
Towards Type-theoretic Semantics for Transactional
Concurrency

Aleksandar Nanevski

Microsoft Research, Cambridge

aleksn@microsoft.com

Paul Govereau Greg Morrisett

Harvard University

{govereau,greg}@eecs.harvard.edu

Abstract

We propose a dependent type theory that integrates programming,
specifications, and reasoning about higher-order concurrent pro-
grams with shared transactional memory. The design builds upon
our previous work on Hoare Type Theory (HTT), which we ex-
tend with types that correspond to Hoare-style specifications for
transactions. The types track shared and local state of the process
separately, and enforce that shared state always satisfies a given in-
variant, except at specific critical sections which appear to execute
atomically. Atomic sections may violate the invariant, but must re-
store it upon exit. HTT follows Separation Logic in providing tight
specifications of space requirements.

As a logic, we argue that HTT is sound and compositional. As
a programming language, we define its operational semantics and
show adequacy with respect to specifications.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

1. Introduction

Transactional memory is one of the most promising directions in
the evolution of concurrent programming languages. It replaces
locks, conditional variables, critical regions and other low-level
synchronization mechanism with a higher-level linguistic construct
of transactions, which delegates synchronization to the run-time
system. This frees the programmer from the need to develop po-
tentially complicated and frequently non-modular synchronization
protocols that arise in other approaches to concurrency. Transac-
tions make it simpler to write efficient and correct concurrent pro-
grams that avoid data races and deadlock. Moreover, transactions
are sufficiently well-behaved and compositional to fit naturally into
a functional, higher-order language like Haskell [10].

In this paper we are interested not only in programming with
transactions, but in developing a formal logic for specification
and reasoning about concurrent programs with shared transactional
memory. Most program logics for concurrency are based on Hoare
Logic [27], and we choose as our starting point the recent work
on concurrent Separation Logic [25, 3]. Concurrent Separation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

TLDI’09, January 24, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-420-1/09/01. . . $5.00

Logic has made significant inroads into reasoning about shared
memory concurrency by focusing on the idea of spatial separation,
whereby each process can be associated with a logical description
of exclusive ownership over the state that it requires. This facilitates
local reasoning, as the changes that a process makes to its local
state do not influence others. Furthermore, Separation Logic leads
to a particularly convenient descriptions of transferring ownership
of state between processes.

When it comes to accessing shared resources, Separation Logic
can specify the invariants that processes must preserve upon the
exclusive use of the resource [25, 3]. Alternatively, it can specify
upper and lower bounds on how the shared resource may change,
in the style of rely-guarantee reasoning [31, 6].

While Separation Logic has significantly simplified the cor-
rectness proofs about shared state, it has mostly concerned itself
with imperative first-order languages and low-level synchroniza-
tion primitives such as locks. However, irrespective of whether one
intends to prove his programs correct or not, programming with
such low-level primitives remains difficult. In addition, first-order
languages, by definition, do not support advanced linguistic fea-
tures such as higher-order functions, polymorphism, modules, and
abstract data types, even though all of these are indispensable for
programming in the large as they facilitate code reuse, information
hiding and modularity. The higher-order abstractions become all
the more important if one wants to support specification and rea-
soning. Yet, most program logics based on (sequential or concur-
rent) Hoare or Separation Logic have little or no support for these
important modularity features.

In this paper we take the step of combining programming,
specification, and reasoning in the style of Separation Logic about
higher-order programs with transactional concurrency. We build on
our previous work on Hoare Type Theory (HTT) [22, 20], which is
a dependent type theory with extensive support for programming
and reasoning about side-effects related to state. Here, we extend
HTT with concurrency and transactional primitives.

The main feature of HTT is the Hoare type, which takes the
form ST {P} x:A{Q} and captures partial correctness within the
type system. Hoare types classify programs that can be (sequen-
tially) executed in a state satisfying the predicate P and either di-
verge, or converge to a result x:A and a state satisfying Q. In the
course of execution, such programs can perform memory reads,
writes, allocations and deallocations. By capturing specifications
as types, HTT makes it possible to abstract over and nest the speci-
fications, combine them with the programs and data that they spec-
ify, or even build them algorithmically. All of these features signifi-
cantly improve over the information hiding and code reuse facilities
of Hoare Logic.

From the semantic standpoint, the Hoare type ST {P} x:A{Q}
is a monad [18]. In this paper, we introduce yet another monadic
family of Hoare types, which serves to encapsulate concurrent be-

havior. The new Hoare types take the form CMD {I}{P} x:A{Q}
and classify concurrent programs that execute in a shared state
satisfying the invariant I , and local state satisfying the precon-
dition P . Upon termination, the invariant on the shared state is
preserved, but the local state is modified according to the pred-
icate Q. The reader familiar with Haskell’s implementation of
transactional memory may benefit from the (imprecise) analogy
by which Haskell’s STM and IO monads correspond to our ST
and CMD type families, respectively. For example, as in Haskell,
CMD-computations can invoke ST-computations, and fork new
CMD threads, but ST-computations are limited to state modifica-
tions, in order to facilitate optimistic techniques for implementing
transactions.

Similar to Haskell, HTT monads separate the purely functional
from the effectful, impure fragment. The pure fragment of HTT in-
cludes the Extended Calculus of Constructions (ECC) [13], which
is a dependent type theory with support for abstraction over type
universes and predicates in higher-order logic, and is the founda-
tion behind the implementation of Coq [15]. For the purposes of
this paper, however, we restrict attention to a much smaller frag-
ment, which suffices to illustrate our concurrency extensions.

Our first technical contribution is the formulation of the logical
connectives for describing the concurrent behavior. We argue that
this logic is sound, and—most importantly—compositional. Just as
in any type theory, compositionality is expressed by substitution
principles, which guarantee that reasoning about HTT programs
can be kept local in the sense that the typechecking and verification
of a larger program only requires typechecking and verification of
its sub-programs, and not any whole-program reasoning.

Just as any type theory, HTT is not only a program logic, but
a programming language at the same time1. As the second contri-
bution of the current paper, we endow the stateful and concurrent
terms of HTT with operational semantics, and prove that this oper-
ational semantics is adequate for the intended interpretation of the
Hoare types.

The rest of the paper is structured as follows. In Section 2 we
introduce the basic stateful and transactional constructs, and illus-
trate how programs can be specified using Hoare types. In Section 3
we describe the formal syntax of the language, the connection with
some well-known features from Hoare Logic, like ghost variables,
and the definitions of the relational connectives that will serve to
capture the semantics of state and concurrency. Section 4 presents
the type system, and Section 5 describes the basic theorems about
it. In Section 6 we introduce the operational semantics, and the
proof of its adequacy. Section 7 discusses the related and future
work, and Section 8 concludes.

2. Overview of monadic state and transactional

memory

There are three conceptual levels in HTT: the purely functional
fragment, the ST fragment, and the CMD fragment. As the name
suggests, the pure fragment has no computational effects. The ST
fragment includes sequential stateful commands alloc M (alloca-
tion), ! M (read), M1:=M2 (write), and dealloc M (deallocation).
In addition, the ST fragment contains conditionals, and allows one
to construct general recursive computations. The CMD fragment
includes commands atomic E (atomically run the ST-computation
E), and x1⇐E1‖x2⇐E2 (run the two CMD computations E1 and
E2 in parallel). The CMD fragment also includes a publish primi-
tive which will be explained below, as well as constructors for con-
ditionals and recursion.

1 Hence exhibiting a variation on the Curry-Howard isomorphism.

The stateful sequential computations are classified by types of
the form ST {P}x:A{Q}, where P and Q are pre- and postcon-
ditions on the state. To illustrate these types, and their interaction
with lambda abstraction and function types from the pure fragment,
consider the function incBy, which takes a pointer l to a nat, a value
n:nat, and then increments the contents of l by n. This function can
be implemented as follows.

incBy : Πl:loc. Πn:nat.
[v:nat]. ST {l 7→nat v}x:1{l 7→nat v + n}

= λl. λn. stdo (t ⇐ ! l; l := t + n; return ())

The term syntax is chosen to closely resemble Haskell’s do-
notation, but also to support the meta-theoretic development (i.e.,
substitution principles). The keyword stdo encapsulates in its scope
the stateful part of the code, separating it from the functional
abstraction. The stateful code first reads from the location l and
binds the obtained value to the (immutable) temporary variable t
(t ⇐ ! l), then writes back the increased value (l := t + n), before
returning ():1.

The type of incBy is a bit more involved: It specifies that incBy
takes two arguments l:loc and n:nat, and returns a block of stateful
code with Hoare type [v:nat]. ST {l 7→nat v}x:1{l 7→nat v + n}.
The notation [v:nat] is a syntactic sugar that will be explained
in more detail in Section 3.7. Here, it suffices to say that the
variable v serves to relate the value stored in the initial state of
the monad, with the value at the ending state. The precondition
l 7→nat v requires that at the beginning of the stateful block, the
location l points to v, and the postcondition ensures that at the end,
l points to an incremented value. The variable v scopes over both
the precondition and the postcondition, and in accordance with the
standard Hoare logic terminology, we call v a ghost variable.

Concurrent computations are classified by types of the form
CMD {I}{P} x:A{Q}, where P and Q are pre- and post-conditions
on the local state of the computation, and I is an invariant on the
state that is shared with other processes. The key construct medi-
ating access to shared state is the atomic primitive. It presents the
programmer with the abstraction that the enclosed block of code
executes sequentially, and in isolation from all the other parallel
processes. Of course, our intention is that implementations of this
system will not be so naive, and will extract parallelism through
advanced run-time techniques such as software transactional mem-
ory. In particular, atomic blocks are optimistically run in parallel
with the hope that the blocks will not perform conflicting changes
to memory. To handle the case where there is a conflict, the run-
time system aborts one of the conflicting blocks by rolling back its
changes to the store and then re-starting the block.

Conceptually, the atomic primitive has the following type:

atomic : ST {I ∗ P}x:A{I ∗ Q} → CMD {I}{P} x:A{Q}

We can think of a thread running the command atomic M , as ac-
quiring a global lock on the shared state, executing the sequential
code M , and then releasing the lock. During the atomic block, the
thread is allowed to access both global and local state. Upon en-
try to the block, the global state is described by the invariant I ,
and the local state is described by P . Furthermore, we are guar-
anteed that the local and global state are disjoint through the use
of the separating conjunction specification I ∗ P . Throughout the
execution of the atomic block, the thread is allowed to read and
modify both the local and global state described by the specifica-
tion. In particular, it can safely violate the invariant on the global
state since no other thread can see the changes during the trans-
action. Furthermore, the thread is able to freely transfer locations
from the local state to the global state and vice versa. Upon ter-
mination of the block, the thread must re-establish that the heap
can be split into a local portion, now described by Q, and a global

portion once again described by the invariant I , resulting in a post-
condition of I ∗ Q. In summary, a sequential command with type
ST {I ∗ P}x:A{I ∗ Q} can be lifted via atomic to a concurrent
command with interface CMD {I}{P}x:A{Q}.

As a simple example, consider the following definition:

transfer =λl1, l2, n. cmdo
(t ⇐ atomic(

t1 ⇐ ! l1;
if t1 < n then return ff
else (decBy l1 n; incBy l2 n; return tt));

return t)

The transfer command attempts to atomically transfer the value
n from location l1 to location l2, using the auxiliary commands
incBy and decBy (not shown here). If l1 holds a value less than n,
then the transfer aborts and returns boolean ff, but if the transfer is
successful, the command returns the boolean tt.

We can assign transfer a number of types, depending upon
the correctness properties we wish to enforce. For example, in a
banking application, we may wish to capture the constraint that the
sum of the balances of the accounts must remain constant. That is,
money can only be transferred, but not created or destroyed. In such
a setting, we can use the following type:

transfer : Πl1:loc. Πl2:loc. Πn:nat.
CMD {I(l1, l2)}{emp}x:bool{emp}

where I(l1, l2) = ∃v1:nat. ∃v2:nat. ((l1 7→nat v1) ∗ (l2 7→nat

v2)) ∧ (v1 + v2 = k). Here, emp denotes an empty store, and
l 7→τ v denotes a store where location l points to a value v of
type τ . Thus, the specification of transfer captures the invariant that
the sum of the values in l1 and l2 must equal the constant k. Note
that during the transfer, the invariant is violated, but is eventually
restored. Thus, irrespective of the number of transfers executed
between l1 and l2, the sum of the values stored into these locations
always remains k. Note also that transfer operates only on shared
state, and imposes no requirements on the local state. In particular,
it can run even if the local state is empty, and any extensions of
the local state will not be touched. In HTT, like in Separation
Logic, this property is specified by using the predicate emp as a
precondition, to tightly describe the local space requirements of the
function.

We can now execute a number of transfers between l1 and l2
concurrently; the system will take care to preserve the invariant.

transfer2 : Πl1:loc. Πl2:loc.
CMD {I(l1, l2)}{emp}x:bool{emp}

= cmdo((t1 ⇐ transfer l1 l2 10 ‖
t2 ⇐ transfer l2 l1 20);
return(t1 and t2))

The above function forks two processes to concurrently execute
two transfers, one between l1 and l2 and the other between l2 and
l1. The values obtained as a result of each process are collected
into variables t1 and t2, and the function returns tt if both transfers
succeed.

2.1 Guarded commands

As a more interesting example, we next develop a function guard
which waits in a busy loop until a provided location contains some
required value2. The guard definition will be a function of four
arguments, so that guard α l n f reads the contents of location l,
and loops until this contents equals n. Then it will execute the ST
command f atomically, and return the obtained value of type α. For

2 Of course, a real implementation will provide something like guard as a
blocking primitive instead of encoding it via busy-waiting.

example, guard 1 l1 42 (decBy l135) will wait until l1 contains 42,
and then decrement its contents by 35.

guard : ∀α. Πl:loc. Πn:nat.
ST {(l 7→nat n) ∗ J ∗ P}x:α{(l 7→nat −) ∗ J ∗ Q(x)} →

CMD {(l 7→nat −) ∗ J}{P} x:α{Q(x)}

The return type of guard is a CMD-monad in order to allow other
processes to concurrently set the value of l, while guard is busy
waiting. Correspondingly, l should be a shared location, requiring
the shared state invariant of the CMD-type to specify that l 7→nat −.
Whatever the precondition P and postcondition Q on the local state
this return type has, the ST-computation that is executed atomically
should augment them with the knowledge that l is allocated, and
that l contains value n at the beginning of the atomic execution.
We further allow that the shared state may include an additional
section described by the predicate J . This section can be modified
by the ST-computation, as long as the validity of J is preserved.
We make guard implicitly polymorphic in the predicates J , P and
Q. In this paper we do not formally discuss polymorphism over
predicates, but such a feature is inherent in ECC and Coq, and is
easy to reconcile with impure extensions [20].

We split the implementation of guard into two parts. The func-
tion waitThen carries out the busy loop, but instead of immediately
returning the result of the atomic execution, it stores this result into
a temporary location r. Using waitThen, guard is implemented as
follows.

guard = Λα. λl. λn. λst.
cmdo (r ⇐ atomic(t ⇐ alloc 0; return t);

waitThen α l n st r;
t ⇐ atomic(x ⇐ ! r; dealloc r; return x);
return t)

The code first allocates the temporary location r, then waits on l,
expecting the result of waiting to show up in r. Finally, it reads
the result from r, and passes it out but only after r is deallocated.
Notice that the accesses to store are always within an atomic block.

waitThen = Λα. λl. λn. λst. λr.
cmdo(t ⇐ fix(λc. cmdo

(ok ⇐ atomic(x ⇐ ! l;
if (x = n) then

y ⇐ st;
r := y;
return ff

else return tt);
if ok then x ⇐ c; return x
else return ()));

return t)

Under the fixpoint, waitThen first atomically reads l, and based on
the value, either executes st (by the command y ⇐ st), storing
the result y into r, or simply exits the atomic block. Either way,
it passes back via the flag ok the information about which branch
was taken. If the contents of l was not appropriate, it goes around
the loop again, by invoking the fixpoint computation c. Otherwise,
r must contain the required value, so the function exits. The type
of waitThen is

waitThen : ∀α. Πl:loc. Πn:nat. Πr:loc.
ST{(l 7→nat n) ∗ J ∗ P}x:α{(l 7→nat −) ∗ J ∗ Q(x)}

→ CMD{(l 7→nat −) ∗ J}{P ∗ (r 7→nat 0)} t:1
{∃x:α. Q(x) ∗ (r 7→α x)}

The return CMD type requires the existence of the location r in the
local state, and guarantees that r contains the result of the atomic
execution at the end. The later is ensured by the spatial conjunction
with Q(x) in the postcondition. Also, the first two components
of the return type represents the loop invariant of the busy loop

of waitThen. Essentially, throughout the iterations, we know that
(l 7→nat −) ∗J holds for the shared store and P ∗ (r 7→nat 0) holds
for the local store.

2.2 Synchronizing variables

Using guard, we can now implement synchronizing variables (also
know as “MVars” in Haskell). A synchronizing variable is a loca-
tion in memory that either contains a value, or is empty, with two
operations: put and take. The put operation will put a new value
into an empty variable, and block otherwise. The take operation
will block until a variable becomes full, then read the value from a
full variable, emptying it.

We implement each synchronizing variable using two loca-
tions l and v in the shared heap, l for the empty/full flag, and
v for the value. The invariant for the shared heap is Isv(l, v) =
∃n:nat. ((l 7→nat n) ∧ (n = 0 ∨ n = 1)) ∗ (v 7→A −), requiring
that l points to a nat (0 for empty, 1 for full), and that v contains
a value of a fixed type. Both put and take are CMD-computations
over a shared heap described by Isv. Since these operations only
operate on the shared state, the pre- and postconditions on the local
state are trivially emp. The implementations call the guard func-
tion, instantiated with J = (v 7→A −), and P = Q = emp.

put : Πl:loc. Πv:loc. A → CMD {Isv(l, v)}{emp}x:1{emp}
= λl. λv. λx. guard 1 l 0 stdo (l := 1; v := x; return ())

take : Πl:loc. Πv:loc. CMD {Isv(l, v)}{emp}x:A{emp}
= λl. λv. guard A l 1 stdo (l := 0; x ⇐ ! v; return x)

We can test for fullness/emptiness, without blocking, by using the
function empty, similar to the one provided in Haskell standard
libraries [10].

empty : Πl:loc. Πv:loc. CMD {Isv(l, v)}{emp}x:nat{emp}
= λl. λv. cmdo(t ⇐ atomic(x ⇐ ! l; return x);

return t)

2.3 Producer-consumer pattern

HTT includes an additional concurrency primitive publish J , which
logically takes a part of the local state described by the predicate
J and moves it into the shared state. A computation may need to
perform this operation if it wants to spawn some child processes
to execute concurrently on the given local state. We illustrate the
primitive by building a producer-consumer pattern, whereby we
allocate a new synchronizing variable, publish it as shared state,
and launch two processes which communicate via the now shared
variable. The shared variable becomes a primitive communication
channel between the processes.

Suppose that we have a producer function, p, and a consumer
function, c. Then, we can easily construct functions which read
from and write to a shared variable using p and c.

produce = λl. λv. cmdo(t = fix λf. cmdo(x ⇐ p;put l v x;
s ⇐ f ; return s);

q ⇐ t; return q)

consume = λl. λv. cmdo(t = fix λf. cmdo(x ⇐ take l v; c x;
s ⇐ f ; return s);

q ⇐ t; return q)

Here, p and c both obtain a CMD-computations with a shared
invariant Isv(l, v). In order to use produce and consume, we must
first establish this invariant; this is where publish comes in.

cmdo(l ⇐ atomic(t ⇐ alloc 0; return t);
v ⇐ atomic(t ⇐ alloc a; return t);
publish(Isv(l, v));
x1 ⇐ produce l v ‖ x2 ⇐ consume l v;
return ())

Types A, B, τ ::= α | bool | nat | 1 | Πx:A. B | ∀α. A |
ST {P}x:A{Q} | CMD {I}{P} x:A{Q}

Predicates P, Q, R, I ::= idA(M, N) | seleqτ (H, M, N) | > |
⊥ | P ∧ Q | P ∨ Q | P ⊃ Q | ¬P |
∀x:A. P | ∀α. P | ∀h:heap. P |
∃x:A. P | ∃α. P | ∃h:heap. P

Heaps H, G ::= h | empty | updτ (H, M, N)
Terms K, L, M, N ::= x | tt | ff | n̄ | M ⊕ N | () | λx. M | K M |

Λα. M | K τ | stdo E | cmdo E | M : A
Computations E, F ::= return M | x ⇐ K;E | x ⇐ !τ M ;E |

M :=τ N ; E | x ⇐ allocτ M ; E |
dealloc M ;E | x ⇐ atomicA,P,Q E1; E |
(x1:A1 ⇐ E1:P1 ‖ x2:A2 ⇐ E2:P2); E |
publish I;E | x ⇐ fixA M ;E |
x ⇐ ifA M then E1 else E2;E

Contexts ∆ ::= · | ∆, x:A | ∆, α | ∆, h:heap | ∆, P

Figure 1. Syntax of HTT.

After allocating l and v, we publish them with the invariant Isv .
After the publish, produce and consume can execute in parallel,
and each has access to l and v as shared state.

3. Formal syntax and definitions

In this section we present the syntax of HTT (Figure 1), and discuss
the constructs in more detail.

3.1 Types

In addition to the already described Hoare types, HTT admits the
types of booleans and natural numbers, dependent function types
Πx:A. B, and polymorphic quantification ∀α. A. The type vari-
ables α in polymorphic quantification ranges over monomorphic
types only, as customary in, say, Standard ML (SML). Thus, the
current paper only supports predicative polymorphism, although
extending HTT with impredicativity is possible [28]. As usual with
dependent types, we write A → B instead of Πx:A. B, when the
type B does not depend on x. We omit the other useful type con-
structors from pure type theories, such as Σ-types and inductive
types as their interaction with the impure features does not present
any theoretical problems. For example, we have studied such ex-
tensions in our previous work on sequential HTT in [20, 23].

3.2 Terms

The purely functional fragment consists of the usual term construc-
tors: boolean values, numerals n̄ and the basic arithmetic operations
(collectively abbreviated as M ⊕ N), the unit value ():1, lambda
abstraction and application, and type abstraction and application.
We do not annotate lambda abstractions with the domain types, but
instead provide a constructor M :A to ascribe a type A to the term
M . The stdo and cmdo constructors are the introduction forms for
the corresponding Hoare types. They are analogous to the monadic-
do in Haskell, except that we have separate constructor for each
monad, to avoid any confusion.

3.3 Computations

The scope of stdo and cmdo is a computation, which is a semi-
colon separated list of commands, terminating with a return value.
We have already described the intuition behind most of the con-
structors in Section 2. However, some of these require explicit an-
notations with types, pre/postconditions and invariants, which were
omitted before, so we now revisit them with the additional details.

For example, HTT supports strong updates by which a location
pointing to a value of type τ1 may be updated with a value of
some other type τ2. Correspondingly, the ST primitives for reading,

writing and allocation must be annotated with the type of the
manipulated value.

CMD-computations are annotated as follows. (1) (x1:A1 ⇐
E1:P1 ‖ x2:A2 ⇐ E2:P2) forks two parallel child processes
E1 and E2. Upon their termination, the processes are joined, that
is, their return results are bound to x1 and x2, respectively, their
private space is returned to the parent process, and the execution
proceeds to the subsequent command of the parent process. The ‖
command explicitly requires the return types A1 and A2 and the
preconditions P1 and P2 on the parallel processes. The precondi-
tions indicate which part of the local state of the parent process is
delegated to each of E1 and E2. The split of the local state must
be disjoint. If the two processes are supposed to share state, then
that state must be declared as shared in the invariant of the CMD
type. (2) x ⇐ atomicA,P,Q E1 explicitly requires the return type
A of E1 as well as the precondition P and postcondition Q on the
local state that E1 manipulates. This local state will be joined with
the shared state of the parent process, before E1 executes atomi-
cally. (3) publish I does not require additional annotation beyond
the predicate I . However, we mention here that I must be precise,
in the sense that it uniquely defines the heap fragment that should
be published. For example, the predicate (x 7→nat − ∗ y 7→nat −)
is precise, and would correspond to publishing the locations x and
y. On the other hand, the predicate > is not precise, as it holds of
every heap. Precision is customarily required of shared state invari-
ants in Separation Logic [3, 25].

Finally, the conditional and the fix constructs are present in both
monads. The conditional is annotated with the expected types of its
branches. Fix is annotated with the type A, and computes the least
fixed point of the function M :A→A. Here A must be a Hoare type,
in order to guarantee that all uses of recursion (and hence, potential
occasions for non-termination) appear under the guard of stdo or
cmdo. Thus, non-termination in HTT is considered an effect, and
is encapsulated under the monad, in order to preserve the logical
properties of the underlying pure calculus. In particular, the encap-
sulation prevents the recursion from unrolling during normalization
of terms.

3.4 Heaps

In HTT we model heap locations by natural numbers, although in
the examples we write loc instead of nat to emphasize when a
natural number is used as a pointer. Heaps are modeled as functions
mapping a location N to a pair (τ, M) where M :τ . In this case,
we say that N points to M , or that M is the contents of N . The
type τ is required to be monomorphic, in order to preserve the
predicativity of the type theory. However, τ can be a dependent
function type, as well as a Hoare type. Thus, heaps in HTT are
higher-order, albeit predicative.

Syntactically, we build heaps out of the following primitives:
(1) empty stands for the empty heap, that is, a nowhere defined
function. (2) updτ (H, M, N) is a function which returns N :τ at
argument M , but equals H at other arguments. It models the heap
obtained from H by writing N :τ into the address M .

3.5 Predicate logic and heap semantics

For the treatment of our concurrency primitives, it suffices to fo-
cus on a first-order, polymorphic, predicate logic over heaps. Aside
from the usual connectives of first-order logic, we provide two
primitives: (1) idA(M, N) is the equality at type A. We will fre-
quently abbreviate it as M =A N or simply M = N . (2)
seleqτ (H,M, N) reflects the semantics of heaps into the assertion
logic of the Hoare types. It holds iff the heap H contains N :τ at
location M . The following axioms relate seleq and update.

¬seleqτ (empty, M, N)
seleqτ (updτ (H,M, N), M, N)
M1 6= M2 ∧ seleqτ (updσ(H,M1, N1), M2, N2) ⊃

seleqτ (H,M2, N2)
seleqτ (H,M, N1) ∧ seleqτ (H,M, N2) ⊃ N1 =τ N2

The first axiom states that an empty heap does not contain
any assignments. The second and the third are the well-known
McCarthy axioms for functional arrays [17]. The fourth axiom
asserts a version of heap functionality: a heap may assign at most
one value to a location, for each given type. The fourth axiom is
slightly weaker than expected, as we would like to state that a heap
assigns at most one type and value to a location. This is easily
expressible in the extension of HTT with higher-order logic and
an equality predicate on types [20].

3.6 Separation logic

Given the heaps as above, we can now define predicates expressing
heap equality, disjointness, and disjoint union of heaps [22].

P ⊂⊃ Q = P ⊃ Q ∧ Q ⊃ P
H1 = H2 = ∀α.∀x:nat.∀v:α. seleqα(H1, x, v) ⊂⊃

seleqα(H2, x, v)
M ∈ H = ∃α.∃v:α. seleqα(H,M, v)
M 6∈ H = ¬(M ∈ H)

share(H1, H2, M) = ∀α.∀v:α. seleqα(H1, M, v) ⊂⊃
seleqα(H2, M, v)

splits(H,H1, H2) = ∀x:nat. (x 6∈ H1 ∧ share(H, H2, x))∨
(x 6∈ H2 ∧ share(H, H1, x))

In English, ⊃ is logical implication, ⊂⊃ is logical equivalence,
H1 = H2 is heap equality, M ∈ H iff the heap H assigns to the
location M , share states that H1 and H2 agree on the location M ,
and splits states that H can be split into disjoint heaps H1 and H2.

We next formally define the assertions familiar from Separation
Logic [24]. All of these are relative to the free variable m, which
denotes the current heap fragment of reference. We will call pred-
icates with one free heap variable m unary predicates, and use let-
ters P , R, S and I to range over them. Given a unary predicate P ,
we will customarily use the syntax for functional application, and
write P H as an abbreviation for [H/m]P .

emp = m = empty
M 7→τ N = m = updτ (empty, M, N))
M ↪→τ N = seleqτ (m, M, N)
P ∗ S = ∃h1:heap.∃h2:heap.

splits(m, h1, h2) ∧ P h1 ∧ S h2

P —∗S = ∀h1:heap.∀h2:heap.
splits(h2, h1, m) ⊃ P h1 ⊃ S h2

thisH = m = H
precise P = ∀h1, h

′

1, h2, h
′

2:heap.
splits(m, h1, h

′

1) ⊃ splits(m, h2, h
′

2) ⊃
P h1 ⊃ P h2 ⊃ h1 = h2

We have already given the informal descriptions of emp, M 7→τ N
and P ∗S in Section 2. M ↪→τ N iff current heap contains at least
the location M pointing to N :τ . P —∗S holds iff any extension of
the current heap by a heap satisfying P , produces a heap satisfying
S. this (H) iff the current heap equals H . Concerning the last
predicate, precise P holds iff for any given heap m, there is at most

one subheap h such that P h.
With these definitions, it should now be apparent that the pre-

conditions, postconditions and invariants in our Hoare types are
predicates over heaps, and that they implicitly depend on the heap
variable m. For example, the type ST {emp}x:A{emp} really
equals ST {m = empty}x:A{m = empty}, where m in the pre-
condition denotes the initial heap, and m in the postcondition de-

notes the ending heap of a stateful computation. Thus, the two m
variables are really different. If we wanted to make the scope of m
explicit, we would write the type ST {P} x:A{Q} explicitly as

ST {m. P}x:A{m. Q}

However, in order to reduce clutter, we leave the bindings of m
implicit. We adopt a similar strategy for CMD {I}{P}x:A{Q},
where I also depends on an implicitly bound variable m.

3.7 Ghost variables and binary postconditions

The programs from Section 2 already exhibit that the use of Hoare
types frequently requires a set of ghost variables that scope over
the precondition and the postcondition in order to relate the two.
For example, the program incBy with the type

incBy : Πl:loc. Πn:nat. [v:nat]. ST {l 7→nat v}x:1{l 7→nat v + n}

needs the ghost variable v to name the value initially stored into
l. One may entertain the possibility of treating v as an ordinary,
Π-bound variable and re-type incBy as:

incBy′ : Πl:loc. Πn:nat. Πv:nat.
ST {l 7→nat v} x:1{l 7→nat v + n}

This is not a good solution, however, as Π-abstraction will require
every caller of incBy′ to instantiate v at run-time. The ghost vari-
able v, which should serve only the purpose of logically connecting
the precondition and the postcondition of the Hoare type, suddenly
acquires a computational significance; it has to be explicitly sup-
plied by the caller, and the value, when instantiated, has to produce
a precondition that is true at the given program point. More con-
cretely, in order to increment the contents of l by executing incBy′,
the caller must already know what the value stored in l is. This, of
course, makes the usefulness of incBy′ quite dubious. If the caller
already knows the stored value, why not simply write its increment
back into l directly?

A better alternative, and the one that we adopt here, is to al-
low that postconditions not only depend on the variable m denot-
ing the current heap at the end of the computation, but also on the
variable i that denotes the initial heap. That is, if we made the
scopes explicit, then the type ST {P}x:A{Q} would be written
as ST {m. P}x:A{i. m. Q}. The second heap variable in the post-
condition can be used to relate the values stored in the initial heap,
to the values stored in the ending heap. The type of incBy may be
written as

incBy
′′ : Πl:loc. Πn:nat. ST{∃v. l 7→nat v} r : 1

{∀v. (l 7→nat v) i ⊃ (l 7→nat v) m}

Under this binding convention, the syntax of Hoare types with
ghost variables becomes just a syntactic sugar. The Hoare type
[∆]. ST {P1}x:A{P2}, where ∆ is a variable context, and P1,P2

are unary predicates over m, can be desugared into

ST {∃∆. P1}x:A{∀∆. P1 i ⊃ P2 m}

Similarly, the Hoare type [∆]. CMD {I}{P1}x:A{P2} is desug-
ared into CMD {I}{∃∆. P1}x:A{∀∆. P1 i ⊃ P2 m}. In the rest
of the paper, we will use the described convention on ghost vari-
ables in order to abbreviate the Hoare types that appear in our ex-
amples. However, in the development of the meta theory of HTT,
we will assume that postconditions in Hoare types depend on two
heap variables: i which denotes the initial heap, and m which de-
notes the ending heap of the computation.

We call predicates that depend on both i and m binary predi-
cates, and use Q and T to range over them. We use X to range
over either unary or binary predicates. We will again use the syntax
of functional application and write Q H1 H2 as an abbreviation for
[H1/i, H2/m]Q.

We next define several operators on binary predicates that will
have a prominent role in the semantics of HTT.

δP = P ∧ i = m
∇P = P ∧ i = i
�P = P i ∧ P m

X ◦ Q = ∃h:heap. [h/m]X ∧ Q h m
Q1 ∗∗ Q2 = ∃i1, i2, m1, m2:heap.

splits(i, i1, i2) ∧ splits(m, m1, m2) ∧
Q1 i1 m1 ∧ Q2 i2 m2

P (Q = ∀i0, h:heap. splits(i, i0, h) ⊃ P i0 ⊃
∃m0. splits(m, m0, h) ∧ Q i0 m0

P1 P2 (◦Q1 Q2 = ∀i0, h:heap. splits(i, i0, h) ⊃
∀i1, i2:heap. splits(i0, i1, i2) ⊃

P1 i1 ⊃ P2 i2 ⊃
∃m0, m1, m2. splits(m, m0, h) ∧

splits(m0, m1, m2) ∧
Q1 i1 m1 ∧ Q2 i2 m2

M ? Q1 Q2 = (M = tt ⊃ Q1) ∧ (M = ff ⊃ Q2)

In English, δP extends the unary predicate P to binary, diagonal
one. ∇P is also a binary predicate, albeit one that holds for any do-
main heap (it ignores the variable i). �P requires that P holds for
both the domain and the range heaps, but unlike δ, does not require
that the two heaps are actually equal. X ◦ Q is a relational compo-
sition. The predicate Q1 ∗∗ Q2 is the generalization of separating
conjunction to the binary case. It holds if both domain and range
heaps can be split in two, so that Q1 relates the first halfs and Q2

relates the second halfs. P (Q is a binary predicate relating the
heap i with m only if m can be obtained by replacing any subheap
of i satisfying P with a subheap related by Q. P1 P2 (◦Q1 Q2 is
the generalization of P (Q. It pairwise replaces P1 according to
Q1 and P2 according to Q2 to obtain the heap m starting from i.
M ? Q1 Q2 is the relational version of a conditional.

Example. The binary relation (l 7→nat v) (∇(l 7→nat v + 1)
holds between two heaps i and m if and only if m can be obtained
from i by replacing all parts of i satisfying l 7→nat v (and there
can be at most one such part), with a part satisfying l 7→nat v + 1.
Such a relation therefore directly captures the semantics of an ST
computation that increments the contents of l.

4. Type system

The easiest way to support reasoning about effectful computations
is to translate them into some mathematical entity that is already
supported by the underlying type theory. In this paper, we have
chosen to translate effectful computations into binary relations on
heaps, so that a computation may be viewed as relating its initial to
its ending heap. Choosing relations for the modeling of Hoare types
has the additional benefit that we can then also represent partial
and non-deterministic computations; that is, computations with no
result, or computations with more than one result, respectively.
The translation of computations into relations is performed by the
typing rules, which formalize the well-known idea of calculating
strongest postcondition [5].

We will have four typing judgments for computations, two for
ST-computations and two for CMD-computations. The ST judg-
ments are ∆; P ` E ⇒ x:A.Q and ∆; P ` E ⇐ x:A.Q. The
first judgment takes a unary predicate P and a computation E, and
generates the binary predicate Q that most tightly captures the se-
mantics of E (i.e., Q is the strongest postcondition). In the process,
the rule also verifies that the return result of E has type A, where A
is supplied as input to the judgment. The second judgment checks
that Q is a postcondition, not necessarily the strongest one for E
with respect to P .

The CMD judgments are, similarly, ∆; I ; P ` E ⇒ x:A. Q
and ∆; I ;P ` E ⇐ x:A.Q, except that here P and Q are a pre-
and post-condition on the local state of E, while the unary predicate

I keeps the invariant on the state that E shares with other processes.
By formation, I is required to be precise.

We will make use of further several judgments: (1) ∆ ` K ⇒
A takes a pure term K and generates its type if it can; (2) ∆ `
M ⇐ A checks that M has type A. These two judgments imple-
ment bidirectional typechecking for the pure fragment. (3) ∆ ` P
checks that the predicate P is true. It is a completely standard natu-
ral deduction for polymorphic first-order logic with equality, except
that it also formalizes heaps, via the four axioms listed in Section 3.
(4) ∆ ` A ⇐ type and ∆ ` P ⇐ prop are type and predicate
formation judgments, and (5) ∆ ` τ ⇐ mono checks that τ is a
monomorphic type. The last three judgments are fairly obvious, so
we omit them here.

4.1 Typechecking ST-computations

We start with a structural rule which relates the synthesis and
checking of postconditions: if Q′ is a strongest postcondition, and
from knowing Q′ we can derive Q, then Q is a postcondition.

∆; P ` E ⇒ x:A. Q′ ∆, x:A, i, m:heap, δP ◦ Q′ ` Q

∆; P ` E ⇐ x:A. Q

Rather than simply taking Q′ as a hypothesis when trying to derive
Q, the rule takes δP ◦ Q′. Unrolling the definitions of ◦ and δ,
this basically injects the knowledge that the initial heap of Q also
satisfies P , which should be expected as P is a precondition that
the checking starts with. This rule essentially implements the law
of consequence well-known in Hoare Logic.

The typing rule for monadic unit in a sense corresponds to a rule
for assignment to the variable x found in the classical formulations
of Hoare Logic:

∆ ` M ⇐ A

∆; P ` return M ⇒ x:A. δ(x = M)

The postcondition δ(x = M) simply states that after executing
return M the return value x = M and the initial and the ending
heap are equal since no state has been modified.

∆ ` τ ⇐ mono ∆ ` M ⇐ nat ∆,m:heap, P ` M ↪→τ −
∆, x:τ ; P ◦ δ(M ↪→τ x) ` E ⇒ y:B. Q

∆; P ` x ⇐ !τ M ;E ⇒ y:B. (∃x:τ. δ(M ↪→τ x) ◦ Q)

The rule for memory read must check that τ is a well-formed
monomorphic type, as only values of monomorphic types can be
stored into heaps. Further, the location M must be a natural num-
ber, and M must point to a value of type τ . The later is ensured
by the entailment P ` M ↪→τ −, which may be seen as a ver-
ification condition that needs to be discharged in order to guar-
antee the correctness of the program. The continuation E is then
checked in a context extended with variable x:τ , and the precondi-
tion for checking E must appropriately reflect the knowledge that
x binds the value read from M . This is achieved by composing P
with δ(M ↪→τ x). Alternatively, we could have used the equiv-
alent P ∧ (M ↪→τ x), which is the standard postcondition for
memory lookup, but we choose the current formulation in order to
emphasize the compositional nature of typechecking. For example,
after the relation Q corresponding to E is obtained, we need to
lift it to include the semantics of the lookup, before we return it as
a postcondition generated for the original computation. We do so
by composing δ(M ↪→τ x) ◦ Q. One can now see the important
intuition that, in general, the strongest postcondition generated for
some computation E always has a form of an ordered sequence of
compositions of smaller relations, each of which precisely captures
the primitive effectful commands of E, in the order in which they
appear in E. This substantiates our claim that typechecking simply
translates the E into a relation (equivalently, predicate). In fact, the

translation is almost literal, as the structure of the obtained predi-
cate completely mirrors E.

Memory writes follow a similar strategy.

∆ ` M ⇐ nat
∆ ` τ ⇐ mono ∆ ` N ⇐ τ ∆,m:heap, P ` M ↪→ −

∆; P ◦ (M 7→ − (∇(M 7→τ N)) ` E ⇒ x:A. Q

∆; P ` M :=τ N ; E ⇒ x:A. (M 7→ − (∇(M 7→τ N)) ◦ Q

To write into the location M , we first ensure that it is allocated
(verification condition P ` M ↪→ −). Then the continuation E is
checked with respect to a predicate P ◦ (M 7→ − (∇(M 7→τ

N)). Intuitively, following the definition of the connective (, this
predicate “replaces” a portion of the heap satisfying M 7→ − by a
heap satisfying M 7→τ N , while preserving the rest of the structure
described by P . Thus, the predicate correctly models the semantics
of memory lookup.

The idea behind the typechecking of stateful commands should
now be obvious, so we simply display the rules for allocation and
deallocation without further comment.

∆ ` τ ⇐ mono ∆ ` M ⇐ τ
∆, x:τ ;P ◦ (emp (∇(x 7→τ M)) ` E ⇒ y:B. Q

∆; P ` x ⇐ allocτ M ;E ⇒ y:B. (∃x:τ. (emp (∇(x 7→τ M)) ◦ Q)

∆ ` M ⇐ nat ∆, m:heap, P ` M ↪→ −
∆; P ◦ (M 7→ − (∇emp) ` E ⇒ x:A. Q

∆; P ` dealloc M ;E ⇒ x:A. (M 7→ − (∇emp) ◦ Q

4.2 Typechecking CMD-computations

The CMD-judgments have similar rules for consequence and unit
as the one presented in the ST case. We omit these here, and focus
instead on the primitives for concurrency.

∆;m:heap, P ` P1 ∗ P2 ∗ >
∆; I;P1 ` E1 ⇒ x1:A1. Q1 ∆; I;P2 ` E2 ⇒ x2:A2. Q2

∆, x1:A1, x2:A2; I;P ◦ (P1 P2 (◦Q1 Q2) ` E ⇒ x:A. Q

∆; I;P ` (x1:A1 ⇐ E1:P1 ‖ x2:A2 ⇐ E2:P2); E
⇒ x:A. (∃x1:A1, x2:A2. (P1 P2 (◦Q1 Q2) ◦ Q)

The command ‖ for fork-join parallelism checks the processes E1

and E2 with respect to the ascribed preconditions on local state P1

and P2 to obtain strongest postconditions Q1 and Q2. A verifica-
tion condition is issued to check that P1 and P2 indeed split the lo-
cal state of the parent process into disjoint sections (the entailment
P ` P1∗P2∗>). Then the common continuation E is checked with
respect to a new description of the state P ◦ (P1 P2 (◦Q1 Q2),
which captures the semantics that the local heap described by P is
changed so that the Pi fragment are independently updated accord-
ing to Qi. Thus, the predicate correctly captures the semantics of
concurrent execution of E1 and E2. Since E1 and E2 are checked
using the same shared invariant I , they can modify the shared state,
but only in ways which preserve the truth value of I .

Instead of the postcondition P1 P2 (◦Q1 Q2, one may con-
sider here an alternative (P1 (Q1) ∗∗ (P2 (Q2). The later
would be more in line with the corresponding rule from Concur-
rent Separation Logic (CSL) which takes Q1 ∗ Q2 as a postcon-
dition for parallel composition. In the presence of binary postcon-
ditions, however, this is not a strong enough specification, and will
prevent us from proving the progress and preservation theorems for
our system in Section 6. Indeed, this postcondition only states that
the ending heap can be split into subheaps in one particular way,
but it loses the information that such a splitting is obtained from
the splitting of the initial heap, or that different splitting of the ini-
tial heap will entail different splittings of the ending heap.

∆,m:heap, P ` P1 ∗ > ∆; I ∗ P1 ` E1 ⇐ x1:A1. �I ∗∗ Q1

∆, x1:A1; I;P ◦ (P1 (Q1) ` E ⇒ x:A. Q

∆; I;P ` x1 ⇐ atomicA1,P1,Q1
E1;E

⇒ x:A. (∃x1:A1. (P1 (Q1) ◦ Q)

Semantically, atomic first acquires exclusive access to the shared
state, and then executes E1 using both the shared and the desig-
nated chunk of the local state. Thus, E1 must be checked against a
precondition I∗P1, where I is the descriptor of the shared state, and
P1 is the descriptor of the designated chunk of the local state. It is
ensured that P1 describes local state by emitting a verification con-
dition P ` P1 ∗ >. We emphasize that E1 is an ST-computation,
and thus it makes no semantic distinction between local and shared
state. Upon exit, E1 releases what used to be shared state, so it
must make sure that its invariant is preserved. Thus, E1 is checked
against a postcondition �I ∗∗ Q, which requires that E1 changes
the I portion of the its initial heap in such a way that the changed
subheap satisfies I again. This portion is what will be released as
an updated version of the shared state. The rest of the heap is what
used to be the local state of the parent process, and is changed ac-
cording to some pre-specified Q. The continuation E is then simply
checked against a local heap that updates a P1 part of P according
to the binary relation Q. The update is expressed using the relation
P ◦ (P1 (Q1).

In order for the semantics to make sense, we must make sure
that there is only one portion in the combined shared/local heap
that satisfies I , else E1 may not know how much space must be
returned to shared status. That is why I is required to be precise,
enforcing that it always determines a unique subheap. Precision is
a standard requirement on invariants of shared resources in Separa-
tion Logic [3, 25, 31].

∆ ` precise J ∆,m:heap, P ` J ∗ >
∆; I ∗ J ;P ◦ (J (∇emp) ` E ⇒ x:A. Q

∆; I;P ` publish J ; E ⇒ x:A. (J (∇emp) ◦ Q

Publish takes a predicate J and promotes the chunk of the local
heap satisfying J into shared status. Thus, J must hold of a unique
part of the local heap. Existence of such a part is ensured by the
verification condition P ` J ∗ >, and uniqueness is ensured by
the requirement that J is precise. The published state is shared
throughout the scope of the continuation E, which must be checked
against an extended invariant on the shared state (I ∗ J) and a
description of a shrunken local state P ◦ (J (∇emp). The later
predicate simply states that the unique J part of P is replaced by
an empty heap, thus subtracting J from P . In this paper we have
taken a simplifying assumption that once published state cannot be
reclaimed as private anymore. A more general publishing command
would have a postcondition (J (∇emp) ◦ Q ◦ (emp (∇J),
thus signifying that J is returned into the private state. However,
the more general rule requires a much more involved development
of operational semantics, and hence we leave it for future work.

4.3 Typechecking generic computational primitives

The typing rule for conditional is unsurprising; it obtains the post-
conditions for the branches, and then checks the continuation with
what amounts to a disjunction of these postconditions. We present
only the CMD rule, as the ST rule is analogous.

∆ ` A ⇐ type
∆ ` M ⇐ bool ∆; I;P ◦ δ(M = tt) ` E1 ⇒ x:A. Q1

∆; I;P ◦ δ(M = ff) ` E2 ⇒ x:A. Q2

∆, x:A; I;P ◦ (M ? Q1 Q2) ` E ⇒ y:B. Q

∆; I;P ` x ⇐ ifA M then E1 else E2;E
⇒ y:B. (∃x:A. (M ? Q1 Q2) ◦ Q)

The fragment of HTT described so far may easily be presented
in a more customary form with Hoare triples for partial correctness,
because the constructs have been essentially first-order. We now
describe the two effectful constructs which are higher-order in an
essential way.

The first is monadic bind, whose first-order analogue is the
Hoare rule for sequential composition.

∆ ` K ⇒ CMD {I1}{P1}x1:A1{Q1}
∆,m:heap, I ` I1 ∗ (I1 —∗ I) ∆, m:heap, P ` P1 ∗ >

∆, x1:A1; I;P ◦ (P1 (Q1) ` E ⇒ x:A. Q

∆; I; P ` x1 ⇐ K;E ⇒ x:A. (∃x1:A1. (P1 (Q1) ◦ Q)

The difference is that monadic bind allows the first composed
computation to be obtained by evaluating K, whereas in Hoare
Logic, the composed processes must be supplied explicitly. HTT,
as well as other monadic calculi, treats computations as first-class
values which can be supplied as function arguments, obtained as
function results, and abstracted. These features are the essential
ingredients for our lifting of Hoare Logic to higher-order.

Returning to the specifics of bind, we notice that the code encap-
sulated by K is executable in a local heap satisfying P (ensured by
the verification condition P ` P1∗>), and a shared heap satisfying
I (ensured by the verification condition I ` I1 ∗ (I1 —∗ I)). The
later condition implies that I1 is a restriction of I to the subheap
determined by I1, thus ensuring that K, by preserving the invariant
I1, also preserves the larger invariant I . Finally, according to the
Hoare type of K, its execution changes the P1 chunk of the local
heap as described by the postcondition Q1. Thus, the continuation
E is appropriately checked against a precondition P ◦(P1 (Q1).

The second higher-order connective is the fixpoint. Due to the
presence of higher-order functions, HTT can replace the looping
constructs of Hoare logic by a general fixpoint combinator over
a Hoare type. The fixpoint computation is supposed to be imme-
diately executed, so the typing rule combines the usual typing of
fixpoint combinators with monadic bind.

B = CMD {I1}{P1}x1:A1{Q1} ∆ ` B ⇐ type
∆,m:heap, I ` I1 ∗ (I1 —∗ I) ∆, m:heap, P ` P1 ∗ >

∆ ` f ⇐ B → B ∆, x1:A1; I;P ◦ (P1 (Q1) ` E ⇒ x:A. Q

∆; I; P ` x1 ⇐ fixBf ;E ⇒ x:A. (∃x1:A1. (P1 (Q1) ◦ Q)

The ST-judgment contains similar rules for monadic bind and
fixpoint. They are strictly simpler than the above, as they do not
have to account for the the shared state invariant I .

Finally, we integrate the monadic judgments into the pure frag-
ment, using the two do coercions.

∆; P ` E ⇐ x:A. Q

∆ ` stdo E ⇐ ST {P}x:A{Q}

∆; I;P ` E ⇐ x:A. Q

∆ ` cmdo E ⇐ CMD {I}{P}x:A{Q}

Because stdo and cmdo hygienically isolate the effectful compu-
tations from the pure ones, the pure fragment may be formulated in
a standard way, drawing on the formalism of ECC.

∆, x:A,∆1 ` x ⇒ A

∆, x:A ` M ⇐ B

∆ ` λx. M ⇐ Πx:A. B

∆ ` K ⇒ Πx:A. B ∆ ` M ⇐ A

∆ ` K M ⇒ [M :A/x]B

∆, α ` M ⇐ A

∆ ` Λα. M ⇐ ∀α. A

∆ ` K ⇒ ∀α. A ∆ ` τ ⇐ mono

∆ ` K τ ⇒ [τ/α]A

∆ ` K ⇒ B A = B

∆ ` K ⇐ A

∆ ` M ⇐ A

∆ ` M :A ⇒ A

In HTT, we adopt a formulation with bidirectional typechecking,
inspired by the work on Concurrent LF [32], where elimination
terms synthesize their types, and introduction terms must be sup-
plied a type to check against. We can always check an elimination
term K by first synthesizing its type and confirming that it is equal
with the supplied type. We can always switch the direction from

waitThen = Λα. λl. λn. λst. λr.
cmdo(−− I1:{(l 7→nat −) ∗ J}

−− P1:{P ∗ r 7→nat 0}
t ⇐ fixA(λc. cmdo

(−− I2:{(l 7→nat −) ∗ J}
−− P2:{P ∗ r 7→nat 0}
ok ⇐ atomic bool,P ∗ (r 7→nat 0),

t1. (t1 ? (P ∗ r 7→nat 0)
(∃y:α. Q(y) ∗ r 7→α y))

(−− P3:{l 7→nat − ∗ J ∗ P2}
x ⇐ !nat l;
−− P4:{l 7→nat x ∗ J ∗ P2}
t1 ⇐ if (x = n) then

−− P5:{l 7→nat n ∗ J ∗ P2}
y ⇐ st;
−− P6:{l 7→nat − ∗ J ∗ Q(y) ∗ r 7→nat 0}
r :=α y;
−− P7:{l 7→nat − ∗ J ∗ Q(y) ∗ r 7→α y}
return ff
else return tt;

−− P8:{(t1 = ff ⊃ ∃y:α. P7) ∧ (t1 = tt ⊃ P4}
return t1);

−− I9:{(l 7→nat −) ∗ J}
−− P9:{ok ? (P ∗ r 7→nat 0)

(∃y:α. Q(y) ∗ r 7→α y)}
if ok then

−− I10:{(l 7→nat −) ∗ J}
−− P10:{P ∗ r 7→nat 0}
t3 ⇐ c;
−− I11:{(l 7→nat −) ∗ J}
−− P11:{∃y:α. Q(y) ∗ r 7→α y}
return t3

else return ())));
−− I12:{(l 7→nat −) ∗ J}
−− P12:{∃y:α. Q(y) ∗ r 7→α y}
return t)

Figure 2. Annotated example.

checking to synthesis by using the constructor M :A to supply the
type A to be synthesized.

4.4 Annotated example

The code in Figure 2 presents the typing derivation of the function
waitThen from Section 2.1. We check the function against the type:

∀α. Πl:loc. Πn:nat. Πr:loc.
ST{(l 7→nat n) ∗ J ∗ P}x:α{(l 7→nat −) ∗ J ∗ Q(x)} → A

where A = CMD{(l 7→nat −) ∗ J}{P ∗ (r 7→nat 0)}t:1{∃x:α. Q(x) ∗
(r 7→α x)}. The code is annotated with predicates to illustrate the
properties of the state at the various program points. We use I for
predicates about the shared state, and P for predicates about local
state. The typechecker will require that several verification condi-
tions be proved, before the program is deemed correct. These are:
(1) P2 `P ∗ (r 7→nat 0) ∗>, to enter atomic; (2) P3 ` l ↪→nat −,
to read from l; (3) P5 ` l 7→nat n ∗J ∗P ∗>, to execute st; (4)
P6 ` r ↪→−, to write into r; (5) P8 `�I2 ∗∗ (t1 ? (P ∗ r 7→nat 0)
(∃y:α. Q(y)∗ r 7→α y)), to prove that the postcondition supplied
as an index to atomic is satisfied, and thus atomic exits cor-
rectly; (6) I10 ` ((l 7→nat −) ∗J) ∗ (((l 7→nat −) ∗J) —∗ I10) and
P10 `P ∗ (r 7→nat 0) ∗>, to execute the recursive call to c, and
(7) P12 `∃x:α. Q(x) ∗ r 7→α x, to prove that the postcondition of
waitThen holds. All of these conditions are fairly easy to discharge.

5. Properties

5.1 Equational reasoning and logical soundness

Like every other type theory, HTT has to define a judgment A = B
for checking if two types A and B are equal. This judgment was

used, for example, in the typing rule of the pure fragment where
the bidirectional typechecker switches from synthesis to checking
mode. Because types are dependent, and thus may contain terms,
the judgment is non-trivial, as it has to account for term equality as
well. In addition, it has to be decidable.

Thus, the equality judgment of HTT, as of other (intensional)
type theories, like ECC or Coq, is quite restricted and includes only
equations that lead to decidable theories. In Coq, for example, the
equality judgment only admits beta reduction. Other equations of
interest may, of course, be added as axioms. Properties that rely on
such axioms cannot be proved automatically by the typechecker,
but must be discharged by the user via explicit proofs.

The development of the monadic fragment of HTT does not de-
pend on the organization and the equations of the pure fragment.
So for example, if we chose Coq as an environment type theory of
HTT, we could freely use beta reduction in the equational reason-
ing.

In the previous work [22], we have allowed equational reason-
ing that relies on beta and eta equalities for Π-types, and the generic
monadic laws (unit and associativity [18]) for Hoare types. We have
shown that such an equational theory is decidable, using the tech-
nically involved, but conceptually quite simple and elegant idea of
hereditary substitutions [32]. The current paper uses literally the
same pure fragment, so the same proof of decidability applies.

THEOREM 1 (Relative decidability of typechecking). Given an or-
acle for deciding the verification conditions (that is, deciding the
judgment ∆ ` P , where P is a proposition), all the typing judg-
ments of HTT are decidable.

In the actual implementation of HTT, the oracle from the above
theorem can be replaced by explicit proofs, to be obtained by
some form of automatic or interactive theorem proving. The later
has been the approach that we adopted in the implementation of
HTT in Coq, where a modicum of automation can be recovered
by employing Coq tactics and tacticals. Theorem 1 can then be
viewed as a guarantee that verification condition generation and
typechecking are terminating processes. This would not be a partic-
ularly deep property in any first-order language, but because HTT
is higher-order, deciding equality requires normalization. This is a
non-trivial algorithm, but, by Theorem 1, it terminates.

THEOREM 2 (Soundness of the HTT logic). The judgment ∆ `
P cannot derive falsehood, and hence is sound.

Theorem 2 is established by exhibiting a model of HTT. In [22],
we have described a set-theoretic model which takes place in
ZFC with infinite inaccessible cardinals κ0, κ1, . . . All the types
are given their obvious set-theoretic interpretation, the universe
mono of monomorphic types is the set of all sets of cardinality
smaller than κ0, heaps are interpreted as finite functions from nat
to Σα:mono. α, and predicates on a type are interpreted as sub-
sets of the type. Crucially, Hoare types are interpreted as singleton
sets, and therefore all the computations in HTT are given the same
logical interpretation. This is sufficient to argue logical soundness,
because HTT currently contains no axioms declaring equations
or other kinds of relations on effectful computations (except the
monadic laws, which are very simplistic, and are handled by the
typechecker). Not surprisingly, the same model suffices to argue
the logical soundness of the extension from the current paper.

The above theorems concerns HTT when viewed as a logic.
But HTT is at the same time a programming language, and we
need to also prove that it is sound when viewed as a programming
language. In particular, we need to show that if I ;P ` E ⇐
x:A.Q, then indeed, if E is executed in a shared heap satisfying
invariant I and the local heap satisfying the predicate P , and E
terminates, then the ending heap satisfies the predicate Q. This

theorem would justify our typing rules and show them adequate
with respect to the intuitive operational interpretation of E.

We will prove this adequacy theorem for the current extension
of HTT in Section 6, after we have formally defined the operational
semantics.

5.2 Framing and compositionality

HTT computations satisfy the following standard properties.

LEMMA 3. Suppose that ∆; I ; P ` E ⇐ x:A. Q. Then:

1. Weakening consequent. If ∆, x:A, i:heap, m:heap, Q ` Q′,
then ∆; I ; P ` E ⇐ x:A. Q′.

2. Strengthening precedent. If ∆, m:heap, P ′ ` P , then ∆; I ; P ′ `
E ⇐ x:A. δP ′ ◦ Q.

3. Local frame. ∆; I ; P ∗ > ` E ⇐ x:A.P (Q.

4. Shared frame. If J is precise, then ∆; I ∗ J ; P ` E ⇐ x:A.Q.

Similar properties hold for ST-computations as well.

The proofs of these properties are somewhat involved, and the
interested reader is referred to the associated technical report [21].
However, we do comment here on the Local frame property, which
may be seen as somewhat unusual, compared to the other works
on Separation Logic. A more recognizable form of the local frame
property may be

∆; I ;P ∗ R ` E ⇐ x:A. Q ∗∗ δR

which directly states that E may be executed in an initial heap
extended with an arbitrary subheap satisfying R, as long as the
ending heap is extended with the same subheap, also satisfying R.
Intuitively, this property holds since the initial typing of E prevents
it from touching any disjoint state, and thus R must be preserved
across the execution.

We note that the later form of the frame principle is easily
derivable from Lemma 3. Indeed if ∆; I ; P ∗> ` E ⇐ x:A. P (

Q, then by strengthening precedent we first get ∆; I ; P ∗R ` E ⇐
x:A. δ(P ∗ R) ◦ (P (Q) and then because δ(P ∗ R) ◦ (P (

Q) ` Q ∗∗ δR we can weaken the consequent into ∆; I ; P ∗ R `
E ⇐ x:A. Q ∗∗ δR.

We further show that HTT is compositional in the sense that
typechecking of a program (which amounts to verification) requires
only that the individual sub-programs are typechecked separately.
There is no need for whole-program reasoning, as the types are
strong enough to isolate the program components and serve as their
interfaces.

As in any other type theory, HTT’s compositionality theorem
takes the form of a substitution principle, and we present some
selected statements. Here we assume the operation 〈E1/x:A〉E2 on
computations E1 and E2 that prepends E1 onto E2. More formally,
if E1 = (C; return M), where C is a list of commands, then
〈E1/x:A〉E2 is defined to be C; [M :A/x]E2.

LEMMA 4 (Substitution principle). Suppose that ∆ ` M ⇐ A,
and abbreviate [M :A/x]T with T ′, for arbitrary T . Then the
following holds:

1. If ∆, x:A, ∆1 ` N ⇐ B then ∆, ∆′

1 ` N ′ ⇐ B′.

2. If ∆, x:A, ∆1; I ;P ` E ⇐ y:B. Q and y 6∈ FV(M), then
∆, ∆′

1; I
′; P ′ ` E′ ⇐ y:B′. Q′.

3. If ∆; I ; P ` E1 ⇐ x:A.Q and ∆, x:A; I ;P ◦ Q ` E2 ⇐
y:B. T , and x 6∈ FV(B) then ∆; I ;P ` 〈E1/x:A〉E2 ⇐
y:B. (∃x:A. Q ◦ T).

Notice that the last statement of the substitution principle is essen-
tially and adaptation to binary postconditions of the Hoare-style in-
ference rule for sequential composition. This is an additional aspect

of the connection between monadic bind and sequential composi-
tion that we mentioned in Section 4. The proofs of these lemmas
can be found in the associated technical report [21].

6. Operational semantics

In this section we focus on the operational semantics of the
monadic fragment of HTT, and prove theorems about ST and
CMD-computations. The purely functional fragment is quite stan-
dard. Since the functional fragment is a sub-language of ECC, we
know that it is strongly normalizing. Therefore, we can give the
functional fragment a number of reduction strategies, including
call-by-name and call-by-value. Alternatively, we can normalize
all of the pure subterms before applying the evaluation rules for the
monadic terms. Thus, we omit the treatment of the pure fragment,
and refer the interested reader to [22].

The operational semantics of monadic computations requires
the following syntactic categories.

Run-time heaps χ ::= · | χ, l 7→τ M
Abstract machines µ ::= (χ, E) | (χ, E1 | x:A. E2)
Stacks κ [P,E] ::= (x1:A1 ⇐ E1:P1 ‖ x1:A2 ⇐ E:P); E3 |

(x1:A1 ⇐ E:P ‖ x2:A2 ⇐ E2:P2); E3

Run-time heaps are finite maps from locations to terms. These are
the objects about which our assertions logic reasons. The soundness
of the assertion logic established in Theorem 2 makes the connec-
tion between the run-time behavior of HTT and its logical behavior.
If HTT shows that at some point in the program the heap should
contain a location l pointing to a value M :τ , then, when that point
in the program is reached at run-time, the heap contains an assign-
ment l 7→τ M .

Abstract machines pair up a run-time heap with an expression to
be evaluated. They come in two modes: (1) (χ, E) is the concurrent
mode, which takes a CMD expression E describing the concurrent
execution of a number of processes; and (2) (χ, E1 | x:A. E2) is
the atomic mode. In the atomic mode, E1 is an ST-computation,
which must be executed before returning to the (concurrent) con-
tinuation E2. The value of E1 is bound to the variable x:A in E2.

Stacks are used to select an expression from a set of parallel
expressions in E. The selected expression will be advanced one
step according to the operational semantics. Given a list of stacks
κi = (κ1, . . . , κn), and a list of predicates Pi = (P1, . . . , Pn),

and an expression E, we write κi Pi E as an abbreviation for
κ1[P1, · · ·κn−1[Pn−1, κn[Pn, E]]]. Thus, the list κi determines
the sequence of parallel nestings, at the bottom of which E appears,
and the list Pi determines the sequence of footprint annotations
provided along the path.

The main judgment of the operational semantics has the form
µ ↪→ µ′. We present selected rules for concurrent configurations.

χ, κi Pi (x ⇐ atomicA,R,Q E1;E) ↪→

χ, E1 | x:A. κi (Pi ◦ (R (Q)) E

χ, κi Pi (publish J ;E) ↪→ χ, κi (Pi ◦ (J (∇emp)) E

χ, κi Pi (x ⇐ (cmdo E1):CMD {I}{R1} x:A{Q1}; E) ↪→
χ, κi Pi (〈E1/x:A〉E)

χ, κi Pi ((x1:A1 ⇐ return M1:P1 ‖ x2:A2 ⇐ return M2:P2); E)
↪→ χ, κi Pi ([M1:A1/x1, M2:A2/x2]E)

χ, κi Pi (x ⇐ ifA tt then Et else Ef ; E) ↪→ χ, κi Pi (〈Et/x:A〉E)

χ, κi Pi (x ⇐ ifA ff then Et else Ef ;E) ↪→ χ, κi Pi (〈Ef /x:A〉E)

χ, κi Pi (x1 ⇐ fixB f ;E) ↪→
χ, κi Pi (x1 ⇐ f(cmdo (y ⇐ fixB f ; return y)); E)

The rules use a list of stacks κi Pi to select the first command
to execute. Many different possibilities may arise corresponding to
different selected stacks, reflecting the the non-deterministic nature
of concurrent evaluation.

In the case of atomic, once a command E1 is selected for atomic
execution, the abstract machine moves into the atomic configura-
tion, where E1 proceeds to be executed without interference from
other processes, and with exclusive access to the heap χ3.

Upon making a step, both atomic and publish change the local
heap, and the annotations encountered along the stack list, κi, must
be updated in order to reflect the new heap values. In the case

of atomic, we use the predicate list (Pi ◦ (R (Q)), because the
execution of E1 is captured by the relation R (Q. In the case

of publish, we use the predicate list (Pi ◦ (J (∇emp)), because
the execution of publish must erase the space described by J , and
this operation is captured by the relation J (∇emp.

The rules for the atomic configurations are straightforward, so
we present the characteristic ones without any comments.

(χ, l 7→τ M), (x ⇐ !τ l;E) | y:A. E1 ↪→
(χ, l 7→τ M), [M :τ/x]E | y:A. E1

χ, (x ⇐ allocτ M ;E) | y:A. E1 ↪→ (χ, l 7→τ M), [l:nat/x]E | y:A. E1

(χ, l 7→ −), (l :=τ M ; E) | y:A. E1 ↪→ (χ, l 7→τ M), E | y:A. E1

(χ, l 7→ −), (dealloc l;E) | y:A. E1 ↪→ χ, E | y:A. E1

χ, (x ⇐ (stdo E2):ST {R1}x:B{Q1}; E) | y:A. E1 ↪→
χ, 〈E2/x:B〉E | y:A. E1

χ, (return M) | y:A. E1 ↪→ χ, [M :A/y]E1

In order to prove the adequacy of operational semantics with
respect to typing, we need a helper judgment to define the typing for
abstract machines. Informally, I ` µ ⇐ x:A. S holds if machine µ
preserves the heap invariant I and, if µ terminates, then the ending
heap satisfies the predicate ∇S. The formal definition requires a
translation from run-time heaps to predicates given inductively as
[[·]] = emp and [[χ, l 7→τ M]] = [[χ]] ∗ l 7→τ M .

DEFINITION 5. We say that I ` µ ⇐ x:A. S if

1. µ = χ, E and χ = χ1, χ2 such that [[χ1]] ` I and I ; [[χ2]] `
E ⇐ x:A.∇S, or

2. µ = χ, E1, y:B. E2 then there exists a predicate R such that
[[χ]] ` E1 ⇐ y:B.∇(I ∗R) and y:B; I ;R ` E2 ⇐ x:A.∇S.

Notice that the definition uses unary postcondition S instead of
binary ones. Binary postconditions served in the typing judgments
to relate the unknown initial heap to the ending heap. But, when
executing abstract machines, the initial heaps are always known,
explicitly given by χ, so there is no need to have any special
abstractions for naming them.

Now our adequacy theorem can be presented in the manner fa-
miliar from functional programming, as a combination of preserva-
tion and progress theorems.

THEOREM 6 (Preservation). If I ` µ ⇐ x:A. S and µ ↪→ µ′,
then I ` µ′ ⇐ x:A. S.

THEOREM 7 (Progress). If I ` µ ⇐ x:A. S, then either µ =
(χ, return M) or there exists µ′ such that µ ↪→ µ′.

The proofs are by case analysis on the structure of the abstract
machines. The progress theorem crucially depends on Theorem 2

3 The optimistic evaluation usually associated with transactions need not be
reflected in the operational semantics: it is an implementation strategy for
speeding up the execution that does not change the semantics.

to argue that an operational step can indeed be made if the step’s
precondition has been proved in the assertion logic.

7. Related and future work

Transactional Memory. Monads for dealing with transactions
have been introduced in Haskell [9, 10]. Our approach is similar,
however, we have not considered an explicit abort in this paper
because we are interested in a high-level semantics where an ex-
plicit abort is not necessary [19]. Also, we can state and check the
pre-conditions for an atomic block statically, and do not require an
explicit abort to ensure correctness of algorithms.

Higher-order and dependent types for effects. Dependently
typed systems with stateful features have to date mostly focused
on how to appropriately restrict effects from appearing in types,
thus polluting the underlying logical reasoning. Such systems have
mostly employed singleton types to establish the connection be-
tween the pure and the impure levels of the language. Examples
include Dependent ML by Xi and Pfenning [33, 34], Applied type
systems by Chen and Xi [4] and Zhu and Xi [35], a type system for
certified binaries by Shao et al. [29], and the theory of refinements
by Mandelbaum et at. [14]. HTT differs from these approaches,
because we allow effectful computations to freely appear in types,
as the monadic encapsulation facilitates hygienic mixing of types
and effects, and thus preserves soundness. There are also several
recent proposals for purely functional languages with dependent
types, like Cayenne [1], Epigram [16], Omega [30] and Sage [7].
We also list several works that extend Hoare and Separation Log-
ics with higher-order functions, like the work of Honda, Berger
and Yoshida [2] and Krishnaswami et al. [12]. To our knowledge,
none of the mentioned languages and logics has been extended to a
concurrent setting.

Separation Logic and concurrency. Resource invariants in (se-
quential) Separation Logic were introduced by O’Hearn et al. [26],
and an extension to concurrency with shared resources has been
considered by Brookes [3], O’Hearn [25], Gotsman et al. [8] and
Hobor et al. [11]. These works point out the need for precise in-
variants on the shared resources, in order to preserve the soundness
of the logic. More recently, Vafeiadis and Parkinson [31] and Feng
at el. [6] have combined Separation Logic with rely-guarantee rea-
soning, whereby processes specify upper and lower bounds on the
evolution of the shared state.

Our treatment of shared state with invariants was inspired by
O’Hearn’s presentation in [25]. Using invariants simplifies the rea-
soning, but seems strictly weaker than rely-guarantee. Invariants
only enforce a predetermined property, but otherwise lose informa-
tion about the actual changes to the shared state. We have found
this property somewhat restrictive in several examples, and plan in
the future to reformulate HTT with ideas from the rely-guarantee
approaches.

Implementation and models of concurrency. The model of HTT
described here suffices to argue soundness, but is otherwise quite
restrictive, as it cannot support any interesting relations on effectful
computations, except the monadic laws. A more refined model of
sequential, impredicative, HTT has been developed by Petersen et
al. [28]. We hope that this model can be extended to a setting with
transactions as well.

To improve usability of HTT, we plan to support automatic in-
ference of (some) pre- and post-conditions and loop invariants. This
would avoid the current need to explicitly annotate the concurrency
primitives. Currently, HTT rules compute strongest postconditions,
but a significant amount of annotations can be inferred if the rules
are re-formulated to simultaneously infer the weakest precondition

that guarantees progress, as well as the strongest postcondition with
respect to this precondition [23].

8. Conclusion

This paper presented Hoare Type Theory (HTT), which is a depen-
dently typed programming language and logic supporting higher-
order programs with transactional shared memory concurrency.

HTT follows the “specifications-as-types” principle, and inter-
nalizes specifications in the form of Hoare triples for partial cor-
rectness of stateful and concurrent programs into types. This iso-
lates the concerns about side-effects and concurrency from the logi-
cal, purely functional foundations of the system, and makes it possi-
ble to mix concurrency with various advanced features, like higher-
order functions, polymorphism, ADTs, none of which was possible
in the previous work on Hoare or Separation Logics for concur-
rency. In fact, the pure fragment of HTT can soundly be scaled to
the Extended Calculus of Constructions ECC [13] and Coq [15].

Hoare specifications in HTT are monads, and we support two
different monadic families: ST {P}x:A{Q} classifies stateful se-
quential computations where P and Q are pre- and post-conditions
on the state, and CMD {I}{P} x:A{Q} classifies transactional
computations, where I is an invariant on the shared state and P and
Q are pre- and post-condition on the local state. Both monads use
propositions from Separation Logic to concisely describe the var-
ious aspects of the process state. Transactional computations may
atomically invoke a stateful computation on the shared state, if the
stateful computation provably preserves the invariant of the shared
state. That is, we provide a primitive atomic, which can coerce the
type ST {P ∗I}x:A{Q ∗ I} into the type CMD {I}{P}x:A{Q}.

We have shown that HTT as a logic is sound and compositional,
so that it facilitates local reasoning. We have defined its operational
semantics, and shown that this semantics is adequate with respect
to the specifications from the Hoare types.

References

[1] L. Augustsson. Cayenne – a language with dependent types. In
ICFP’98, pages 239–250.

[2] M. Berger, K. Honda, and N. Yoshida. A logical analysis of aliasing
in imperative higher-order functions. In ICFP’05, pages 280–293.

[3] S. Brookes. A semantics for concurrent separation logic. In
CONCUR’04, pages 16–34.

[4] C. Chen and H. Xi. Combining programming with theorem proving.
In ICFP’05, pages 66–77.

[5] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Communications of the ACM, 18(8):453–457,
1975.

[6] X. Feng, R. Ferreira, and Z. Shao. On the relationship between
concurrent separation logic and assume-guarantee reasoning. In
ESOP’07, pages 173–188.

[7] C. Flanagan. Hybrid type checking. In POPL’06, pages 245–256.

[8] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local
reasoning for storable locks and threads. In APLAS’07, pages 19–38.

[9] T. Harris and K. Fraser. Language support for lightweight transactions.
ACM SIGPLAN Notices, 38(11):388–402, Nov. 2003.

[10] T. Harris, S. Marlow, S. L. P. Jones, and M. Herlihy. Composable
memory transactions. In PPoPP’05, pages 48–60.

[11] A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle Semantics for
Concurrent Separation Logic. In ESOP’08, pages 353–367.

[12] N. Krishnaswami. Separation logic for a higher-order typed language.
In SPACE’06, pages 73–82.

[13] Z. Luo. An Extended Calculus of Constructions. PhD thesis,
University of Edinburgh, 1990.

[14] Y. Mandelbaum, D. Walker, and R. Harper. An effective theory of
type refinements. In ICFP’03, pages 213–226.

[15] The Coq development team. The Coq proof assistant reference

manual. LogiCal Project, 2004. Version 8.0.

[16] C. McBride and J. McKinna. The view from the left. Journal of
Functional Programming, 14(1):69–111, January 2005.

[17] J. L. McCarthy. Towards a mathematical science of computation. In
IFIP Congress, pages 21–28, 1962.

[18] E. Moggi. Notions of computation and monads. Information and

Computation, 93(1):55–92, 1991.

[19] K. F. Moore and D. Grossman. High level small step operational
semantics for transactions. In Workshop on Transactional Computing,
August 2007.

[20] A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract
Predicates and Mutable ADTs in Hoare Type Theory. In ESOP’07,
pages 189–204.

[21] A. Nanevski, P. Govereau, and G. Morriset. Type-theoretic semantics
for transactional concurrency. Technical Report TR-09-07, Harvard
University, July 2007.

[22] A. Nanevski, G. Morrisett, and L. Birkedal. Hoare Type Theory,
Polymorphism and Separation. Journal of Functional Programming,
18(5&6):865–911, 2008.

[23] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal
Ynot: dependent types for imperative programs In ICFP’08, pages
229–240.

[24] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In CSL’01, pages 1–19.

[25] P. W. O’Hearn. Resources, concurrency and local reasoning.
Theoretical Computer Science, 375(1–3):271–307, May 2007.

[26] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and
information hiding. In POPL’04, pages 268–280.

[27] S. Owicki and D. Gries. Verifying properties of parallel programs:
an axiomatic approach. Communications of the ACM, 19(5):279–285,
1976.

[28] R. L. Petersen, L. Birkedal, A. Nanevski, and G. Morrisett. A
realizability model for impredicative Hoare Type Theory. In ESOP’08,
pages 337–352.

[29] Z. Shao, V. Trifonov, B. Saha, and N. Papaspyrou. A type system
for certified binaries. ACM Transactions on Programming Languages

and Systems, 27(1):1–45, January 2005.

[30] T. Sheard. Languages of the future. In OOPSLA’04, pages 116–119.

[31] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and
separation logic. In CONCUR’07, pages 256–271.

[32] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent
logical framework: The propositional fragment. In Types for Proofs

and Programs, volume 3085 of Lecture Notes in Computer Science,
pages 355–377.

[33] H. Xi and F. Pfenning. Eliminating array bound checking through
dependent types. In PLDI’98, pages 249–257.

[34] H. Xi and F. Pfenning. Dependent types in practical programming. In
POPL’99, pages 214–227.

[35] D. Zhu and H. Xi. Safe programming with pointers through stateful
views. In PADL’05, pages 83–97.

