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Abstract. An algebraic vector bundle on a smooth variety over
R or C can also be considered as a continous bundle over the cor-
responding Hausdorff space. The aim of this note is to consider an
elementary example showing the difference this makes.

1. Introduction

Let k be a field and consider the set

X := {(x, y, z) ∈ k3 |xz − y − y2 = 0}.

Below you can view a piece of X for k = R from two angles:

Essentially every branch of mathematics would consider this surface
as a prototypical example of its theory, it can be made in the obvious
way into a measure space, topological space, smooth manifold and by
very definition real affine variety. So there is a choice to make, and
when it comes to the study of certain invariants such as K-theory,
Picard groups, cohomology and so on, these will heavily depend on the
choice you make. We are going to demonstrate this by considering a
certain line bundle on X in the various categories and will see that in
some settings it is trivial but in others not.
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2. Topological Picard groups

From now on we only consider k = R and k = C. The topologist’s
version of the story is governed by characteristic classes and homolog-
ical arguments. For k = R our space is contractible to a circle S1 (just
look at the picture). So real line bundles over X correspond to real line
bundles over S1, and they are classified by their first Stiefel-Whitney
class which lies in H1(X,Z2) = H1(S1,Z2) = Z2, so there is up to iso-
morphism the trivial line bundle X × R and one nontrivial one which
corresponds to the Möbius bundle over S1.

If we work over k = C we can make a change of coordinates

x =
1

2
(ia+ b), y =

1

2
(c− 1), z =

1

2
(ia− b),

then the defining equation of X becomes

a2 + b2 + c2 = 1

so we are talking about a complexified S2 here. If we write a = a0 + ia1

and similarly for b, c, then the defining equation is equivalent to

a2
0 + b20 + c20 = 1 + a2

1 + b21 + c21, a0a1 + b0b1 + c0c1 = 0.

From this one sees that X is homeomorphic to the tangent bundle
TS2 of the two-sphere: the homeomorphism maps (a, b, c) ∈ X to the
tangent vector (a1, b1, c1) ∈ TpS

2 at the base point

p =
1√

1 + a2
1 + b21 + c21

(a0, b0, c0) ∈ S2.

In particular, X is contractible to S2, and if we now study complex
line bundles over X then they are classified by their first Chern class
and from H2(X,Z) = H2(S2,Z) = Z we see that over C there are
infinitely many nonisomorphic line bundles.

3. Algebraic Picard groups

There is no difference to the above when we consider X as a smooth
manifold and classify smooth bundles, but purely algebraically the
story changes. Let us abbreivate A := k[X] for the coordinate ring
of the affine variety X. We shall mean by this the ring of polynomial
functions on X and hence the quotient of k[x, y, z] by the ideal gener-
ated by xz− y− y2. For k = C Hilbert’s Nullstellensatz implies that a
polynomial function which has no zero on X is an invertible element of
A, but for k = R this is not true. Some authors cure this by defining
R[X] as the ring of formal fractions f

g
of polynomial functions, where

g has no zero on X. We will denote this localisation of A by Ā.
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Let now M be an invertible A-module, that is, one for which there ex-
ists an A-module N such that M⊗AN ' A as an A-module. Note that
A is as a finitely generated algebra over a field Noetherian by Hilbert’s
basis theorem. This implies (see [1, 2]) for example the folloing:

(1) N 'M∗ := HomA(M,A).
(2) M is finitely generated projective.
(3) Every localisation Mp, p ∈ SpecA, is isomorphic to Ap.
(4) Λn

AM = 0 for n > 1.

What this means is that M is the module of sections of an algebraic
line bundle over X which is locally trivial even in the Zariski topology.
We can view such a bundle also as a topological bundle. One way to
describe this is this: put B := C(X, k), the ring of k-valued continuous
functions on the space X with its Hausdorff topology. This is a ring
extension of A because polynomials are also continous with respect to
the Hausdorff topology. It thus makes sense to define B⊗AM , and if M
is finitely generated projective over A, then this module will be finitely
generated projective over B and hence corresponds by the Serre-Swan
theorem to a topological vector bundle.

As a concrete example, let M be the A-module with generators
X, Y, Z and the relations

yX = xY, zX = (1 + y)Y, yY = xZ, zY = (1 + y)Z.

The inverse module can be given in terms of generators X̂, Ŷ , Ẑ and
the relations

xŶ = (1 + y)X̂, yŶ = zX̂, xẐ = (1 + y)Ŷ , yẐ = zŶ .

The isomorphism

θ : M ⊗A N → A

is then given by

X ⊗A X̂ 7→ x2, X ⊗A Ŷ 7→ x(1 + y), X ⊗A Ẑ 7→ (1 + y)2,

Y ⊗A X̂ 7→ xy, Y ⊗A Ŷ 7→ y(1 + y), Y ⊗A Ẑ 7→ (1 + y)z,

Z ⊗A X̂ 7→ y2, Z ⊗A Ŷ 7→ yz, Z ⊗A Ẑ 7→ z2.

It follows by direct computation that this extends to a well-defined
module homomorphism θ (one has to prove that a tensor of the form
something ⊗A relation or relation ⊗A something is mapped to zero).
Furthermore, θ is surjective since

X ⊗A Ẑ − 2Y ⊗A Ŷ + Z ⊗A X̂ 7→ 1.

To prove injectivity, one has to check that the inverse map

θ−1 : A→M ⊗A N, a 7→ aX ⊗A Ẑ − 2aY ⊗A Ŷ + aZ ⊗A X̂
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inverts θ (clearly θ ◦ θ−1 = idA, but one has to check θ−1 ◦ θ = idM⊗AN

on all nine generators, which is lengthy but straightforward). This
finishes the proof of the invertibility of M .

The above form of θ also provides us with an embedding of M as a
direct summand into A3 which is given by

X 7→ (x2, x(1+y), (1+y)2), Y 7→ (xy, y(1+y), (1+y)z), Z 7→ (y2, yz, z2).

From this one can see that

ω := X + Z

is for k = R an element of M which does not vanish in any point of
our surface since under the embedding into A3 it becomes

(x2 + y2, x(1 + y) + yz, (1 + y)2 + z2).

And that is now the crucial point: a continous real or complex line
bundle on a is trivial if it admits a nowhere vanishing section, the map

B → B ⊗A M, b 7→ b⊗A ω

is an isomorphism. Hence the topological line bundle over X described
by M is for k = R trivial (it is the tensor square of the nontrivial one).

There is an analogous algebraic statement, but one has to interpret
“vanishing nowhere” appropriately: let M be an invertible module over
a Noetherian ring A and ω ∈M . As mentioned above, the invertibility
implies that for all maximal ideals m ⊂ A we have Mm ' Am. If the
image ι(ω) = ω

1
of ω in Mm is not mapped to an element of mAm under

this isomorphism, then ω does not vanish in the “point” m, and the
map Am → Mm, a 7→ aι(ω) is an isomorphism. And if this is true for
all m then A → M , a 7→ aω is an isomorphism since a module map is
an isomorphism if it is locally so (in the Noetherian world).

But this does not apply to our concrete M over A = R[X] since
ι(ω) does vanish for some maximal ideals of A, these simply do not
correspond to real points on the variety X ⊂ R3. To see that M is
indeed not free one can use characteristic classes living in algebraic de
Rham cohomology, see our joint article [3] with N. Kowalzig where we
used this example to construct a Lie-Rinehart algebra whose universal
enveloping algebra is not a Hopf algebroid.

Over k = C the element ω vanishes precisely on the subset

{(±iy, y,∓i(1 + y)) ∈ X | y ∈ C},
so here ω is by no means an indicator for the triviality of M .

So we see that when we describe a real affinve variety in terms of
polynomial functions, then the topology we detect resembles rather
that of the Hausdorff space underlying its complexification than that
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of the variety itself. If we rather would work with Ā and define algebraic
line bundles as invertible modules over Ā, then this changes and the
algebraic geometry of Ā has much more to do with the topology of
X ⊂ R3, see for example the extensive work on the subject by Bochnak,
Kucharz and their coworkers.
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