regularization parameter. Let the

minimized: characteristic sef’ represent the model selected and the regu-
larization operatog( ) enforce the corresponding smoothing
E'(h)= > [9(z,y) — Bh)ay)® + Nlg®)|? constraint. For each model and regularization parameter tested,
(2.9)€Q—-Qy (23) is minimized to findh,, substituting the propeg(h)

(23) for g(h). Then the data division CV error in (24) becomes

where(Bh),..,, is the value ofBh at location(z, ). Note that a function of C and \. Remember that the regularlz_atlon
y) 2 operatorg~( ) does depend on the model order, which
the data constraint (and therefore the regularization parametelr . . .
. . . .~ determines the spatial extent of the PIM or LIM. So, it is
has no influence on the solution for the validation set pixels, )
. S S necessary to evaluate (24) for different model orders as well
Let the solution that minimizes (23) for validation set

. . s over different models. It is our experience that the model
be defined ash,. To reduce the computational burden o . .

. S degreen > 4 typically leads to a less desirable (oversmoothed)
computing the cross-validation error (CV error), we emplo

the data division technique of [23]. In this case, only OnPe/esuIt. Therefore, only one or two reasonable model degrees
o . L Need to be evaluated for each model.
validation set is used and only one minimization of (23) is

required for each parameter value that is tested) Jfis the

validation set, then (23) is minimized to compute, and the V. MINIMIZATION OF THE REGULARIZATION FUNCTIONAL

CV error is given by The standard linear regularization operators can be con-
1 strained so that a convex optimization problem is formed [12],

V) =—= Z [9(x,y) — (Bh,,,.)(gg7y)]2 (24) [14]. With a convex energy topology, simple gradient descent

(2,0)CQs solutions may be formed to achieve restoration. The need

f N-pixel i R dM indicate th ttor convexity is one of the major reasons that the Laplacian
or an /y-pixel image. Reeves and Mersereau indicate tha s often been used as the regularization operator. In the

use of ten sets (so that the validation set contains 1/10 BYularization approach presented here, there is no restriction

the pixels) is a.sufficient ;amp!ing to y‘e",‘ a reliable resu[B convex energy functions. With the nonlinear PIM and LIM
[23]. Our experiments verify this assumption. Note that th nstraints, convexity does not generally hold, hence steep-

data division validation error does not have to equal the f t descent approaches to minimization will not avoid local

\t/)alldatlon .err?r,l atsh long as b?th ;Lfmgtmﬁ are m'n"_’nlzer‘fininima in the regularization functional. Therefore, special
y approximatély the same vajue 0, the appropriate ,uantion has been given in this research to the optimization

regularization parameter for the nonlinear PIM's/LIM’s Ca'?echnique applied
be compute_d using (24). The selection Of_ the regulanzaﬂonFora nonconvex optimization problem, stochastic simulated
parameter, in this case, does not depend priori knowledge. annealing (SA) can be used to locate a globally optimal

solution [7]. However, the simulated annealing algorithm,
even with a fast geometric annealing schedule [1], cannot

With the newly introduced classes of PIM’s and LIM’s ande used for real-time or near real-time application. To limit
the possible introduction of other application specific modelke computational expense of image restoration, we minimize
into these classes, the ability to select the proper model fothee regularization functional vigeneralized deterministic an-
given image restoration problem is critical to the success néaling (GDA), a combinatorial optimization technique that
this paradigm. Previously, these models have been selectecbmvides high-quality solutions for time-critical applications
a trial-and-error basis with only intuitive assumptions about tled which can be easily implemented on a parallel architecture
original image structure in mind [2]. Using cross-validation[3]. GDA provides rapid, guaranteed convergence and the
the uncertainty of selecting the model heuristically can lability to escape undesirable local solutions, and hence is well
improved upon. suited for these problems.

A model is selected by finding the PIM or LIM that GDA essentially estimates the stationary distribution of the
yields the lowest validation error. This method essentiall$A transition probabilities at each annealing temperature using
allows the characteristic property assumption of each PIM armean field approach. The probability density for intensity
LIM to be tested on the pixels that are not members of tta location(z, y) is updated via (25), shown at the bottom of
validation set. Of course, the selection of the regularizatidthe next page, wheré is the number of possible solutions
parameter still influences the quality of the result. In facfor each pixel intensity(7 is usually a limited subset of
the model and the regularization parameter may be selectensities centered at the current solution, elg= 9) and

B. Selection of the PIM/LIM for Regularization
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TABLE I
PIM/LIM | MAGE RESTORATION RESULTS
Image PIM/LIM CV Error MSE ISNR
Cameraman PICO 127.1 390.3 +1.4
PILI 116.6 377.5 +1.6
LOMO 115.5 285.8 +2.8
LOCO 119.1 327.3 +2.6
Pebbles PICO 64.3 141.6 +2.4
PILI 63.2 1494 +2.1
LOMO 64.5 151.7 +1.9
LOCO 60.8 111.6 +3.4
Books PICO 126.7 147.5 +1.6
PILI 128.4 207.8 -0.05
LOMO 128.1 192.6 +0.4
LOCO 127.5 180.0 +0.6
Straw PICO 56.8 298.7 +3.2
PILI 56.5 324.5 +2.9
LOMO 56.1 317.1 +2.9
LOCO 53.7 266.0 +3.8

T is the annealing temperature (discussed below). The eneogynputational expense. For example, the CLS method uses

functional valueE(h; h(x,y) = I) is computed by setting all only 18 s of processing time on the same architecture.

pixel intensities to their mean field values (the expected value

given the discrete probability densities) and then setting the VI. RESULTS AND CONCLUSIONS

pixel intensity at locatior(z, y) 0 h(z,y) =1. . _Here, four example image restoration cases have been
The annealing process is started at a sufficiently high

- ' Provided, one for each PIM and LIM presented in the paper.
temperaturél” where all probabilities are equal (afl, (1) ~ Fﬁr each image restoration case, the best results for each of

(1/I)). The temperature is reduced in a geometric manner u . :
. R . . e four models is reported. In the first case, the results are

a singular distribution emerges at each pixel §jte, (1) ~ 1 . .
: also compared to those given by a line process approach and

for some intensityl at each(z,y)]. The number of updates : ; ; .
. . by a linear CLS approach. The image restoration experiments
per temperature depends bnthe maximum possible change . ; . : . )
use a variety of images obtained using different blurring

in the energy functional for a change in one pixel IntenSItBIgrocesses and different additive noise processes, in order to

and on/, the number of p053|b.le SO!U'[IOHS for each pixel. A emonstrate the flexibility of the PIM/LIM approach (see
upper bound on the number of iterations needed at temperaurlr

- . : o 4Ble 1). The table lists the image used, the blurring kernel
T'to sufficiently estimate the stationary distribution is [3] applied) in convolution, and the getails of the additivge noise

process including the distribution, the standard deviatign (

ln <i2> of the additive noise, and the SNR. The results shown reflect

(T) = ! ) (26) the optimal regularization parameter as computed via cross-
1n[<1_2>e4wf+l} validation.

2 2 Although attaining a high SNR does not necessarily imply

that the subjective quality of the restored image is superior

This bound guarantees uniform convergence of each probapili], [21], we seek results that at least improve, and that do

ity density within a bound oft /12 not degrade the SNR. The SNR of a noisy image is defined by
Using these guidelines for GDA, image restoration with 5, o

GDA requiresO(NI) updates using (25) for an image with SNR= 10 logyq (97 /03,) (27)

N pixels e;gveach temperature. In contrast, the SA algorithihere, 2 is the variance of the blurred but uncorrupted image
needsO(/*") updates at each temperature. In experimen{s,q,2 is the variance of the noise. To measure the quantitative

performed on Sun Sparc Ultra |, image restoration Usmgiﬁ“lprovement in the SNR, the improvement in SNR (ISNR) is
practical SA algorithm required over 9 h, while the GDA-5|culated for each result as

algorithm required 13 min for the same improvement in signal-

112
to-noise ratio (SNR). Of course linear techniques (that use ISNR = 101og;, M (28)
the fast Fourier transform, or FFT) will be vastly superior in |[e — |2
142 1
feall) = 7 B h(o.) =)= Blhihr.g) = ] (o) + el 2

o
Il

0 1+exp{ T
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(c) (d)

Fig. 1. Example of the LOMO LIM. (a) Original cameraman image. (b) Corrupted image @luniform blur with SNR= 15 dB Gaussian noise). (c)
Restoration using the LOMO-3 regularization operator. (d) Restoration using CLS. (e) Restoration using line process model.

whereg is again the blurred, corrupted images the original lated in Table Il. Figs. 1-4 provide the original images,
image, and is the estimate produced by the image restoratidghe blurred, noisy images, and the image restoration re-
algorithm. sults for each case. Figs. 4-8 depict the selection of

For each image example, the CV error, MSE, anihe regularization parameter using the cross-validation
ISNR for each of the four PIM’'s and LIM's are tabu-technique.
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Fig. 2. Example of the LOCO LIM. (a) Original pebbles image. (b) Corrupted image (Z uniform blur with SNR= 20 dB Gaussian noise). (c)
Restoration using the LOCO-4 regularization operator.

For complex natural images, the LOMO LIM provides ave have the following problem&(u, v) = B(u, v)d(u,v) +
robust measure of smoothness. Using the LOMO-3 regularizsi{u, v). The CLS technique minimizes the response of the
tion operator, the cameraman image is restored after motiomplacian to the solution, giving a restored imaléu, v):
blur and severe degradation (Fig. 1). The 2.8 dB improvement
in SNR noted in Table Il is provided along with preservation of
the sharp edges between the cameraman and the background.
Among the four PIM’s and LIM’s, the LOMO model gives
the lowest CV error, the lowest MSE, and the highest ISNRhere L(«, v) is the discrete Fourier transform (DFT) of the
Even with an original SNR of 15 dB, restoration is possiblspatial domain Laplacian kernel, adis an unknown regu-
with the versatile LOMO model. As with each experimeniarization parameten\ is selected by iterating on (29) until the
performed, the regularization parameter was selected using thi@imum value from the data constraint of (4) is discovered.
cross-validation technique. From Fig. 5, it may be observédthough the CLS method is computationally inexpensive, the
that the CV error has a minimum value for the sainas the edges in the original cameraman image have not been retained
true MSE of the result. This was confirmed for each PIM/LIMn the result [see Fig. 1(d)], and oversmoothing and ringing
restoration experiment performed. So, without any statisticale evident.
information on the image or on the degradation processes;To compare the LIM result to another nonlinear approach,
the regularization parameter can be reliably chosen for the'line process” model [7] has been implemented. The line
nonlinear regularization operators. process uses the local image variance to control smoothing

The LOMO LIM restoration results (using GDA) are comin the regularization process. When the variance exceeds
pared to an FFT-based CLS method. In the frequency domaanthreshold, the regularization operator is not enacted. The

B*(u,v)

000 = | 1B, o) + AL (w0

G(u,v) (29)
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Fig. 3. Example of the PICO PIM. (a) Original “books” image. (b) Corrupted imagex (3 uniform blur with SNR= 15 dB Gaussian noise). (c)

Restoration using the PICO-3 regularization operator.

image shown in Fig. 1(b) has been restored using the enemgcewise constant; so it is not surprising that the PICO model
functional in (10)—(12) of [23]. The energy functional wayields the lowest possible CV error of the four PIM’s/LIM’s
minimized using simulated annealing. Although requiring ovgresented here (Table II). After convolving the original im-
30x the computational resources as the GDA technique, thge with a 3x 3 uniform blurring kernel and adding 15
simulated annealing result with the line process model coulid8 Gaussian noise, restoration using the PICO-3 regulariza-
not match the visual quality of the LOMO LIM. Near edgestion operator provided a sharp, smoothed image result [see
the line process model has the tendency to retain outliers dtig. 3(c)] without anya priori knowledge of the signal or

to noise [see Fig. 1(e)]. noise statistics.

The smooth stones in the pebbles image are a primeFig. 4 furnishes an example of the PILI regularization
example of a locally convex/concave image [Fig. 2(a)]. Theperator. Although the observed image [Fig. 4(b)] is severely
outliers from the 15 dB Gaussian noise are suppressed aegdraded by motion blur and 10 dB impulse noise, the lin-
the degradation from the motion blur is reversed in thear straw pattern is recovered using the PILI PIM. This
regularization process, using the LOCO-4 regularization opxample also demonstrates the versatility of the overall para-
erator [Fig. 2(c)]. The MSE is halved and a 3.4 dB increasigm, yielding success in the presence of Laplacian-distributed
in the SNR is yielded (Table Il), which represents the beadditive noise. Here, ard; norm is applied to the data
results of the four models. The CV error closely follows theonstraint for optimality in the Laplacian case [25]. In the
actual MSE behavior, allowing straightforward selection of thether examples presented, thenorm is applied to optimally
regularization parameter using cross-validation (Fig. 6). reduce the Gaussian-distributed noise. The PILI result for

The books image in Fig. 3(a) is a natural selection fdhe “straw” image allows a 2.9 dB improvement in SNR
the PICO model, since the surfaces in the scene are neddge Table IlI), while also preserving both ramp and step
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Fig. 4. Example of the PILI PIM. (a) Original straw image. (b)
Restoration using the PILI-3 regularization operator.
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Fig. 5. Graph of MSE and CV error versus regularization paramettar

LOMO restoration example in Fig. 1.
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blur with SNR= 10 dB Laplacian noise). (c)
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Regularization Parameter Value

. Graph of MSE and CV error versus regularization parametar

LOCO restoration example in Fig. 2.

edges in the restoration result. But, as Table Il indicategsoupings of outliers due to noise, as may be observed in
the PILI PIM does not provide the lowest CV error of théig. 4(d).

four models. We speculate that the PILI model producesThe models of the PIM and LIM classes allow application-
a higher CV error (and MSE) as compared to the LOCEpecific image restoration. The PICO, PILI, LOMO, and
model, for example, because the PILI model retains lineaOCO regularization operators extend the structure-preserving
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Fig. 7. Graph of MSE and CV error versus regularization paramettar
PICO restoration example in Fig. 3.
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Fig. 8. Graph of MSE and CV error versus regularization parametfer (16]

PILI restoration example in Fig. 4. [17]

(18]

abilities of the traditional regularization approach. For a

given restoration problem, the most effective PIM or LIM19]
can be selected via cross-validation, and the regularizati&ra]
parameter can also be determined, without knowledge of
the original uncorrupted image. With the regularizatiof?1]
functional and parameter in hand, a restored image can
be computed rapidly using the GDA optimization techpy)
nique.

In future studies, we plan to evaluate spatially ada 55
tive regularization weighting as in [12] in conjunction
with the PIM and LIM regularization operators. Although
cross-validation has proven successful in determining i
regularization parameter and selecting the proper model,
further improvements to the computational efficiency oR5]
the cross-validation implementation is desired. We are alﬁ%]
examining other potentially salient PIM's and LIM’s, as
well as a method to automatically construct the model for
prototypical data. (27]

(28]
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