
Automatically Deriving Pointer Reference Expressions
from Binary Code for Memory Dump Analysis

Yangchun Fu†, Zhiqiang Lin†, and David Brumley*

†The University of Texas at Dallas, Dallas, USA
* Carnegie Mellon University, Pittsburgh, USA

ABSTRACT
Given a crash dump or a kernel memory snapshot, it is often de-
sirable to have a capability that can traverse its pointers to locate
the root cause of the crash, or check their integrity to detect the
control flow hijacks. To achieve this, one key challenge lies in how
to locate where the pointers are. While locating a pointer usually
requires the data structure knowledge of the corresponding program,
an important advance made by this work is that we show a tech-
nique of extracting address-independent data reference expressions
for pointers through dynamic binary analysis. This novel pointer
reference expression encodes how a pointer is accessed through
the combination of a base address (usually a global variable) with
certain offset and further pointer dereferences. We have applied our
techniques to OS kernels, and our experimental results with a num-
ber of real world kernel malware show that we can correctly identify
the hijacked kernel function pointers by locating them using the
extracted pointer reference expressions when only given a memory
snapshot.

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEMS]: Security and Protection

General Terms
Security

Keywords
Kernel Integrity, taint analysis, memory forensics

1. INTRODUCTION
A pointer, whose value is a memory address, is ubiquitous in a

large body of software especially those written in C/C++. Recog-
nizing and locating pointers in a memory (crash) dump is valuable
in many applications. In program debugging, pointers are the root
cause of segmentation fault [14, 15]. Given a crash dump, if we
can locate where the crashed pointer is, it will significantly help the
bug reporting. In security, pointers especially the ones pointing to

program code (i.e., function pointers), are often the direct targets for
control flow hijacks [20]. For instance, over 96% of kernel rootkits
hijack kernel function pointers to subvert normal control flow of the
OS kernel [24]. Given a running program or an OS kernel, if we can
locate its function pointers, we would have been able to check their
integrity and detect the control flow violations.

However, current practice to locate a pointer in memory requires
the data structure knowledge of the corresponding program. Unfor-
tunately, there are scenarios where data structures are not always
available. For instance, for closed source software such as Microsoft
Windows kernel, it is very unusual to have the complete kernel data
structure definitions. Second, even with data structure definitions, if
there is any ambiguous type (e.g., void pointer, or union type), it
will stop traversing the target type (unless with further analysis to
resolve the target type as in KOP [8] and MAS [11]), and may not
be able to locate all pointers (e.g., the pointers stored in the void
target type). Therefore, if we can directly locate pointers without
any data structure definitions, such a technique would be of great
practicality.

To advance the state-of-the-art, in this paper we introduce a new
concept called pointer reference expression (ptr-rexp for short) and
we show such an expression can be extracted from binary code
and used to locate pointers in memory. More specifically, ptr-rexp
encodes how a pointer is accessed through the combination of a
base address (usually a global variable) with certain offset and fur-
ther pointer dereferences. With ptr-rexp, we can then traverse a
memory dump by following from the root of the pointer (e.g,. a
global variable that is static) to reach the target locations. To derive
ptr-rexp, we present a new dynamic binary analysis that tracks the
dependences of how a memory address is computed. This analysis
starts from a pointer data-use point (e.g., an indirect function call),
and backward resolves the dependences until reaching the root of
the pointer, namely a global variable address. Such a resolution pro-
cess can directly produce a run-time address-independent ptr-rexp
since global address is usually static, which can be used for cross
checking.

As an application of our techniques, we demonstrate how to use it
for kernel memory dump analysis, especially for the checking of ker-
nel function pointer integrity. To this end, we have to solve another
challenge: how to determine whether a pointer is hijacked. We pro-
pose a pointer integrity checking technique. We base our technique
on the observation that after a program is compiled, the instructions
(i.e., the code) are usually static, and the difference between the
same program on two machines is the program data. As such, with
our address-independent ptr-rexp, we can simultaneously traverse
two memory snapshots: one is from a trusted kernel and the other is
from the untrusted one. While the identified function pointers could
be located in the dynamically allocated program addresses, which

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08
http://dx.doi.org/10.1145/2786805.2786810

614

can differ simply due to the behavior of the program heap allocators,
fortunately our ptr-rexp is exactly designed to enable appropriate
pointer integrity comparison between an untrusted kernel and the
trusted one, and we can compare either their values or their targeted
code to determine whether it has been hijacked.

We have implemented our proposed techniques in a prototype
called FPCK. In addition to kernel dump analysis, FPCK will be
useful in many other applications especially in security. For instance,
it can be used to regularly inspect the integrity of kernel function
pointers. In addition, it can also be used by Infrastructure as a Ser-
vice (IaaS) cloud providers to manage the guest OSes with kernel
integrity check as a service. Meanwhile, it can also be used in mem-
ory forensics to investigate the intrusions and estimate the damages
caused by kernel malware.

In short, the main contributions of this paper are:

• We present a set of novel techniques to automatically locate
function pointers in a memory snapshot. The pointer location
is encoded by a static pointer reference expression that is
derived by a dynamic data dependence analysis.

• We apply our techniques and develop a binary exclusive out-
of-VM approach to automatically check the integrity of kernel
function pointers hijacked by kernel malware.

• We have implemented these techniques in our prototype FPCK.
Our experimental results with Linux kernel show that with
respect to the tested malware, FPCK successfully identifies
all of the hijacked kernel pointers within just a few seconds.

2. BACKGROUND AND OVERVIEW
Objective. Intuitively, when given a memory dump, it often requires
the corresponding data structure definitions to traverse the memory
and reach the data of interest. However, data structure knowledge
is not always available. The goal of this paper is to demonstrate the
practicality of traversing a memory dump to reach data of interest
without accessing the program source code or data structure defini-
tions. More specifically, we show there exists techniques that can
automatically derive ptr-rexp from program executions, and such
expressions can be used for cross checking the integrity of kernel
function pointers.

The reason to focus on kernel function pointer is because kernel
rootkit, a piece of malware designed to tamper with kernel behav-
ior, often hijacks kernel function pointers to subvert normal control
flow of the OS kernel [24]. Hijacking kernel function pointer al-
lows kernel malware to conceal the presence of malicious behavior,
open back-doors for future intrusion, steal private data such as the
keystrokes, elevate privileges of other malicious processes, and dis-
able defenses (as those discussed in [6, 8, 12, 13, 21, 22, 26, 28, 31]).
Therefore, it is often used by many cyber attacks due to its root level
privilege and high stealthiness, including Stuxnet, Duqu, and the
recent RSA SecurID compromise.

Several prior works such as KOP [8] and OSck [18] have demon-
strated that we can periodically take the snapshot of the guest OS
running atop virtual machines (VM) and then traverse its memory
snapshot to perform the integrity check. However, KOP and OSck
require the access of kernel source code to build a data structure
graph, from which to traverse the kernel function pointers. Unfor-
tunately, in many cases end-users including cloud providers only
have the binary code of an OS kernel. Thus, it is imperative to
have a binary exclusive technique that can pinpoint kernel function
pointers in memory snapshot such that we can check their integrity
correspondingly.

Ptr-rexp Extractor
Trusted

Computer

Trusted Physical
Memory Snapshot Kernel Function

ptr rexp

pComputer

Pointer Integrity
Checker

ptr-rexp

Diagnosing
Computer

Untrusted Physical
Memory Snapshot

Untrusted
Computer

Figure 1: An overview of FPCK. All the involved computers
could be the real physical machines, virtual machines, or their
combinations.

Challenges. Locating the hijacked kernel function pointers given
only a physical memory snapshot is challenging for two reasons:

• Where to locate the kernel function pointers. Kernel func-
tion pointers can be located in many places, such as in kernel
global data regions and kernel heap regions. It might be possi-
ble to identify the hijacks of kernel global function pointers by
aligning the virtual address of the memory snapshot of a un-
trusted machine (denoted Mu) and a trusted machine (denoted
Mt). However, it is challenging to locate the function pointers
in other memory regions such as those in the kernel heap.

• How to determine whether they are hijacked. Assume we
are able to locate the memory addresses of the correspond-
ing kernel function pointers, we cannot merely compare their
values in the memory cell between Mu and Mt to check the
hijacks, as the value of a function pointer could be different
since a kernel function can be loaded into different memory
addresses in different running instances of the same kernel,
which is especially true for kernel modules. Of course, for
the core kernel code that is not loaded as kernel modules, the
values of their function pointers should be identical (e.g., the
values in system call table), and we can compare their values
to identify the hijacks.

Overview. To address the above challenges, we have designed an
array of binary exclusive techniques in our prototype FPCK. As
illustrated in Fig. 1, there are two key components inside FPCK: a
ptr-rexp extractor, and a pointer value comparer. Given a trusted
machine T , our extractor analyzes its execution and derives a static
data reference expression, namely ptr-rexp, for each observed kernel
function pointer. This expression reflects how it should be accessed
starting from the kernel global locations. Next, whenever we want

615

to check the integrity of the kernel function pointers of an untrusted
computer, we first take a snapshot of its physical memory Mu. Then
we run the pointer integrity checker on our diagnosing machine,
which will scan whether U’s kernel function pointers have been
hijacked. The checker detects hijacks by performing a low-level
pointer value or pointer target comparison between U and T . Each
mismatch between Mu and Mt indicates a potential hijack. In the
next two sections, we present the detailed design of the two key
components of FPCK.

Scope and Assumptions. We assume we are able to take the mem-
ory snapshot of the running VMs which are running atop x86 archi-
tectures. Along with the snapshot, we also assume we can acquire
the value of the page table base register (i.e., CR3 in x86), through
which to perform the virtual to physical address translation. In addi-
tion, we assume the kernel code pages are not writable and the code
itself is identical across different VMs for the same version. This
is reasonable given that (public/private) cloud providers often offer
users with pre-installed VMs. It is highly likely that these VMs tend
to have the same kernel version. In addition, to check Mu, we assume
that we have the corresponding trusted kernel copies (including the
corresponding kernel modules) of the running guest OSes. Note
that the specific kernel version of the guest OS can be determined
by other approaches (e.g., [16, 17, 25]). Regarding the workloads
running on the trusted or untrusted machines, there is no constraint
and they can be different.

Also, similar to all other snapshot-based approaches, (e.g,. [4, 5,
8, 11, 18]), we are only interested in the persistent function pointers
(continuing to exist over the entire life span), and will exclude these
temporary pointers. The reason is that snapshot based approach is
context-less (a memory snapshot can be taken at arbitrary time), and
we cannot reliably check the integrity of these temporary ones. While
this is a limitation in general for all these snapshot-based approaches,
fortunately over 96% kernel rootkits tamper with persistent function
pointers according to the survey by Petroni et al. [24]. Meanwhile,
many kernel function pointers are actually persistent, e.g., 97% of
function pointers in Microsoft Windows does not change over their
entire life span according to the result from HookScout [35].

3. PTR-REXP EXTRACTOR
The goal of ptr-rexp extractor is to (i) derive the memory ad-

dresses into static expressions for the exercised kernel function
pointers (§3.1), and (ii) prune non-persistent function pointers and
merge multiple values for the same pointer if there is any (§3.2).
In the following, we present the detailed design of each of these
techniques.

3.1 Deriving ptr-rexp
Overview. Being one of the key techniques of FPCK, ptr-rexp deriva-
tion aims to to produce an address-independent expression of each
function pointer used in an executed control path. Then during the
integrity checking phase, this expression allows us to traverse and
compare the function pointers between trusted kernel memory Mt
and untrusted kernel memory Mu. If they differ, then we say that
kernel malware has changed the value of the function pointer. For
example, the following code shows how the read operation is cal-
culated from a data structure in Linux kernel 2.6.08:

1. mov 0xc034bc78(), %eax; move proc_root_fs to eax
2. mov 0x20(%eax), %eax ; proc_root_fs->f_ops
3. <... irrelevant instrs ...>
4. call 0x8(%eax) ; proc_root_fs->f_ops->read

The example shows that the final call address at line 4 is derived
from the memory value stored at 0xc034bc78 (which is a kernel

type operand = Reg of name | Mem of addr
type shadow = (operand, PC) Hashtbl
type instMap = (PC, instRecord) Hashtbl
type instRecord = (I-semantics, taintOp, taintOp)
type I-semantics = Move | Binary | Call-Mem | …
type regTaint = (V, PCp)
type taintOp =

MemOpTaint of regTaint regTaint scale disp
| RegOpTaint of regTaint
| NoOpTaint

Figure 2: The data structure types used in FPCK.

global variable). A typical approach used by kernel malware is to
tamper with the value at 0xc034bc78, or *(0xc034bc78)+ 0x20, or
((0xc034bc78)+ 0x20)+ 0x8 (note that ∗ represents the pointer
dereference) such that the malicious code is called at line 4. Unfor-
tunately, the value stored at these memory addresses may change
between different instances of the kernel. Thus, we cannot simply
compare the absolute memory address calculated at line 4.

Our main idea is to use a ptr-rexp of an indirect jump or call to
uniquely represent the intended target. Our ptr-rexp encompasses all
calculations used to determine an indirect jump or call target. In the
above example, the ptr-rexp is: ∗(∗(∗(0xc034bc78)+0x20)+0x8).
The intuition why the ptr-rexp works is that while the data stored at
addresses may differ between Mu and Mt , the code to calculate the
location will be the same (recall that we assume kernel code cannot
be tampered by malware, and hypervisor can often enforce this).

Detailed Algorithm. At a high level, given an indirect call or jump to
an address α , we present an algorithm to recursively walk the list of
instructions used to calculate α to build up our ptr-rexp. The main
intuition behind our algorithm is that the roots of data dependence
are pre-determined addresses. While the value of a memory cell used
to calculate a jump/call target may change, the location does not.
We recognize the potential locations by looking for literal values
that fall within the kernel address space. We “taint” [23] such values,
and perform dynamic data dependence tracking on any instruction
derived from a tainted value. This is different compared to other
techniques such as HookScout [35] where it taints the known values
of kernel function pointers and tracks how these values propagates,
whereas we track how a pointer is computed as described below.
We also keep a data structure that maintains the semantics of each
instruction that operates on tainted data (which we call tainted in-
structions). The algorithm walks the data structure to generate the
final expression on-the-fly when an indirect call or jump target is
tainted.

The type signatures used by our algorithm are presented in Fig-
ure 2. The first data structure is of type operand that can be either
a register or a memory address. Note that the literal value operand
will be recognized and taken special care. The second data structure
is of type shadow that maps an operand to a program counter
(PC). We use S to denote an instance of shadow. For brevity,
we write S[0xff] and S[eax] to mean S[Mem[0xff]] and
S[Reg[eax]], respectively. S is used to maintain two invariants
in our algorithm:

• Tainted Invariant: For efficiency, we only track instructions
dependent upon literal values (or the so called immediate val-
ues) that fall within kernel address space. Such literal values
can be bases in the data dependence calculation for kernel
function pointers. Specifically, given an instruction PC : l := e
where PC is the program counter, l is the assigned memory

616

Table 1: Example code for the shadow record creation and propagation.
PC: Machine Code Assembly Code Partial Program States (Registers, Memory) Shadow S[Operand]=PC

0xc0106bc0: 68 10 4d 11 c0 push 0xc0114d10; ESP=0xcf581004, M(0xcf581004)=0xc0114d10 S[0xcf581004]=0xc0106bc0
... ;//push do_page_fault
0xc0106a02: 8b 7c 24 20 mov 0x20(%esp),%edi ESP=0xcf580fe4, EDI=0xc0114d10 S[EDI]=S[0xcf581004]
... =0xc0106bc0
0xc0106a1b: ff d7 call %edi ESP=0xcf580fe0, EDI=0xc0114d10 S[EDI]=0xc0106bc0
... ;//call do_page_fault
0x0c015f94: ff 14 85 3c 86 28 c0 call 0xc028863c(, %eax,4) EAX=4, M[0xc028864c]=0xc0144d8a S[0xc028864c]=0x0c015f94

;//call sys_write
0xd894e007: a1 78 bc 34 c0 mov 0xc034bc78(), %eax EAX=0xd7fee2e0 S[EAX]=0xd894e007

;// proc_root_fs
0xd894e00c: 8b 40 20 mov 0x20(%eax), %eax EAX=0xc028ea80 S[EAX]=0xd894e00c

;// proc_root_fs->f_ops
0xd894e013: ff 50 08 call 0x8(%eax) EAX=0xc028ea80,M[0xc028ea88]=0xc015ed7e S[0xc028ea88]=0xd894e013

;// proc_root_fs->f_ops->read

cell or register, and e is derived from a literal falling in kernel
space, then S[l] is defined. This is a type of taint tracking
where S[l] is defined iff e is tainted.

• PC Invariant: During the ptr-rexp extraction we walk a log of
tainted instructions to compute the jump/call target expression.
Given PC: l := e, we maintain the overall invariant with two
minor invariants on tainted values e. First, if e is a memory
load M[v] for value v, then S[l] = S[v]. This invariant
ensures that each tainted memory load maps to the definition
site where the memory cell was initialized with a tainted
value. Second, when e is not a memory load S[v] points to
the definition site for each e, including such as the definition
site for a tainted register. Overall, these two invariants ensure
that (i) S points to the definition site for a tainted memory
cell, and (ii) S points to the definition site for tainted registers.
Note that while the above invariants can be generalized to
any expression, currently we implement the data structures
for x86. In particular, each e can have at most one memory
reference. The memory reference is based upon at most two
registers of the form:r1 + r2 ∗ scale+disp.

The above invariants allow us to recursively determine the PC
for all instructions used to calculate a tainted indirect jump or call
target. We associate PC values to specific instruction semantics via
the instMap record, as illustrated in Figure 2. Each PC value defined
in S is also mapped to a record in an instMap. The records of type
instRecord consist of a semantic type I-semantics for the operation
(Move, Binary operation, Call, etc.), and two taint records for the
two operands of type taintOp. For simplicity, we only describe at
most two source expressions (regOpTaint or memOpTaint) for an
executing instruction. Note that an instruction could have only one
operand (instead of two) or no operand (that is why we introduce
NoOpTaint). In addition, for the regTaint of regOpTaint, we use a
2-tuple (V,PCp), which denotes the taint dependency of the register
operand for an instruction where V is the concrete value if there
is no dependency (otherwise V is 0), and PCp tracks the previous
PC that generates the propagated taint record. We provide detailed
examples to illustrate why we define our data structure in this way
in the following based on how a general taint analysis works.

Taint Sources Our shadow record (including type shadow and
instRecord, as well as the mapping instMap) is generated using
two rules: either (1) an instruction which generates a data definition
(such as memory or register write), or (2) an instruction which has
a memory operand that involves a global memory address or its
propagation.

Rule-I. Similar to all other taint analyses, a data definition for an
operand (Reg or Mem) is generated by (i) a data movement in-
struction, such as MOV/PUSH/POP, etc., or (ii) a data arithmetic
instruction, such as ADD/SHL/AND, etc. Based on the instruction
semantics, we accordingly generate our taint record for the corre-
sponding operand.

Example. As shown in the first row of Table 1 for instruction
0xc0106bc0: push 0xc0114d10, it pushes a literal value
0xc0114d10 which falling within the kernel address space (we
hence classify this value is a reference to a global variable) to
memory address 0xcf581004 (pointed by esp), then we gener-
ate a shadow record for memory address 0xcf581004 with PC
0xc0106bc0 (i.e., S[0xcf581004] = 0xc0106bc0), and an instRecord
for the source operand as ((0,0), (0,0), 0, 0xc0114d10) which is in-
dexed by PC 0xc0106bc0 as shown in the first row of Table 2. The
destination operand (pointed by register esp) under current taint
context does not have a global address dependency, whose memO-
pTaint is hence ((0,0), (0,0), 0, 0) or NoOpTaint.

Rule-II. This is a special rule in our data dependence tracking.
Specifically, we will also generate an instRecord whenever an in-
struction has a Mem operand, whose address is directly or transi-
tively derived from a kernel global memory address. In particular,
in the x86 architecture, a memory address for a Mem operand is
computed using the following formula,

Displacement(BaseAddr, Index,Scale) =
BaseAddr+ Index×Scale+Displacement

where BaseAddr is the Reg that has the starting address or base
address of the accessed memory, Index is the Reg used to determine
the offset from the base address, Scale is the data size based mul-
tiplier for the Index, and Displacement (often an immediate value)
is the additional offset adjustment from the BaseAddr. If the Reg
of the BaseAddr is tainted (i.e., the address is transitively derived
from a global variable), or the Displacement is a global address, we
will generate a new instRecord, which captures the dependences
on how an address is computed.

Example. Consider call 0xc028863c(,%eax,4) in the sec-
ond code snippet in Table 1. This instruction is interesting because
it calls a system call routine sys_write. The Mem operand
for this instruction is computed from an empty BaseAddr Reg
(thus no taint), an Index Reg eax with a value 4 (thus no global
address dependency), a Scale with 4, and the displacement value
0xc028863c that is a kernel global memory address. Therefore,
from the instruction semantics (Call-Mem), we can infer that the
memory address generated from this instruction is a global mem-

617

Table 2: Exampes of our instRecord for executed instructions in Table 1.
1st Operand memOpTaint (regTaint, regTaint, Scale, Disp) 2nd Operand memOpTaint (regTaint, regTaint, Scale, Disp)

PC I-semantics (V , PCp) (V , PCp) Scale Disp (V , PCp) (V , PCp) Scale Disp
0xc0106bc0 PUSH-IMM (0,0) (0,0) 0 0xc0114d10 (0,0) (0,0) 0 0
0x0c015f94 CALL-MEM (0,0) (0x4,0) 0x4 0xc028863c
0xd894e007 MOV-M2R (0,0) (0,0) 0 0xc034bc78 (0,0) (0,0) 0 0
0xd894e00c MOV-M2R (0,0xd894e007) (0,0) 0 0x20 (0,0) (0,0) 0 0
0xd894e013 CALL-MEM (0,0xd894e00c) (0,0) 0 0x8

ory address reference which refers to 0xc028863c + 4×4 =
0xc028864c, and we will consequently generate a shadow record
as

S[0xc028864c] = PCcall = 0x0c015f94

and an instRecord with instMap as

0x0c015f94→ (CALL-MEM, ((0,0), (0x4,0), 0x4,
0xc028863c), NoOpTaint)

as presented in the second row of Table 1 and Table 2, respectively.

Taint Propagation The shadow record will be flowed to the des-
tination shadow of the corresponding Reg or Mem operand. The
instRecord will not, but it will be mapped to the shadow by in-
stMap. Such a design saves the shadow memory space and improves
the performance of our data dependence tracking (because of the
indirection we introduced), compared to the normal method that also
propagates the instRecord. Also, when propagating the shadow
record, if the source operand generates a new instRecord (Rule-
II), we will not propagate the original shadow record, but rather
propagate the newly generated one.

Example. For instance, as shown in the third example code snippet
in Table 1, for 0xd894e00c: mov 0x20(%eax), %eax, we
will not directly propagate the shadow of the BaseAddr Reg eax
which is

S[EAX] = 0xd894e007→ (MOV-M2R, ((0,0), (0,0), 0,
0xc034bc78), ((0,0), (0,0), 0,0)))

and instead we will first create a new instRecord with instMap as

0xd894e00c→ (MOV-M2R, ((0, 0xd894e007), (0,0),
0, 0x20), ((0,0), (0,0), 0,0)))

and propagate its shadow to eax (S[EAX] = 0xd894e00c).

Taint Sinks We build the ptr-rexp on-demand from the data depen-
dency and the instruction semantics maintained in our data structures,
namely shadow, instRecord, and instMap. At a high level, we gen-
erate the ptr-rexp by walking back through our instRecord Hashtbl
guided by instMap, the walk recursively resolves each expression
e used in the right-hand side of an assignment to the original tainted
data definition. The detailed algorithm is presented in Algorithm 1.

In particular, the ptr-rexp generation algorithm takes in an instruc-
tion address p, a value v for a tainted operand, and a global instMap
t. As a base case (line 2), when the address is 0 (PCp=NULL), our
resolution is complete and we return v. Note that the base case is
reached when taint is first introduced. To see this, we only add 0 to
the instRecord at such sites. The algorithm recursively walks the
instRecord (indexed by PC) and produces a final expression for
the tainted operands. In the following, we present a representative
example to show how we perform the address resolution.

Algorithm 1: On-demand ptr-rexp Generation

1: let rec resolve_data_path (p: PC) (v: value) (t: instMap): exp =
2: if p = 0 then (Value(v)) else (
3: let (sem, op1, op2) = Hashtbl.find t p in
4: match sem with
5: Move −> resolve_op p op1 t
6: | Binary −> BinOP(resolve_op p op1 t, resolve_op p op2 t)
7: | Call-Mem −> resolve_op p op1 t
8:)
9: and resolve_op (p: PC) (op: taintOP) (t: instMap): exp =:
10: match op with
11: memOpTaint ((v1, pc1), (v2, pc2), scale, disp) −>
12: let regValue1 = resolve_data_path pc1 v1 t in
13: let regValue2 = resolve_data_path pc2 v2 t in
14: DeRef (regValue1, regValue2, scale, disp)
15: | regOpTaint (v3, pc3) −> (resolve_data_path pc3 v3 t)
16: | NoOpTaint −> Value (0)

Example. Consider the third example in Table 1 again. When the
instruction 0xd894e013: call 0x8(%eax) is executed, the
targeted memory address is 0xc028ea88 (as EAX = 0xc028ea80).
Because this instruction generates a new memory reference, we will
have a new instRecord for address 0xc028ea88 as

S[0xc028ea88] = 0xd894e013→ (CALL-MEM,
((0,0xd894e00c), (0,0), 0, 0x8),()).

Since the PCp in the BaseAddr Reg is 0xd894e00c and not NULL
(as shown in the 5th row in Table 2), we recursively resolve the
operand (resolve_op) with PC=0xd894e00c and a memOpTaint.
Note that according to the instMap, the instRecord indexed by
0xd894e00c is

(MOV-M2R, ((0,0xd894e007), (0,0), 0, 0x20), ((0,0),
(0,0), 0, 0)).

Now PCp is 0xd894e007 (also not NULL, and we have to recursively
resolve the operand with PC=0xd894e007 and a memOpTaint), and
the instRecord indexed by 0xd894e007 is

(MOV-M2R, ((0,0), (0,0), 0, 0xc034bc78), ((0,0), (0,0),
0, 0)).

Now that the PCp is NULL, we will directly output a Value v
which is 0 and return. Because of the recursion, a DeRef will
be called and it will dump a ptr-rexp of the function pointer as
((*(0xc034bc78)+ 0x20)+ 0x8). Using this ptr-rexp, we can pre-
cisely locate the function pointer at the untrusted memory Mu. Note
that this example is actually the read function for the proc file
system in Linux kernel-2.6.08. From this example, we see that al-
though read may be dynamically loaded and the structure pointer
f_ops could be in kernel heap, we can still locate it precisely in an
untrusted kernel memory by using its ptr-rexp.

3.2 Handling Practical Issues
Handling Loops. Because of the use of recursive data structures,
e.g., arrays, link lists, and trees, one PC can be used multiple times

618

(with different targeted memory addresses) in a ptr-rexp. For in-
stance, to remove a Linux kernel module, kernel will iterate each
module descriptor to find the to-be-removed module, and then call
module.exit function. During the iteration, instruction that iter-
ates (module.list.next) will be used multiple times to reach
the final desired module. Then, if we back track the dependence
graph from the instRecord Hashtbl (examples shown in Table 2),
we will not be able to find the unique path. As such, we introduce a
counter to our PC to make the back-tracking unique and generate
an abstract ptr-rexp for the recursive data structures. More specif-
ically, all of our own data structure defined in Fig. 2 will not be
changed except that the PC becomes (PC,counter), where counter
is initially 0 and gets increased by 1 whenever encountering a new
data dependence while iterating the loop.

However, directly using the above (PC,counter) dependence
graph would only capture one instance of ptr-rexp. Therefore, we
would like to generate an abstract representation that captures all
of its instances. To generate an abstract ptr-rexp, we need to build
a path graph G = (V,E), which captures the dependencies among
the instructions that are used to calculate the address of the function
pointer. Here node V denotes the instructions involved in the ad-
dress calculation, and edge E denotes the dependencies between the
instructions. G is built when we back track the instRecord. Then
we traverse G to generate the abstract representation of the recursive
ptr-rexp. Similar to regular expressions where a string can have one
or multiple appearances, our abstract representation of the ptr-rexp
can capture the cases where one or multiple dereferences are needed
to reach a particular pointer instance. Details are elided due to space
limitation.

Pruning the ptr-rexp of Non-persistent Pointers. It is possible
that a function pointer can only exist in certain time window, e.g.,
kernel could allocate a dynamic object at certain context, and later
remove it. We call this pointer non-persistent. For any snapshot based
memory analysis, we have to exclude them because we cannot check
them in a reliable way (unless with execution context information).

To prune these non-persistent pointers, our approach is quite
straightforward. Specifically, we just take N number of memory
snapshots running with diverse workloads to perform the cross check
during the dynamic execution phase, which is also how HookScout [35]
inspects whether a pointer is persistent. Currently, we set N as 100.
If the pointer exists over all the memory snapshots (by traversing
them through our ptr-rexp), then we keep it. Otherwise, we will not
check these pointers.

Merging the Target Values for Mutable Pointers. Also, a persis-
tent pointer can change its value during its life span. Therefore,
when checking its integrity, we have to be aware that such a pointer
could have a set of trusted values. To this end, we just merge these
values whenever we observe there is a different trusted value in the
trusted memory snapshot.

4. POINTER INTEGRITY CHECKER
Given a ptr-rexp of a kernel function pointer f , with a trusted

kernel memory snapshot Mt and an untrusted kernel Mu, our pointer
integrity checker aims to identify whether f has been compro-
mised by comparing ptr-rexp(f ,Mt) and ptr-rexp(f ,Mu) where
ptr-rexp(α,M) denotes the concrete address when following the
ptr-rexp of α in snapshot M. There are two steps in this comparison.

Step-I: Direct Value Comparison for Core Kernel Code. If f
points to core kernel code (which are those excluding kernel mod-
ules) and the value of ptr-rexp(f ,Mu) belongs to the trusted values
set from ptr-rexp(f ,Mt), meaning that this pointer is not compro-

(a) Relocation Table

OFFSET TYPE VALUE
0000000d R_386_PC32 current_kernel_time
00000013 R_386_32 init_task
0000001c R_386_32 init_task
00000031 R_386_32 .rodata.str1.1
...

 00000000 <init_module>:
 0: 55 push %ebp
 1: 57 push %edi
 2: 56 push %esi
 3: 53 push %ebx
 4: 83 ec 10 sub $0x10,%esp
 7: 8d 44 24 08 lea 0x8(%esp),%eax
 b: 50 push %eax
 c: e8 fc ff ff ff call d <init_module+0xd>
 11: 8b 1d 50 00 00 00 mov 0x50,%ebx
 17: 83 eb 50 sub $0x50,%ebx
 1a: 81 fb 00 00 00 00 cmp $0x0,%ebx
 20: 8b 7c 24 08 mov 0x8(%esp),%edi
 24: 8b 6c 24 0c mov 0xc(%esp),%ebp
 28: 74 21 je 4b <init_module+0x4b>
 2a: ff b3 88 00 00 00 push 0x88(%ebx)
 30: 68 00 00 00 00 push $0x0
 ...

(b) Disassembly of the Static Code

0xd894e000: 55 push %ebp
0xd894e001: 57 push %edi
0xd894e002: 56 push %esi
0xd894e003: 53 push %ebx
0xd894e004: 83 ec 10 sub $0x10, %esp
0xd894e007: 8d 44 24 08 lea 0x8(%esp), %eax
0xd894e00b: 50 push %eax
0xd894e00c: e8 43 e0 7c e7 call 0xc011c054
0xd894e011: 8b 1d 90 7a 28 c0 mov %ds:-0x3fd78570(), %ebx
0xd894e017: 83 eb 50 sub $0x50, %ebx
0xd894e01a: 81 fb 40 7a 28 c0 cmp $0xc0287a40, %ebx
0xd894e020: 8b 7c 24 08 mov %ss:0x8(%esp), %edi
0xd894e024: 8b 6c 24 0c mov %ss:0xc(%esp), %ebp
0xd894e028: 74 21 je 0xd894e04b
0xd894e02a: ff b3 88 00 00 00 push %ds:0x88(%ebx)
0xd894e030: 68 a4 e0 94 d8 push $0xd894e0a4
...

(c) Disassembly of the Dynamically Loaded Code in Memory Snapshot

Figure 3: Code differences in static disk image and dynamic
memory snapshot for the same function

mised in Mu, then we directly return since this pointer is trusted.
Otherwise, if it points to kernel modules, goto Step-II. Otherwise,
we return this pointer has been compromised.

To decide whether a pointer points to core kernel code or kernel
module is trivial because we have the trusted kernel. In our analysis
phase, we check each ptr-rexp and verify its target address. If it does
not belong to kernel module, then we conclude its the core kernel
code and directly compare the values.

Step-II: Direct Target Comparison for Kernel Modules. When
f points to kernel modules, it becomes more sophisticated as we
cannot compare its value with the trusted kernel any more. Instead,
we have to compare its targeted code. Before presenting our solution,
we would like to first examine how a kernel module is loaded, and
what the code difference is in different executions. In general, kernel
code is composed of: (1) static core kernel code, and (2) dynami-
cally loaded kernel modules. Functions in dynamically loaded kernel
modules may be loaded to different memory addresses. As a result,
some of the operands of some instructions need to be dynamically
patched when loading the modules. The patching is informed by the
relocation table in the binary code generated by compilers. For ex-
ample, as shown in Fig. 3(c) for a kernel module code snippet which
is disassembled from a memory snapshot, compared to Fig. 3(b), we
could find there are four operand-patches at relative offset 0xd, 0x13,
0x1c, 0x31, and these locations are specified in the relocation tables
in the module’s binary code. Such a dynamic patching mechanism
works for both Windows and Linux kernel modules.

619

Table 3: The number of exercised reference path.
Kernel
Version Call-MEM Call-REG Jmp-MEM Jmp-REG ∑

2.6.08 1234 155 250 0 1639
2.6.13 1175 141 257 11 1584
2.6.24 1237 474 231 0 1942
2.6.28 1182 423 273 0 1878
2.6.30 1262 456 282 0 2000
2.6.32 1284 365 232 0 1881
2.6.33 1284 366 227 0 1877
2.6.34 1286 360 245 0 1891
2.6.35 1239 352 239 0 1830
2.6.38 1213 375 234 15 1837
3.0.0 1394 451 276 29 2150
Average 1254 398 250 5 1907

Therefore, our solution is to directly compare the code page of
the targeted function body in both Mu and Mt . More specifically,
since we have the starting address of the function (that is the pointer
value) and the relocation table of the targeted module (that is from
the trusted kernel), then we compare each un-patched byte (the
patched byte is informed by the information stored in the relocation
table) until the end of the function. We can know the end address of
the target function, because we have the ground truth of the trusted
kernel modules and they are not usually obfuscated (that also ex-
plains why FPCK rejects the unknown kernel modules). There could
be some optimizations, such as only comparing the first x-bytes of
the code. In our design, we just compare the entire function body.

5. EVALUATION
We have developed a prototype of FPCK with over 10K lines of

our own C code. Among then, 8K lines of the code (LOC) belongs
to ptr-rexp extractor which is built atop QEMU-1.01 [3] and the rest
2K LOC belongs to the pointer integrity checker that is an indepen-
dent program, which scans the memory, normalizes the instruction
byte in the target page, and performs the comparison. In this section,
we present our evaluation result. We first tested the effectiveness
of FPCK with a number of Linux kernels and a number of kernel
rootkits in §5.1. We report the performance of each component of
FPCK in §5.2. All of our experiments were carried out on a host
machine with Intel Xeon W5620 CPU, 24G memory, running Red
Hat Enterprise 6.2 with Linux kernel 2.6.32.

5.1 Effectiveness
Experiment Setup. We acquired an extensive test case suite from
the Linux test project (LTP) [2] for our dynamic analysis. The LTP
consists of a large set of regression tests designed to confirm the
behavior of a Linux kernel. In total, we downloaded 2,173 test cases
from LTP. Interestingly, the LTP test suite has several test cases for
each specific aspect of Linux kernel, and we consider these cases
as duplicates since they all test the same kernel functionality. Thus,
we select only one test case from each functionality test suite to be
part of our test cases. Also we limit each test case to be finished in 5
minutes. If not, we removed it from our final set of test cases. After
applying these constraints, we end up with 440 test cases, which we
package them in a script file and automatically execute them in the
trusted OS.

Result. To test how effective our kernel ptr-rexp extractor is, we
took 11 Linux kernels. As shown in Table 3, for each tested Linux
kernel (installed with the default kernel modules or device drivers),
we evaluated how many ptr-rexp we extracted from the indirect con-
trol flow transfers. Specifically, these indirect control flow transfers
include indirect calls via a memory address (Call-MEM), indirect

Table 4: Kernel pointer check with Linux rootkits. “-” denotes
there is no trusted value.

Symbol Name of Trusted Hijacked
Rootkit the Pointer Value Value |C|

module->init - 0xd0923ad6 2
moduel->exit - 0xd0923af7 2

sys_read 0xc0144d27 0xd092343c 1
override sys_chdir 0xc0143ced 0xd0923001 1

sys_getuid 0xc011f59c 0xd09232ce 1
sys_geteuid 0xc011f5ac 0xd09232f1 1

sys_getdents64 0xc0154292 0xd0923314 1
module->init - 0xd09267e8 2
module->exit - 0xd0926896 2

sys_fork 0xc010488a 0xd092651e 1
sys_write 0xc0144d8a 0xd09265f6 1

Synapsys-0.4 sys_open 0xc014444c 0xd0926000 1
sys_kill 0xc0121fa5 0xd09264c5 1

sys_clone 0xc01048a4 0xd092657f 1
sys_getdents 0xc0154082 0xd09265e0 1
sys_getuid 0xc011f59c 0xd09263f9 1

module->init - 0xd091b1aa 2
module->exit - 0xd091b215 2

sys_utime 0xc0143970 0xd091b000 1
kbdv3 sys_getuid 0xc011f59c 0xd091b142 1

sys_utimes 0xc0143b84 0xd091b097 1
sys_read 0xc0144d27 0xce271000 1
sys_open 0xc014444c 0xcdde6000 1

phalanx-b6 sys_newlstat 0xc014c7ad 0xcdde3000 1
sys_lstat64 0xc014c9a8 0xcdde2000 1

tcp4_seq_show 0xc022be91 0xcdde5000 1
module->init - 0xd8985000 2
module->exit - 0xd897f9b4 2

ext3.ext3_readdir dynamic 0xdd97f774 6
adore-2.6 do_sync_write 0xc0144bb0 0xd897f8a4 5

proc_root_readdir 0xc016b608 0xd897f477 6
proc_root_lookup 0xc016b5ba 0xd897f13e 6

module->init - 0xd091b05d 2
rkit-1.01 module->exit - 0xd091b097 2

sys_setuid 0xc0123209 0xd091b000 1
suckit-2 idt enty 0x80 0xc0105f68 0xcc8c0906 1

module->init - 0xd08c3000 2
hookswrite module->exit - 0xd0843216 2

idt enty 0x80 0xc0105f68 0xd0843000 1
module->init - 0xd08a119c 2

int3backdoor idt enty 0x3 0xc0106b48 0xd08a1000 1

call via a register (Call-REG), indirect jumps to a memory address
(JMP-Mem), and indirect jumps via a register value (JMP-REG).
We can see from Table 3 that our extractor has revealed thousands
of reference expressions to reach those kernel function pointers, and
the majority of them are from indirect Call-MEM cases. Since our
extractor is dynamic analysis based, certainly it does not expose
all of the kernel function pointers. However, it has exercised those
commonly used, which are also usually of attackers’ interest, as
discussed below.

Checking the Function Pointer Integrity. We also evaluated pointer
value comparer to check the function pointer integrity of Linux
kernel 2.6.08. We took 9 real word rootkits from packetstormse-
curity.org for this experiment. The detailed result is presented in
Table 4. Note that we tweaked the code of Synapsys-0.4 and suckit-2
such that they can be compiled on our testing kernel. The rest were
compiled and ran without any change.

For each rootkit, we present the symbol name of the function
pointer in the 2nd column of Table 4, the trusted value of the function
pointer in the 3rd column, and the hijacked value in the 4th column.
Finally, we present the length of the data reference chain (|C|) in the
last column. As we can see from this table that for each rootkit FPCK
successfully identified all the hijacked pointers without any false
positives (FP) or false negatives (FN). Among these 41 hijacked
pointers, 28 pointers are pointing to the core kernel code, and we

620

 0%

 20%

 40%

 60%

 80%

 100%

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k

A
v

er
ag

e

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

 O
v

er
h

ea
d

w/o Extractor

w/ Extractor

Figure 4: Performance Evaluation with SPEC CPU2006 Pro-
grams on Linux Kernel.

can directly see and compare with the trusted value to detect the
contamination. The rest 13 pointers point to kernel modules, and
they have dynamic addresses. FPCK will compare their targeted
function bodies instead of the values to decide their contamination.
Note that we have acquired the source code of these rootkits, and
we thus have the ground truth of the function pointers these rootkits
hijacked.

There are also several interesting findings for these rootkits. In par-
ticular, two rootkits directly modify kernel function pointers (suckit
via /dev/kmem, phalanx via /dev/mem), and the other seven are
implemented using kernel modules. FPCK quickly identified the
suspect kernel function pointers such as module init and exit.
Also, because we tested these rootkits one by one, they were always
inserted to the head of kernel module list. That is why the |C| of
init and exit functions for the rootkits are all 2, with a ptr-rexp
as *(*(0xc041da18)+0x68) and *(*(0xc041da18)+0x188), respec-
tively. Also, why its |C| is 6 for ext3_readdir, and the reason
is the derived ptr-rexp extractor of ext3_readdir is fetched
from current->fs_struct->dentry->inode ->file_
operations->readdir() (its |C| is 6)

We can also notice that the majority of these rootkits tend to
hijack the core kernel function pointers in global regions (such as
the system call table), except adore-2.6 which hijacks a kernel
module function ext3_readdir. Therefore, we believe that to
hijack the kernel control flow, attackers are more in favor of the
pointers that are always present in the memory such as the system
call tables and are frequently used. Again, these pointers are the
persistent function pointers that FPCK aims to discover.

5.2 Performance Overhead
Extractor. Our ptr-rexp extractor instruments each kernel instruc-
tion to capture the pointer reference expressions. To evaluate this
overhead, namely, how slow an analyst will feel while using FPCK
to extract the ptr-rexp, we took SPEC CPU2006 benchmark pro-
grams and executed them atop our instrumented QEMU. The result
is presented in Fig. 4. We can notice that the overhead for these pro-
grams ranges from 1.6X (for program 456.hmmer and 464.h264ref)
to 10.4X (for 445.gobmk), with an average overhead of 3.3X for
these benchmark programs. Overall, we can observe that for pro-
grams with system call intensive execution, they tend to have larger
overhead, and these overhead mainly comes from our data depen-
dence tracking at kernel level. Note that the instructions of user level
programs will not be monitored, and our extractor only instruments

kernel level instructions. Meanwhile, it is worth noting that extractor
will be only executed in offline analysis.

Checker. From our design, we can notice that the major overhead of
our integrity check comes from (1) identifying the function pointer
location in Mu by following their ptr-rexp for all identified persistent
pointers exposed by our extractor, (2) comparing the value or the
byte stream of the targeted function code. This overhead is what a
FPCK user eventually has. It turns out that this overhead is pretty
small. In particular, it took less than a second (more precisely 0.10s
on average) to check a 1G physical memory image in finding the
hijacked pointers by each rootkit in Table 4. Note that our integrity
check is not a brute force scanning of all kernel memory, and instead
it is guided by a static representation of the addresses of the persistent
kernel function pointers.

6. LIMITATIONS AND FUTURE WORK
Increasing the Coverage. First, like all other dynamic analysis,
FPCK’s results depend on the code coverage at of the running test
cases, and it could miss certain execution paths and have false nega-
tives when recognizing hijacked kernel function pointers. Though
we have tried our best to combine as many test cases as possible, we
have to emphasize that FPCK itself is not a code coverage technique.
Rather, it has used the test suites to cover as many of the kernel
execution paths as possible (these test case exercised paths are also
often of interest to kernel rootkit developers).

Certainly, any code coverage improvement techniques will make
FPCK more practical. Therefore, we plan to investigate other tech-
niques such as symbolic execution (e.g., [7, 9]) to systematically
expand and increase our coverage.

Handling Temporary Pointers. Temporary pointers include non-
persistent pointers that may or may not exist, as well as the local
pointers (including the function argument pointers) only reachable
in certain execution context. Our ptr-rexp extractor currently does
not cover these temporary pointers, and instead all of the supported
pointers start from kernel global variables and they are persistent.
The reason why FPCK does not check these temporary function
pointers is that memory snapshot is context-less (it can be taken
at arbitrary moment). Therefore, we are not able to reliably check
these pointers. This also introduces problems for attackers as they
cannot reliably tamper with them at arbitrary time (that is why they
are more in favor of persistent pointers as discussed earlier).

One possible avenue to address this problem is to recognize the
execution context (e.g., the call stack of each live kernel execution
path) in the memory snapshot, and associate the context to these
temporary function pointers.We leave the investigation of these
techniques in our future work.

Addressing Other Attacks. FPCK currently focuses on kernel func-
tion pointer hijacking attacks exclusively and it does not handle other
attacks such as the direct kernel object manipulation (DKOM). For
the recent ROP based data only rootkits [30], we believe highly
likely FPCK is able to detect them because these attacks still hi-
jack the kernel function pointers (instead of the return addresses as
in [19]), and also they make these pointers pointing to the existing
kernel code gadget and our hash-based integrity checker will be able
to spot them. We leave the evaluation of detecting these data-only
rootkits also in our future work.

Other Limitations. We assumed the kernel code is immutable when
designing FPCK. However, recently Linux and various BSDs be-
gan to support in-kernel just-in-time compilation, as shown in the
network packet filter implementation [10]. Also, kernel tracing and

621

interception mechanisms rely heavily on the runtime code patching,
e.g., Ftrace [29], and Detours [1], which will also modify the kernel
code. Certainly, FPCK will not work in these situations.

7. RELATED WORK
Since the favorite targets of many kernel attacks are the function

pointers, there is a large body of research focusing on locating
the kernel pointers and checking their integrity. In this section, we
review and compare FPCK with these related works.

Intuitively, locating a kernel function pointer in memory would
require the kernel data structure definitions. Therefore, SBCFI [24]
made an early attempt of extracting the kernel data structure def-
initions through analyzing the kernel source code and generating
a type map of kernel objects in order to identify the compromised
persistent function pointers in kernel memory. Later on, various
approaches have been proposed to address the limitations of SBCFI
(e.g., cannot type void pointers, cannot prevent pointer hijacking
other than the detection, and does not attempt to recognize the in-
variants) by systems such as Gibraltar [5], KOP [8], HookSafe [31],
LiveDM [27], OSck [18], and MAS [11].

From binary analysis perspective, a number of profiling systems
were proposed to understand the kernel malware behavior including
the function hooking. HookFinder [34] tried to identify the hooks
compromised by kernel rootkit by performing an impact analysis
using dynamic tainting. HookMap [32] leveraged dynamic slicing
to identify the potential hooks in the execution path used by security
applications. It also required kernel symbols to annotate the hooks.
Poker [28] studied the multi-aspect of kernel rootkit by travers-
ing the type graphs extracted from the debugging information or
the kernel source code. Without accessing the kernel source code,
K-Tracer [21] achieved similar goals for rootkit profiling through
dynamic binary analysis but required the knowledge of important
kernel data structures (e.g., EPROCESS in Windows).

Memory analysis based approach can only detect the tampering
with the kernel function pointers. To have prevention capability,
HookScout [35] proposed a proactive defense by tracking the kernel
heap object that contains the function pointers and preventing unau-
thorized modification against them. These objects are identified by
tracking whether the value of a static function pointer flows to the
kernel object. If so, the object must contain a kernel function pointer.
The values of a function pointer were pre-identified using a static
binary code analysis, facilitated by the relocation information from
the kernel binary. HookScout also required the cooperation of an
in-VM kernel module. In addition, it cannot be used for snapshot-
based memory analysis since it does not tell how a function pointer
can be reached in the kernel heap.

Most recently, HookLocator [4] demonstrated that we can periodi-
cally check the integrity of the persistent function pointers in the ker-
nel heap pool. These heap function pointers are identified by compar-
ing with the known function pointer values, which are pre-extracted
through relocation table guided approach as HookScout, or through
a cross-comparison approach between memory snapshots. While
HookLocator does not require the entire kernel data structure knowl-
edge, it still needs to know how to traverse the kernel heap pools.

Besides HookLocator, BlackSheep [6] was another lightweight
approach to identify the contamination of (persistent) kernel func-
tion pointers. It did not intend to precisely identify the locations
of the function pointer and then perform the integrity check, but
rather directly identify them through a pattern-matching based cross
comparison approach among a crowed VMs since cloud usually
hosts many homogeneous VMs.

Therefore, as summarized in Table 5, we can notice that the exist-
ing efforts require either kernel source code, or debugging symbols,

Table 5: Comparison with the most related works.

Systems wo/
Sou

rce
Cod

e

wo/
Kern

el
Sym

bols

wo/
Relo

ca
tio

n Tab
le

wo/
Kern

el
Data

Stru
ctu

re

wo/
In

-V
M

Assi
sta

nce

wo/
Patt

ern
M

atc
hing

Con
tin

uou
s M

on
ito

rin
g

Snap
sh

ot-
base

d

Pro
filin

g

Dete
cti

on

SBCFI [24] 7 X X 7 X X 7 X 7 X
HookFinder [34] X X X 7 7 X X 7 X 7

HookMap [32] X 7 X X X X X 7 X 7
Gibraltar [5] 7 X X 7 X X 7 X X X

K-Tracer [21] X 7 X 7 X X X 7 X 7
Poker [28] 7 7 X 7 X X 7 X X 7

KOP [8] 7 X X 7 X X 7 X X X
HookSafe [31] 7 7 X 7 7 X X 7 7 X

HookScout [35] X X 7 X 7 X X 7 X X
LiveDM [27] 7 7 X 7 X X X 7 X X

OSck [18] 7 7 X 7 X X 7 X X X
HUKO [33] X 7 X X 7 X X 7 7 X

MAS [11] 7 X X 7 X X 7 X X X
BlackSheep [6] X X X X X 7 7 X X X

HookLocator [4] X X 7 7 X 7 7 X X X
FPCK X X X X X X 7 X X X

or relocation tables, or kernel data structure definitions to locate the
kernel function pointers. There are other approaches that can directly
work on binary as in HookLocator, but rely on certain heuristics to
identify the kernel function pointers (such as purely based on the val-
ues) which may lead to false positives. For instance, there could be
cases that a kernel heap object contains a large integer value which
looks like a function pointer. In this way, HookLocator will make
mistakes. As such, we still need techniques that can directly extract
the locations of persistent kernel pointers (including those allocated
in the dynamic kernel heap), and then inspect their integrity based
on their locations. FPCK is exactly designed to achieve these goals.

8. CONCLUSION
We have presented FPCK, a binary exclusive approach for auto-

matically locating kernel function pointers for their integrity check-
ing. To locate the function pointers, we propose an on-demand
pointer reference expression generation algorithm that extracts data
reference expressions for kernel pointers during the kernel execution.
This pointer reference expression encodes how a pointer is accessed
through the combination of a base address (usually a kernel global
variable) with certain offset and further pointer dereference opera-
tions, and allows us to locate them in different instances of a kernel
memory. To check their integrity, we propose to compare the func-
tion pointers of an untrusted kernel memory image against the ones
in the trusted kernel. We have implemented a prototype of FPCK.
Our experimental results with a number of real world kernel malware
form Linux platform show that FPCK can automatically identify
all the hijacked pointers for these testing samples within just few
seconds. We believe FPCK will be particularly useful for both public
and private cloud providers to check the guest kernel integrity and
estimate the function pointer damages inflicted by kernel malware.

9. ACKNOWLEDGEMENT
We thank the anonymous reviewers for their insightful feedback.

This research was partially supported by an AFOSR grant FA9550-
14-1-0119, and an NSF grant 1453011. Any opinions, findings, con-
clusions, or recommendations expressed are those of the authors and
not necessarily of the AFOSR and NSF.

622

10. REFERENCES
[1] Detours.

https://research.microsoft.com/en-us/projects/detours/.
[2] Linux test project. http://ltp.sourceforge.net/.
[3] QEMU: an open source processor emulator.

http://www.qemu.org/ .
[4] AHMED, I., RICHARD, G., ZORANIC, A., AND ROUSSEV, V.

Integrity checking of function pointers in kernel pools via
virtual machine introspection. In Proc. of th 16th Information
Security Conference (ISC’13) (Dallas, Texas, USA, 2013).

[5] BALIGA, A., GANAPATHY, V., AND IFTODE, L. Automatic
inference and enforcement of kernel data structure invariants.
In Proceedings of the 2008 Annual Computer Security
Applications Conference (ACSAC’08) (Anaheim, California,
December 2008), pp. 77–86.

[6] BIANCHI, A., SHOSHITAISHVILI, Y., KRUEGEL, C., AND
VIGNA, G. Blacksheep: detecting compromised hosts in
homogeneous crowds. In Proceedings of the 2012 ACM
conference on Computer and communications
security(CCS’12) (Raleigh, NC, USA, 2012).

[7] CADAR, C., DUNBAR, D., AND ENGLER, D. Klee:
Unassisted and automatic generation of high-coverage tests
for complex systems programs. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI’08)
(San Diego, CA, 2008).

[8] CARBONE, M., CUI, W., LU, L., LEE, W., PEINADO, M.,
AND JIANG, X. Mapping kernel objects to enable systematic
integrity checking. In The 16th ACM Conference on Computer
and Communications Security (CCS’09) (Chicago, IL, USA,
2009), pp. 555–565.

[9] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2e: a
platform for in-vivo multi-path analysis of software systems.
In Proceedings of the sixteenth international conference on
Architectural support for programming languages and
operating systems(ASPLOS’11) (Newport Beach, California,
USA, 2011), pp. 265–278.

[10] CORBET, J. A jit for packet filters, 2011.
http://lwn.net/Articles/437981/.

[11] CUI, W., PEINADO, M., XU, Z., AND CHAN, E. Tracking
rootkit footprints with a practical memory analysis system. In
Proceedings of the 21st conference on USENIX Security
Symposium(Security’12) (Bellevue, WA, USA, Aug. 2012).

[12] FU, Y., AND LIN, Z. Space traveling across vm:
Automatically bridging the semantic-gap in virtual machine
introspection via online kernel data redirection. In
Proceedings of the 2012 IEEE Symposium on Security and
Privacy(S&P’12) (San Francisco, CA, May 2012).

[13] FU, Y., AND LIN, Z. Exterior: Using a dual-vm based
external shell for guest-os introspection, configuration, and
recovery. In Proceedings of the Ninth Annual International
Conference on Virtual Execution Environments(VEE’13)
(Houston, TX, March 2013).

[14] GANAPATHI, A., GANAPATHI, V., AND PATTERSON, D.
Windows xp kernel crash analysis. In Proceedings of the 20th
Conference on Large Installation System
Administration(LISA’06) (Washington, DC, 2006), USENIX
Association, pp. 12–12.

[15] GU, W., KALBARCZYK, Z., IYER, K., AND YANG, Z.
Characterization of linux kernel behavior under errors. In
Proceedings of 2003 International Conference on Dependable
Systems and Networks(DSN’03) (San Francisco, CA, USA,
2003), pp. 459–468.

[16] GU, Y., FU, Y., PRAKASH, A., LIN, Z., AND YIN, H.
Os-sommelier: Memory-only operating system fingerprinting
in the cloud. In Proceedings of the 3rd ACM Symposium on
Cloud Computing (SOCC’12) (San Jose, CA, USA, 2012).

[17] GU, Y., FU, Y., PRAKASH, A., LIN, Z., AND YIN, H.
Multi-aspect, robust, and memory exclusive guest os
fingerprinting. IEEE Transactions on Cloud Computing
(2014).

[18] HOFMANN, O. S., DUNN, A. M., KIM, S., ROY, I., AND
WITCHEL, E. Ensuring operating system kernel integrity with
osck. In Proceedings of the sixteenth international conference
on Architectural support for programming languages and
operating systems(ASPLOS’11) (Newport Beach, California,
USA, 2011), ACM, pp. 279–290.

[19] HUND, R., HOLZ, T., AND FREILING, F. C. Return-oriented
rootkits: Bypassing kernel code integrity protection
mechanisms. In Proceedings of the 18th Conference on
USENIX Security Symposium(Security’09) (Montreal, Canada,
2009), pp. 383–398.

[20] JOHNSON, R., AND WAGNER, D. Finding user/kernel pointer
bugs with type inference. In Proceedings of the 13th
Conference on USENIX Security Symposium(Security’04)
(San Diego, CA, USA, 2004), pp. 9–9.

[21] LANZI, A., SHARIF, M. I., AND LEE, W. K-tracer: A system
for extracting kernel malware behavior. In Proceedings of the
2009 Network and Distributed System Security
Symposium(NDSS’09) (San Diego, CA, USA, 2009).

[22] LIN, Z., RHEE, J., ZHANG, X., XU, D., AND JIANG, X.
Siggraph: Brute force scanning of kernel data structure
instances using graph-based signatures. In Proceedings of the
18th Annual Network and Distributed System Security
Symposium (NDSS’11) (San Diego, CA, February 2011).

[23] NEWSOME, J., AND SONG, D. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. In Proceedings of the 14th
Annual Network and Distributed System Security Symposium
(NDSS’05) (San Diego, CA, February 2005).

[24] PETRONI, JR., N. L., AND HICKS, M. Automated detection
of persistent kernel control-flow attacks. In Proceedings of the
14th ACM Conference on Computer and Communications
Security (CCS’07) (Alexandria, Virginia, USA, October 2007),
ACM, pp. 103–115.

[25] QUYNH, N. A. Operating system fingerprinting for virtual
machines, 2010. In DEFCON 18.

[26] RHEE, J., LIN, Z., AND XU, D. Characterizing kernel
malware behavior with kernel data access patterns. In
Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security(AsiaCCS’11) (Hong
Kong, March 2011).

[27] RHEE, J., RILEY, R., XU, D., AND JIANG, X. Kernel
malware analysis with un-tampered and temporal views of
dynamic kernel memory. In Proceedings of the 13th
International Symposium of Recent Advances in Intrusion
Detection (RAID 2010) (Ottawa, Canada, September 2010).

[28] RILEY, R., JIANG, X., AND XU, D. Multi-aspect profiling of
kernel rootkit behavior. In Proceedings of the 4th ACM
European conference on Computer systems (EuroSys’09)
(Nuremberg, Germany, 2009), pp. 47–60.

[29] ROSTEDT, S. Debugging the kernel using ftrace, 2009.
http://lwn.net/Articles/365835/.

623

[30] VOGL, S., PFOH, J., KITTEL, T., AND ECKERT, C.
Persistent data-only malware: Function hooks without code.
In Proceedings of the 21th Annual Network and Distributed
System Security Symposium (NDSS’14) (San Diego, CA, USA,
2014).

[31] WANG, Z., JIANG, X., CUI, W., AND NING, P. Countering
kernel rootkits with lightweight hook protection. In
Proceedings of the 16th ACM conference on Computer and
communications security(CCS’09) (Chicago, Illinois, USA,
2009), pp. 545–554.

[32] WANG, Z., JIANG, X., CUI, W., AND WANG, X. Countering
persistent kernel rootkits through systematic hook discovery.
In Proceedings of the 11th International Symposium on
Recent Advances in Intrusion Detection(RAID’08)
(Cambridge, MA, USA, 2008), pp. 21–38.

[33] XIONG, X., TIAN, D., AND LIU, P. Practical protection of
kernel integrity for commodity os from untrusted extensions.
In Proceedings of the Network and Distributed System
Security Symposium (NDSS’11) (San Diego, CA, 2011).

[34] YIN, H., LIANG, Z., AND SONG, D. HookFinder:
Identifying and understanding malware hooking behaviors. In
Proceedings of the 15th Annual Network and Distributed
System Security Symposium(NDSS’08) (San Diego, CA, USA,
2008).

[35] YIN, H., POOSANKAM, P., HANNA, S., AND SONG, D.
HookScout: Proactive binary-centric hook detection. In
Proceedings of Seventh Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA’10) (Bonn,
Germany, July 2010).

624

	1 Introduction
	2 Background and Overview
	3 Ptr-rexp Extractor
	3.1 Deriving ptr-rexp
	3.2 Handling Practical Issues

	4 Pointer Integrity Checker
	5 Evaluation
	5.1 Effectiveness
	5.2 Performance Overhead

	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	9 Acknowledgement
	10 References

