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Abstract

This paper introduces recent developments in the analysis of inventory systems with partial observations.
The states of these systems are typically conditional distributions, which evolve in infinite dimensional
spaces over time. Our analysis involves introducing unnormalized probabilities to transform nonlinear state
transition equations to linear ones. With the linear equations, the existence of the optimal feedback policies
are proved for two models where demand and inventory are partially observed. In a third model where
the current inventory is not observed but a past inventory level is fully observed, a sufficient statistic is
provided to serve as a state. The last model serves as an example where a partially observed model has
a finite dimensional state. In that model, we also establish the optimality of the basestock policies, hence
generalizing the corresponding classical models with full information.

Résumé

On présente un certain nombre de modèles de systèmes de stocks avec information partielle. Ils sont for-
malisés comme des problèmes de contrôle où l’état est une probabilité conditionnelle, dans un espace de
dimension infinie. On introduit des probabilités non normalisées, permettant de transformer des équations
non linéaires en équations linéaires. On peut alors montrer l’existence de feedbacks optimaux pour deux
modèles où la demande et le stock sont partiellement observables. Dans un troisième modèle, le stock n’est
pas observé, mais un stock antérieur est observé. Une statistique exhaustive est obtenue, et l’état est de
dimension finie. On établit l’optimalité des politiques “stock de base”, généralisant les modèles classiques
avec information complète.

∗To appear in the Comptes Rendus de l’Academié des Sciences
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Version Française Abrégée

Bien que la gestion des stocks ait été l’objet d’une littérature considérable, la situation où l’information est
partielle n’a pratiquement pas été abordée jusqu’à présent. On montre, sur un certain nombre de modèles,
comment l’idée très féconde des probabilités conditionnelles non normalisées, introduites dans le filtrage non
linéaire par Zakäı peut être adaptée et permet d’établir l’existence de politiques optimales. Les problèmes à
traiter sont du type suivant

πt+1(x) = 1Izt=qt

∫∞
qt

πt(ξ)p(x|ξ)dξ∫∞
qt

πt(ξ)dξ
+ 1Izt<qtp(x|zt), (1)

où p(x|ξ) est la probabilité de transition d’une châıne de Markov, zt est le processus observé, qt le contrôle
adapté à Zt−1 et πt(x) est une probabilité conditionnelle qui représente l’état du système. L’équation de
Bellman associée est donnée par

V (π) = min
q

{∫
L(x, q)π(x)dx + αV

(∫∞
q p(·|ξ)π(ξ)dξ∫∞

q π(ξ)dξ

)∫ ∞

q
π(ξ)dξ + α

∫ q

0
V (p(·|ξ))π(ξ)dξ

}
. (2)

La linéarisation est obtenue par les equations (8), (9), (10) ci dessous. Un principe de contraction peut
s’appliquer à (8) et permet de résoudre aussi (2), et d’obtenir un feedback optimal. Un problème beaucoup plus
complexe est décrit par les équations (19), (22), (23). Là aussi, la linéarisation simplifie considérablement,
même si le principe de contraction ne s’applique plus. On prouve l’existence d’une solution maximale qui
s’interprète comme la fonction valeur d’un problème de contrôle. On construit une suite de contrôles feedback
formant une suite minimisante (le feedback optimal peut ne pas être atteint).

1 Introduction

Inventory control is one of the most important topics in operations research. A systematic analysis of inventory
problems began with the development of the classical EOQ formula of Harris in 1913 [9] and a significant
plateau was reached in 1958 by Arrow, Karlin and Scarf [1]. A critical assumption in this vast literature has
been that the level of inventory at any given time is fully observed. Some of the most celebrated results such
as the optimality of base-stock or (s, S) policies have been obtained under the assumption of full observation.
Most of the well-known inventory policies are not only non-optimal, but are also not applicable in the partial
observation environment. While one works with a finite dimensional state space in the full observation case, one
usually has to deal with an infinite dimensional state space in the partial observation setting. In particular, in
the full observation cases the inventory level is often the state variable, whereas with the partial observations,
the system state is typically the conditional distribution of the inventory level given the partial observations.

It is the purpose of this paper to introduce some techniques, reminiscent of the Zakai equation [11] in
stochastic control, for the analysis of inventory control with partial observations. The Zakai equation uses a
transformation that changes the highly nonlinear Kushner equation [10] for evolution of probability distribu-
tions over time into a linear equation. While the transformation does not remove the infinite dimensionality,
the linearity permits a number of important control problems with partial observations to be solved. On the
other hand, some inventory models can admit a finite dimensional sufficient statistic. For a specific inventory
model, this statistic turns out to be the known inventory level in an earlier period plus all of the inventory
orders made since that period. When there exists a sufficient statistic, the well-known optimal ordering policies
are more likely to remain valid.

In Sections 2 and 3, we introduce two separate inventory models, both of which benefit from the derivation
of a Zakai-type equation. In Section 4, we provide an inventory model which admits a sufficient statistic.
Sections 2, 3, 4 are respectively based on [5], [3], [4] and [6].
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2 Partially Observed Demand due to Censoring

Although many inventory models assume a static and a known demand distribution, this distribution in
reality can change over time and so it is likely to be unknown. The distribution needs to be updated based
on the demand observations. Ding et al. [7] study a multiperiod newsvendor model with Bayesian updating
of demands. Specifically, the demand is observed only when it is less than the inventory level, i.e., unmet
demand is censored. Consequently, the state of the system is the distribution of the demand characterized by
a parameter, which is updated in each period based on the partial observation of the demand at that time.
Ding et al. assume that the demands are independently and identically distributed. On the contrary, in this
section we do not make any assumption on the demand distribution or correlation between the demands in
different periods, except that it is a Markov process. Furthermore, we develop a Zakai-type equation [11] for
the evolution of the conditional probability distribution of the demand over time. This facilitates the analysis
of the dynamic programming equation for the problem. We establish that the value function is the unique
solution of the DP equation and that there exists an optimal feedback policy for the problem.

We now formally define our problem. Let (Ω,F , P) be the probability space and let t ≥ 1 be the indices for
the periods. Let Dt ≥ 0 denote the demand occurring at the beginning of period t. The demand is modelled
by a Markov process with the transition probabilities given by p(x, ξ) := P(Dt+1 = x|Dt = ξ). The inventory
available to satisfy the demand Dt, or a part thereof, is called qt. Like [7], we assume that the excess inventory
at the end of each period is salvaged and the unmet demand in a period is lost. Thus, qt can also be thought
as the order placed and delivered at the beginning of period t before the demand Dt arrives. Then the amount
zt of sales is given by

zt := min{Dt, qt}. (3)

When Dt < qt, the demand is met and therefore observed. On the other hand, when Dt ≥ qt, the inventory
is not sufficient to meet the demand in period t. Then, the amount of sales is only qt and Dt− qt is the unmet
demand. When the demand is not met, the unmet demand is not observed by the inventory manager (IM). Let
Zt denote the sigma algebra Zt := σ({z1, . . . , zt}). Since Zt ⊆ σ({D1, . . . , Dt}), we have a partially observed
inventory model.

Let the function L(D, q), which depends on the demand D and the available inventory level q, denote the
one-period cost function:

L(D, q) =

{
cq − h(q −D) if D ≤ q

cq + b(D − q) if q ≤ D

}
, (4)

where h, c and b are, respectively, the salvage value per unit, the ordering cost per unit, and the shortage cost
per unit. It is reasonable to assume that 0 ≤ h < c < b.

With the discount factor 0 < α < 1 and with q defining the sequence of order quantities q = {q1, q2, . . . },
with qt adapted to Zt−1, our objective is to minimize

J(q) :=
∞∑

t=1

αt−1IE L(Dt, qt). (5)

We take the initial distribution of D1 as given to start the process. Note that q1 is determined with certainty
at the beginning of period 1. This completes the definition of our problem.

We start by studying the evolution of the demand distribution. Let πt denote the conditional probability
density function of Dt. Since πt+1 is updated from πt and Zt, it is obvious that πt+1 is Zt-measurable. When
an integral is taken over [0,∞), we suppress the limits to save on the notation.
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Using probabilistic arguments, we obtain the random density measure πt+1 in terms of πt:

πt+1(x) = 1Izt=qt

∫∞
qt

πt(ξ)p(x|ξ)dξ∫∞
qt

πt(ξ)dξ
+ 1Izt<qtp(x|zt). (6)

With this distribution as the state variable, we now proceed to derive the dynamic programming equation for
our problem.

2.1 Bellman equation with normalized and unnormalized probabilities

We begin with the expected total costs occurring in the current period t, i.e., IE L(Dt, qt) =
∫

L(x, qt)πt(x)dx.
Equation (6) implies that the future costs should have two terms depending on whether the demand is observed.
When the demand is not observed, the future costs depend on the first term on the right-hand side of (6).
Otherwise, they depend on the second term. Summing up the current and future costs that result in by
ordering q yields the terms inside the curly brackets in the Bellman equation below:

V (π) = min
q

{∫
L(x, q)π(x)dx + αV

(∫∞
q p(·|ξ)π(ξ)dξ∫∞

q π(ξ)dξ

)∫ ∞

q
π(ξ)dξ + α

∫ q

0
V (p(·|ξ))π(ξ)dξ

}
. (7)

This equation yields the optimal q as a function of the current knowledge summarized in π about the demand.
The state transition equations can be linearized as we illustrate next.

We begin with (6) and develop what is known as the unnormalized probability. Its dynamics is similar to
the Zakai equation obtained in the filtering literature [11].

Taking a cue from (6), we define ρt(x) by the recursive linear equation

ρt+1(x) = 1Izt=qt

∫ ∞

qt

p(x|ξ)ρt(ξ)dξ + 1Izt<qtp(x|zt) for t ≥ 1, (8)

with the initial value ρ1(x) = ρ(x) = π(x). Equation (8) corresponds to the Zakai equation for systems with
diffusions in [11] and [2]. Also set λt :=

∫
ρt(x)dx. Then we have λ1 = 1 and λt+1 = 1Izt=qt

∫∞
qt

ρt(ξ)dξ +1Izt<qt

for t ≥ 1, which follows directly from integrating the left-hand side of (8) over [0,∞). Moreover, ρt(x) =
πt(x)λt, where λt is a weighting factor which allows us to recover normalized probabilities.

We define, for any positive L1 function ρ,

W (ρ) := V

(
ρ∫

ρ(x)dx

)∫
ρ(x)dx. (9)

We use (7) and (9) to obtain a recursive equation for W :

W (ρ) = min
q

{∫
L(x, y)ρ(x)dx + αW

(∫ ∞

q
p(·|ξ)ρ(ξ)dξ

)
+ α

∫ q

0
W (p(·|ξ))ρ(ξ)dξ

}
. (10)

From the linearity in ρ of the first term inside the minimum above, we can see that W (0) = 0 and W is
homogenous of degree 1, i.e., W (aρ) = aW (ρ) for a > 0. The right-hand side in the Bellman equation (10)
has linear growth, which facilitates the derivation of the existence results below.

2.2 Existence of an Optimal Feedback Solution and Monotone Value Functions

First we show that there exists a unique solution of the DP equation. For this, we define some normed
linear spaces. Let H :=

{
ρ ∈ L1(<+) :

∫
x|ρ(x)|dx < ∞}

, where L1(<+) is the space of integrable functions
whose domain is the set of nonnegative real numbers. H is a subspace of L1(<+). Since we are interested in
nonnegative unnormalized probabilities, we define H+ = {ρ ∈ H|ρ ≥ 0}, a closed subset of H with the norm
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||ρ|| =
∫ |ρ(x)|dx +

∫
x|ρ(x)|dx. Let us also define the space B = {φ(ρ) : H+ → < | supx>0 |φ(ρ)|/||ρ|| < ∞}

with the norm ||φ||B = supρ∈H+ |φ(ρ)|/||ρ||.
We assume that for any µ ∈ B,

∫
x

∫
p(x|ξ)µ(ξ)dξdx ≤ c̄

∫
ξµ(ξ)dξ with αc̄ < 1. We also define the map

T (W ) as

T (W )(ρ) := min
q

{∫
L(x, y)ρ(x)dx + αW

(∫ ∞

q
p(·|ξ)ρ(ξ)dξ

)
+ α

∫ q

0
W (p(·|ξ))ρ(ξ)dξ

}
. (11)

The next theorem summarizes the results.

Theorem 1. If there exists a solution W (ρ) of (10), it is in B. Furthermore, ||T (W )−T (W̃ )||B ≤ α max{1, c̄}||W−
W̃ ||B. Thus, there exists one and only one solution W (ρ) of the Bellman equation (10). Moreover, W (ρ) is
continuous at each ρ ∈ H+ and there exists an optimal feedback policy.

Using a value iteration based on (10), we can deduce that W (ρ) is monotone increasing and concave in
ρ. More interestingly, the total discounted cost V (π) is smaller when the demand is believed to be smaller in
the hazard rate order. We also say that linear operator P(π) defined by P(π) :=

∫
p(·|ξ)π(ξ)dξ is hazard rate

order preserving if P(π) ¹ P(π′) holds for all π and π′ with π ¹ π′.

Theorem 2. V (π) ≤ V (π′) if π is smaller than π′ in the hazard rate order and P(π) is hazard rate order
preserving.

3 Partially Observed Inventory due to Zero-Balance Walk

In this section, the demand has a known distribution but the inventory level It at the beginning of period t is
given by

It+1 = (It + qt −Dt)+ for t ≥ 1. (12)

In every period t, demand Dt is met, to the extent possible, from the on-hand stock It + qt. When the demand
is met entirely, inventory holding costs apply to the remaining inventory. Otherwise, there are lost sales costs.
We assume demand Dt to be i.i.d. A generic demand is denoted by D, which is i.i.d. with each Dt. Let f

denote the density and F denote the cumulative distribution of D. Let F̄ = 1− F .
In classical inventory settings, the inventory level It is observed, and is used to determine the order quantity

qt in period t. In this section, the IM does not automatically observe the inventory level due to transaction
errors, misplaced inventories, spoilage or production yield. The inventory level is observed only when there is
no physical inventory. When there is inventory, only the event that the inventory is positive is observed. We
continue to use zt to denote the observed signal, which in this context is

zt := 1IIt=0, t ≥ 0. (13)

The signal zt is a discrete-time Markov Chain with the state space {0, 1}: 1 means an empty inventory shelf
and 0 means a nonempty shelf. This observation process mimics what is known as “zero-balance walk” ([8])
at some companies where employees walk around the shelves to identify the stocked-out items and verify the
inventory levels for those items.

The order qt is adapted to Zt := σ({zj : 1 ≤ j ≤ t}). Clearly Zt ⊂ Ft := σ({Ij : 1 ≤ j ≤ t}). Given
a stationary cost function c(It, qt) that depends on the inventory level It and the order size qt, and with q
defining the admissible order quantities, the total discounted cost is defined by

J(ζ, π,q) :=
∞∑

t=1

αt−1IE c(It, qt). (14)

The initial conditions are a pair (ζ, π(x)), where ζ is 1 or 0. If ζ is 1, then I1 = 0. If ζ is 0, then I1 > 0 and
π(·) is the probability distribution of I1. We look for qt, adapted to Zt, t ≥ 0, to minimize J(ζ, π,q).
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3.1 Evolution of State Probabilities

We now develop the conditional probability density πt(.) of It given Zt−1 and It > 0. Derivation of πt in
this case is more involved than in Section 2, so we furnish more details. By definition,

∫ x
0 πt(y)dy = P(It ≤

x|Zt−1, It > 0). Since the event [It = 0] is observable, conditional probabilities are needed only when It > 0.
We can obtain

∫ ∞

0
φ(x)πt(x)dx = IE[φ(It)|Zt−1, It > 0] =

IE[φ(It)1IIt>0|Zt−1]
IE[1IIt>0|Zt−1]

, (15)

where φ is an arbitrary test function. In order to obtain a recursive expression for πt in terms of πt−1, we
begin with expressing IE(φ(It)|Zt) in terms of conditional expectations with respect to Zt−1 in the next two
lemmas.

Lemma 1.

IE(φ(It)|Zt) = 1IIt=0φ(0) + 1IIt>0
IE(φ(It)1IIt>0|Zt−1)

P(It > 0|Zt−1)
= 1IIt=0φ(0) + 1IIt>0IE(φ(It)|Zt−1, It > 0). (16)

Lemma 2.

IE(φ(It)|Zt)1IIt>0 = 1IIt−1=0

∫∞
0 φ(z)f(qt−1 − z)1Iqt−1≥zdz

F (qt−1)

+1IIt−1>0

∫∞
0 φ(z)

∫∞
(z−qt−1)+ f(y + qt−1 − z)πt−1(y)dydz∫∞

0 F (y + qt−1)πt−1(y)dy
. (17)

Going back to the conditional probability πt, we may write IE(φ(It)|Zt) = 1IIt=0φ(0)+1IIt>0

∫∞
0 φ(z)πt(z)dz.

Equating the second term on the right-hand side of this equality to (17), we get

πt(x) = 1IIt−1=0

{
f(qt−1 − x)1Ix≤qt−1

F (qt−1)

}
+ 1IIt−1>0

{∫∞
(x−qt−1)+ f(y + qt−1 − x)πt−1(y)dy∫∞

0 F (y + qt−1)πt−1(y)dy

}
. (18)

Equivalently, the conditional probability evolves according to the highly nonlinear equation

πt(x) = zt−1
f(qt−1 − x)1Ix<qt−1

F (qt−1)
+ (1− zt−1)

∫∞
(x−qt−1)+ f(y + qt−1 − x)πt−1(y)dy∫∞

0 F (qt−1 + y)πt−1(y)dy
, t ≥ 2, π1(x) = π(x), (19)

which corresponds to the Kushner equation [10] in our inventory context.
For linearizing (19), we set ρt(x) := λtπt(x). On account of this weighting, ρt(x) becomes the unnormalized

probability and it evolves according to the linear equation

ρt(x) = zt−1f(qt−1 − x)1Ix<qt−1 + (1− zt−1)
∫ ∞

(x−qt−1)+
f(y + qt−1 − x)ρt−1(y)dy, ρ1(x) = π(x). (20)

By integrating both sides of ρt(x) = λtπt(x), we get λt = zt−1F (qt−1) + (1− zt−1)λt−1

∫
F (qt−1 + y)πt−1(y)dy

which is a linear equation defining λt recursively starting with λ1 = 1. However, note that λt depends on
πt−1. The normalized probabilities can easily be computed from the unnormalized probabilities by πt(x) =
ρt(x)/

∫
ρt(x)dx.

The evolution equations can be written in the operator form in the space H and its dual space H∗ =
{φ : supx>0 |φ(x)|/(1 + x) < ∞}. Furthermore, 〈ρ, φ〉 =

∫∞
0 ρ(x)φ(x)dx for ρ ∈ H, φ ∈ H∗.
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For any scalar q > 0, define the linear operator Φ from H to H as Φ(q, ρ)(x) =
∫∞
(x−q)+ f(y + q− x)ρ(y)dy.

Note that Φ(q, δ)(x) = f(q − x)1Ix<q so Φ(0, δ)(x) = 0 for the Dirac delta function δ. Define the nonlinear
operator Ψ as

Ψ(q, ρ) =
Φ(q, ρ)

〈Φ(q, ρ), 1〉 . (21)

With these notations and the initial conditions π1 = ρ1 = π, we can write (19) and (20) in the operator form:
πt = zt−1Ψ(qt, δ) + (1 − zt−1)Ψ(qt, πt−1) and ρt = zt−1Φ(qt, δ) + (1 − zt−1)Φ(qt, ρt−1). We emphasize that
the second equality is linear, while the first is nonlinear.

3.2 The Bellman Equation

We write πt[q] to emphasize the dependence of the state πt on the control policy. We assume that c(It, qt) has
linear growth in It for every fixed qt, i.e., c(., qt) ∈ H∗. The cost function is:

J(ζ, π,q) =
∞∑

t=1

αt−1IE[IE[c(It, qt)|Zt]] =
∞∑

t=1

αt−1IE{ztc(0, qt) + (1− zt)〈c(It, qt), πt[q]〉}

where πt[q] is given by (19). Recall that the initial conditions ζ1 = ζ ∈ {0, 1} and π1 = π are given. We now
study only the discounted infinite horizon cost, so the time index t is suppressed. We define the value function
V (ζ, π) := infq J(ζ, π,q).

If we write v := V (1, π) which, in fact, is not dependent on π, and V (π) := V (0, π), then we obtain the
following system:

V (π) = inf
q

{
〈c(., q), π(.)〉 + αv

∫
F̄ (y + q)π(y)dy + αV (Ψ(q, π))F (y + q)π(y)dy

}
, (22)

v = inf
q

{
c(0, q) + αvF̄ (q) + αV (Ψ(q, δ))F (q)

}
. (23)

The study of the system in (22)-(23) simplifies considerably when working with the unnormalized proba-
bility ρ ∈ H+. Towards that end, we define a new value function Z(.): Z(ρ) := V (ρ/λ) λ and λ :=

∫
ρ(x)dx.

We obtain the following new system of equations:

Z(ρ) = inf
q

{
〈c(., q), ρ(.)〉 + αv

∫
F̄ (y + q)ρ(y)dy + αZ(Φ(q, ρ))

}
, (24)

v = inf
q

{
c(0, q) + αvF̄ (q) + αZ(Φ(q, δ))

}
. (25)

The pair (v, Z(p)) is the solution of (24)-(25). We have Z(0) = 0 and Z is homogenous of degree 1. Unlike
the operator Ψ, Φ is a linear operator.

3.3 Existence of a Solution to the Bellman Equation

For the existence results, we bound the single period cost. Suppose that positive constants c, c0, c1, and h are
such that cq < c(x, q) ≤ c0 + c1q + hx for x ≥ 0, where c0 can be interpreted as the maximum expected lost
sales cost that can be incurred in a period. Indeed, we set c0 = c(0, 0).

We need some short-hand notation: Define the function K : <×H → < as K(q, ρ; v, Z) := 〈c(., q), ρ(.)〉+
αv

∫
F̄ (y + q)ρ(y)dy + αZ(Φ(q, ρ)). For ρ = δ, K(q, δ; v, Z) = c(0, q) + αvF̄ (q) + αZ(Φ(q, δ)). Define the

map T : < × B → < × B as T (v; Z(ρ)) := (infq K(q, δ; v, Z); infq K(q, ρ; v, Z)). Define (Z0(ρ), v0) as the
value function when q = 0. Then, we have respectively 〈c(., 0), ρ(.)〉 + αv0

∫
F̄ (y)ρ(y)dy + αZ0(ρ(0, ρ)) =

Z0(ρ) and v0 = c0 + αv0.
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Lemma 3. Z0 exists and is uniquely defined in B.

Note that T (v0;Z0(ρ)) ≤ (v0; Z0(ρ)) and T (v; Z(ρ))) ≤ (v; Z(ρ)). These inspire a value iteration scheme
which yields (v̄, Z̄).

Theorem 3. (v̄, Z̄) is a solution of (24)-(25) and 0 ≤ v̄ ≤ v0, 0 ≤ Z̄(ρ) ≤ Z0(ρ). Moreover, it is the maximal
solution satisfying (v;Z) = T (v; Z). Also Z̄(π) = infq J(0, π,q) and v̄ = infq J(1, π,q).

Owing to the last statement, Z̄(π) and v̄ are interpreted as the infima of the costs. This, however, does
not imply the existence of a feedback policy unless the order quantity q is bounded. When the optimal q is
bounded in terms of ρ, the bound can be arbitrarily large as ρ → 0. Because of this, we choose to assume a
bound on q in addition to the cost bounds in the previous section. Let the maximum production capacity be
m and let the corresponding Z and v be denoted by Zm and vm. Then (24)-(25) is written as

Zm(ρ) = inf
q≤m

{
〈c(., q), ρ(.)〉+ αvm

∫
F̄ (y + q)ρ(y)dy + αZm(Φ(q, ρ))

}

vm = inf
q≤m

{
c(0, q) + αvmF̄ (q) + αZm(Φ(q, δ))

}
. (26)

We can check that constants Am and Bm exist such that |Zm(ρ) − Zm(ρ′)| ≤ Am
∫ |ρ(y) − ρ′(y)|dy +

Bm
∫

y|ρ(y) − ρ′(y)|dy for any two ρ, ρ′ ∈ H. Therefore, Zm is Lipschitz continuous on H. This additional
smoothness property allows us to establish the uniqueness of a solution to the system in (26) in the absence of
a contraction property on T as in Theorem 1. The next result validates the monotone iterative process. That
is, (vm, Zm) minimizes the total discounted cost.

Proposition 1. The solution (vm, Zm) of (26) is the minimum total discounted cost, i.e., Zm(π) = infq:qt≤m

J(0, π,q) and vm = infq:qt≤m J(1, δ,q).

Since Zm(π) and vm are defined as a solution of (26) and they are given by the infima in Proposi-
tion 1, both Zm(π) and vm are unique. As m increases, we have infq:qt≤m J(0, π,q) ↓ infq J(0, π,q) and
infq:qt≤m J(1, π,q) ↓ infq J(1, π,q). These imply the last statement in Theorem 3.

4 Partially Observed Inventory due to Information Delays

Here we consider partial observability arising from information delays. The current inventory level is not
observed by the IM. Instead, he observes the exact inventory level of a prior period. This model enables us
to find a sufficient statistic. It is important to allow for backordering of the immediately unmet demand to
obtain the sufficient statistic. Hence, It+1 = It + qt −Dt for t ≥ 1. We suppose that the demands Dt are i.i.d.
and use Di to denote the sum of i demands. To initialize the inventory to start its evolution, we assume that
I1 is known at t = 1.

Let θ ≥ 0 be the amount of the delay and βt := max{t − θ, 1}. The observed signal zt = Iβt at time
t denotes the last inventory level observed in period t. The signal observed at the beginning of period t

generates the sigma algebra Zt = σ({z1; z2; . . . ; zt}). However, the underlying and unobserved state at time
t is It and generates the sigma algebra Ft. Clearly, Zt ⊆ Ft. The expression for the total discounted cost is
J(q) :=

∑T
t=1 αt−1IE c(It, qt). The objective is to minimize J(q) over the class of admissible orders q adapted

to Zt.
We define the reference inventory position as xt := zt +

∑t−1
j=βt

qj , which can be obtained from the infor-
mation in Zt. The evolution equation for xt is xt+1 = xt + qt − 1Iθ≤t−1Dt−θ. Moreover, the unobserved It can
be expressed in terms of the observed xt, i.e., It = xt −

∑t−1
j=βt

Dj .

By a sequence of conditioning arguments, we obtain IEc(It, qt) = IEct−βt(xt, qt), where ci(x, q) := IEc(x −
Di, q). Thus, the single-period costs can be computed in terms of the reference inventory position and the
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objective becomes
∑T

t=1 αt−1IEct−βt(xt, qt). This shows that xt is a sufficient statistic for our problem. More-
over, we have a problem in the form of a standard inventory problem with the state xt, with the single-period
nonstationary cost function ct−βt(xt, qt), and with the sigma algebra Zt. Therefore, we can directly write the
associated DP equation starting with VT+1(x) = 0:

Vt(x) =

{
infq≥0 ct−1(x, q) + αVt+1(x + q) for t ≤ θ,

infq≥0 cθ(x, q) + αIE Vt+1(x + q −D) for t ≥ θ + 1.

The one-period cost ci(x, q) can typically be written as cq + IEH(x − Di), where the first term c > 0
(second term H(·)) represents the ordering (inventory) cost. Suppose that the inventory cost is convex, then
a base-stock type policy is optimal:

q∗t (x) = (u∗t − x)+, where u∗t :=

{
arg minu cu + Vt+1(u) for t ≤ θ,

arg minu cu + IE Vt+1(u−D) for t ≥ θ + 1.

We can extend our results to the case of delays given to be a Markov process. In that case, the reference
inventory position along with the value of the latest delay observation and the age of this observation are
sufficient statistics for finding the optimal order quantities. These sufficient statistics are of dimension three
whereas the state space of the associated DP is in general infinite dimensional. The optimal ordering policy
remains to be of base stock type with respect to the reference inventory position. However, the base stock
levels depend now on the value of the latest delay observation and the age of this observation.
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