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Abstract—A pairwise independent network (PIN) model con-
sists of pairwise secret keys (SKs) distributed among m terminals.
The goal is to generate, through public communication among
the terminals, a group SK that is information-theoretically secure
from an eavesdropper. In this paper, we study the Harary graph
PIN model, which has useful fault-tolerant properties. We derive
the exact SK capacity for a regular Harary graph PIN model.
Lower and upper bounds on the fault-tolerant SK capacity of
the Harary graph PIN model are also derived.

I. INTRODUCTION

The problem of secret key (SK) generation in a multitermi-
nal setting was put into an information-theoretic framework by
Csiszár and Narayan [2]. A special case of their framework
is the pairwise independent network (PIN) model [5], [6],
specified by a graph G with vertex set V , with |V|= m,
and edge set E . The vertices of the graph are referred to as
terminals. Each pair of terminals that is connected by an edge
e ∈ E is assumed to share a pairwise secret key, which is a
random variable Bne consisting of n ≥ 1 iid copies of a random
bit Be uniformly distributed over {0, 1}. For each e ∈ E , the
rv Bne is jointly independent of the rvs (Bne′ , e

′ ∈ E \{e}) The
terminals are allowed to communicate interactively in multiple
rounds over a noiseless public communications channel of
unlimited capacity, with all communications being observed
by all terminals. The goal is for all terminals, or perhaps only
some subset, to agree upon a group secret key of largest size,
namely, b uniformly distributed random bits, with b as large as
possible. Each terminal should be able to generate the group
SK from its own observations, namely, the pairwise SKs it
shares with its neighbours and the public communication. It is
required that the group SK be independent of the public com-
munication. This is, of course, to provide security against an
eavesdropper who can listen in on the public communication.

Nitinawarat and Narayan [5] determined the secret key
capacity, i.e., the largest group SK rate b/n, as n → ∞, for
the PIN model described above. They also gave an efficient
algorithm, based on tree packings, for group SK generation.
The algorithm was shown to achieve SK capacity in the case
when all terminals are required to generate the group SK.

Tyagi et al. [8] studied group SK generation and SK
capacity in a scenario where an arbitrary t-subset of the m
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terminals may drop out before the communication needed
for SK generation is completed. They formulated various
notions of fault-tolerant secret key (FTSK) capacity, which
we elaborate upon in Section II, and showed that for a PIN
model on the complete graph on m vertices, these notions
of fault-tolerant capacity coincide. They also gave a simple
noninteractive communication protocol, again based on tree
packings, for FTSK generation, which achieved the FTSK
capacity for the complete graph PIN model.

In the complete graph PIN model, every pair of terminals
shares a pairwise SK, so that there are

(
m
2

)
pairwise SKs in

all. A natural question that arises is: if we only have a limited
number of pairwise SKs available, what is the best way to
distribute them among the m terminals so that the resulting
PIN model has a large FTSK capacity?

The connectivity properties of a graph play a significant
role in determining the fault-tolerant behaviour of the corre-
sponding PIN model. Tyagi et al. [8] showed that if a graph
has vertex connectivity1 greater than t, then one bit of group
SK can always be generated in the associated PIN model even
when an arbitrary t-subset of the terminals drops out. Thus, a
PIN model with good fault-tolerant properties can be obtained
by distributing the pairwise SKs in such a way as to maximize
the vertex connectivity of the underlying graph. Equivalently,
for a target vertex connectivity, it is desirable to minimize the
number of edges (pairwise SKs) required to obtain a graph
with the required vertex connectivity. It is known that the
Harary graph Hk,m [4] has the least number of edges among
all graphs on m vertices with vertex connectivity equal to k.
In this paper, we study the SK capacity and FTSK capacity
of PIN models obtained from Harary graphs.

The rest of the paper is structured as follows. Section II con-
tains definitions and relevant background material. Section III
deals with the capacity of the Harary graph PIN model, while
Section IV studies its fault-tolerant behaviour.

II. DEFINITIONS AND PRELIMINARIES

In this section, we introduce the definitions and notation
used in the paper, and review some basic graph-theoretic
results and prior work on the PIN model.

A. Graph-Theoretic Preliminaries

Given a graph G = (V, E) and an integer n ≥ 1, we denote
by G(n) the multigraph having the same vertex set V as G,

1See Section II for a definition.
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Fig. 1: Examples of the three types of Harary graphs Hk,m.

but whose edge set E(n) is the multiset consisting of n copies
of each edge of G.

The vertex (resp. edge) connectivity of a connected graph
G is the least number of vertices (resp. edges) that need to be
removed from G so that the remaining graph is disconnected.
We denote the vertex connectivity and edge connectivity of
G by κ(G) and λ(G), respectively. By convention, κ(Km) =
m− 1, where Km is the complete graph on m vertices. It is
well known that κ(G) ≤ λ(G) (see e.g., [3, Corollary 5.1.5]).

Theorem 1 ([3], Prop. 5.2.6, Thm. 5.2.7). An m-vertex graph
with vertex or edge connectivity k has at least

⌈
km
2

⌉
edges.

We describe here a construction of graphs which achieve
the lower bound of the above theorem. These graphs are
called Harary graphs, in acknowledgement of their original
construction by Harary [4]. The Harary graph Hk,m is a graph
with m vertices,

⌈
km
2

⌉
edges, and vertex and edge connectivity

both equal to k. It is constructed on V = {0, 1, . . . ,m− 1} as
follows [3, Chapter 5, pp. 226–227]:
• m even, k = 2r: connect vertices i and j by an edge iff

(i− j) mod m ≤ r.
• m even, k = 2r + 1: connect vertices i and j by an

edge if (i− j) mod m ≤ r; add the edges (i, m2 + i) for
0 ≤ i ≤ m

2 − 1.
• m odd, k = 2r + 1: connect vertices i and j by an edge

if (i−j) mod m ≤ r; add the edges (0, m−12 ), (0, m+1
2 ),

and (i, m+1
2 + i) for 1 ≤ i ≤ m−3

2 .
Figure 1 shows typical examples of the Harary graphs Hk,m.

The spanning tree packing (STP) number, σ(G), of a graph
G is the maximum number of edge-disjoint spanning trees
that can be packed into the graph. The definition extends to
the multigraphs G(n) as well. The following theorem shows
that σ(G) and λ(G) are closely related.

Theorem 2 ([1]).
⌊
λ(G)
2

⌋
≤ σ(G) ≤ λ(G).

The next result, known as Menger’s theorem, is one of the
cornerstones of graph theory.

Theorem 3 ([3], Theorem 5.3.6). A graph G has κ(G) ≥ k
iff any pair of vertices in G has k internally vertex-disjoint
paths between them.

B. PIN Model Preliminaries

The description here is largely based on [5]. Let M =
{0, 1, . . . ,m − 1}, m ≥ 2, denote the set of terminals. As

described in Section I, a PIN model is specified by a graph
G = (V, E) with V = M. The edges in E represent n-
bit pairwise SKs shared by terminals. It is somewhat more
convenient to use the multigraph G(n) to describe the PIN
model, by associating one uniformly random bit Be with each
edge e of G(n). The random bits (Be, e ∈ E(n)) are jointly
independent. Terminal i observes the random variable (rv) Xn

i ,
which consists of the random bits Be associated with the edges
e incident on i. For A ⊆M, we set Xn

A = (Xn
i , i ∈ A).

The public communication sent by any terminal i is a
function of Xn

i and all the previous communication that
has already taken place. The public communications chan-
nel is assumed to be noiseless. The rv Fi,j is associ-
ated with the communication sent by terminal i in the
jth round of communication. We denote by F or F(l) the
rv (F1,1, F2,1, . . . , Fm,1, . . . , F1,l, . . . , Fm,l) associated with
l rounds of public communication. For A ⊆ M, we set
F

(l)
A = (Fi,j : i ∈ A, 1 ≤ j ≤ l).
An rv U is said to be perfectly recoverable from an rv V

if there exists a function g such that Pr[U = g(V )] = 1. Let
K(n) be an rv computed from Xn

M. We define the security
index of K(n) by

s(K(n);F) = I(K(n);F) + log|K(n)|−H(K(n)),

where K(n) is the range of K(n), and all logs are base-2.

Definition 1. For n ≥ 1, an rv K(n) is said to be a (perfect)
group SK for M, achievable with communication F, if K(n)

is perfectly recoverable from (Xn
i ,F) for each i ∈ M, and

s(K(n);F) = 0.

Tyagi et al. [8] showed that if the underlying graph G is
connected, then for n = 1, a group SK K(1) consisting of
one uniformly random bit is always achievable through a 1-
round communication protocol, termed “Protocol 1” in [8].
The following lemma is a compact statement of this fact.

Lemma 4. Any connected graph yields one bit of group SK.

Definition 2. A real number R > 0 is said to be an achievable
SK rate if there exists a sequence of group SKs (K(n)) for
M, achievable with appropriate communication, such that
1
nH(K(n))→ R as n→∞. The supremum of all achievable
SK rates is called the SK capacity for M, denoted by C(M).

For notational convenience, given a graph G, we will denote
by C(G) the SK capacity of the PIN model specified by G.

Theorem 5 ([5], Prop. 4 and Theorem 5). For a graph G, the
limit limn→∞

σ(G(n))
n exists, and equals C(G).

We now introduce fault-tolerance into our definitions of SK
rate and capacity. The definitions here are simplified versions,
sufficient for the purpose of this paper, of those in [8]. The
motivation for these definitions is the event that an arbitrary
subset of the m terminals drops out before the group SK
generation protocol is completed. Let B denote the set of
terminals (the communicating terminals) that actually send
some communication during the course of the protocol. The



subset A ⊆ B of terminals that ultimately remain (the residual
terminals) must agree upon a group SK, K, of largest size.
There is no requirement that the group SK generated by A be
kept secret from the terminals in M\ A. We assume that at
most t < m terminals may drop out, so that |A|≥ m− t.

We are interested in communication protocols that guarantee
a certain group SK size (and this guaranteed group SK size
must be made as large as possible) irrespective of which
subset of terminals drops out and when. In this paper, we
will consider protocols involving at most two rounds of
communication. The terminals that communicate in the first
round form the set B ⊆ M. In a 1-round protocol, after
the single round of communication, the residual terminals in
A ⊆ B must generate an SK. Here, note that the residual
terminals would only be aware of the identities of the members
of B, and would not know which of these form the subset A. In
a 2-rounds protocol, we assume that no terminals drop out after
the first round of communication, so that A = B. The residual
terminals can identify the set A from the communication in the
first round, use this knowledge to generate the second round
of communication, and finally compute an SK.

Definition 3. For l = 1 and 1 ≤ t < m, a real number
R > 0 is said to be an achievable (l, t) fault-tolerant secret key
(FTSK) rate if ∀ ε > 0, ∃n ≥ 1 s.t. for all (A,B) satisfying
A ⊆ B ⊆ M and |A|≥ m− t, we can find an rv K(n) (i.e.,
an (l, t)-FTSK) with the following properties:

•K(n) is perfectly recoverable from (Xn
i ,F

(l)
B ) for all i ∈ A;

• s(K(n);F
(l)
B ) = 0; and

• 1
nH(K(n)) > R− ε.

The supremum of all achievable (l, t) FTSK rates is called the
(l, t) FTSK capacity for M, denoted by Cl,t(M).

For l = 2, the same definitions apply, except that B is
restricted to be equal to A.

Given a graph G on vertex setM, we will denote by Cl,t(G)
the (l, t) FTSK capacity of the PIN model specified by G.

Theorem 6. For a PIN model specified by a graph G,

C1,t(G) ≤ C2,t(G) = min
A⊆M:|A|≥m−t

C(GA),

where GA is the subgraph of G induced by the vertices in A.

Proof: The first inequality is a straightforward conse-
quence of the definitions, noting that an SK rate of at least
C1,t has to be achievable with a 1-round protocol even in the
case when B = A.
C2,t(G) ≤ minA:|A|≥m−t C(GA): From the definitions,

we have that for any residual set A, C2,t(G) ≤ C ′(A),
where C ′(A) denotes the maximum SK rate asymptotically
achievable using Xn

A. Now, Xn
A includes pairwise SKs shared

between terminals in A and terminals in M\ A. Theorem 3
of [2] can be used to show that these pairwise SKs play no
role in achieving C ′(A), so that C ′(A) = C(GA). Hence,
C2,t(G) ≤ C(GA) for any residual set A.
C2,t(G) ≥ minA:|A|≥m−t C(GA): Let A be a residual set

achieving the minimum C(GA). Consider a maximal STP
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Fig. 2: Some of the spanning trees in the STP of H
(9)
6,10

constructed in the proof of Proposition 7.

of G
(n)
A . In the second round of communication, we can

use Protocol 1 of [8] on each tree comprising the maxi-
mal STP to generate 1 bit of group SK (Lemma 4). The
σ(G

(n)
A ) bits so obtained are all independent as the trees in

the packing are edge-disjoint. It follows that an SK rate of
limn→∞

1
nσ(G

(n)
A ) = C(GA) (Theorem 5) is achievable.

III. SK CAPACITY OF REGULAR HARARY GRAPHS

In this section, we derive the SK capacity of a PIN model
specified by a regular Harary graph. From the construction
of the graphs Hk,m described in Section II-A, it can be seen
that Hk,m is regular iff km is even. Throughout this section,
we assume that k < m − 1. When k = m − 1, Hk,m is the
complete graph Km, and it is known that C(Km) = m

2 [8].
Any spanning tree of a connected graph G = (V, E) has

|V|−1 edges, from which it easily follows that σ(G) ≤ |E|
|V|−1 .

By extension, σ(G(n)) ≤ n |E|
|V|−1 . Thus, for regular Harary

graphs Hk,m, we have σ(H(n)
k,m) ≤ nkm

2(m−1) , which is achieved
for certain values of n.

Proposition 7. Let α be a positive integer.
(a) For k even and n = α(m− 1): σ(H(n)

k,m) = αkm
2 .

(b) For k odd, m even, and n = 2α(m−1): σ(H(n)
k,m) = αkm.

Proof: The proof is by construction of spanning tree
packings (STPs) of the required size. It is enough to consider
α = 1, as for larger integers α, we can simply use α copies of
each spanning tree used in the basic construction. Due to space
constraints, we only provide the specifics of the construction
for the case when k is even. The k odd and m even case
requires a different construction.

Let G = Hk,m, with k even, and let n = m− 1. We wish
to construct a STP of G(n) of size km/2. The spanning trees
in our construction are denoted by Ti,j , 0 ≤ i ≤ m − 1 and
1 ≤ j ≤ k/2.

For j ∈ {1, . . . , k/2}, the tree T0,j is constructed as follows:
Step 0: Draw the edges (0, v) and (0,m − v) for v =
1, 2, . . . , k/2. Set p = k

2 + 1.



Step 1: Draw the edges (m − p,m − p − j), (m − p −
j,m−p−2j), . . . , till a path from m−p to 0 is formed.
Step 2: Increment p by 1. If there exists a path from m−p
to 0, then STOP. Else, go to Step 1.

It is easy to check that the T0,js are spanning trees of G.
Figure 2(a) depicts these trees for H6,10.

For i > 0, the trees Ti,j are “i-step rotations” of T0,j . The i-
step rotation of a graph H with vertex set {0, 1, . . . ,m−1} and
edge set E is the graph πi(H) on the same vertex set, but with
edge set {(πi(u), πi(v)) : (u, v) ∈ E}, where πi(z) = z + i
mod m for z ∈ {0, 1, . . . ,m − 1}. Figure 2(b) depicts the
4-step rotations of the trees in Figure 2(a).

It can be verified that the trees Ti,j form an STP of G(n);
we omit the details.

We can now easily obtain the SK capacity of a regular
Harary graph.

Theorem 8. For a regular Harary graph Hk,m, we have

C(Hk,m) =
km

2(m− 1)
.

Proof: By virtue of Theorem 5, we need to deter-
mine limn→∞

1
nσ(H

(n)
k,m). By Proposition 7, this limit equals

km
2(m−1) for a regular Harary graph Hk,m.

We expect that the result of Theorem 8 extends to irregular
Harary graphs (Hk,m with both k and m odd), but we do not
yet have a result analogous to Proposition 7 for this case.

IV. FTSK CAPACITY OF HARARY GRAPHS

We now turn our attention to the fault-tolerant behaviour of
the Harary graph PIN model.

A. Lower bounds

We first derive lower bounds on C1,t and C2,t for the Harary
graph PIN model.

Theorem 9. Let G be the Harary graph Hk,m. For t < k,

C2,t(G) ≥ max

{
1,

⌊
k − t
2

⌋}
.

Proof: We use the expression for C2,t(G) in Theorem 6.
Note that, by Theorem 5, C(GA) = limn→∞

1
nσ(G

(n)
A ), which

is at least σ(GA), since σ(G
(n)
A ) ≥ nσ(GA) for all n.

Therefore, it is enough to show that for each A ⊂ M, with
|A|≥ m− t, we have σ(GA) ≥ max

{
1,
⌊
k−t
2

⌋}
.

Suppose that some subset of at most t < k vertices are
removed from G to obtain GA. Since κ(G) = k, GA is still
connected, so σ(GA) ≥ 1. Now, consider any two distinct
vertices u and v of GA. By Theorem 3, in G, there were at
least k vertex-disjoint paths between u and v. At least k − t
of these paths would have survived in GA. Thus, again by
Theorem 3, κ(GA) ≥ k− t. Now, use the facts that λ(GA) ≥
κ(GA) and σ(GA) ≥ bλ(GA)

2 c (Theorem 2).
Next we turn our attention to C1,t. Lower bounds on C1,t(G)

can be obtained by the following device. Suppose that we can
construct an STP, {T1, . . . , Tr}, of G with the property that
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Fig. 3: The STP construction in the proof of Proposition 10
applied to (a) H6,9 and (b) H6,10.

the removal of any t vertices from G results in at most t of
the trees Tj getting disconnected. Then, the remaining (still
connected) trees form an STP of size at least r − t, of the
residual graph GA. As we explain next, this would imply a 1-
round communication protocol that yields an achievable (1, t)
FTSK rate R ≥ r − t, and hence, C1,t(G) ≥ r − t.

Let {T1, . . . , Tr} be an STP of G as above. The terminals
inM prepare to communicate as per Protocol 1 of [8] applied
to each of the trees Tj . (If there are no drop-outs, this would
generate an r-bit SK for M). Let B ⊆ M be the subset
of terminals that are able to fulfill their obligations under
Protocol 1 by sending their communication, and let A ⊆ B,
|A|≥ m − t, be the residual set. Each terminal in A can
reconstruct the graph GB , and determine which of the graphs
Tj(B) (subgraph of Tj induced by the vertices in B) remain
connected. The connected graphs Tj(B) form an STP of GB
of size at least r − t, and so the terminals in A can generate
at least r − t bits of group SK. Note that these r − t bits
are generated from pairwise SKs of size n = 1. Scaling this
protocol to an arbitrary n ≥ 1, we see that an (1, t) FTSK
rate R ≥ r − t is achievable.

Proposition 10. Let G be a Harary graph Hk,m with k = 2r
or k = 2r+ 1. Suppose that one of the following holds: (i) m
mod r ∈ {0, 1}, or (ii) r = 3. Then, C1,t(G) ≥ max{1, r−t}.

Proof: Any Harary graph has a Hamiltonian cycle (i.e.,
a cycle containing all m vertices). So even if one terminal
drops out, the remaining part of the Hamiltonian cycle is
still connected. Therefore, the protocol implicit in Lemma 4
ensures that an (1, 1) FTSK rate equal to 1 is achievable, and
hence C1,t(G) ≥ 1.

To prove C1,t(G) ≥ r−t, we construct an STP of G, of size
r, such that each vertex of G is internal to (i.e., is of degree
2 in) at most one tree in the STP. Then, removal of any t
vertices from G would result in at most t of the r spanning
trees being disconnected.



It is enough to give the construction for k = 2r only. This
is because H2r,m is a subgraph of H2r+1,m, and so, any STP
of the former is also an STP of the latter.

Case 1: m mod r = 1. Write m = pr + 1. The first span-
ning tree ST1 is obtained by taking the edges (qr, qr+ j) for
0 ≤ q ≤ p − 1 and 1 ≤ j ≤ r. For 2 ≤ i ≤ r, the spanning
tree STi is the (i− 1)-step rotation of ST1. Figure 3(b) shows
this construction for m = 10 and r = 3.

Case 2: m mod r = 0. Write m = pr. The first spanning
tree ST1 is obtained by taking the edges described in Case 1
above, except for the edge ((p− 1)r, pr). For 2 ≤ i ≤ r, the
spanning tree STi is the (i−1)-step rotation of ST1. Figure 3(a)
shows this construction for m = 9 and r = 3.

We omit the somewhat more complicated construction in
the remaining case when r = 3 (and m mod r = 2).

It can be verified that in each of the cases above, the trees
STi, 1 ≤ i ≤ r, form an STP with the required property.

B. Upper bounds

From Theorem 6, we see that for l = 1, 2, Cl,t(G) can be
bounded above by C(GA) for any A ⊆M with |A|≥ m−t. A
careful choice of the subset A can yield good upper bounds.

The upper bounds in this section are obtained for regular
Harary graphs, i.e., Hk,m with k even or m even. As before,
we call the subgraph of the original graph induced by the
terminals in A as GA. We also use the following notation: let
b =

⌊
k
2

⌋
+ 1, and let m = pb + d, 0 ≤ d < b. Further, let

t = ap+ c, where 0 ≤ c < p if 0 ≤ a < b, and 0 ≤ c < d if
a = b. Our results can now be stated as follows.

Proposition 11. (a) For the regular Harary graph Hk,m, k
even, we have for t < k, and l = 1 or 2,

Cl,t(Hk,m) ≤ min

{
k − t,

km
2 − |EM\A(k)|
m− t− 1

}
,

where |EM\A(k)| is specified in Table I.
(b) For the regular Harary graph Hk,m, k odd, we have for
t < k, and l = 1 or 2,

Cl,t(Hk,m) ≤ min

{
k − t,

km
2 − |EM\A(k − 1)|−|Eδ|

m− t− 1

}
where |EM\A(k − 1)| is obtained from Table I, and |Eδ| is
specified in Table II.

TABLE I: |EM\A(k)| for k even.
|EM\A(k)| applicable when

kt− a(c+ t− p) d = 0

kt− a(c+ t− p) + a(a−1)
2

d ≥ 1, t ≤ (d+ 1)p

kt− a(c+ t− p) + d(2a−d−1)
2

d ≥ 1, (d+ 1)p < t ≤ bp
km−d(d−1)+c(2d−c−1)

2
d ≥ 1, t > bp

Proof sketch for Prop. 11: Let ξ(GA) denote the limit
limn→∞

1
nσ(G

(n)
A ), so that C(GA) = ξ(GA) by Theorem 5.

TABLE II: |Eδ| for k odd.
|Eδ| applicable when

ap
2

+min(c, p
2
) d = 0, p even

min(t, m
2
) d = 0, p odd

t d ≥ 1, p even, t ≤ dp
2

ap
2

+ dp
4
+min(c, p

2
) d ≥ 1, p even, dp

2
< t ≤ (b− d

2
)p

m
2
− (b− a) + I(c ≥ p

2
) d ≥ 1, p even, (b− d

2
)p < t ≤ bp

m
2

d ≥ 1, p even, t > bp

t d ≥ 1, p odd, t ≤ (b−d)p
2

a(p+1)
2

+ (b−d)(p−1)
4

+ d ≥ 1, p odd,
max(0, c−

⌊
p
2

⌋
) (b−d)p

2
< t ≤ (b+d)p

2
m
2

d ≥ 1, p odd, t > (b+d)p
2

We first display a subgraph GA for which ξ(GA) ≤ k − t,
which will show that Cl,t(Hk,m) ≤ k − t. We use the fact
that ξ(GA) ≤ λ(GA) — this easily follows from Theorem 2.

To construct the desired GA, remove t vertices from Hk,m

as follows:
• if t ≤ bk/2c: remove the vertices labeled 1, 2, . . . , t;
• if k is even, and k/2 < t ≤ k: remove the k/2 vertices

labeled 1, 2, . . . , k2 , and the (t−k/2) vertices labeled m−
1,m− 2, . . . ,m− t+ k

2 ;
• if k is odd, and bk/2c < t ≤ k: remove the vertex labeled

m
2 , then the bk/2c vertices labeled 1, 2, . . . ,

⌊
k
2

⌋
, and the

(t− bk/2c − 1) vertices labeled m− 1,m− 2, . . . ,m−
t+

⌊
k
2 + 1

⌋
.

For t < k, it is sufficient to remove k − t edges from GA to
disconnect vertex 0 from the rest of GA. Thus, λ(GA) ≤ k−t.
In fact, equality holds, since λ(GA) ≥ κ(GA) = k−t. Hence,
ξ(GA) ≤ λ(GA) = k − t.

The bound Cl,t ≤ k− t may be quite loose for small t. For
example, for H6,10 with t = 2, we find that k−t = 4 is greater
than even the SK capacity C(M) = 10

3 . This prompts us to
derive an alternate upper bound based on the fact that ξ(GA)
cannot exceed |EA|

m−t−1 , where EA is the edge set of GA — see
the paragraph preceding the statement of Proposition 7. The
choice of GA here is not as simple, and requires a break-up
into several cases. We omit the details.
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