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Abstract

Biological data is often structured in the form of complex interconnected networks such
as protein interaction and metabolic networks. In this paper, we investigate a new prob-
lem of visualising such overlapping biological networks. Two networks overlap if they
share some nodes and edges. We present an approach for constructing visualisations of
two overlapping networks, based on a restricted three dimensional representation. More
specifically, we use three parallel two dimensional planes placed in three dimensions to
represent overlapping networks: one for each network (the top and the bottom planes) and
one for the overlapping part (in the middle plane).
Our method aims to achieve both drawing aesthetics (or conventions) for each individual
network, and highlighting the intersection part by them. Using three biological datasets,
we evaluate our visualisation design with the aim to test whether overlapping networks can
support the visual analysis of heterogeneous and yet interconnected networks.

1 Introduction

In the last few years large and complex network models emerged in the biological sciences.
Visualisation can be an effective analysis tool for such networks. Good visualisation reveals
the hidden structure of the networks and amplifies human understanding, thus leading to new
knowledge and enabling predictions. However, creating good visualisations of large and com-
plex networks is very challenging, due to scalability and complexity issues.

1.1 Interconnected biological networks

Life emerges out of complex molecular interactions and highly orchestrated biological pro-
cesses. One example of such a process is the transformation of metabolites into other metabo-
lites. Inside living organisms these transformations are usually performed with the help of addi-
tional molecules called enzymes. Enzymes are proteins which are products of a process called
gene expression. During gene expression, proteins are produced according to the information
stored in the genes. Which proteins are constructed and are therefore available at a specific
point in time is controlled by a process called gene regulation. Inside cells, proteins interact
in various ways, they form, for example, protein complexes which are groups of functionally
related proteins.
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The combination of all these processes forms one single complex network. Usually this network
is divided into specific networks dealing with one particular mode of interaction. Metabolic re-
actions form the metabolic network. Here the output of one reaction can be the input of several
other reactions, and this network captures the transformation of metabolites. Interactions bet-
ween proteins form the protein interaction network. And the expression of a single gene is
usually controlled by other genes, and thus the regulatory mechanisms between genes form the
gene-regulatory network.

Studies about biological processes usually focus only on one of these networks such as the
metabolic network or the protein interaction network of that organism. This restriction is often
based on the availability of the data and motivated by specific methods used to investigate the
network. The major problem of such a reduced approach is the failure to capture the intercon-
nection between different networks, which clearly occurs within living organisms. In the light
that the same biological process can involve more than one mode of interaction, the reduced
approach severely limits the biological insights that can be generated. Therefore, an integrated
network which captures important interactions between different networks is required.

One particular important one is the integrated network of metabolism and protein interaction.
Some proteins occurring in a protein interaction network are enzymes and catalyse reactions in
the metabolic network. The interactions between proteins can have different functional mean-
ings which directly influence the metabolism. Interactions can mean that no single protein can
catalyse a reaction, but that the proteins have to form a protein complex. It can give hints about
the regulation of the activity of an enzyme, and therefore about regulatory processes within the
metabolism. Also, interaction can suggest spatial relationships between proteins, e. g. proteins
which are necessary for subsequent steps in a metabolic network and which may be coupled,
for example, to a membrane. The proposed method for the visual analysis of two overlapping
networks can help in the investigation of this integrated network.

Another interesting example of overlapping networks to consider is the overlapping between
protein interaction networks and signal transduction networks. Living cells respond to exter-
nal stimuli such as availability of nutrients, or cell-to-cell contact via the signal transduction
network. Protein interactions within the signal transduction network are a subset of the en-
tire human protein interaction network. Signal transduction proteins typically interact with
each other and one protein activates or de-activates the other by phosphorylation within mil-
liseconds. This reaction happens in the presence of special energy-storing molecules, namely,
cyclic-ATP and GTP.

Signal transduction network influences certain biological functions such as the cell cycle by
phosphorylating proteins in the nuclear protein interaction network. Nuclear proteins are those
that interact with each other within the cellular component, the cell nucleus. Therefore, visual
analysis of the integrated signal transduction and nuclear protein interaction as two overlap-
ping networks will help to investigate the influence of signal transduction on certain biological
functions.

1.2 Visualisation of overlapping networks

In this paper, we study a new problem of visualising a set of overlapping networks. Roughly
speaking, two networks overlap if they share a subset of nodes and edges. In general, a set
of k graphs may overlap each other. Note that unlike temporal networks, evolution networks
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or dynamic networks, which consists of a set of similar networks arising from one single net-
work, two overlapping networks may be heterogeneous. That is, two networks differ from each
other, possibly with only a small fraction of overlaps (i. e. intersections). Our research problem
was inspired by a real world application: the visual analysis of two heterogeneous but inter-
connected biological networks within a single visualisation. In general, a set of overlapping
networks appears frequently not only in biology but also in other application domains.

Good visualisations of overlapping networks can enable integrated analysis, insight, and com-
parison, which cannot be easily supported in a separate visualisation of each single network.
Furthermore, more complex high level analysis can be supported by relating two or more hete-
rogeneous networks. More specifically, we enable visual analysis by highlighting connections
between different networks, and simultaneously exposing their differences.

Complex biological processes in organisms constitute a number of networks which attract vi-
sual analysis methods in the biological field. Several authors deal with the visual investigation
of protein interaction networks [4, 11, 12, 17] or visualisation methods for metabolic path-
ways [5, 16, 21, 22]. These studies about biological processes only focus on a single network
of an organism. To date, only a few works has been done on the automatic visualisation of inte-
grated networks, for example in the Patika system [10]. However, in such integrated networks,
the different modes of interaction such as protein interaction and metabolism are not visually
separated anymore and therefore it is not possible to investigate and compare these different
interactions.

Recently, there have been methods proposed to visualise a set of similar biological networks [6,
7]. All these methods are based on the 2.5D visualisation approach: each network is drawn in
a 2D plane and then these networks are stacked in the third dimension with the same nodes
aligned. Note that these methods are designed for a set of similar networks that are of the same
type and the difference among them is relatively small: a set of phylogenetic trees derived from
the same dataset [6] or the changes of a metabolic pathway over time [7].

Novel visualisation methods of related, heterogenous, overlapping networks are therefore re-
quired especially in the analysis of biological networks. In this paper, we present an approach
for visualising overlapping networks. Our methods highlight the overlapping parts, while dis-
playing the network structure of each network. As the first step towards this new problem, we
consider two overlapping networks in this paper and evaluate the method with different datasets
of biological networks (metabolic pathways, protein interaction networks, gene regulatory net-
works and signal transduction networks).

2 Representation of Two Overlapping Networks

In order to represent two overlapping networks G1 and G2, where G3 = G1 ∩G2, we use three
parallel two dimensional planes in three dimensions. More specifically, we draw G1 and G2

on the top and the bottom planes, and draw the overlapping part G3 in the middle plane, see
Figure 1. Then inter-plane edge sets E13 and E23 are added to connect those corresponding
nodes in G1, G2 and G3.

More formally, we can define our research problem of two overlapping networks visualisation
as the following. The inputs of our methods are:
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Figure 1: General layout approach. Two networks, G1 shown in red on the top layer, G2 shown in
blue on the bottom layer and the overlapping nodes (G3) shown in red-blue on the middle layer.
Edges connected to the overlapping nodes are shown in the middle layer. Edges existing only in
G1 are shown in red, edges existing only in G2 are shown in blue, and those edges existing in both
networks are shown in purple.

• Two graphs G1 = (V1, E1) and G2 = (V2, E2), where V1, V2 are the node sets and E1, E2

are the edge sets;

• A 1-to-1 mapping MV : V11 ↔ V22 which defines the overlapping nodes between G1

and G2, where V11 (respectively, V22) is a subset of V1 (respectively, V2), i. e. V11 ⊆ V1

(respectively, V22 ⊆ V2).

• A 1-to-1 mapping ME : E11 ↔ E22 which defines the overlapping edges between G1

and G2, where E11 (respectively, E22) is a subset of E1 (respectively, E2), i. e. E11 ⊆ E1

(respectively, E22 ⊆ E2).

The outputs of our methods are:

• Construction of overlapping part G3 = (V3, E3), where the node set V3 is defined as those
common nodes between G1 and G2, i. e.

V3 = {v | ∃v1 ∈ V1, v2 ∈ V2, v1 ↔ v2 ∈ MV }

and the edge set E3 is defined as those common edges between G1 and G2, i. e.

E3 = {(v, v′) | (v1, v
′
1) ∈ E1 and (v2, v

′
2) ∈ E2, (v1, v

′
1) ↔ (v2, v

′
2) ∈ ME}

• The layouts L1, L2 and L3 of G1, G2 and G3 respectively, including the two edge sets
E13 and E23 that connect the corresponding nodes between G1 and G3, and G2 and G3

respectively.

3 Visualisation of Two Overlapping Networks

In this section, we present a method for constructing visualisation of two overlapping networks,
based on the representation discussed in the previous section. For our overlapping network
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visualisation, we aim to achieve both drawing aesthetics and conventions for each individual
network G1 and G2, and highlighting the intersection part G3. Furthermore, we try to minimise
the total edge length of E13 and E23 between the parallel planes, in order to minimise occlusion
problem in three dimensions.

Note that in many applications, layouts of G1 or G2 may be fixed (or given). For example, pro-
tein interaction networks are usually drawn with force-directed layout, while metabolic path-
ways are preferably drawn with hierarchical (layered) layout or using the conventional (fixed)
KEGG layout. Based on this, we designed a visualisation method for overlapping networks
which takes into account one given layout. Note that the case of two given layouts can be
solved by using the fixed co-ordinates for each layout and drawing G3 using the barycenter of
v1 in L1 and v2 in L2.

Suppose that one of the graph (say, G1) has a fixed layout (for example, a pre-computed hierar-
chical layout). In this case, we need to draw G2 and G3, considering the fixed layout of G1. A
variation of a force-directed method can be used to produce a reasonably good layout of G2 and
G3, while reducing the total inter-plane edge length. More specifically, we have the following
steps:

1. Draw G1 with a given layout L1;

2. Assign the position of node v1 in L1 as the initial position of its mapped node v2 in G2;

3. Add inter-plane edge sets E13 and E23 and model each inter-plane edge as a zero-length
natural spring (i. e. attraction force only). Note that such spring does not change the
distance between the planes;

4. Draw G2 and the edge sets E13 and E23 with a force-directed layout with the previous
initial positions;

5. Draw G3 using the barycenter of v1 in L1 and v2 in L2;

6. Assign three different z-coordinates to the nodes in G1, G2 and G3.

At step 2, by assigning a good initial position based on L1, it can help the force-directed layout
of G2 at step 4 to converge quickly. Further, the corresponding nodes v1 in L1 and v2 in L2

have similar x-y coordinates. At step 3, we add the zero-length natural spring for inter-plane
edges, in order to reduce the total edge length of inter-plane edges. Note that at step 4, this
force competes with other forces of G2 which try to produce a good layout for G2. As a result,
the corresponding nodes may not always perfectly aligned with a straight-line. At step 5, we
use the barycenter of L1 and L2 to draw G3, as in general case, the mapping between G1 and
G2 is not necessarily a 1-to-1 mapping.

The presented visualisation method has been implemented as a plugin for GEOMI [2]. GEOMI
is a visual analysis tool for the visualisation and analysis of large and complex networks. GE-
OMI provides a collection of network analysis methods, new 2.5D graph layout algorithms and
several graph navigation and interaction methods. GEOMI is part of a new generation of visual
analysis tools, which tightly integrating graph visualisation techniques with network analysis
methods. The two networks under investigation can be loaded into the tool as files, but have
to be created individually from databases or other data sources beforehand. The middle layer
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(intersection) of each network is thereby computed automatically based on common identifiers
between the two networks.

4 Overlapping Biological Networks

We now present the results of our method using three examples of overlapping biological net-
works: metabolic network and protein interaction network, protein interaction network and
gene regulatory network, and protein interaction network and signal transduction network.

4.1 Overlapping metabolic network and protein interaction network

4.1.1 Construction of the overlapping networks

We used two databases for constructing an overlapping biochemical network. The Database of
Interacting Proteins (DIP) [20] stores information about protein interactions and the pathway
section of the KEGG databases [15] provides information about metabolic pathways. From
those databases we extracted information about Escherichia coli, one of the best studied bacte-
ria in molecular biology.

Protein interaction data for E. coli was downloaded from DIP (release July 2007). Each line
of the downloaded file describes a pairwise interaction between two proteins. Each protein is
identified by an unique identifier, and several other identifiers such as the UniProt ID [23] are
given in the file. As current methods for determining interactions between proteins only report
that two proteins interact without detailed information concerning type and directionality of the
interaction, they are modelled as undirected graphs. Using all interaction pairs that are currently
stored in DIP for E. coli, a network with 1846 nodes and 8013 edges was constructed. The
network consisted of 351 connected components. The largest connected component consists of
1440 nodes with 7279 edges. All other components contain between 1 and 6 nodes.

Metabolic reactions are organised in groups called pathways. For E. coli, 108 pathways are
described in the KEGG database Release 43.0 (July 2007). From this database, we extracted
the glycolysis pathway. Within the glycolysis, sugars such as fructose and glucose are converted
into pyruvate and additional energy in the form of the molecule ATP. The network was extracted
from KEGG. In total, the network consists of 52 nodes and 57 edges. In metabolism, enzymes
are responsible for the catalysis of reactions, and those enzymes are proteins which might occur
in the protein interaction network.

In both databases, proteins and enzymes are annotated with common identifier from the UniProt
database [23]. Using this identifier, connections between the protein interaction network and
the metabolic pathway can be established. In total, 9 enzymes from the glycolysis pathway have
a corresponding protein in the protein interaction network. To construct an integrated network,
both networks are combined. Every enzyme in the metabolic network having a corresponding
protein in the protein interaction network is connected to a new node representing both, the
protein in the protein interaction network and the enzyme in the metabolic network. The pro-
tein interaction network was reduced to the 1-neighbourhood for all proteins connected to the
metabolic pathways. Finally, labels for the proteins in the interaction network were replaced by
the corresponding gene name, if known.
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4.1.2 Visual analysis of the overlapping networks

Figure 2 shows a visualisation of the two overlapping biochemical networks. A relevant part
of the protein interaction network G1 is shown in green, and the blue network G2 represents
a metabolic pathway, the glycolysis. The protein interaction network G1 is laid out using our
method described earlier with the visualisation of the metabolic network G2 computed using a
layout approach which takes into consideration the given KEGG coordinates where possible. In
this visualisation, nodes occurring in both networks are connected to the corresponding nodes
in G3 by yellow edges.

An analysis of the integrated, overlapping networks reveals several interesting aspects. It can
be clearly seen that several, but not all enzymes of the glycolysis are present in the protein
interaction network. One would expect every enzyme to be represented in the protein inter-
action network, as every enzyme is a protein. This is not the case, because protein interaction
databases, including DIP, usually only refer proteins for which at least one interaction is known.

Usually the activity of metabolic reactions is regulated, and metabolic pathways can be regu-
lated at different points. Often this regulation is carried out via protein interactions. There
are several enzymes which interact with other proteins, and most are together in the connected
component of the protein interaction network. This may be a clue about specific regulation
mechanisms of metabolic reactions or a multi-protein complex (metabolon).

For example, DIP:10622N (pyruvate kinase II) is in the protein interaction network connected
to DIP:10467N (pyruvate formate-lyase), see Figure 3. Whereas pyruvate kinase II cataly-
ses the reaction from p-enol-pyruvate to pyruvate, the interacting protein pyruvate formate-
lyase catalyses the reaction which transforms pyruvate into acetyl-CoA and formate in a sub-
sequent metabolic reaction. Also another aspect, the connection of the glycolysis to cold shock
(e. g. DIP:9334N) and heat shock proteins (e. g. DIP:6142N) is not surprising as, for exam-
ple, the low-temperature stress on the glycolytic activity is known for other bacteria such as
Lactococcus lactis [24]. Interesting is also the highly connected protein DIP9040N (dihy-
drolipoamide acetyltransferase component of pyruvate dehydrogenase complex) which is cur-
rently under further investigation.

4.2 Overlapping gene regulatory network and protein interaction network

4.2.1 Construction of the overlapping networks

To understanding how the gene regulatory network in E. coli influences the physical organ-
isation of its protein interaction network, we used the overlapping networks to visualise the
interactions between these two networks. We used two datasets to construct the overlapping
networks. The gene regulatory data for E. coli was downloaded from the public database Re-
gulonDB [19]. Each row describes the pairwise and directed interaction between two proteins.
The source nodes were listed in the right column and end nodes were listed on the left column.
From this, a network of 1371 nodes and 2030 edges were constructed. The protein interaction
network was constructed from the DIP data as described in Section 4.1.1.
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Figure 2: Visualisation (side and top view) of the two overlapping networks representing a
metabolic network (glycolysis) and a corresponding part of a protein interaction network. The
given layout of the metabolic pathway, nodes in blue, is clearly visible. The protein interaction
network and inter-plane edges are drawn with a variation of a force directed method.
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Figure 3: The protein DIP:10622N in the protein interaction network is identical to the enzyme
pykF in the metabolic network. It interacts with several other proteins. See the text for a discus-
sion.

4.2.2 Visual analysis of the overlapping networks

Figure 4 shows the visualisation of the overlapping networks in 2 layers. Here, G1 represent-
ing the largest connected component of the gene regulatory interaction network is shown in
magenta. The green network G2 represents the largest connected component of the protein in-
teraction network. The overlapping networks were drawn according to our method. The fixed
co-ordinates for G1 was computed according to the Kamada-Kawai layout [14] while G2 was
laid out using the force-directed method. G1 contains directional interactions that indicate the
flow of control on gene expression. Given the interaction protein A → protein B, means that
protein A induces or represses the expression of protein B. G2 contains the physical interactions
between proteins. In this visualisation, nodes occurring in both networks were connected by
yellow edges. Figure 5 shows that there are numerous edges between G1 and G2 demonstrated
that the two networks are highly interconnected.

When viewing from the top of G1, one can identify six interconnected hubs. The centre nodes
of these hubs are crp, ihfAB, hns, fis, lrp, arcA, and fnr. This is suggesting that the global state
of the gene regulatory network can be determined by the on/off states of a few core transcrip-
tion factors. However, none of these transcription factors are mapped to the protein interaction
network. One possible explanation is the DIP dataset is incomplete. The alternative explana-
tion is that the core transcription factors do not require any protein co-factors to facilitate gene
regulation thereby greatly reduces the amount of just-in-time transcription required. Hence, the
physical organisation of the protein interaction network is indirectly influenced by the state of
the core transcription factors. Such a design allows the bacterium to fine tune its functional or-
ganisation rapidly in response to any external environmental challenges but can also be crippled
by any loss-of-function mutations carried by either one of the above transcription factors.

Visually, crp appears to have the highest node degree which indicates that it is the central
transcription factors in E. coli. This observation aligns with the current consensus that crp is the
key hub in the E. coli gene regulatory network [3]. Visualisation of G2 shows that crp is directly
connected to fnr, hns and ihfAB indicating that the on/off states of the four transcription factors
are inter-dependent. To date, crp has been known to regulate more than 200 operons which
are involved in diverse biological functions, i. e. carbohydrate metabolism, ion transportation,
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Figure 4: Visualisation of the two overlapping networks representing a gene regulatory network
and and a corresponding part of a protein interaction network. The gene regulatory network
is in blue, whereas the protein interaction network is in green. The proteins co-shared by both
networks are in red.
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Figure 5: Enlargement of the visualisation in Figure 4 which shows numerous inter-cluster edges
(yellow colour) between G1 and G2 representing the gene regulatory proteins that were also
present in the protein interaction network.

Figure 6: Enlargement of the visualisation in Figure 4, see text for an explanation.
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amino acid metabolism, energy production, and downstream gene regulation [26]. Another
transcription factor arcA has been estimated to regulate 100 to 150 operons. arcA has recently
been found to be a repressor of anaerobic respiration enzymes [25]. It is a part of the two
component arcA/arcB signaling protein complex within the cytoplasm.

Figure 6 shows that the proteins occurring in both networks lied at the periphery of G2, thus
shows that they are effector proteins regulated by the gene regulatory hierarchy. In G1, they
can be divided into two groups according to their topology. One group are nodes peripheral to
a certain hub, e. g. aroA, cheB, cysD, cysP, cysI, fliN, flgD, ftsK, phr, polB, recX, rpoD, ruvB,
murF, torD, uvrB and ygbK. Another group are nodes connected to two or more hubs, e. g.
cheA, cysJ, ccmF, ftsQ, murE, hycG, speA, torA, topA and uvrD. They are frequently known as
the bottleneck proteins.

In E. coli, these two groups of proteins exhibit different interaction dynamics. Because many
biological processes are operated by protein complexes, there is a need to optimise transcrip-
tional efficiency while ensuring that the right protein complex for a particular set of biologi-
cal processes is fully operational on demand. The peripheral protein is usually a component
specific to a particular complex and is only expressed when a certain biological process is
needed. Once the peripheral protein is expressed, the protein complex becomes fully func-
tional. The bottleneck protein,on the other hand, can be a shared component between two
or more complexes. Their interaction with each complex depends on the relative molecular
abundance among the various targeted complexes. This type of interaction dynamics is known
as differential affinity. By regulating the expression of the bottleneck protein, the organism
can easily switch between various protein complexes and therefore biological processes when
necessary.

In summary, the 2-layer overlapping networks showed that the gene regulatory network con-
trolled the physical organisation of the protein interaction network by regulating the structural
integrity of protein complexes. In turn, the functional organisation of E. coli at a certain time
point is dependent on which protein complexes are in operation and their relative molecular
abundance. This design allows the organism to rapidly orchestrate the activities of multiple
biological processes in response to environmental challenges.

4.3 Overlapping signal transduction network and protein interaction network

4.3.1 Construction of the overlapping networks

To study the probable effect of signal transduction of the cell cycle of Homo sapiens, we used
the overlapping networks to visualise the interactions between the transforming growth factor
beta (TGFβ) network and the nuclear protein interaction network. We used four datasets to
construct the overlapping signal transduction networks. The dataset for the TGFβ signal trans-
duction network was manually curated from Cui et al. [18]. From this, a network of 48 nodes
and 52 edges was constructed. The nuclear protein interaction data was extracted from three
datasets downloaded from the Gene Ontology Consortium [1], the BioGRID [8] and the ECHO
databases [13].

Because many of the protein interactions in the BioGRID dataset have been verified by multiple
laboratory techniques, it is more reliable than data generated solely by the yeast two-hybrid
method. Each record in the BioGRID dataset describes a pairwise interaction between two
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Figure 7: Visualisation of the two overlapping networks representing a signal transduction net-
work (TGFβ) and a corresponding part of a nuclear protein interaction network. The signal
transduction network is in blue, whereas the protein interaction network is in green. The proteins
co-shared by both networks are in red.
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proteins. The ECHO database provides a list of liver cancer-specific proteins. By querying
against the Gene Ontology dataset, BioGRID records that describe protein interactions within
the cellular component nucleus were first extracted. The resulting dataset which contained 1748
proteins was then queried against the list of liver cancer-specific proteins. The final dataset
contains protein interactions that are not only found in the cell nucleus but also liver cancer-
specific. From this, a network of 583 nodes and 711 edges was constructed. Protein names
assigned by the Human Genome Organization have been used as node labels in the above
networks.

4.3.2 Visual analysis of the overlapping networks

Figure 7 shows how the visualisation effectively represents two different types of protein net-
works in separate layers. Here, G1 representing the TGFβ signal transduction network is shown
in blue. The green network G2 represents the largest connected component of the nuclear pro-
tein interaction network. The overlapping networks were drawn according to our algorithm.
The fixed co-ordinates for G1 were manually assigned while G2 was laid out using the force-
directed method.

G1 contains directional interactions that serve the sole purpose of propagating the phosphoryla-
tion signal from the TGFBR1 receptor protein to the rest of the network. Given the interaction,
protein A → protein B, means that protein A phosphorylates protein B. Some proteins are
activated while others are inactivated by phosphorylation. Each interaction in G1 is transient
and fast which occurs within milliseconds. G2 contains physical interactions between nuclear
proteins. Nodes occurring in both networks are shown in red and are connected to the corre-
sponding nodes in G3 by yellow edges. Edges in G3 are shown in the same colour as their
corresponding edges in either G1 or G2.

When viewing G2 from the top and the overlapping networks on the side, one can clearly
recognise that some signaling proteins e. g. ATM, CDK4, FOXO1A, HDAC1, and SMAD3 are
themselves highly connected in G1 (node degree > 10). Viewing G2 from the top also helps
one to identify the signaling order of the above proteins. Of interest, the proteins within G3

can be divided into four groups according to their functionality. SMAD2,3,4 are transducers
for the TGFBR1 receptor protein. HDAC1, CDK2, CDK4, CCND1 and CCND2 are cell cycle
proteins that drive cell division. JUN, LEF1, STAT1 and STAT3 are oncogenic proteins that
activate the above cell cycle proteins. CDKN2A, RB1 and ATM are tumour suppressing proteins
that inactivate the same set of cell cycle proteins. This observation suggests that TGFβ is a
secondary control point of the cell cycle. Even though TGFβ can directly activate cell cycle
proteins by phosphorylation, this alone is inadequate for initiating the cell cycle. Rather, it
relies on the relative molecular abundance between the oncogenic proteins and the tumour
suppressing proteins, which in turn is determined by the activity of other signaling proteins
prior to the onset of TGFβ signaling. This type of interaction dynamics is known as differential
signaling. For example, the authors noticed that IFNG is one of the proteins in G1. This protein
activates STAT1 and STAT3 by phosphorylation via JAK2. If TGFβ signal transduction is being
activated simultaneously, the molecular abundance of STAT1 and STAT3 will out-compete the
tumour suppressing proteins leading to the initiation of the cell cycle. IFNG is produced by
virally-infected cells. It has been known that liver cancer can be induced by the persistent
infection of hepatitis A, B, and C viruses [9]. As the cancer progresses, genome instability
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often leads to the loss of tumour suppressor genes thereby reinforcing the cancer-promoting
impact of IFNG and TGFβ.

In summary, overlapping networks can be an effective representation of the biological com-
plexity underlying a signal transduction network and is particularly useful for oncology, im-
munology and endocrinology research.

5 Conclusions

In this paper, we introduce a new problem of visualising overlapping networks, and present a
method for visualising two overlapping networks using a 2.5D representation. Our methods
can achieve both drawing aesthetics and conventions for each individual network, and simulta-
neously highlighting the overlapping part between them.

The usability of our visualisation approach has been studied on real world applications from
biology. It showed that our visualisation can lead to new insights and analysis into the data.
More specifically, it can provide visual analysis of network integration of two heterogeneous
biological networks (metabolic pathway and protein interaction network, protein interaction
network and gene regulatory network, and protein interaction network and signal transduction
pathway). However, it should be noted that data quality, which depends on the chosen data
sources, is crucial for the visual analysis step.

The presented method can be used for large networks, by reducing the size of the whole network
to a subset of relevant overlapping networks, as in our examples. This paper presents the first
step, the visualisation of two overlapping networks. Our current work is to design new methods
for a set of overlapping networks.
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