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An Optimal Training Signal Structure for
Frequency-Offset Estimation
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Abstract—This paper addresses an optimal training-signal
design for frequency-offset estimation. Based on minimizing
the Cramer–Rao lower bound for frequency-offset estimation
with constraints on the peak and the total training signal ener-
gies, and the training block length, the optimal training-signal
structure is developed. An approximate version of the optimal
training-signal structure is proposed, which has practically the
same performance as the optimal one, and provides convenience
in training-signal generation and estimator derivation. Two robust
reduced-complexity frequency-offset estimation methods for the
proposed training structures are presented. In order to handle
larger frequency offsets, modified training-signal structures are
proposed. Frequency-offset estimation methods suitable for these
training signals are also derived, based on the best linear unbiased
estimation principle. Analytical and simulation results show that
the proposed training-signal structures improve the estimation
performance significantly.

Index Terms—Best linear unbiased estimation (BLUE),
Cramer–Rao bound (CRB), frequency-offset estimation,
peak-to-average sample energy ratio (PAR), training design.

I. INTRODUCTION

T RAINING signals are often used in communications
systems for timing synchronization, frequency synchro-

nization, and channel estimation. In [1] and [2] (and references
therein), training-signal design for channel estimation in
single-carrier systems was discussed. In [3], training-signal
design for channel estimation in orthogonal frequency-division
multiplexing (OFDM) systems was described. In [4] and [5],
some training-signal designs for timing synchronization in
OFDM systems were prsesented. For frequency synchroniza-
tion in OFDM systems, [6] used a training signal consisting of
two identical parts , while [7]–[9] used a training signal
composed of identical parts. These training signals
are generated by the inverse fast Fourier transform (IFFT)
of a pseudonoise (PN) sequence on every th subcarrier in
the frequency domain. The above timing- and frequency-syn-
chronization methods are based on time-domain processing,
and hence, also applicable to single-carrier systems with the
same training signal. Alternatively, the training signal with
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identical parts can be constructed such that each part is of a
time-domain PN sequence.

In this paper, we investigate training signal design for fre-
quency-offset estimation in an additive white Gaussian noise
(AWGN) channel. Based on minimizing the Cramer–Rao lower
bound (CRB) for frequency-offset estimation with constraints
on the peak and the total training-signal energies, and the
training block length, the optimal training-signal structure is
developed. The proof for the optimality and uniqueness of
the proposed training-signal structure is presented. Then, an
approximate version of the optimal training-signal structure
is proposed, which has practically the same performance as
the optimal one, and provides convenience in training-signal
generation and estimator derivation. The maximum-likelihood
(ML) estimator from [13] can be appropriately applied to the
proposed training structures with a large number of nonzero
training samples, but it fails to provide a reliable estimate when
the number of the nonzero training samples in the proposed
training structures is small and the signal-to-noise ratio (SNR)
is not high. Furthermore, the complexity of the ML estimator
is quite high. To reduce the estimation complexity, two fre-
quency-offset estimation methods are presented, which are also
robust to the parameters of the proposed training structures.
To handle larger frequency offsets, modified training signal
structures are proposed, and the corresponding estimation
methods are derived based on the best linear unbiased esti-
mation (BLUE) principle. Analytical and simulation results
show that the proposed training-signal structures improve the
estimation performance significantly.

The rest of the paper is organized as follows. Section II de-
rives CRBs, and Section III presents the optimal training-signal
structure, while the proof of the optimality and the uniqueness
of the proposed training-signal structure is provided in the Ap-
pendix. Frequency-offset estimators for the proposed training-
signal structures are addressed in Section IV. Analytical and
simulation results and estimators’ complexities are discussed in
Section V, and the paper is concluded in Section VI.

II. CRAMER–RAO LOWER BOUND (CRB)

Frequency offset is unavoidable at the receiver due to the os-
cillators’ inaccuracies and the Doppler shifts of the mobile wire-
less channel. To eliminate or reduce the performance degrada-
tion caused by the frequency offset, the receiver usually per-
forms frequency synchronization or frequency-offset compen-
sation based on the frequency-offset estimation. In this paper,
we consider frequency-offset estimation based on the training
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signal vector . Let us consider a signal
model given by

(1)

where is the received training vector of length
, is a diagonal matrix with diagonal elements

corresponding to the normalized frequency
offset (normalized by where is the sample
duration), and is the zero-mean, complex Gaussian noise
vector with a covariance matrix , where is
an identity matrix.

For the parameter , the received vector has a complex
Gaussian probability density function (pdf) , with the
mean vector and the covariance matrix, respectively, given by

and . The Fisher information in
this case is given by

(2)

(3)

where represents the expectation, is the trace, de-
notes the real part, and the superscript is the Hermitian trans-
pose. After some calculation, we have

(4)

where is a diagonal matrix with di-
agonal elements . The CRB of the frequency-
offset estimation for the signal model (1) is given by

CRB (5)

where the subscript indicates that the corresponding signal
model includes no phase noise.

Next, let us consider a signal model containing an arbitrary
carrier phase as

(6)

For the parameter vector , the received vector has
a complex Gaussian pdf, , with the mean vector and the
covariance matrix, respectively, given by and

. The element of the Fisher information
matrix is given by

(7)

(8)

where is the th element of . After some calculation, we
have

(9)

(10)

(11)

The CRB of the frequency-offset estimation for the signal model
(6) is given by

CRB (12)

(13)

III. TRAINING-SIGNAL DESIGN

In this section, we investigate the training-signal design that
minimizes the CRB. The best training vector is given by

CRB constraint: (14)

where is the total energy of the training-signal vector.
First, let us consider CRB (5) which corresponds to the

signal model (1). We have

constraint (15)

constraint (16)

From the above equation, it is straightforward to see that the best
training-signal vector is determined by

(17)

where means the absolute values, and the superscript
denotes the transpose. Similarly, the worst training-signal vector

is given by

(18)

The solution (17) suggests that we need to concentrate all the
training energy only at the last training sample. Some issues
are involved in this solution. First of all, it suggests transmitting
only one training sample preceded by null samples. In practice,
it may be treated as the first training sample, and hence, it be-
comes the worst design (18). Secondly, even if is small enough
that no ambiguity will result, there is always an arbitrary car-
rier phase (phase noise) which will completely destroy the fre-
quency-offset estimation based on one training sample. These
facts indicate that in designing the training signal, the signal
model should include an arbitrary carrier phase.
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Now, let us consider CRB (13) corresponding to the signal
model (6). From (14), and after some manipulation, we have
the best training signal given by

constraint (19)

constraint (20)

From (20), it can be observed that the phases of the training
samples have no effect on the CRB. It is only the training-energy
allocation among the training samples that has an effect on the
CRB, and that has to be found. Define the following:

(21)

(22)

where is the element of an matrix . Note
that the matrix is singular and not symmetric. can be viewed
as the training-energy vector or the training-energy allocation.
Then the best training vector is determined by the best training-
energy allocation given by

constraint and (23)

where is an all-one vector of length , and is a design
value representing the allowable peak training-sample energy.
The reason for the introduction of the upper limit is to
avoid nonlinear distortion of the training signal at the transmit
amplifier [and also at the digital-to-analog converter (DAC)].
The optimization (23) containing equality and nonequality
constraints can be solved by quadratic programming (QP) such
as MATLAB function quadprog.m. The general result can be
given by (24), shown at the bottom of the page.

However, since the matrix is singular and not symmetric,
the optimality and uniqueness of the above solution is uncer-
tain at this point. We presented another approach for obtaining
a solution to (23) in [10], which also gives the same result as
QP does. Due to the optimization for the dominant terms only,
at some steps, the approach from [10] does not guarantee the
optimality and uniqueness of the solution in (24). Hence, we in-
vestigate the optimality and uniqueness of the solution in (24),
and find that it is optimal and unique. The proof is presented in
Appendix A for conciseness.

IV. FREQUENCY-OFFSET ESTIMATION

In this section, we consider frequency-offset estimation
methods suitable for the proposed optimal training-signal
structure. Consider the constraints of the total training-signal
energy , the training block length of samples, and
the allowable peak training-sample energy . Note that

, otherwise the constraints cannot be satisfied.
Let . Then the optimal training signal has
a total of nonzero samples with the sample indexes

. All nonzero
samples have equal sample energy of , except the two samples
at indexes and , which have an equal sample
energy given by , . Data signals
can be transmitted between the two nonzero training parts.

First, we consider the ML estimator (MLE#1) from [13]. In
estimation, the data signals between the two nonzero training
parts are replaced with zeros. After that, MLE#1 can be directly
applied. We find that MLE#1 gives mean-square error (MSE)
almost equal to CRB for the proposed optimal training struc-
ture with a large number of nonzero training samples. However,
MLE#1 fails to provide a reliable estimate when the number
of nonzero training samples in the optimal training structure is
small and the SNR is not high. Details will be discussed in the
simulation section. Furthermore, the complexity of MLE#1 is
quite high. Hence, in the following, we pursue reduced-com-
plexity frequency-offset estimation methods which are also ro-
bust to the parameters of the optimal training structure.

Consider an approximate version of the optimal training
signal where all nonzero training samples have equal
energy of . If , then ,
and the approximate version is identical to the optimal one. For
practical systems, where is not small, there is virtually no
performance loss if the optimal training signal is replaced with
its approximate version. This fact will be seen in the simula-
tion results and discussions section. Hence, for simplicity in
practice, one can use the approximate version of the optimal
training signal.

In the following, we derive a few frequency-offset estima-
tion methods based on the approximate version of the optimal
training signal. The estimation methods for the optimal training
signal can be similarly derived. But it requires a more lengthy
calculation for not so small , and would not be of practical
interest, since the performance of the optimal training signal is
practically not different from that of the approximate version.

First, we derive a frequency-offset estimation method based
on sample-wise correlation and the BLUE principle. It will be
denoted as S-BLUE. Next, we derive another method based on
part-wise correlation and BLUE. It will be denoted as P-BLUE.

if or

if or ;

if and is an odd integer.

(24)
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The estimation range of S-BLUE is , and
that of P-BLUE-2 (where 2 indicates two nonzero parts) is

. To extend the estimation range of P-BLUE,
we propose a modified training signal which contains three or
four nonzero parts. The frequency-offset estimation methods
for the modified training signals with three and four nonzero
parts are then derived, which will be denoted as P-BLUE-3 and
P-BLUE-4, respectively.

For the same total training-signal energy and the same
peak-sample energy , the number of samples in a nonzero
part is given by for the training signal with

nonzero parts. Assuming a nondispersive channel, we
can multiply the received training samples with the conjugate of
the transmitted training samples to get the same phase. Hence,
for simplicity, all nonzero training samples are assumed to have
the same phase.

A. S-BLUE Method

Performing sample-wise correlation, we obtain several cor-
relation terms given in (25) or (26), as shown at the
bottom of the page, with correlation distance . If

, we have
, and is given by (25). If ,

and is given by (26). For
, we have ,

, and for , .
Then we have several estimates given by

(27)

where is the th element of , and represents the
angle of . Let denote the column vector of . Then the
frequency-offset estimate based on BLUE can be given by

(28)

where the weighting vector is calculated as follows [11]:

(29)

The calculation of for S-BLUE is lengthy, and the results are
given in Appendix B. Since the maximum correlation distance
is , the estimation range of S-BLUE is limited by

.

B. P-BLUE-2 Method

In the BLUE method with part-wise correlation between two
nonzero parts, the phases of all nonzero training samples do not
have to be the same. We just assume that the two parts are iden-
tical, for the sake of lower complexity. Within each part, the
phases of training samples can be arbitrary. The P-BLUE-2 fre-
quency-offset estimate can simply be obtained from the corre-
lation between the two parts as

(30)

This estimator assumes that the normalized frequency offset
satisfies the condition . For the situa-
tions where does not satisfy this condition, we propose the
following approaches.

C. P-BLUE-3 Method

To handle a larger frequency offset, we modify the ap-
proximate version of the optimal training-signal structure
to be composed of three nonzero parts: ,

, and where
, , and should be chosen to

satisfy the condition . The second part can
also be set as , but in the following
derivation, we use the former structure. For simplicity and

(25)

(26)
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lower complexity, the three nonzero parts are assumed to be
identical. Then we have three estimates based on three
part-wise correlation terms as

(31)

(32)

(33)

(34)

(35)

(36)

where the use of is to avoid a possible ambiguity in fre-
quency-offset estimation based on correlation terms with larger
correlation distances. The P-BLUE-3 frequency-offset estimate
can then be obtained by (28) with and given
by (29). Following Method B of [8], and after some calculation,
we have the covariance matrix of given by

(37)

where SNR . The required inverse covariance ma-
trix is then given by equation (38) at the bottom of the page.
Substituting it into (29) yields the BLUE weighting vector

(39)

Note that although depends on SNR values, does not.

D. P-BLUE-4 Method

The result from Section III implies that allocating training
energy on four samples is better than on three samples (see
also [10]). This result may be applied to the modified training

signal by extending the sample-wise result to the part-wise
result. For example, the modified training signal consisting of
four parts may be better than that consisting of three parts. In
order to investigate this, in the following, we derive a BLUE
frequency-offset estimation method for the modified training
signal consisting of four nonzero parts ,

, , and
where and should be chosen to

satisfy the condition . For simplicity, we assume
that these four parts are phase-identical. To keep the same peak
training-sample energy as in the three-part training signal, each
sample of the first and fourth parts has energy , and
that of the second and third parts has energy , where

is the same as in the three-part training signal.
Define the following:

(40)

(41)

(42)

(43)

Then we have four estimates as follows:

(44)

(45)

(46)

(47)

(48)

The P-BLUE-4 frequency-offset estimate can then be obtained
by (28) with and given by (29). The
covariance matrix required in the calculation of is given by
(49), shown at the bottom of the next page. Note that and
are functions of SNR. However, it can be checked that is not
sensitive to SNR.

(38)
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V. COMPLEXITY, SIMULATION RESULTS, AND DISCUSSIONS

The total training-signal length is assumed to be .
The system can be either a single-carrier system or an OFDM
system. To evaluate the proposed training signals, we obtain the
CRBs analytically and the estimation MSE by simulation for the
following four training signals. The first one, denoted by “Opt.,”
is the optimal training signal containing nonzero samples
with the peak training-sample energy , and the second, de-
noted by “Ap. Opt.,” is the approximate version of the optimal
training signal having nonzero samples with equal training-
sample energy . The third one, denoted by “Con-1,” is
a conventional training structure which has nonzero sam-
ples with equal training-sample energy , but all nonzero sam-
ples are consecutively located at the beginning of the training
block. The last training signal, denoted by “Con-2,” is also a
conventional training structure which has nonzero samples
with equal energy of . The estimation method used is
MLE#1 from [13].

We can express the relation among , , and as
, where . If , Ap. Opt. be-

comes identical to Opt. In this evaluation, we assume without
loss of generality that . We will use the peak-to-av-
erage sample energy ratio (PAR) of the training signal (which is
a more common figure in practice) instead of the peak training-
sample energy. PAR is defined as where

represent training samples, including possibly zero-ampli-
tude samples. The PARs for the above four training signals are
given by , , , and 1, respec-
tively. Note that for a fixed , depending on the allowable peak
sample-energy constraint or the allowable PAR constraint, the
value of will vary.

In Figs. 1–3, the CRBs and MSEs of the above four training
signals are presented for different maximum allowable PAR
values of 12.17, 9.10, and 6.06 dB, corresponding to the
values of 32, 64, and 128. The following remarks are in order.

1) The CRB advantage of the proposed structures over con-
ventional ones is quite significant.

2) A larger peak-energy constraint (a larger PAR or a
smaller ) gives a larger improvement to the optimal or
approximate-optimal training signals.

3) The CRB or MSE performance difference between the
optimal and the approximate-optimal training signals di-
minishes as increases, and is negligible even at a small
value of . Hence, for the convenience in training-signal
generation and deriving estimation method, the approx-
imate version of the optimal training signal may be pre-
ferred.

Fig. 1. Comparison of CRB and MSE (obtained with MLE#1) between the
proposed training structures and the conventional structures forK = 32.

Fig. 2. Comparison of CRB and MSE (obtained with MLE#1) between the
proposed training structures and the conventional structures forK = 64.

4) For conventional structures, under the same total
training-energy constraint, using more time resource as
in “Con-2” gives a better performance than “Con-1.”
Note that the proposed structures use the same amount
of time resource as “Con-1” does.

5) For the conventional structures, MLE#1 gives an MSE
almost equal to CRB for all values of and SNR. For

(49)
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Fig. 3. Comparison of CRB and MSE (obtained with MLE#1) between the
proposed training structures and the conventional structures forK = 128.

Fig. 4. Normalized likelihood metric trajectories of the MLE#1 for several
training structures (v = 0:4). (Metric trajectories for Opt. and Ap. Opt. are not
distinguishable in the plot.).

the proposed structures, MLE#1 gives an MSE almost
equal to CRB when the number of nonzero training sam-
ples is large (i.e., large ), and it fails to provide a reli-
able estimate when the number of nonzero training sam-
ples is small (i.e., small ), especially at moderate and
low SNR. (Note that the proposed BLUE methods do not
have this drawback.)

The reason for 5) can be best explained by the normalized
likelihood metric trajectories of MLE#1, shown in Fig. 4. The
metric trajectories for the proposed structures (Opt. and Ap.
Opt.) are not distinguishable in the plot. The CRB or MSE ad-
vantage of the proposed structures can be related to the corre-
sponding sharper metric trajectory around the (maximum) peak.
For a smaller , the metric trajectories of the proposed struc-
tures contain several side lobes with peaks comparable to the
maximum peak, which, in turn, results in a large estimation error
at moderate or low SNR.

Fig. 5. Frequency-offset estimation MSE performance comparison between
S-BLUE and P-BLUE-2 methods.

The frequency-offset estimation performance for the pro-
posed S-BLUE and P-BLUE-2 methods using the Ap. Opt.
structure is presented in Fig. 5. Both S-BLUE and P-BLUE-2
have essentially the same MSE performance (which are almost
the same as the corresponding CRBs not shown in the figure for
clarity). Both methods with PAR dB have better
MSE performance than with PAR dB , i.e.,
a larger allowable PAR gives a larger improvement. S-BLUE
with is just marginally better than P-BLUE-2 with

. P-BLUE-2 has a larger estimation range, and a much
lower complexity than S-BLUE (see Tables I and II). Hence,
P-BLUE is more appealing than the S-BLUE method.

In Fig. 6, the performance comparison between P-BLUE-2
with the approximate-optimal training signal and the
BLUE-based reference methods (Minn [9] and M&M [7])
with their corresponding training signal is presented. The
reference training signal used for the reference methods is
an OFDM training signal (a PN sequence in the frequency
domain) consisting of identical parts, as in [9]. The
performance of P-BLUE-2 is evaluated for 1, 8, 32, 64,
and 128, which correspond to the PAR values of 27, 18, 12, 9,
and 6 dB, respectively. The reference training signal has a PAR
value of about 6 dB.1 The simulation results are in line with
the theoretical results. The estimation performance is better for
smaller values of (i.e., a larger allowable PAR). The perfor-
mances for and have approximately 1-dB
SNR difference. The proposed approximate-optimal training
signal with the proposed estimation method outperforms the
reference training signal with the reference methods [7], [9].
The P-BLUE-2 method using the approximate-optimal training
signal with has about 5-dB SNR advantage over the ref-
erence methods using the reference training signal, while that
with has about 4-dB SNR advantage. The advantages
are mainly due to the proposed training-signal structure, since
all estimation methods used in Fig. 6 are based on the same
BLUE principle.

1For an OFDM signal with 1024 subcarriers, the PAR value can occasionally
be as high as 30 dB.
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TABLE I
COMPUTATION LOADS OF FREQUENCY-OFFSET ESTIMATORS

TABLE II
A NUMERICAL EXAMPLE OF COMPUTATION LOADS OBTAINED WITH

N = 1024, Q = 64,K = 64 (OPT. OR AP. OPT.), K = 43 (MODIFIED

STRUCTURES), AND L = 8 (M&M OR MINN)

Fig. 7 presents the performance comparison between the pro-
posed P-BLUE-4 estimation method using the modified training
signal with four nonzero parts, and the reference methods [7],
[9] using the reference training signal. The performance is eval-
uated for 1, 8, 32, 64, and 128, which correspond to the
PAR values of 25.33, 16.30, 10.28, 7.27, and 4.26 dB, respec-
tively. The normalized frequency offset is set to 1.6.
is used for all values. The same observations as in Fig. 6 are
obtained. A slightly different one from Fig. 6 is that the modi-
fied training signal (using P-BLUE-4 method) with has

Fig. 6. Frequency-offset estimation MSE performance comparison between
the proposed P-BLUE-2 method with the proposed training signal consisting of
two nonzero parts, and the reference methods (Minn and M&M) using a training
signal containing eight identical parts generated by a PN sequence in frequency
domain.

about 4 dB, and that with has about 3-dB SNR ad-
vantage over the reference training signal (using the reference
methods).

The performance comparison between the modified training
signal with three nonzero parts and that with four nonzero parts,
both having the same total training energy and the same PAR, is
presented in Fig. 8. The P-BLUE-4 method using the modified
training signal with four nonzero parts is slightly better than the
P-BLUE-3 method using the modified training signal with three
nonzero parts. This agrees with the implication of the result in
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Fig. 7. Frequency-offset estimation MSE performance comparison between
the proposed P-BLUE-4 method with the modified training signal consisting of
four nonzero parts, and the reference methods (Minn and M&M) using a training
signal containing eight identical parts generated by a PN sequence in frequency
domain.

Fig. 8. Frequency-offset estimation MSE performance comparison between
the proposed P-BLUE-3 method with the modified training signal consisting
of three nonzero parts, and the proposed P-BLUE-4 method with the modified
training signal consisting of four nonzero parts.

Section III. The slight performance improvement of the training
signal with four nonzero parts over three nonzero parts is asso-
ciated with a slightly larger complexity (see Tables I and II).
We have also performed simulations for the reference methods
using a training signal consisting of eight identical parts, where
each part is a PN sequence in the time domain. The perfor-
mance results (not shown) are almost the same as those obtained
with the training signal consisting of eight identical parts gen-
erated by a PN sequence in the frequency domain. Note that the
MSE performance of the proposed BLUE methods are almost
the same as the corresponding CRBs, which are not shown in
the figures for clarity.

The complexities of the estimation methods considered are
presented in Table I, where MLE#1 uses a -point FFT and

a quadratic interpolation. The interpolation complexity is not
included in the table. The training structure for S-BLUE and
P-BLUE-2 is Ap. Opt., for P-BLUE-3 (or P-BLUE-4) is the
modified structure with three (or four) nonzero parts, and for
M&M and Minn is the reference OFDM training signal con-
taining consecutive identical parts. A numerical example
for the complexities is given in Table II. To satisfy the same total
training energy and the same peak-energy constraint, Table II
uses for MLE#1, S-BLUE, P-BLUE-2, and
for P-BLUE-3 and P-BLUE-4. The MLE#1 has a much higher
complexity than the other methods. All P-BLUE methods have
much smaller complexities than the others, and P-BLUE-2 has a
smallest one. The smaller complexities of the proposed P-BLUE
methods over the reference BLUE methods can be ascribed to
the proposed training structures. We also observed in our sim-
ulation that the MLE#1 requires a larger fast Fourier transform
(FFT) size (larger ) for the training structures Opt. and Ap.
Opt., and the Con-1 structure with a small , to avoid an MSE
floor at high SNR. The reason for Opt. and Ap. Opt. structures
is the large side-lobe peaks of the likelihood metric, and that
for Con-1 structure with a small is a relatively flat likelihod
metric around the maximum point (see Fig. 4).

An application of the proposed training-signal structures to
multipath fading channels can be found in [12], where we con-
structed a training structure similar to the approximate-optimal
training-signal structure for an OFDM-based wireless LAN in
a multipath fading channel, and showed that it brings in a sub-
stantial performance improvement.

VI. CONCLUSIONS

An optimal training-signal structure for frequency-offset
estimation with constraints on PAR, total training energy, and
total training block length is developed based on minimizing
the CRB. The proposed optimal training signal consists of two
nonzero parts, where the length of each part is determined
by the total training-signal energy and the allowable peak
training-sample energy. For convenience in training-signal
generation and estimator derivation, an approximate version of
the optimal training-signal structure is proposed whose perfor-
mance is practically not different from that of the optimal one.
The existing ML method fails to provide a reliable estimate for
the proposed optimal or approximate-optimal training signals
with a small number of nonzero training samples at moderate
or low SNR. Hence, we present two frequency-offset estima-
tion methods (S-BLUE and P-BLUE-2) based on the BLUE
principle which are robust to the parameter of the proposed
training structures, and which have quite low complexity. To
handle a larger frequency offset, a modified training signal
consisting of three or four nonzero parts, and the corresponding
part-wise correlation-based BLUE methods (P-BLUE-3 and
P-BLUE-4), are presented. The proposed training signals and
corresponding estimation methods achieve a substantial SNR
advantage over the reference training signals using the reference
estimation methods. The P-BLUE methods are more appealing
than the S-BLUE method due to their lower complexity, larger
estimation range, and essentially the same estimation MSE
performance.
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APPENDIX A
OPTIMALITY OF PROPOSED TRAINING-SIGNAL STRUCTURE

This section provides a proof for the optimality of the
training-signal structure of (24). The optimization objective
function (23) which is to be minimized can be given by the
following objective function, which is to be maximized:

constraint: and (50)

where

otherwise.
(51)

We start from an arbitrary training signal. We apply on the
training signal an algorithm which moves training-sample en-
ergy from one sample to another in a prescribed way. Every
move will be shown to increase the objective function (50),
which is to be maximized. The algorithm will finally reach to the
training structure obtained in the previous section. Since trans-
forming any training-signal structure into the training structure
of (24) increases the objective function, the training structure of
(24) is optimal and unique.

Let us consider a length- training structure defined by

(52)

where

(53)

(54)

If there are more than consecutive samples of energy at
either side, the corresponding value of or is set to .
The above training structure represents any training signal sat-
isfying the total energy and the peak energy constraints. The al-
gorithm is described in the following. If , then the algo-
rithm moves energy from the training-energy sample to ,
where with is the nearest nonzero
sample to , and is given by (55), shown at the bottom of
the page.

If , the algorithm moves energy from the training-
energy sample to , where with

is the nearest nonzero sample to , and is given
by (56), shown at the bottom of the page.

Then the values of and are updated, and the energy
moving is repeated. Finally, the training-energy structure will
become that of (24). In the following, we will prove that each
move increases the objective function which is to be maximized.

Each move changes the training structure
into

. The only
differences between and are at the indexes and . The
objective function (50) can be given by (57), where is not a
function of and/or

(57)

Define . Then we have to prove that
. Consider the case with , where the energy

is moved from to . Then we have and
. After substituting and in place of and

in (57) and manipulating, we have

(58)

if or
if and
otherwise

(55)

if or
if , and
otherwise

(56)
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where and are, respectively, given by

(59)

(60)

Then we obtain

(61)

When or ( and ), we have
, and the first term of (61) is greater

than or equal to zero. Hence, . When (
and ), i.e., ( and ), we have

, and the first term of (61) is
. Hence, we still have .

Now, consider the case with , where the energy is
moved from to . Then we have and

. After substituting and
in place of and in (57) and manipulating, we have (58) with

and , respectively, given by

(62)

(63)

Consequently, we obtain

(64)

When or ( and ), we have
, and the first term of (64) is

greater than or equal to zero. Hence, . When (
and ), i.e., ( and ), we have

, and the first term of (61)
is . Hence, we still have .

The above proof assumes . The only possi-
bility left is , which is already in the form of
the training-signal structure (24). This proves that the training-
signal (energy) structure (24) is optimal and unique.

APPENDIX B

This appendix provides the covariance matrix of for
S-BLUE method. Following Method B of [8] and skipping
detailed calculation, we obtain the elements of the covariance
matrix given as follows.

Case I:
If ,

&
&
&
&

(65)

If , ,
we have

(66)

If ,

(67)

If , , we
have (68), shown at the bottom of the page. If ,

, we have

(69)

(68)
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If ,

(70)

Case II:
If , , we have

&
&
&
&

(71)

If ,

.
(72)

If ,

.
(73)

If , , we have
(74), shown at the bottom of the page. If ,

, we have

(75)

If ,

.
(76)

If , ,
we have (77), shown at the bottom of the page. If

, , we have (78), shown
at the bottom of the page. If ,

(74)

&
&
&
&

(77)

&
&
&
&

(78)
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(79)

, we have (79), shown at the top of the
page. If , ,
we have

(80)
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