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Abstract— In this paper, we introduce a dimensionality reduc-
tion method that can be applied to clustering of high dimensional
empirical distributions. The proposed approach is based on
stabilized information geometrical representation of the feature
distributions. The problem of dimensionality reduction on spaces
of distribution functions arises in many applications including
hyperspectral imaging, document clustering, and classifying flow
cytometry data. Our method is a shrinkage regularized version
of Fisher information distance, that we call shrinkage FINE
(sFINE), which is implemented by Steinian shrinkage estimation
of the matrix of Kullback Liebler distances between feature
distributions. The proposed method involves computing simi-
larities using shrinkage regularized Fisher information distance
between probability density functions (PDFs) of the data features,
then applying Laplacian eigenmaps on a derived similarity
matrix to accomplish the embedding and perform clustering.
The shrinkage regularization controls the trade-off between bias
and variance and is especially well-suited for clustering empirical
probability distributions of high-dimensional data sets. We also
show significant gains in clustering performance on both of the
UCI dataset and a spam data set. Finally we demonstrate the
superiority of embedding and clustering distributional data using
sFINE as compared to other state-of-the-art methods such as
non-parametric information clustering, support vector machine
(SVM) and sparse K-means.

I. INTRODUCTION

The use of information theoretical measures for dimen-
sionality reduction and machine learning has been studied
over several decades in diverse applications including gene
expression data clustering and document classification [1] [3]
[6] [5]. The authors of [3] proposed parametric clustering
algorithms based on Bregman divergences. The work in [6]
uses non-parametric estimation of the average cluster entropies
to search for a clustering that maximizes the estimated mutual
information between data points and clusters. The Fisher
information distance is the unique intrinsic distance metric
to compute the distance between two probability density
functions in a space of parameterized probability densities
known as a statistical manifold in information geometry [2].
Our previous work [5] used a non-regularized estimate of
Fisher information distance to perform non-linear embedding
for visualization and document classification. However, for
high dimensional data and a small number of samples, these
estimators suffer from severe overfitting errors and therefore
lead to inaccurate estimates. In this work, we introduce a

new shrinkage regularized Fisher information distance as a
similarity measure for dimensionality reduction on statistical
manifolds. The corresponding embedding is called: shrinkage
Fisher information distance (sFINE) and leads to more stable
embeddings than the previous FINE framework [5] when the
dimension is high.

The shrinkage Fisher information is a shrinkage regularized
version of Fisher information. The traditional Fisher informa-
tion relies on accurate estimation of the probability density
functions (PDFs) of the features. The PDFs of these features
are usually estimated using maximum likelihood for the multi-
nomial distribution, leading to an empirical histogram estima-
tor. However, for high dimensional data and small number of
samples, the maximum likelihood estimator does not minimize
mean square error (MSE) and therefore leads to inaccurate
estimates. The estimates of the PDFs can be significantly
improved by incorporating regularization. Unlike previous
approaches to regularization of PDFs [13] [12], our estimation
approach optimizes the MSE over the shrinkage estimator
family and this translates into improved performance. In [13],
Witten and Tibshirani proposed sparse K-means clustering
by maximizing a weighted between-cluster sum of squares
subject to L1 type constraints on the weights. In [12], Williams
proposed to use a Laplace prior for sparse representation
and regularization. Here we propose to use the James-Stein
shrinkage estimator of Fisher information [8]. Compared to a
Bayesian Laplace prior [12], our shrinkage estimator has the
advantage of not requiring subjective assumptions on prior
distributions of features.

The Fisher information can be approximated by Kullback
Leibler (KL) divergence when the specific parameterization
of the manifold is unknown [9]. In this paper, we estimate
the shrinkage KL-divergence to approximate shrinkage Fisher
information distance. We derive the bias and variance for
shrinkage KL divergence estimator. In sFINE, the PDFs of
features are embedded into a lower dimensional Euclidean
space by applying Laplacian eigenmaps [4] on the distance
matrices. Once the embedding is accomplished, we apply the
K-means algorithm in the lower dimensional Euclidean space
to cluster the data. The proposed embedding and clustering
methods are evaluated on synthetic data, on a UCI dataset
and on time-varying email spam data. The spam data has



multiple attributes, span mail server and temporal usage. The
proposed shrinkage Fisher information has the advantage that
it can embed not only marginal PDFs for a single attribute but
also joint PDFs for multiple attributes. The joint embedding
incorporates more information than the marginal embedding
and is therefore more discriminative. We demonstrate the
effectiveness of the proposed methods for clustering spam
data compared to a previous implementation using correlation-
based spectral clustering [14]. When compared on standard
UCI-dataset clustering, the sFINE clustering method outper-
forms the performance of state-of-the-art methods including:
non-parametric information clustering [6]; sparse K-means
[13]; and unsupervised support vector machine (SVM).

II. PROBLEM FORMULATION

Let M be a family of probability density functions (PDF)
parameterized by θ = [θ1, . . . , θn]:

M = {p(x|θ)|θ ∈ Θ ⊆ Rn} . (1)

M is a statistical manifold when the Fisher information is used
as a Riemannian metric for measuring distances between the
distributions in M . We define the Fisher information matrix
[I(θ)] with elements

Iij = E[
∂

∂θi
logf(X; θ)

∂

∂θj
logf(X; θ)] . (2)

The Fisher information distance can be accurately approxi-
mated by the KL divergence when the specific parameter-
ization of the manifold is unknown. The Kullback Leibler
divergence is an important metric in information theory and
is commonly referred to as the relative entropy of one PDF to
another, which is defined as

KL(p//q) =
∫

p(x)log
p(x)
q(x)

. (3)

It should be noted that the KL-divergence is not a distance
metric, as it does not satisfy the symmetry KL(p//q) 6=
KL(q//p). To enforce symmetry, we will define the KL-
divergence as:

DKL(p, q) = KL(p//q) + KL(q//p) . (4)

As described in [9], we can relate the symmetric KL-
divergence and approximate the Fisher information distance
as √

DKL(p, q) → DF (p, q)

as p → q.

A. Shrinkage KL divergence

Since Fisher information distance can be approximated by
KL-divergence, consider a mx dimensional feature variable
X ∈ Rmx and an associated codebook e = {Ci, xi}p

i=1, where
Ci are quantization cells and xi are quantization levels. Let
Z = [z1, . . . , zp] be a vector containing the number of times
that a set of instances {Xi}n

i=1 fall into each cell, where Zk =

∑n
i=1 I(Xi ∈ Ck) and I(A) is the indicator function of event

A. Then if {Xi}n
i=1 are i.i.d., Z is multinomial distributed.

Prob(z1, . . . , zp; θ1, . . . , θp) =
n!∏p

k=1 zk!

p∏
k=1

θzk

k ,

p∑
k=1

zk = n,

p∑
n=1

θk = 1 . (5)

The James-Stein shrinkage estimator of θ = [θ1, . . . , θp]T is a
modified version of the maximum likelihood (ML) estimator
that reduces the MSE of the estimator. It is based on shrinking
the maximum likelihood estimator towards a target [8],

θ̂λ
k = λtk + (1− λ)θ̂ML

k , (6)

where {tk}p
t=1 is the target distribution, here chosen as uni-

form distribution tk = 1
p , θ̂ML

k = zk

n . The resultant shrinkage
estimator has reduced variance but increased bias. However
we can guarantee a decrease in the mean squared error (MSE)
by proper choice of the shrinkage parameter λ, as explained
below. The James-Stein plug-in entropy estimator is then
defined as [8]:

Ĥθ(X) = −
p∑

k=1

θ̂λ
k log(θ̂λ

k ) , (7)

The KL-divergence estimator can be represented as

KLθ(X ‖ Y ) =
p∑

k=1

E[θx(k) log(
θx(k)
θy(l)

)] , (8)

where θx(k) = P (x = k) =
∑p

l=1 θk,l, θy(l) = P (y = l) =∑p
k=1 θk,l. Define the shrinkage estimator of KL-divergence:

KLλ(X ‖ Y ) =
p∑

k=1

E[θλ
x(k) log(

θλ
x(k)

θλ
y (l)

)] , (9)

and the symmetrized KL estimate

D̂λ
KL(X, Y ) = KLλ(X ‖ Y ) + KLλ(Y ‖ X) . (10)

Our goal is to find the value of λ in the KL-divergence that
has minimum MSE:

λ◦DKL
= arg min

λ
E{(D̂KL(X, Y )λ −DKL(X, Y ))2} , (11)

B. Shrinkage estimator of KL divergence

The MSE of shrinkage KL-divergence can be decomposed
into the sum of the square of the bias and the variance. The
theoretical expressions of bias and variance given Propositions
1 and 2 below, will be utilized to calculate the optimal
shrinkage parameter by minimizing MSE over λ, where we
initialize the random 0 < λ < 1 and iteratively estimate the
minimum MSE and the optimal shrinkage parameter.
Proposition 1: The bias of KL-divergence with James-Stein
shrinkage estimator is given by

Bias(KLλ
θ ) = Cb1 + Cb2

1
n

+ O

[
1
n2

]
, (12)



where

Cb1 =
p∑

k=1

[
θx(k) log

θx(k)
θy(l)

]
−

p∑
k=1

[
λ

p
+ (1− λ)θx(k)

]

log
λ
p + (1− λ)θx(k)
λ
p + (1− λ)θy(l)

. (13)

Cb2 =
p∑

k=1

1
2

θx(k)
1− θy(l)

1
[1− λ(1− 1

pθy(l) )]
2

+

p∑
k=1

λ(
1
p
− θx(k))(1− θy(l))

1
[1− λ(1− 1

pθy(l) )]

−
p∑

k=1

1
2 log 2

1
1− λ(1− 1

pθx(k) )
(θx(k)− 1) . (14)

Proposition 2: The shrinkage KL-divergence estimator is
asymptotically Gaussian, where the mean µ(KLλ

θ ) =∑p
k=1[

λ
p + (1 − λ)θx(k)] log

λ
p +(1−λ)θx(k)
λ
p +(1−λ)θy(l)

, the variance

V ar(KLλ
θ ) = 1

nT1ΣT ′1, where T1 = [ ∂KLλ
θ

∂θx(k) ,
∂KLλ

θ

∂θy(l) ] is a 1
by 2p vector,

∂KLλ
θ

∂θx(k)
= (1− λ)[log(

λ
p + (1− λ)θx(k)
λ
p + (1− λ)θy(l)

)

+
λ

p
+ (1− λ)θy(l)]

∂KLλ
θ

∂θy(l)
=

λ

p
+ (1− λ)θy(l) .

Σ is the 2p by 2p covariance matrix given by:

Σkk = nθx(k)(1− θx(k)),∀k = 1, . . . , p

Σkk = nθy(k)(1− θy(k)),∀k = p + 1, . . . , 2p

Σij = −nθx(k)θx(l),∀k ∈ [1, p], l ∈ [1, p], k 6= l

where other non-diagonal elements in the covariance matrix
Σ can be computed similarly as −nθy(k)θy(l), ∀k ∈ [p +
1, 2p], l ∈ [p+1, 2p], k 6= l and −nθx(k)θy(l), ∀k ∈ [1, p], l ∈
[p + 1, 2p].
Proposition 3: Let Z be a standard normal random variable
with the mean µ(KLλ

θ ). Then,

lim
n→∞

Pr

KLλ
θ − µ(KLλ

θ )√
1
nT1ΣT ′1

≤ α

 = Pr(Z ≤ α) . (15)

It has to be noted that here KLλ
θ in Proposition 3 is a scalar,

while it is easy to extend to the case that KLλ
θ is a vector.

III. SHRINKAGE FINE EMBEDDING ALGORITHMS

The sFINE embedding algorithm is defined as follows:
1) Using the training dataset, we learn an optimal code-

book using the Lloyd-max procedure [10]. Using the
codebook, we estimate the feature distribution Pi, i =
1, 2, . . . , N of each quantization level of data in the
testing dataset. Given the PDFs P = {p1, p2, . . . , pN},

we calculate the matrix of shrinkage Fisher infor-
mation distances D using regularized KL-divergence
D̂λ

F (i, j) =
√

KLλ(X ‖ Y ) + KLλ(Y ‖ X).
2) Apply Laplacian Eigenmaps [4] on the distance matrix

for dimensionality reduction to embed the distance ma-
trix into lower dimensional space.
• Construct adjacency graph: Given dissimilarity ma-

trix Dx between pairs of PDFs in the set X , define
the graph G over all the data points by adding an
edge between points i and j if Xi is one of the
k-nearest neighbors of Xj .

• Compute the weight matrix W , if points i and j are

connected, assign Wij = exp−
D̂λ

F (i,j)2

t , otherwise
Wij = 0, where here t is the time in the heat kernel.

• Construct low-dimensional embedding: Solve the
generalized eigenvalue problem Lf = λDf, where
D is the diagonal weight matrix in which Dii =∑

j Wji, and L = D−W is the Laplacian matrix. If
[f1, f2, . . . , fd] is the collection of the eigenvectors
associated with d-dimensional embedding is defined
by yi = (vi1, . . . , vid)T , 1 ≤ i ≤ n.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of embed-
ding and clustering using shrinkage Fisher information using
two experiments. The first experiment involves a very high-
dimensional data set on spam harvesters and servers obtained
through Project Honey Pot. We investigate the determining
factors of shrinkage FINE including optimal shrinkage pa-
rameter in Fig.1. The clustering and embedding is compared
to the ordinary FINE methods, which are not regularized, in
addition to a previous study on this data set [14] (Fig.3 and
Table I). The statistical reliability and temporal invariance for
identifying strong patterns of the proposed method is also
demonstrated (Fig.2). The second experiment involves several
standard data sets from the UCI Machine Learning Repository
[7]. We compare the performance of sFINE relative to that of
several competing methods (Table II).

A. Project Honey Pot

Project Honey Pot1 is an ongoing project targeted at identi-
fying spammers. It consists of a distributed network of decoy
web pages with trap email addresses, which are collected
by automated email address harvesters. Both the decoy web
pages and the email addresses are monitored, providing us
with information about the harvester and email server used for
each spam email received at a trap address. There have been
two notable studies of the Project Honey Pot data. [11] found
that harvesting is typically done in a centralized manner. [14]
clustered harvesters using spectral clustering with correlation
as the similarity measure. It was discovered that clusters
divided into two types: phishing clusters, which consisted
almost entirely of harvesters associated with phishing emails

1Additional information on Project Honey Pot is available at the website
http://www.projecthoneypot.org.



(phishers), and non-phishing clusters, which consisted almost
entirely of harvesters associated with non-phishing emails
(non-phishers). Using phisher and non-phisher as labels for
the harvesters, [14] computed the Rand index between the
clustering results and labels and found very good agreement.

1) Experiment set-up: We set up this experiment in the
same manner as [14]. Two types of attributes are used: email
servers and timestamps. For the email servers attribute, we
consider the M×N coincidence matrix H = [hij ]

M,N
i,j=1, where

M is the number of harvesters and N is the number of servers.
We choose hij = pij/ (djei) ∈ [0, 1] where pij denotes the
number of emails sent using harvester i and server j, dj

denotes the total number of emails sent (by all harvesters)
through server j, and ei denotes the total number of email
addresses harvester i has acquired. We can interpret hij as har-
vester i’s of usage of spam server j per address it has acquired.
For the timestamps attribute, we examine the timestamps of
all emails associated with a particular harvester and bin them
into 1-day intervals, which results in a vector indicating how
many emails a harvester is associated with in each interval.
Doing this for all of the harvesters, we get another coincidence
matrix H but with the columns representing time rather than
servers. The entries of H are hij = sij/ei where sij denotes
the number of emails associated with harvester i in the jth
time interval, and ei is defined as before.

Given the coincidence matrices, we calculate both the
marginal PDFs of the attributes and the joint PDFs with his-
togram estimation. We use the data from October 2006, which
was highlighted in [14] as a month of interest. During this
month, there were 2, 627 harvesters and about 2.7×105 servers
active. We perform embedding and clustering using sFINE
on both the marginal and joint PDFs. We compare clustering
performance in terms of the Rand index using phisher and
non-phisher as labels to that of [14] and to that of the ordinary
FINE without shrinkage regularization. In addition, we further
explore the individual clusters and discover several interesting
groups of harvesters that also appear close together in the
embedding.

2) Performance Evaluation: We first validate the proposed
approach by evaluation of the determining factors in shrinkage
FINE embedding. In Fig.1, we demonstrate the choice of
the optimal shrinkage parameter can be translated into better
clustering performance using email server attribute for spam
data. In Fig.1 (a), we show the sFINE embedding using two
steps including Laplacian Eigenmaps and K-means and we
obtain the classification error 4.7%. Fig.1 (b) illustrates the
classification performance of unregularized FINE. Fig.1 (c)
demonstrates the classification performance by first using the
principal component analysis (PCA) to reduce the data into
2 dimensional space and then implement K-means clustering,
which gives the classification error 36.5%. As shown in the
bounding box in Fig.1 (b), the unregularized KL divergence
estimators are very close to zero and therefore misclassify
the data. While the optimal shrinkage estimator smooths
these data and successfully discriminate them with optimal
shrinkage terms shown in Fig.1 (a). The poor performance

Fig. 1. The comparison of clustering performances with optimal shrinkage
parameter in sFINE, unregularized FINE and PCA+Kmeans. (a) shows the
shrinkage FINE embedding with optimal shrinkage parameter with classi-
fication error 4.7%, (b) shows unregularized FINE with classification error
21.5%, (c) shows the performance of first using PCA to reduce the data
into 2 dimensional space and then implementing K-means clustering with
classification error 36.5%.

Fig. 2. The visual illustration of kernel density estimator for revealing the
patterns in different clusters using sFINE for temporal behaviors with the
window size τ1 = 25 days where the shift of time interval is 2 days.

of the unregularized KL estimator is due to the fact that
without optimal shrinkage, the number of elements in most
of the bins is zero due to insufficient samples, which severely
underestimates the entropy and cross entropy. The superiority
of Fig.1 (a) over Fig.1 (c) can be mainly attributed to the non-
linear dimensionality reduction with Laplacian Eigenmaps in
sFINE since there is no straightforward representation in the
Euclidean distance between the email server attributes.

To demonstrate the statistical reliability and time invariance
of our shrinkage FINE embedding, we analyze the patterns
contained in different clusters for spam data. By applying
kernel density estimator over the window size τ1 = 25
days in each cluster in Fig.2, we find that that the PDF of
cluster 1 is smooth with long tails; the PDF of cluster 2
is more concentrated; the PDF of cluster 3 is characterized
by two sharp peaks. The similar performance is shown in
each time interval in Fig.2. These results demonstrate that
shrinkage FINE is a robust reliable statistical measure with
time invariance.
Comparison: We compare the performance for sFINE with
correlation-based clustering [14]. Fig.3(a) indicates that using
correlation-based clustering [14] non-phishing harvesters B
and C are incorrectly classified as phishing harvesters. While



Fig. 3. (a) shrinkage FINE embedding with both of two similarity by
estimation of joint PDF for harvester, spam server and time in Oct 2006,
(b) correlation-based clustering with spam server similarity

shown in Fig.3(b) FINE embedding is able to achieve perfect
results by completely separating the phishing emails. The clus-
tered harvesters with FINE embedding is labeled by phishing
levels, where the harvesters corresponding to phishers are
highlighted with the bounding box. It can be mainly attributed
to the ability of our embedding to incorporate both spam
server and temporal similarities to be more discriminative
in clustering. The qualitative results demonstrated in Table
I indicates the 8% on average improvement in accuracy
for the proposed FINE embedding compared to correlation-
based clustering [14]. Moreover, the clusterings with shrinkage
methods further improves the accuracy by 3% on average as
compared to unregularized methods.

TABLE I
COMPARISON OF VALIDATION INDICES USING CORRELATION, FINE AND

SHRINKAGE FINE (SFINE) EMBEDDING USING SPAM SERVER

CLUSTERING (SS), SPAM SERVER AND TEMPORAL CLUSTERING (ST)
EVALUATED BY RAND INDEX (RI) AND ADJUST RAND INDEX (ARI) IN

OCT 2006.

algorithm RI-SS ARI-SS RI-ST ARI-ST
correlation 0.92 0.87 - -

FINE 0.94 0.89 0.95 0.93
sFINE 0.96 0.92 0.97 0.94

B. UCI Machine Learning Repository data

Next we compare the performance of shrinkage FINE with
several state-of-the-art approaches. We select eight standard
data sets from the UCI Machine Learning Repository [7]
and compare the clustering performance of sFINE against
three competing methods. The first is an information theoretic
clustering algorithm [6] where non-parametric estimation of
cluster entropies is utilized for clustering by maximizing the
estimated mutual information between data points and clusters.
Secondly, [13] proposed a sparse K-means algorithm by max-
imizing a weighted between-cluster sum of squares subject to
L1 type constraints on the weights. L1 regularization can be
interpreted as a form of regularization using hard thresholding
instead of shrinkage. Finally, [15] presented unsupervised
SVM training by formulating convex relaxations of the natural

training criterion: find a labeling that would yield an optimal
SVM classifier on the resulting training data.

1) Experiment set-up: We randomly selected 50% of a
data set as testing dataset, the other 50% of the data as
training dataset and cross-validation is carried on. In the
training dataset, we learn the optimal quantization levels and
ranges with Lloyd-Max quantization. In the testing dataset, we
estimate frequency parameters of the multinomial distribution
of the data using the quantization levels and ranges learned
from the training dataset with maximum likelihood. We de-
termine the clustering accuracy relying on shrinkage Fisher
information embedding with the optimal shrinkage parameters
we derived. The clustering performance was evaluated using
the Rand index, which is a standard criterion for evaluating
clustering accuracy. Since sparse K-means is sensitive to its
intrinsic parameters, the sparse K-means clustering results are
reported using the best tuning parameters.

2) Performance Evaluation: The results reported in Table
II demonstrate that sFINE provides the best performance,
with improvements in the Rand index by approximately 9%
compared to unsupervised SVM, 7% compared to sparse
K-means, and 4% compared to non-parametric information
theoretic clustering. We compare the clustering performances
by first applying principal component analysis (PCA) to reduce
the data into 2 dimensional space before running the other
algorithms. It can be mainly attributed to the fact that the
sFINE embedding has provided a better similarity measure
approximated by shrinkage regularized KL-divergence which
leads to better clustering results. Compared to sFINE, non-
parametric information theoretic clustering and unsupervised
SVM do not take into account the high dimensionality and
small number of samples and do not fully utilize the infor-
mation of the distribution of the data. The sparse K-means
algorithm can be viewed as hard thresholding instead of
shrinkage and is sensitive to tuning parameters.

TABLE II
COMPARISON OF CLUSTERING ACCURACY (RAND INDEX SCORE) FOR OUR

SHRINKAGE FINE (SFINE) TO OTHER ALGORITHMS INCLUDING WHERE

WE APPLY PRINCIPAL COMPONENT ANALYSIS (PCA) TO REDUCE THE

DATA INTO 2 DIMENSIONS PRIOR TO RUNNING OTHER ALGORITHMS.

Attributes SVM sK-means NIC standard K-means sFINE
wine 87.1% 90.6% 91.9% 72.5% 94.3%

statlog 82.6% 88.7% 89.5% 77.3% 92.7%
segmentation 86.9% 88.3% 89.0% 68.9% 92.1%

vowel 83.3% 85.9% 87.2% 75.6% 89.3%
iris 85.5% 86.4% 90.3% 70.8% 93.6%

abalone 59.6% 60.8% 67.8% 55.4% 68.2%
balance 57.8% 61.8% 68.1% 56.1% 70.2%
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