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Abstract We report an experimental study of the struc-
ture and dynamics of a bidimensional array of liquid
columns. This pattern is formed below a flat porous plate
continuously supplied with liquid. It exhibits a marked
hexagonal tendency. Its typical wavelength is close to that
of the most dangerous mode of the Rayleigh–Taylor
instability of a thin viscous layer hanging below a plate,
defined by the competition between gravity and surface
tension. Collective dynamical behaviors are also evi-
denced, involving oscillations of the column positions,
columns migrations, coalescences and nucleations. Quan-
titative comparisons are presented with the equivalent
one-dimensional pattern formed below the perimeter of an
overflowing dish (‘‘circular fountain experiment’’).

1
Introduction
A viscous layer hanging below a horizontal substrate is
known to undergo instability, leading to the formation of
networks of pendent drops (Hynes 1978; Yiantsios and
Higgins 1989; Fermigier et al. 1992). This instability is a
particular case of the famous Rayleigh–Taylor instability,
investigated long ago by Rayleigh (1900) and Taylor
(1950), except that viscosity, instead of inertia, governs
kinetics here. This cross-over between inertia-dominated
situations and viscosity-dominated situations has moti-
vated several works (Chandrasekhar 1961; Plesset and
Whipple 1974), a classification of the possible regimes
being available in Limat (1993). Among the results dis-
cussed in this reference, it turns out that provided that the
layer is thin enough compared to the capillary length
lc ¼ c

qg (c surface tension, q liquid density, g acceleration

of gravity) and to a viscous scale lv ¼ ð g2

q2gÞ
1=3; the final

lattice of the pendant drop exhibits a typical wavelength:

kM ¼ 2p
ffiffiffi

2
p

lc: ð1Þ

This is in very good agreement with both experiments
(Fermigier et al. 1992) and numerical simulations
(Yiantsios and Higgins 1989). A typical picture of the
experiments reported in Fermigier et al. (1992) is repro-
duced in Fig. 1a. This experiment also reveals a marked
tendency of this system to favor the hexagonal symmetry,
a fact also mentioned long ago by Whitehead et al. for
experiments carried out with moderately thick layers of
viscous fluids (1975).

The Rayleigh–Taylor (RT) instability of a thin layer
occurs in many natural or applied situations (geophysics,
technical devices involving films, bubble emission in film
boiling, etc.). On the other hand, in many of these appli-
cations, the unstable layer is an open system exchanging
liquid with an external source. One can think of, among
other examples, film-boiling experiments (Berenson 1962),
diapir formation in geophysics (Whitehead et al. 1975), or
film flows in tubular heat exchangers (Ganic and Roppo
1980). In these devices, a liquid cascades onto a series of
horizontal tube, with RT instability occurring below each
tube. A natural question here is how this external supply of
liquid modifies the typical features of the obtained pattern.
This question has been investigated in 1-D in two exper-
iments (Giorgiutti et al. 1995; Counillon et al. 1998; Brunet
2002; Brunet et al. 2001), below a single horizontal tube
and below the perimeter of a circular overflowing fountain
respectively (see Fig. 1b and c). At a low flow rate, RT
instability combined with the external supply leads to the
appearance of a regular network of pendent drops, from
which smaller falling drops are emitted at a well-defined
frequency. At a higher flow rate this pattern is replaced by
a remarkably regular pattern of liquid columns whose
wavelength is a bit smaller than that expected from Eq. 1.

This result was not in fact so new, as observations of the
dripping and column regimes are available in the technical
literature relative to tubular heat exchangers (Ganic and
Roppo 1980), or in previous investigations of similar flows
performed in a different context (Carlomagno 1974; Prit-
chard 1986). On the other hand, a remarkable fact reported
in (Giorgiutti et al. 1995; Counillon et al. 1998; Brunet et al.
2001) was that the array of liquid columns exhibits com-
plex spatio–temporal behaviors suggested in Fig. 2.
Depending on the possible symmetry-breaking of the
interface connecting two columns, these ones can remain
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UMR7636 CNRS, Ecole Supérieure de Physique et Chimie
Industrielles, 10, rue Vauquelin, 75231
Paris Cedex 05, France
E-mail: brunet@mech.kth.se

L. Limat
Fédération de Recherche Matière et Systèmes Complexes,
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static (Fig. 2a), or can undergo a drift at a constant speed
(Fig. 2b) or oscillations of the column positions (Fig. 2c).
Non-trivial combinations of these two last states, with
coalescences/nucleations phenomena, can lead to
increasing complexity with the possible appearance of
spatio–temporal chaos (Brunet 2002; Brunet et al. 2001).
These behaviors are very similar to those observed in other
one-dimensional pattern forming instabilities (Flesselles

et al. 1991; Cross and Hohenberg 1993) that have raised
considerable interest in non-linear physics.

A question now still open is what would happen when
this modified Rayleigh–Taylor instability under continu-
ous supply is combined with a 2-D geometry similar to
that of Fig. 1a. Will the hexagonal symmetry reported in
Fermigier et al. (1992) be observed again? How will the
dynamics be affected? To investigate these questions we
have devised a simple experiment in which columns are
formed below a horizontal porous plate continuously fed
with liquid (Brunet 2002). This experiment is described in
the present paper together with the first results recently
obtained. As we shall see, spectacular 2-D networks of
liquid columns are observed, with the expected tendency
to form hexagonal structures. The observed wavelengths
are compared to their equivalents in 1-D. As we shall see
the wavelengths dependence upon flow-rate are very
similar in 1-D and 2-D, the values remaining close to that
from in Eq. 1. The dependence of the oscillations fre-
quency versus flow-rate is also very similar in 1-D and 2-D
except that quantitative differences seem to be involved.
Finally, qualitative differences are observed concerning the
transition towards spatio–temporal chaos. In the 2-D case,
there exist stable fronts bordering on disordered and static
domains. This is not observed in 1-D, where disorder
always spreads through the whole pattern.

A similar network of liquid columns has also been
reported and investigated in another experiment published
recently (Pirat et al. 2004), with rather different boundary
conditions (column positions rigidly fixed at the bound-
aries). The same tendency to form a hexagonal network
was also observed, together with dynamics phenomena
specific to these conditions.

Fig. 2a–c. Typical possible states of a cell inside a 1-D pattern of
liquid columns. The motion is indicated by arrows. a Symmetrical
arch connecting two static columns. b Asymmetrical, dilated arch
between two drifting columns. c Symmetrical, alternatively
dilated or shrunk arches between oscillating columns

Fig. 1a–c. Experiments connected to those presented in this
article. a Network of pending drops under a plate (from Fermigier
et al. 1992). b Array of liquid columns under an overflowing
hollow cylinder. c Array of liquid columns under an overflowing
circular dish
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2
Experimental setup
The experimental setup is suggested in Fig. 3a. A liquid
(silicon oil) put into motion by a gear pump (ISMATEC
BVP-Z (a)), flows across a flow-meter (b), and is contin-
uously supplied to a partially-filled cylindrical chamber
(c). This chamber is made of a Plexiglas cylinder and two
steel plates, a large hole 15 cm in diameter being drilled in
the bottom. In this hole, a ‘‘porous medium’’ is inserted,
constituted by a thick packing (thickness h = 10 mm) of
mono-disperse spherical glass balls (diameter
d = 1.5 mm) compressed between two parallel flat rigid
steel grids (see Fig. 3b). The liquid flows across the porous
medium, and accumulates below the lowest grid where it
undergoes a Rayleigh–Taylor instability. At a high enough
flow-rate, this instability leads to a 2-D pattern of liquid
columns (d) reproduced in Fig. 3c).

The grid used is also visible in this figure. To limit as
much as possible any bias introduced by the grid struc-
ture, we have used an ‘‘isotropic’’ grid of triangular sym-
metry (plates drilled with a triangular lattice of holes),
whose typical mesh (1 mm) is small compared to the
natural scale of the pattern (centimetric scale). We have
not observed any particular change when trying to modify

the grid mesh. The total surface of the grid, across which
the liquid is flowing is a circular disk /=15 cm in radius,
surrounded by a metal rim, also visible in the figure. In
order to avoid that too much liquid remains captured by
the metal rim surrounding the grid, a very thin circular
mask 7 cm in radius is placed between the grid and the
packing of spheres. This preserves the circular boundary
conditions imposed by the rim and avoids the observation
of unphysical columns spots in the pictures taken from
below. Later, hexagonal masks were also introduced (see
next part) to change these boundary conditions and to
improve the hexagonal tendencies observed for this pat-
tern.

The horizontality of the chamber, i.e., of the lowest
grid, is tuned by a three-screws system. Also, the liquid
level inside the chamber is selected by opening and closing
a hole drilled across the upper steel plate of the cell. Using
this half-filled chamber allows us to damp the possible
residual perturbations introduced by the pump. Also, by
controlling the constancy of the liquid level, one can check
that the system has reached a stationary state with a well-
defined, constant and uniformly distributed flow rate
across the grids. Note also that the presence of the porous
medium is very helpful to limit the flow across the grids. In
fact, in some sense, we are looking at a pattern formed on
a liquid film hanging below a grid, the porous medium
being here only to regularize and limit the flow. A different
strategy, used by the Nice group (INLN) consists in using
only a single grid without the porous medium and con-
trolling the pressure inside the chamber. Playing with this
pressure allows one also to control the level of liquid
inside the chamber. In our opinion this difference should
not matter too much for the pattern properties.

Fig. 3. a Sketch of the experimental setup. b Magnified view of the
porous medium used, confined between two grids. c An example
of the 2-D pattern of liquid columns formed below the lowest grid

Fig. 4a–d. Bidimensional lattice of liquid columns viewed from
below, g=50 cP and with circular boundaries. a Q=36.0 cm3/s.
b Autocorrelation of a. c Q=64.0 cm3/s. d Autocorrelation of c

647



Concerning the liquid, we have used two silicon oils of
viscosity equal to g=20 cP and g=50 cP respectively. The
surface tension was equal to c=20.6 dyn/cm, and
c=20.7 dyn/cm respectively, while the mass density was
q=0.95 g/cm3 and q=0.96 g/cm3 respectively.

3
Qualitative description of the flow
We have reproduced in Fig. 4a and c two typical pictures
of the pattern taken from below. Nearly 90 columns (with a
typical variation of ±8 units) constitute the pattern. In
these first experiments, the oil was flowing across the
whole grid, circular boundary conditions being provided
by the metal rim surrounding this grid. To be more pre-
cise, the thickness of this metal rim is such that the grid is
in fact surrounded by a cylindrical vertical wall on which
oil is flowing. At first sight, in these circular boundary
conditions a certain tendency towards a hexagonal
geometry is observed but with a very strong disorder. To
check it, we have extracted from these figures spatial
autocorrelation pictures reproduced in Fig. 4b and d. Just

as the initial pictures, these diagrams are matrices of grey
levels on which a point at coordinate (x, y) will be dark if
the initial picture is spatially well-correlated to its image
translated to the (x, y) vector. At least the first of these
diagrams confirms the hexagonal tendency exhibited by
this 2-D pattern of liquid columns. Let us also mention
that with this circular boundary condition, the pattern is
never static, with the irregular and endless motions of the
columns being observed suggesting a state of permanent
spatio–temporal chaos. Obviously, the presence of the
circular boundary condition is incompatible with the
observance of a regular hexagonal network.

In a second set of experiments, we have tried to amplify
the hexagonal tendency of this pattern by forcing hexag-
onal boundary conditions. First, only a central part of the
grid, of hexagonal shape, has been let open to the flow by
putting a hexagonal mask above the grid, whose vertices
are touching the previous circular boundary of the grid. In
addition, this hexagonal perimeter has been reinforced
below the grid, by six vertical thin Teflon walls (thickness
1 mm), replacing the previous vertical circular wall sur-
rounding the whole grid. These thin Teflon walls, and the
resulting patterns are visible in Fig. 5a. As it appears in
this figure, there are many less defects and it is even
possible to create a static pattern. For both viscosities used
(20 and 50 cP), it is however still difficult to obtain such a
static pattern. To achieve this, one has to correctly tune
initial conditions (number and positions of columns) by
means of thin needles: after touching the top of a column,
one can drive this column to another position by moving
the needle, owing to capillary effects. By driving two
needles at the same time, it is even possible to gather two
columns into one, or to initiate the birth of a column in a
place in which the distance between neighbors is too large.
A static state appears more easily if the pattern is shrunk,
so that it is necessary to provoke the births of several
columns. Figure 5a represents a quasi-static networks of
columns, and only a careful observation allows the
detection of the slow motions of columns around equi-
librium positions.

In spite of visibly non-perfectly homogeneous patterns,
a clearer hexagonal tendency is demostrated within the
entire range of flow-rates. Let us note here that a pattern
can be globally static and not homogeneous. These two
conditions are incompatible in the 1-D array of columns,
where a static pattern is always spatially homogeneous. In
1-D indeed, even the smallest inhomogeneity leads to
collective motions of columns, like drifting domains, or a
transient slow global drift that restores homogeneity due
to phase diffusion (Brunet et al. 2001). However, as in 1-D
arrays, one obtains static cells within shrunk patterns, i.e.,
for the smallest spatial wavelengths. It is of course nec-
essary to provoke the births of lots of columns by the
‘needle-method’ described above. The distance between
static columns is between 1 and 1.2 cm, whereas moving
columns generally have a spacing between 1.5 and 2 cm
from their nearest neighbors.

We have also tried to build Voronoi diagrams, which
offers a different way to visualize the hexagonal tendency
of the pattern. An example is reproduced in Fig. 6 for a
static pattern, in which each cell is a Voronoi cell

Fig. 5a, b. Bidimensional lattice of liquid columns viewed from
below with hexagonal boundaries. a Q=29.7 cm3/s, g=50 cP. b
Autocorrelation of a

Fig. 6. Voronoi-like diagram showing the number of closest
neighbors around each column, for a static pattern
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surrounding a column: this is obtained by image-pro-
cessing which dilates the brightest areas. Into each poly-
gon we have written the number of first neighbors: we can
notice that a pattern of columns can stay static even if
there exist abnormal cells in regards to the perfect hex-
agonal network (i.e., with a number of first neighbors
different from six).

In most experimental conditions (flow-rate and initial
positions of columns), the number of columns fluctuates,
in a state comparable to the spatio–temporal chaotic
regime observed in the circular dish experiment (Brunet
2002; Brunet et al. 2001). Erratic births of columns or
coalescence of two columns into one are observed, and
these defects are responsible for the sustenance of
unpredictable motions. This means in other words that the
dynamics of the pattern will be predictable only if the
number of columns keeps constant. The rate of births/
coalescences increases with the flow-rate, which is also
observed in the one-dimensional similar chaotic pattern.

Contrary to studies of 1-D patterns, one cannot acquire
the complete set of column motions by spatio–temporal
diagrams. The dynamics of the pattern is accessible only
through reduced pictures. We can for example represent
pictures of temporal means: these are simply the result of a
calculation of temporal mean values of grey levels, by
acquiring successive frames. This kind of mean motion-
picture has already been used in others systems (Ning

et al. 1993). Figure 7 give examples of such means, during
long-lasting acquisitions of 1,000 s, from different initial
conditions. The rate of acquisition is one frame per sec-
ond.1 Columns that remained static during the acquisition
appear as the brightest white spots. Displacements of
columns appear as smooth white tracks. Clear tracks
represent lines along which column motions focused. In all
the means reported here, one observes the following
remarkable feature: even after long turbulent regimes,
there exist small domains of static columns. These static
domains coexist with turbulent ones, with sharp separa-
tions. Into turbulent domains, one can also observe two
close spots, as evidence of oscillations between two limit
positions. Generally, erratic births and coalescences of
columns are observed in turbulent domains, which sustain
chaotic motions. In the 1-D array of columns, a single
defect in the spatio–temporal structure leads to a global
contamination of disorder (see Fig. 8). Indeed in 1-D,
defects launch small drifting domains that propagate in
the pattern and are about to collide, creating other defects
and sustaining unpredictable spatio–temporal disorder.

Fig. 7. a–d Temporal averages
in turbulent regimes (g=50 cP)
with hexagonal boundaries and
for different initial conditions
(Q=28.2 cm3/s)

1This low frequency, chosen to allow long-lasting acquisitions
without any memory limitations, does not affect means: temporal
means from shorter acquisitions (1 min), but with a higher fre-
quency of 25 frames per second, do not provide any further
information.
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This contamination process seems to be inhibited in 2-D.
Fronts separating static and turbulent domains are stable
over a long time, allowing the coexistence of both static
and turbulent domains, which is impossible in the 1-D
array.

The same kind of temporal means have also been done
with circular boundary conditions (Fig. 9a and b). Here,
the spatial distribution of disorder is more homogeneous,
and turbulent domains extend almost through the whole
pattern. Because of boundary conditions which do not fit
with the natural hexagonal tendency of the pattern, edges
seem to be sources of defects.

4
Some quantitative results
From autocorrelation pictures, one can extract the mean
wavelength in both static and turbulent regimes. This
wavelength is evaluated at the first maximum of grey
levels. These measurements are plotted in Fig. 10, versus
flow-rate per unit length G, for two viscosities (20 and
50 cP). G is defined as the flow-rate per unit surface (the
flow-rate divided by the surface of the porous medium)
times the mean wavelength. One observes a slight increase
with flow-rate, and k is larger for 20 cP than for 50 cP.

With open symbols, we have also plotted measurements
from the 1-D circular fountain experiment. Remarkably,
the results are very close when one compares the 1-D and
2-D geometry. Let us also note that all these values are
close to the most unstable wavelength of the Rayleigh–
Taylor instability recalled in Eq. 1, which is equal to nearly
1.3 cm for silicon oils.

In addition to the above qualitative approach of tur-
bulent regimes, it has also been possible to extract mea-
surements during predictable behaviors. Figure 11a
illustrates an example of a localized periodic oscillation of
a column (this also leads to a weaker-amplitude oscillation
of one of its neighbors). A local spatio–temporal diagram
of this oscillation can be obtained by extracting grey levels
along the line of displacement of the column (Fig. 11b).
Values of angular frequency are plotted in Fig. 11c. This
frequency grows with the flow-rate, with a law close to
(G)Gc)1/2. These results have qualitative similarities with
the ones obtained in 1-D, but Gc is here quite large (it is
close to zero in 1-D). In 2-D, the angular frequency seems

Fig. 8. Spatio–temporal diagram in the 1-D array of liquid
columns, providing the motion of each column. A defect (here,
inside the circle, the coalescence of two columns into one)
sustains disorder by launching two small drifting domains that
will encounter and create other defects

Fig. 9a, b. Temporal averages
in turbulent regimes with cir-
cular boundaries (g=50 cP).
a Q=26.0 cm3/s and
b Q=64.0 cm3/s

Fig. 10. Mean wavelength between two arrays of columns (filled
symbols). Reference wavelengths measured on the circular
fountain experiment (Counillon et al. 1998; Brunet 2002) are
marked by open symbols. The most unstable Rayleigh–Taylor
wavelength for silicon oils is suggested by the dashed line
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to increase with viscosity, which is not observed in 1-D.
Moreover, the range of flow-rate within oscillations that
can appear is more restricted in the 2-D experiment. A
possible reason for these discrepancies is that, contrary to
the 1-D array of columns where oscillations can extend to
the whole pattern, the oscillations here are localized into a
very reduced area including at most two or three columns.
These oscillations are thus not really the equivalent of the
spatial-period doubling regime in interfacial one-dimen-
sional patterns, particularly in the fountain experiment.

5
Discussion, Conclusions
This study enlightens several features of a bidimensional
network of liquid columns. Comparisons between the 1-D
and 2-D cases show close similarity with what concerns the
wavelength selection. In both cases, one gets results very
close to the classical Rayleigh–Taylor instability of a thin
layer and the same kind of dependence upon flow rate and
viscosity.

One also observes similar oscillating motions of col-
umns in 1-D and 2-D. Frequencies seem to grow expo-
nentially with flow-rate, exponents being close to one half,
despite differences in thresholds and pre-factors. Another
significant difference between 1-D and 2-D concerns the
presence of stable fronts separating static and turbulent
domains in 2-D. In 1-D, it is not possible to observe such a
coexistence: the defects are never localized and due to
propagative drifting domains, they tend to spread all along
the pattern. In 2-D, such contaminating processes seem to
be limited: even if defects sustain disorder, turbulent
motions can still be localized in domains which do not
spread across initially static ones. The positions of tur-
bulent and static areas depend on initial positions of col-
umns. This is presumably in relation to the fact that we
have observed non-homogeneous static patterns and
localized oscillations. These differences from 1-D arrays
may denote the absence of phase diffusion in our 2-D

experiment. In 1-D, this phase diffusion acts as a homo-
geneity process that slowly tends to restore an equal
spacing between columns, and may produce global col-
lective motions of columns. In other words, each column is
sensitive to what happens everywhere in the pattern. This
behavior does not seem to be so prevalent in 2-D.

Qualitative observations have shown comparable
behaviors with a similar experiment developed at the
Institut Non-Lineaire de Nice (INLN) (Pirat et al. 2004), in
which other particular regimes, like the oscillation of a
whole array of columns or a ‘phase wave’ along an array,
have been noticed. Contrary to this last experiment, our
experiments do not exhibit a perfect hexagonal network,
presumably because the geometrical constraints on
boundary conditions are less selective.2 In our system
however, a static hexagonal pattern can exist even if the
spatial distribution of columns is not homogeneous. In
some static cases, the number of first neighbors can locally
be different from six. Autocorrelation operations reveal a
hexagonal tendency: this is more significant if the pattern
is static, but also appears for turbulent patterns.
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