
Informatics: A Focus On Computer Science In Context

David G. Kay, André van der Hoek, Debra J. Richardson
Department of Informatics

Donald Bren School of Information and Computer Sciences
University of California, Irvine
Irvine, CA 92697-3425 USA

+1 949 824 6326
{kay,andre,djr}@ics.uci.edu

ABSTRACT
Because the field of computer science has broadened so much in
recent years, traditional degree programs are becoming crowded
with new courses, each introducing its own “essential” topic.
However, with more and more such courses, it is no longer possi-
ble to cover every topic in a single, coherent, four-year program.
Many alternative approaches are available to address this situa-
tion. At UC Irvine, we have chosen a solution in which we offer
four coordinated degree programs: a B.S. in Computer Science &
Engineering, a conventional B.S. in Computer Science, a new
B.S. in Informatics, and a broad overview B.S. in Information and
Computer Science. Of these, the B.S. in Informatics is the most
innovative, focusing on software and information design. Context
plays a particularly strong role in our B.S. in Informatics: Placing
software development in context is critical to the delivery of suc-
cessful solutions, and we educate our students accordingly. We
present our definition of informatics, detail our curriculum, de-
scribe its pedagogical characteristics and objectives, and conclude
with some critical observations regarding informatics and its place
in computer science education.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, curriculum

General Terms
Design

Keywords
Informatics, education, computer science education, software
engineering education, contextual learning

1. INTRODUCTION
In recent years, the field of computer science has grown tremen-
dously in both breadth and depth. On the one hand, new subfields
have emerged: bioinformatics, security, gaming, and others. On
the other hand, existing subfields such as software engineering,
computer networking, programming languages, and theory have
grown significantly in knowledge and pedagogical approaches.

It is now recognized that undergraduate computer science degree
programs can no longer cover all aspects of the field comprehen-
sively [1]. Institutions across the country are employing a variety
of approaches to designing their undergraduate computing curric-
ula to counter this problem. Four canonical strategies may be
applied: (1) survey the field at a high level, (2) provide a more
configurable program, (3) lengthen the degree program, and (4)
offer separate, diversified degree programs.

Survey the field at a high level. Under this strategy, students learn
about a broad range of topics. A typical program may include, for
example, courses in programming, computer architecture, operat-
ing systems, networking, programming languages, compilers,
databases, graphics, artificial intelligence, software engineering,
human-computer interaction, and social and ethical issues. Other
courses may be included, usually depending on the interests of the
faculty. This kind of degree program is often the result of incre-
mental modification; as new topics emerge, the program changes
to incorporate new courses on these topics. A problem with this
strategy, though, is that as the number of topics increases that
“any undergraduate really should know,” the program strains at
the seams, reducing opportunities for elective courses and sacri-
ficing depth for breadth.

Provide a more configurable program. Under this strategy, a
curriculum is partitioned into core and optional courses. In some
degree programs, students may arbitrarily choose optional
courses, but a more typical approach is to group optional courses
into concentrations and require students to take one or more con-
centrations to bring some depth to their studies. While increasing
flexibility, this kind of strategy also has drawbacks. As the num-
ber of optional courses rises, chains of prerequisites restrict which
courses can be taken when; since a given course is seldom offered
every term, care must be taken in scheduling. Students may be-
come stuck, may simply choose concentrations based on which
courses best fit in their schedules, and may not have a good grasp
of how the different classes in their program complement each
other to form a coherent course of study.

PERMISSION TO MAKE DIGITAL OR HARD COPIES OF ALL OR
PART OF THIS WORK FOR PERSONAL OR CLASSROOM USE IS
GRANTED WITHOUT FEE PROVIDED THAT COPIES ARE NOT
MADE OR DISTRIBUTED FOR PROFIT OR COMMERCIAL AD-
VANTAGE AND THAT COPIES BEAR THIS NOTICE AND THE
FULL CITATION ON THE FIRST PAGE. TO COPY OTHERWISE,
OR REPUBLISH, TO POST ON SERVERS OR TO REDISTRIBUTE
TO LISTS, REQUIRES PRIOR SPECIFIC PERMISSION AND/OR A
FEE.

SIGCSE’05, February 23–27, 2005, St. Louis, Missouri, USA.
COPYRIGHT 2005 ACM 1-58113-997-7/05/0002...$5.00.

Lengthen the degree program. Although not an option often con-
sidered, the five-year bachelors/masters combination common in
Europe is one form of lengthening the degree program. Adopting
such an approach is possible, for example with a six-year bache-
lors/masters program. This, however, requires a commitment of
time and funding that many students may be reluctant to make as
they graduate high school. Moreover, economic downturns and
outsourcing notwithstanding, current projections indicate a high
demand for technology-skilled workers over the next decade [2];
constricting the pipeline at the front end may not be wise policy.

Offer separate, diversified degree programs. This solution strikes
a balance between depth and breadth: By offering multiple degree
programs, each with its own particular focus, it is possible to offer
a range of options to students and still provide an in-depth educa-
tion within each option. Especially when the degree programs
share some courses in the first year, this option allows sufficient
flexibility for students who may wish to change while at the same
time providing in-depth treatment of specialized topics in each
degree in the later years. (The greater the overlap of early courses
across programs, the easier it is for the student to switch pro-
grams.) The drawback is, of course, that students must choose a
focus early, although this is slowly but surely mitigated by the
introduction of computer science in high-schools; prospective
students can familiarize themselves with a range of computing
topics before they enter college, enabling them to make finer sub-
disciplinary distinctions early in their college career.

The Donald Bren School of Information and Computer Sciences
at UC Irvine has chosen this latter option: Instead of offering one
configurable degree program (as it has done for many years), it
now offers four closely coordinated programs. These programs
allow students the choice of focusing on the lower layers of com-
puter science (e.g., hardware design, embedded systems, computer
networks, sensor networks) with a B.S. in Computer Science &
Engineering (offered together with the Henry Samueli School of
Engineering), on the middle layers (e.g., databases, computer
systems design, theory, programming languages, artificial intelli-
gence) with a B.S. in Computer Science, and on the upper layers
(e.g., software engineering, human-computer interaction, com-
puter-supported collaborative work, organizational information
systems) with a B.S. in Informatics. In addition, they may still
choose the generic, configurable B.S. in Information and Com-
puter Science, should they desire an overview of the field rather
than the in-depth exploration provided by the other three degree
programs.

Here we describe the Informatics program, which we developed
and now offer with support from the U.S. Department of Educa-
tion's Fund for the Improvement of Post-Secondary Education
(FIPSE). We designed it from the ground up to focus on the upper
layers of computer science, complementing the school’s other
degree programs, to serve as an example of innovative curricula
and effective pedagogy, and to promote inclusive participation by
a broadly representative student body. This program admitted its
first students in September 2004.

2. INFORMATICS
The term “informatics” has long been used in Europe to describe
the entire field of computer science, from computer engineering to
information systems and related fields, but in the U.S., that usage
has not caught on. A small but growing number of U.S. universi-

ties are now developing new programs in informatics [3, 4, 5, 6],
programs not equivalent to general computer science but concen-
trating instead on the upper layers of the field, moving away from
a focus on computers alone to a focus on computing in context.
Defined as the study of the design, application, use, and impact of
information technology, informatics applies information technol-
ogy to real world problems, designs and develops new uses for
information technology, and aims to understand the impact infor-
mation technology has on people [6].

To position Informatics clearly in the broader area of computing,
we augment two diagrams of the Computing Curricula 2004 draft
(CC 2004) [1]. Figure 1 presents the first diagram, with Informat-
ics filling the hole that exists between “software” and “organiza-
tional needs” with “context”. This signifies that Informatics builds
a bridge from computer science and software engineering to in-
formation technology, a bridge that is formed by making context
central to the education. The motto is that software is not devel-
oped as an isolated artifact, but is always a solution to a problem,
addressing software and information, development and design,
technical and social factors, as well as creation and study of im-
plemented solutions [7].

The second augmented diagram identifies the coverage of differ-
ent areas of concern for Informatics. In Figure 2, we have drawn a
complement to the diagrams in the CC 2004 draft that show the
areas of concern for CE, CS, SE, IS, and IT. Informatics sets itself
apart by focusing squarely on application domains and software
development, from both a theoretical and practical perspective.
The superimposed grey oval represents the additional context that
Informatics addresses, both in terms of the organization and sys-
tems issues to be supported and the system infrastructures avail-
able. Of note is that Informatics encompasses most of the areas
covered by the SE diagram in the CC 2004 draft. This is by de-
sign, since we believe software engineering is at the heart of In-
formatics. We believe that SE must be augmented to give students
an adequate education for addressing real-world problems effec-
tively. An Informatics education includes significant aspects of
other disciplines, among them social science, cognitive science,

Figure 2. Areas of concern for Informatics.

Figure 1. Informatics centers on context.

computer-supported collaborative work, human-computer interac-
tion, organizational studies, and particular application areas as
well as a considerable portion of the core of computer science.

At present, the field of Informatics is still searching for the best
way to educate its students. Different institutions take different
approaches. At Indiana University, students take a set of core
courses in computer science, followed by one or more application
area specializations [6]. At the University of Washington, students
focus more on the information aspects of Informatics, with
courses in databases, information management, information sys-
tem design, determining information needs, searching for and
presenting information, etc. [3]. More experience is needed, and
we anticipate that many more programs will emerge in the near
term. While these may differ in their precise implementations, we
predict they will fall in the outlined domain and revolve around
issues of design, context, and understanding impact.

Our B.S. in Informatics distinguishes itself from existing degree
programs in Informatics in two ways: (1) its solid technical foun-
dation, building upon a very comprehensive software engineering
background, and (2) an integrated social and technical approach
from the beginning. Starting with the introductory course in the
first year and continuing all the way through the capstone senior
project course, we train students continually to examine the
broader picture, develop an understanding of the problem context,
and apply their technical skills to design and develop an appropri-
ate solution. We achieve this with a curriculum that balances
course sequences in software engineering, programming lan-
guages, human-computer interaction, organizational computing,
and databases with a variety of individual courses in project man-
agement, computer-supported collaborative work, information
retrieval, information visualization, and so on.

3. INFORMATICS CURRICULUM
Our new Informatics curriculum, shown in Table 1, is designed in
accordance with the definition and observations above. Our
courses all run on the quarter system. We marked each course as
follows: unmarked courses are taught and specified by Depart-
ment of Informatics faculty; courses marked with (cs) originate in
the other degree programs in the school and are typically offered
by faculty in its other departments; courses marked with (o) dis-
cuss non–computer-science topics; and courses marked with (b)
signify electives or courses that satisfy the university’s breadth
(general education) requirements.

We designed our program from scratch, without being limited by
existing courses. We did take advantage of existing courses when
they fit our vision, but we were not constrained in any way. The
result is a curriculum consisting of fourteen new and thirteen ex-
isting courses in computing, as well as three mathematics courses
and the required breadth (general education) courses.

The first year provides students with a hands-on introduction to
the broad field of Informatics, anchored by the new core course.
This three-quarter sequence introduces students to the Informatics
philosophy of considering context from their first quarter in the
program. We want the students to develop a mindset in which
context and design come first, rather than starting off with a focus
on programming alone. The course does have a strong emphasis
on writing programs in the functional and object-oriented styles
(as does the rest of the curriculum; students will practice more

programming than is common in most CS programs), but the as-
signments and class meetings put contextualized problem solving
and design first and programming second.

The first year also teaches students formal reasoning (logic) and
problem solving skills through a sequence of three courses: ab-
stract reasoning, discrete math, and data structures analysis and
implementation. Together with the statistics course in the second
year, the materials introduced in these courses lay the mathemati-
cal foundation for the rest of the program.

The second year builds up a portfolio of foundational techniques
and skills that further establish the discipline of Informatics and
provide a “toolbox” that students will use in future years to solve
large-scale information and software design problems. Courses
discuss the role of various programming languages and conceptual
approaches (including how special-purpose languages can help
solve certain problems elegantly); introduce user interface design
(from the multiple perspectives of theory, established practices,
and hands-on development); present software engineering meth-
ods, notations, and tools; and establish the roles of requirements
elicitation and quality assurance in successfully carrying out a
system design and development project.

The third year builds upon the foundational techniques and skills
introduced in the second year; it covers information and software
design from two different but related perspectives. First, there is a
three-course series that describes how information and software
design affect the real world, i.e., the social and organizational
context in which a solution is ultimately placed. A second three-
course sequence (actually starting in the last quarter of the second
year) introduces technical approaches to design and large-scale
problem solving with software. Combined, the two sequences
present a comprehensive overview of design from both a technical
and social perspective.

The fourth year is built around a year-long capstone project in
which groups of students address a significant project, typically
from an outside client. In addressing this project, students must
bring together materials from previous years (tools, skills, proc-
esses, ethnographic methods, design approaches, and many oth-
ers) to complete their project successfully. The fourth year also
includes more advanced courses on databases, information re-
trieval, information visualization, project management, and com-
puter-supported cooperative work.

This program, unlike many current computer science and engi-
neering curricula, affords students the flexibility to take elective
courses or to undertake undergraduate research projects. Provid-
ing these opportunities allows students to pursue interdisciplinary
interests and maintains their enthusiasm and motivation.

The program has several distinguishing characteristics:

• A smaller number of math courses. Traditional computer sci-
ence programs often include math courses intended mainly to
enhance students’ “mathematical maturity” and formal rea-
soning skills. While we value mathematics as a discipline
and accept that math helps students develop reasoning skills,
we designed our program to include only those math or other
foundational courses that contribute directly to an under-
standing of software and information design. We believe stu-
dents can develop critical thinking skills in many ways and
we particularly advocate building these skills in the domain

in which they will be applied. Hence, many of our courses
are structured to require formal or quantitative reasoning,
weighing of alternatives, and creative thinking. A good ex-
ample is the software design series, which emphasizes crea-
tive problem solving and designing appropriate solutions to
challenging problems.

• An interdisciplinary approach. Our Informatics major ad-
dresses the broad set of issues surrounding design, including
initial requirements gathering, estimating and measuring the
impact of alternative solutions, and implementing those solu-
tions—all from a multi-disciplinary perspective that includes
computer science, information science, organizational sci-
ence, social science, cognitive science, and others. It is not
sufficient to teach mechanical design notations and princi-
ples; these must be placed in context, examined from multi-
ple perspectives, and honed and practiced to develop the de-
signer’s ability to propose solutions that effectively solve the
problem at hand. We address these issues throughout, par-
ticularly in the third-year sequence on social and organiza-
tional impact and the fourth-year senior design project.

• A focus on design. As the linchpin of our curriculum, we take
a distinctly design-oriented approach to the materials in the
Informatics program. Traditionally, design is underrepre-
sented in current computer science curricula; at best, a typi-
cal software engineering class introduces notations and lets
students practice, at best, a few designs. With the exception
of some specific software engineering programs [8, 9], there
simply is no room in the curriculum to teach additional mate-
rial and practice more. Our curriculum turns this notion on
its head. We introduce design from the beginning, have mul-
tiple course sequences on the topic, examine it from a multi-
disciplinary perspective, and promote extensive practice in
actually creating high-quality designs. Even compared to ex-
isting software engineering degree programs, this is a much
broader and more in-depth treatment.

We anticipate that our students will be able to function in a vari-
ety of different jobs. They will be familiar with all aspects of the

software development process, from initial requirements gathering
to the delivery of a solution. They will know that software is
merely a part of an overall solution that addresses the information
that an organization manages, manipulates, and visualizes. They
will design and develop integrated software and information sys-
tems. They will be technically solid. They will know that their
activities have both a technical and social aspect, and know how
to create and also analyze solutions. In sum, they will be prepared
to deal with real-world problems in context and approach them
from an informed computing perspective.

4. PEDAGOGICAL CHARACTERISTICS
We designed the Informatics major to incorporate a set of best
pedagogical practices. To meet the program’s goals, we felt it was
critical not just to provide the right set of courses but also to ad-
dress the pedagogy for structuring, sequencing, and delivering
those courses. Not surprisingly, then, the curriculum makes wide
use of multi-course sequences. These course sequences provide
continuity, help place the topics in their broader context, and pro-
vide added depth as one topic builds upon another. In our soft-
ware design sequence, for example, students in the first course
(“Design I”) are introduced to software design notations and prin-
ciples, refinement into code, architectural styles, and design pat-
terns. The second course (“Design II”) broadens the study to
large-scale systems, reuse, product families, real-time systems,
and application frameworks. Finally, the third course (“Software
Architecture, Distributed Systems, and Interoperability”) expands
the repertoire to distributed, decentralized design.

Group work is often required in our courses. In the first year, we
start with pair programming and build that up in later courses to
larger group projects. In the final year, groups of students partici-
pate in a year-long senior design project. We support this team-
work by addressing the tools and approaches necessary to manage
the work effectively. The second-year “Methods and Tools”
course, for instance, introduces tools for such tasks as configura-
tion management, bug tracking, and process management. In the
senior year, students take a full course in project management as
they start on their senior design project.

Table 1. Required Curriculum for the UC Irvine B.S. in Informatics.

 Fall Winter Spring
Informatics Core Informatics Core Informatics Core

 Informatics Research Topics Seminar
(o) Critical Reasoning (o) Discrete Mathematics (cs) Fundamental Data Structures Fi

rs
t

(b) Writing (b) Writing (b) Writing
(o) Statistics Human-Computer Interaction Project in HCI & User Interfaces
(cs) Concepts Programming Languages I Concepts Programming Languages II Software Design I
Software Methods and Tools Requirements Analysis & Engineering SW Specification & Quality Engineering Se

co
nd

(b) Breadth (b) Breadth (b) Breadth
Social Analysis of Computerization Organizational Information Systems Project Social/Org. Impacts of Computing
Software Design II SW Arch, Dist. Sys., & Interoperability (cs) File and Database Management
(b) Breadth (b) Breadth (b) Breadth Th

ird

(b) Breadth / Elective (b) Breadth / Elective (b) Breadth / Elective
Senior Design Project Senior Design Project Senior Design Project
(cs) Project in Database Management (cs) Information Retrieval Information Visualization
Project Management CSCW (b) Breadth/ Elective Fo

ur
th

(b) Breadth / Elective (b) Breadth / Elective (b) Breadth / Elective

We use case studies to provide realistic, practical experiences to
our students. This starts with a case study of a web store that we
introduce in the first quarter. Students are not expected to build
the entire store, of course, but will build individual components
that must be integrated with the existing implementation. Having
access to the full working example, however, is critical, as it pro-
vides relevancy and forms a context for the concepts that are
taught. Moreover, students can freely explore other aspects of the
application and interesting problems arise that frame the theory of
design and allow practical examples of the theory. These case
studies occur throughout the program. The design courses, for
instance, study and dissect designs of actual systems. The senior
design course is, in some ways, a large, experiential case study
with an actual customer, in which the students must manage, de-
sign, and implement an entire project from start to finish.

Each year culminates with a project course in which a particular
case study wraps up the year. We will have showcase days in
which students at all levels in the program present their projects to
a public audience that includes representatives from local indus-
try. Such industrial contact further motivates the students.

We use varied teaching approaches throughout the curriculum.
Principled use of case studies, as described above, puts us in the
domain of problem-based learning. A speaker series in the first
year introduces students to the broad topics and research problems
in Informatics, further enhancing the context. We dissect, study,
and analyze from a design perspective actual software and infor-
mation systems. Real customers provide the projects for the senior
design course. Advanced software engineering simulations let
students work through more aspects of the software development
process than they could experience in the field. Together, these
and other approaches provide the students with an engaging ex-
perience that is clearly related to their future endeavors.

Putting all these pieces into place requires a significant commit-
ment from the faculty with a huge potential payoff. Specifically,
the above factors—increased program coherence, ties to realistic
problems, and practical, creative exercises accompanying theo-
retical course materials—are among the strongest factors contrib-
uting to increased participation of underrepresented populations
in CS programs [10].

5. CONCLUSIONS
We created this B.S. in Informatics degree with three goals: (1)
build a complementary degree program focused on both software
and information design, (2) develop an exemplary program with
effective pedagogy and an engaging curriculum emphasizing real-
world problems and creative solutions, and (3) promote access to
the program, retention, and degree completion for a broadly repre-
sentative group of students.

This major (and the other new majors in the school) were pro-
posed, approved by the campus, and implemented successfully in
a very cooperative climate. Incoming students have chosen among
the programs, with an initial first-year class of 31 in Informatics
(out of approximately 180 first-year students schoolwide).

The program has the strongest technical component of any current
U.S. Informatics program, befitting its home in an information
and computer science school with a long tradition of technical
excellence. The program meets a particular real-world need for
broadly trained system designers with strong implementation
skills [2]. It also resists outsourcing, since high-level design re-
quires intensive interaction with clients and an understanding of
their organizational, social, and cultural context, all of which is
hard to achieve from halfway around the world. It should particu-
larly attract students with more interest in designing solutions to
real problems than in designing smaller, faster, and cheaper com-
puters.

With enrollments in computer science programs currently trend-
ing downwards, schools must explore ways of attracting more
students to the field. The approach taken at UC Irvine is to diver-
sify degree offerings, providing programs tailored to diverse stu-
dents’ goals and interests. Our B.S. degree in Informatics is one
part of this strategy, offering a novel combination of concepts and
skills that expands the range of computing curricula.

6. MORE INFORMATION
More information about the UC Irvine B.S. in Informatics can be
found at: http://www.ics.uci.edu/informatics.

7. ACKNOWLEDGMENTS
The Informatics major at UC Irvine is sponsored in part by the
Fund for the Improvement of Postsecondary Education (FIPSE),
U.S. Department of Education.

8. REFERENCES
[1] ACM, AIS, and IEEE-CS Joint Task force for Computing

Curricula 2004, Computing Curricula 2004,
http://www.acm.org/education/curricula.html.

[2] U.S. Bureau of Labor Statistics, 2002-2012 Employment
Projection, http://www.bls.gov/news.release/ecopro.nr0.htm.

[3] University of Washington Information School, B.S. of Sci-
ence in Informatics, http://www.ischool.washington.edu.

[4] York College of Pennsylvania, B.S. of Informatics,
http://www.ycp.edu/academics/.

[5] Montclair State University Department of Computer Science,
B.S. in Science Informatics,
http://cs.montclair.edu/undergraduate.html.

[6] Indiana University School of Informatics, B.S. of Informat-
ics, http://www.informatics.indiana.edu/.

[7] A. van der Hoek, D.G. Kay, and D.J. Richardson, A B.S. in
Informatics: Contextualizing Software Engineering Educa-
tion (in submission).

[8] Rochester Institute of Technology Department of Software
Engineering, B.S in Software Engineering,
http://www.se.rit.edu/degrees.html.

[9] Milwaukee School of Engineering, B.S. in Software Engi-
neering, http://www.msoe.edu/eecs/se/.

[10] Margolis and Fischer, Unlocking the Clubhouse: Women in
Computing. Cambridge: MIT Press, 2001

