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Minimally invasive image-guided interventions (IGIs) are time and cost 

efficient, minimize unintended damage to healthy tissues, and lead to faster patient 

recovery. Advanced three-dimensional (3D) image processing is a critical need for 

navigation during IGIs. However, achieving on-demand performance, as required by 

IGIs, for these image processing operations using software-only implementations is 

challenging because of the sheer size of the 3D images, and memory and compute 

intensive nature of the operations. This dissertation, therefore, is geared toward 

developing high-performance 3D image processing architectures, which will enable 

improved intraprocedural visualization and navigation capabilities during IGIs.  

In this dissertation we present an architecture for real-time implementation of 

3D filtering operations that are commonly employed for preprocessing of medical 

images. This architecture is approximately two orders of magnitude faster than 



  

corresponding software implementations and is capable of processing 3D medical 

images at their acquisition speeds.  

Combining complementary information through registration between pre- and 

intraprocedural images is a fundamental need in the IGI workflow. Intensity-based 

deformable registration, which is completely automatic and locally accurate, is a 

promising approach to achieve this alignment. These algorithms, however, are 

extremely compute intensive, which has prevented their clinical use. We present an 

FPGA-based architecture for accelerated implementation of intensity-based 

deformable image registration. This high-performance architecture achieves over an 

order of magnitude speedup when compared with a corresponding software 

implementation and reduces the execution time of deformable registration from hours 

to minutes while offering comparable image registration accuracy. 

Furthermore, we present a framework for multiobjective optimization of 

finite-precision implementations of signal processing algorithms that takes into 

account multiple conflicting objectives such as implementation accuracy and 

hardware resource consumption. The evaluation that we have performed in the 

context of FPGA-based image registration demonstrates that such an analysis can be 

used to enhance automated hardware design processes, and efficiently identify a 

system configuration that meets given design constraints. In addition, we also outline 

two novel clinical applications that can directly benefit from these developments and 

demonstrate the feasibility of our approach in the context of these applications. These 

advances will ultimately enable integration of 3D image processing into clinical 

workflow.
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Chapter 1:   Introduction 

1.1.   Overview 

Image-guided interventions (IGIs), including surgeries, biopsies, and 

therapies, have the potential to improve patient care by enabling new and faster 

procedures, minimizing unintended damage to healthy tissue, improving the 

effectiveness of the procedures, producing fewer complications, and allowing for 

clinical intervention at a distance. As a result, IGIs has been identified by clinical 

experts to have a significant impact on the future of clinical care [1]. With further 

invention and development of imaging and image processing techniques, innovative 

minimally invasive image-guided inventions will replace conventional open and 

invasive techniques. Continuous three dimensional (3D) imaging and visualization for 

intraprocedural navigation, critically important to the success of IGI, has been 

technologically difficult until recently. However, the advances in medical imaging 

technology and visualization capabilities, leading to improved imaging speed and 

coverage, have prompted developments in imaging protocols and enabled volumetric 

image-guided procedures. 

The efficiency and efficacy of IGIs is critically dependant on accurate and 

precise target identification and localization. Lack of clear target delineation could 

lead to lengthy procedures, larger than necessary safety margins and unintended 

damage to healthy tissue––factors that undermine the very motivation behind IGIs. 

Intraprocedural imaging techniques provide a rich source of accurate spatial 

information that is crucial for navigation but often suffer from poor signal-to-noise 
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ratio (SNR) and poor target definition from background healthy and/or benign tissue. 

As in most clinical protocols, IGIs are preceded by one or more preprocedural 

images, containing additional information, such as contrast-enhanced structures or 

functional details such as metabolic activity, which are used for diagnosis, 

treatment/navigation planning, etc. Combining this functional and/or contrast 

information with intraprocedural morphological and spatial information, through co-

registration between pre- and intraprocedural images, has been shown to improve the 

intraprocedural target delineation [2-6].  

Achieving this registration between intraprocedural and preprocedural images 

is a fundamental need during the IGI workflow. Moreover, given the on-demand 

nature of IGIs, this alignment should be achieved sufficiently fast so as not to affect 

the clinical workflow. Earlier approaches to meet this need primarily employed rigid 

body approximation, which can be less accurate because of non-rigid tissue 

misalignment between these images. Intensity-based deformable registration is a 

promising option to correct for this misalignment. These algorithms are automatic, 

which is an important aspect that enables their easy integration into many 

applications; However, the long execution times of these algorithms have prevented 

their use in clinical workflow. In addition, since this technique is based on intensity-

based alignment between images, it is sensitive to the SNR of the images to be 

registered. Consequently, the images (in particular, intraprocedural images that are 

characterized with poor SNR) need to be preprocessed and de-noised before they can 

be registered. This workflow for providing improved visualization during IGIs is 

illustrated in Figure 1.1.  
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The overall goal of this dissertation work is to improve the identification and 

localization of targets during image-guided interventions through automatic, fast, and 

accurate deformable image registration between preprocedural and intraprocedural 

images. With this accurate registration and fusion of complementary information an 

interventionist will be able to visualize accurately aligned anatomical structures (such 

as vasculature) and/or functional (metabolic) activity not natively present in the 

routine intraprocedural scans and thereby improving the targeting capability.  

1.2.   Contributions of this Dissertation 

The specific goal of this dissertation work is to develop and validate the core 

components of this advanced image processing system, which will enable improved 

visualization and target-delineation during image-guided procedures. These core 

components are identified in Figure 1.1. First, we employ reconfigurable hardware 

platform to develop an architecture for real-time implementation of image 

 
Figure 1.1: A typical IGI workflow and the scope of this dissertation work 
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preprocessing techniques commonly used in the context of IGI. Second, we develop 

an field-programmable gate array (FPGA)–based architecture for accelerated 

implementation of intensity-based deformable image registration. Third, we propose a 

multiobjective optimization framework to analyze conflicting tradeoffs between 

accuracy and hardware complexity of finite precision implementations of signal 

processing application, such as presented in this work. Finally, we demonstrate the 

feasibility of developing novel IGI applications leveraging the aforementioned 

components. 

In the following sections we elaborate further on the main contributions of this 

dissertation. 

1.2.1.   Real-time 3D Image Preprocessing 

Image preprocessing, which consists of filtering and de-noising, is a 

prerequisite step in many image processing applications. Especially in the context of 

IGI, where intraprocedural images are characterized by poor signal-to-noise ratio, 

image preprocessing is required prior to advanced image analysis operations such as 

registration, segmentation, and volume rendering. Moreover, the interactive nature of 

IGIs necessitates equivalent image processing speed so that these operation can be 

performed in a streamlined manner without any additional processing latency. 

Most reported techniques for accelerated implementation of image processing 

algorithms have primarily focused on one-dimensional (1D) or two-dimensional (2D) 

cases [7-11]. These techniques do not adequately address the need for accelerating 

these operations in 3D, which is required for providing volumetric image-guidance 

during minimally invasive procedures. Furthermore, some of the earlier techniques 
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used for acceleration cannot be extended to 3D, whereas for some others the 3D 

extension is nontrivial. 

This dissertation presents an FPGA-based novel architecture for accelerated 

implementation of common image preprocessing operations. This architecture is 

reconfigurable and supports multiple filtering kernels such as 3D median filtering, 

and 3D anisotropic diffusion filtering within the same framework. The architecture 

presented in this work is faster than earlier reported techniques, supports larger kernel 

dimensions, and is capable of meeting the real-time data processing need of most 

IGIs. Although developed in the context of IGIs, this architecture is general-purpose 

and can be applied to meet preprocessing needs of many medical as well as non-

medical applications. 

1.2.2.   Hardware-Accelerated Deformable Image Registration 

Image registration between preprocedural images (acquired for diagnosis and 

treatment planning) and intraprocedural images (acquired for up-to-date spatial 

information) is an inherent need in the IGI workflow. Accurate and fast registration 

between these images will enable the fusion of complementary information from 

these two image categories and can enable improved treatment site identification and 

localization and navigation during the procedure. 

Several fiducial or point-based, mechanical alignment-based and intensity-

based rigid alignment techniques [12-16] have been proposed for this purpose. Some 

of these techniques are not automatic and almost all of them employ the rigid body 

approximation, which is often not valid due to tissue deformation between these two 

image pairs. Deformable image registration techniques can compensate for both local 
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deformation and large-scale tissue motion and are the ideal solution for achieving the 

aforementioned image registration. Some studies, in particular, have independently 

underlined the importance of deformable image registration for IGIs [17-19]. 

However, despite their advantages, deformable image registration algorithms are 

seldom used in current clinical practice due to their computational complexity and 

associated long execution times (which can be up to several hours).  

This dissertation presents a novel FPGA-based architecutre for accelerated 

implementation of a proven automatic and deformable image registration algorithm, 

specially geared toward improving target delineation during image-guided 

interventions. This architecture accelerates calculation of image similarity, a 

necessary and the most time consuming step in image registration, by greater than an 

order of magnitude and thereby reducing the time required for deformable registration 

time from hours to minutes. This design is tuned to offer registration accuracy 

comparable to that achievable using software implementation. Furthermore, we 

validate this high-speed design and demonstrate its feasibility in the context of 

clinical applications such as computed tomography (CT)-guided interventional 

applications. This accuracy, coupled with the speed and automatic nature of this 

approach represents a first significant step toward assimilation of deformable 

registration in the IGI workflow. 

1.2.3.   Framework for Optimization of Finite Precision Implementations  

An emerging trend in image processing, and medical image processing, in 

particular, is custom hardware implementation of computationally intensive 

algorithms for achieving high-speed performance. The work presented in this 



 7 
 

dissertation has a similar spirit in the context of advanced image processing required 

during IGIs. For reasons of area-efficiency and performance, these implementations 

often employ finite-precision datapaths. Identifying effective wordlengths for these 

datapaths while accounting for tradeoffs between design complexity and accuracy is a 

critical and time consuming aspect of this design process. Having access to optimized 

tradeoff curves can equip designers to adapt their designs to different performance 

requirements and target specific devices while reducing design time. 

This dissertation proposes a multiobjective optimization framework developed 

in the context of FPGA–based implementation of medical image registration. Within 

this framework, we compare several search methods and demonstrate the 

applicability of an evolutionary algorithm–based search for efficiently identifying 

superior multiobjective tradeoff curves.  In comparison with some earlier reported 

techniques, this framework allows non-linear objective functions, multiple fractional 

precisions, supports a variety of search methods, and thereby captures more 

comprehensively the complexity of the underlying multiobjective optimization 

problem. We also demonstrate the applicability of this framework for the image 

registration application through synthesis and validation results using Altera Stratix II 

FPGAs. This strategy can easily be adapted to a wide range of signal processing 

applications, including areas of image and video processing beyond the medical 

domain. 

1.3.   Outline of this Dissertation 

The rest of the dissertation is organized as follows: Chapter 2 provides 

background on image-guided interventions, image preprocessing, and image 
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registration; and presents related work in the context of the contributions of this 

dissertation. In Chapter 3, FPGA-based architecture for real-time implementation of 

3D image processing techniques such as median filtering and anisotropic diffusion 

filtering are presented. Chapter 4 deals with deformable image registration. We 

outline the intensity-based deformable image registration algorithm and present a 

novel architecture for accelerated implementation of this algorithm. In Chapter 5, a 

framework for multiobjective optimization of limited precision implementations of 

signal processing algorithms is presented. Chapter 6 introduces some novel image-

guided procedures and demonstrates the feasibility of our approach in the context of 

these applications. Finally, in Chapter 7 conclusions and future work are presented. 
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Chapter 2:   Background and Related Work 

2.1.   Image-Guided Interventions 

IGIs began to emerge in the last quarter of the 20th century, picked up pace in 

the 1990s, and may become routine in the 21st century. Minimal invasiveness is the 

defining characteristics of these procedures. This feature can lead to less patient 

morbidity, time and cost efficient procedures, faster recovery and improve the 

procedure outcomes. During these procedures, the internal anatomy is accessed 

through a single or few small holes on the patient’s skin rather than though large 

incisions. The interventionist introduces the appropriate tool (electrode or biopsy 

needle, or/and endoscope) through this port and tries to navigate his/her way to the 

target (typically a malignant spot) in order to deliver a localized treatment or take out 

a sample for further investigation. Now, because the access to the internal anatomy is 

through a single port, the only way to visualize the location, orientation and the path 

of approach of the tool is by using external imaging techniques (that is there is no 

direct visual feedback).  

Any intraprocedural imaging technique used must be near real-time and thus 

allow tracking underlying anatomy and flexible instruments and catheters as and 

when required (“on-demand” performance) during the procedure. 2D Ultrasound 

(US) and CT fluoroscopy have been conventionally used to guide placement of 

biopsy needles and therapy delivery devices during IGIs [18, 20, 21]. However, 

technological improvements such as multi-slice CT scanners, interventional MR, 3D 

ultrasound (US), isocentric C-arms and other advanced imaging systems have enabled 
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the application of IGI to clinical domains such as interventional radiology, 

neurosurgery, orthopedics, ENT surgery, cranio- and maxillofacial surgery and other 

surgical specialties [22-24]. For example, Philips medical systems, one of the leading 

medical imaging equipment manufacturers, has announced a 256-slice CT scanner 

[25] which provides higher imaging speed (up to 8 volumes/s) and coverage (8 cm) is 

ideally suited for performing CT-guided procedures. Availability of easy access MR 

scanners, such as open-configuration MR scanner from GE Healthcare [26] along 

with its improved imaging speed has enabled development of MR-guided procedures. 

Image quality and acquisition speed of 3D ultrasound have also been enhanced 

through use of latest transducer technology and digital reconstruction and it can now 

be used for providing image-guidance during procedures. Moreover, real-time 

volumetric visualization capabilities, that enable interactive display of images during 

the procedure, are also now available [27, 28]. As a result, an emerging trend in IGI 

workflow is to use volumetric imaging modalities for providing real-time 

intraprocedural guidance. This dissertation, therefore, focuses on 3D image 

processing and registration in the context of IGIs. 

2.1.1.   Role of Preprocedural Imaging 

Intraprocedural imaging techniques provide (or, are a rich source of) accurate 

spatial information which is crucial for navigation but offer poor target identification 

from the background healthy and/or benign tissue (see Figure 2.1). Most image-

guided procedures are preceded by a preprocedural image which is used for 

diagnosis, treatment/navigation planning, etc. These preprocedural images are 

primarily acquired under different (often slow) imaging protocol and typically contain 
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additional information, such as contrast-enhanced structures or functional information 

such as metabolic activity which is used for diagnosis and tissue differentiation prior 

to the treatment. Figure 2.1(a) shows contrast-enhanced structures in a preprocedural 

image which are not clearly visible in intraprocedural images. Figure 2.1(b) illustrates 

the metabolic activity shown in the PET scans which can be used to identify 

cancerous tumors. Availability of this functional and contrast information from the 

preprocedural images can be used to augment the purely morphological and spatial 

information from the intraprocedural images which will greatly improve the 

intraprocedural target delineation [2-6, 29]. Therefore, there is a clear need to 

combine this complementary information from the pre and intraprocedural images to 

facilitate this task. 

 
Figure 2.1: Two examples of pre- and intraprocedural image pairs. The arrows 
indicate the targets that are visible in preprocedural images but not visible in 
intraprocedural images. 
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2.1.2.   Need for Image Registration 

Aligning or registering the intraprocedural images with the preprocedural 

image is a fundamental need in the IGI workflow. In fact, image registration has been 

identified as an enabling technology for image-guided surgical and therapeutic 

applications [30]. Figure 2.2 shows an example of volumetric image-guidance using 

image registration between volumetric CT and magnetic resonance imaging (MRI) 

scans for a neurosurgical application. There are, however, many technological and 

logistic challenges in achieving this image registration. First, the intra- and 

preprocedural images to be registered are acquired at different times and using 

different scanners. As a result, there is invariably misalignment of anatomical 

structures between these two images. This misalignment is caused because of the 

 
Figure 2.2: An example of volumetric image guidance using intraprocedural 
multislice CT and preprocedural MR. 
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systemic offsets in scanner coordinate systems and due to non-rigid anatomical 

changes arising from pose and diurnal variations at the time of image acquisition. 

Second, the images to be combined can be of two completely different modalities 

(such as PET and CT). Furthermore, given the on-demand nature of IGI applications 

this registration should be achieved in a reasonably fast time. In summary, accurate, 

multi-modal, and fast image registration is essential for IGIs [17, 31]. The following 

section provides an overview of image registration.  

2.2.   Classification of Image Registration  

Medical image registration is the process of aligning two images that 

represent the same anatomy at different times, from different viewing angles, or using 

different imaging modalities. Image registration is an active area of research and over 

the last several decades there have been numerous publications outlining various 

methodologies to perform image registration and its applications. Maintz and 

Viergever [32] and Hill et al. [33] have presented a comprehensive summaries of the 

entire gamut of the image registration domain. In general, image registration can be 

classified based on image dimensionality, nature of registration basis, nature of 

transformation models, type of modalities involved, etc. From the context of IGI, 

Table 2.1: Broad classification of image registration in the context of IGI. 
Registration 

Basis 
Method 
based on Retrospective Automatic Deformable Compute 

Intensive 
Fiducial N Y N N Extrinsic  

Information Stereotactic N Y N N 
Landmark Y N Y N 

Segmentation 
Or Surface Y N Y N Intrinsic 

Information 
Intensity Y Y Y Y 
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however, we broadly classify image registration into two main approaches. First, 

techniques based on extrinsic information and second, techniques based on 

information that is intrinsic to the image. We briefly describe these two techniques 

and outline some popular image registration methods in each category. A summary of 

this classification is also presented in Table 2.1. 

2.2.1.   Image Registration using Extrinsic Information 

Methods based on extrinsic information rely on information that is not 

natively a part of the medical image. This includes artificial external objects that may 

be attached to the patient and are within the field of view of the image. These objects 

are designed such that they are clearly visible and accurately detectable in all of the 

pertinent modalities that are to be registered. As a result, the registration of the 

acquired images is usually easy, fast, and can be automated with relative ease. In 

addition, because the registration involves simply establishing correspondence 

between external objects, it can be achieved explicitly without a need for complex 

optimization techniques. One major limitation of these methods, however, is that they 

are not retrospective. This means that advanced planning is required and provisions 

must be made at the time of preprocedural imaging for that image to be used at a later 

point. Furthermore, due to the nature of the registration these methods are mostly 

limited to rigid transformation model only.  

Stereotactic frame is another commonly used external object. There are many 

reported image registration applications, especially in the context of neurosurgery, 

that employ a stereotactic frame to establish spatial correspondence between images 

[34, 35]. These methods employ a frame screwed rigidly to the patient’s skull that is 
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usually fitted with imaging markers that are visible in imaging modalities such as CT, 

MRI, and X-ray. Visibility of these markers in both pre- and intraprocedural images 

will then allow registration of these images using a least-square based alignment 

technique. These techniques have been shown to be relatively accurate for rigid 

anatomy such as the brain [36], but are relatively more invasive. Less invasive 

techniques using markers attached to the skin have also been reported [37], but they 

tend to offer less accurate image registration because skin can move. More recently, 

there have also been efforts toward developing systems based on optical tracking 

methods that will allow frameless stereotaxy [38]. Despite these advances, these 

methods are fundamentally limited to providing only rigid alignment between a pair 

of images.  

2.2.2.   Image Registration using Intrinsic Information 

These methods are based on intrinsic properties and contents of patient-

generated images. Registration may be based on a limited set of identified salient 

points (landmarks), on the alignment of segmented anatomical structures 

(segmentation or feature based) such as organ surfaces or directly based on the image 

intensity values (voxel property based). 

Landmark-based registration [35, 39, 40] involves identification of the 

locations of corresponding points within different images and determination of the 

spatial transformation with these paired points. These landmarks are usually 

identified by a user in an interactive fashion. Landmark-based methods are often used 

to find rigid or affine transformations. However, if the sets of points are large enough, 

they may be used for more complex non-rigid transformations as well. Registration 
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methods based on landmark identification can be retrospective, but they are not fully 

automatic becasue they require user interaction.  

Segmentation-based image registration methods are based on extracting 

matching features and organ surfaces from the two images to be registered. These 

features and organ surfaces are then used as the only input for the alignment 

procedures. The alignment between the features/surfaces can be either based on rigid 

transformation models or achieved using deformable mapping. The rigid model–

based approaches are more popular and a ‘head-hat’ registration method based on this 

approach has been successfully applied to the registration of multimodal images such 

as PET, CT, and MR [41-43]. Popular segmentation-based techniques that involve 

deformable mapping of surfaces, such as the ones based on snakes or active contour 

models, have been shown to be effective in intersubject and atlas registration, as well 

as for registration of a template to a mathematically defined anatomical model [44, 

45].  Segmentation-based techniques are retrospective, support multi-modal 

registration, and are computationally efficient. However, the accuracy of registration 

is dependant on the segmentation accuracy. Moreover, these methods are not fully 

automatic as the segmentation step is often performed semi-automatically. 

Voxel property-based methods, which are based on image intensity values, are 

the most interesting methods in the current research. Theoretically, these are the most 

flexible of the registration methods since they use all of the available information 

throughout the registration process. In addition, these methods can be completely 

retrospective, fully automatic, allow multi-modal registration and generally are more 

accurate. The following section provides a detailed overview of intensity-based image 
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registration. Although these methods have existed for a long time, their extensive use 

in clinical applications with 3D images has been limited because of associated 

computational costs. This dissertation work addresses this aspect through the use of 

hardware acceleration. 

2.3.   Intensity-Based Image Registration 

Image registration that is based on voxel intensities is the most versatile, 

powerful, and inherently automatic way of achieving the alignment between two 

images. This method attempts to find the transformation T̂  that optimally aligns a 

reference image RI, with coordinates x, y, and z, and a floating image FI under a 

image similarity measure F . This process is summarized in the following equation 

and is represented pictorially in Figure 2.3.  

 ˆ arg max ( ( , , ), ( ( , , )))
T

T RI x y z FI T x y z= F  (2.1) 

 
Figure 2.3: Flowchart of image similarity–based image registration. 
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In the case of intensity based registration, the similarity measure F , which 

provides a numerical value to indicate the degree of misalignment between the 

images, is completely based on voxel intensities in the reference and the floating 

images. Image transformation T maps the reference image voxels into the floating 

image space. Depending on the transformation model employed, this mapping is 

either rigid, affine, or deformable. The optimization algorithm, on the other hand, 

searches for the best transformation parameters that optimally align the given two 

images. These three components form an integral part of intensity-based image 

registration and are described in the following sections. 

2.3.1.   Transformation Models 

A transformation model provides a way to describe the misalignment between 

the reference and the floating images. The ability of image registration to accurately 

represent and recover this misalignment is fundamentally limited by the nature of the 

transformation model employed. For example, rigid transformation model typically 

offers inferior image registration accuracy as compared with computationally 

intensive, non-rigid transformation models, if the underlying misalignment is non-

rigid. A comprehensive survey on image transformation models can be found in [46, 

47]. The following subsections describe the transformations most commonly used in 

intensity-based image registration. 

2.3.1.1.   Rigid and Affine Models 

Affine or linear registration is a combination of rotation, translation, scaling 

and shear parameters that map the reference image voxels into floating image space. 
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Voxel scaling and shearing factors are constant for rigid registration, which is a 

special case of affine transformation, and as such are excluded from optimization 

process. Both these transformation models can be represented using a 4 × 4 

transformation matrix. For example, a rigid transformation matrix Tglobal can be 

constructed as: 

 ,

0 0 0 1

xx xy xz x

yx yy yz y
global

zx zy zz z

r r r d
r r r dT r r r d

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (2.2) 

where rij entries represents the components of the rotation matrix, while the di entries 

represent the translation parameters. The coordinate transformation of a reference 

image voxel  rv  into floating image space ( fv ) can then simply be achieved through 

matrix multiplication: 

 .f global rv T v= ⋅  (2.3) 

Techniques based on rigid and affine transformation models have been successfully 

employed previously [47-49]. These techniques, however, offer limited degrees of 

freedom in the transformation model. 

2.3.1.2.   Deformable Models 

The strength of the deformable transformation models comes from the large 

number of degrees of freedom they offer for representing the misalignment between 

images. This allows modeling of not only gross misalignment between the images, 

but also local deformations. As a result, image registration techniques based on 

deformable transformation models are inherently capable of correcting for local 

misalignments and therefore are more accurate. 
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Methods based on physical models perform image transformation by 

considering a set of internal and external forces and obtaining the corresponding 

deformation by applying these forces to a given model based on differential 

equations. Some examples of physical models used for image transformation found in 

the literature are elastic body [50], viscous fluid [51] and incompressible flow (optical 

flow) [44]. Some methods based on finite element models have also been employed 

for image registration, which apply predefined physical models to represent 

deformation in the images [52, 53]. The key idea is to divide the image into subsets, 

each with some defined physical properties. For example, a subset can be labeled as 

rigid, while some others can be labeled as fluid (elastic). During the transformation 

process, the shape of rigid tissues will not change, while the shape of fluid tissues will 

vary according to their corresponding properties such as viscosity. Image 

transformation techniques using physical models have been successfully applied to 

deformable image registration. However, most of these techniques involve solving 

partial differential equations and are particularly computationally complex. 

Another popular method to represent deformable transformation model is to 

use mathematical basis functions. These transformation techniques use basis 

functions to define the correspondence between the original and the transformed 

image. The basis functions may be defined in either Fourier or Wavelet domain, and 

the deformation field is modeled using trigonometric or wavelet basis functions, 

respectively. Ashburner and Friston [54] have reported a method based on this 

approach. The deformation between the two images may also be modeled in the 

spatial domain using polynomials. Polynomial-based image transformation 



 21 
 

techniques use a global transformation function defined by a transformation matrix 

that contains the transformation coefficients and a polynomial vector that contains the 

components of the polynomial used to model the transformation. The simplest case of 

polynomial-based image transformation is the affine transformation, which uses first-

degree polynomials. By increasing the degree of the polynomials, it is possible to 

model complex non-rigid transformation as well. However, this method is seldom 

employed due to difficulty in modeling small local transformations and that higher-

degree polynomials suffer from several artifacts [46]. These drawbacks are addressed 

by spline-based representation. Splines are inherently continuous and consist of 

piecewise-polynomial functions. Splines are a generalization of the polynomial-based 

approach to image transformation in the sense that a polynomial representation is a 

spline with just one segment. Using piecewise-polynomial functions allows modeling 

of local deformations accurately without using high-order polynomials. Two different 

spline families that have been used extensively in the literature to model 3D 

transformations are thin-plate splines and B-splines. Kim et al. [55] and Rohr et al. 

[56] have reported methods based on thin-plate splines to perform deformable image 

registration. However, one major drawback of thin-plate splines is that they have 

infinite support. This means that even small local changes are propagated throughout 

the entire image, an effect that is undesirable in medical image registration. In 

comparison, B-splines offer finite support. For this reason, B-splines are currently the 

preferred basis functions for modeling deformable transformations [57, 58]. A 

limitation with B-spline-based transformations is that they tend to fail at tracking 

rotation of local features. Moreover, algorithms based on B-splines tend to be 
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computationally intensive due to additional complexity associated with B-spline 

interpolations. 

 More recently, some algorithms based on hierarchical image subdivision 

approaches have been reported [59, 60]. These algorithms achieve deformable 

registration through registering image subvolumes using a locally linear 

transformation and then applying quaternion-based interpolation to obtain the 

transformation field. Algorithms based on such transformation models allow the 

modeling of internal rotations better than the spline-based approaches. These 

algorithms are computationally efficient and yet are capable of recovering local 

deformations. The deformable registration algorithm considered in this dissertation is 

also based on hierarchical volume (3D image)-subdivision. This algorithm and the 

architecture for its accelerated implementation is describes in Chapter 4. 

2.3.2.   Image Similarity Measures 

An important component of image registration is the metric that quantitatively 

determines how similar two images are. This metric can then be used to judge how 

well a pair of images is aligned and also to guide the optimization procedure during 

image registration. In the case of intensity-based image registration this metric, or 

image similarity measure, is computed using the voxel intensities of the images 

involved in registration. There are many reported intensity-based similarity measures. 

These can be broadly classified into measures using only image intensities (for 

example, mean of square difference of intensities), measures using spatial (or 

neighborhood) information (for example, pattern intensity or gradient-based 

measures) and measures based on information theory (mutual information). 
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The following sections briefly describe some widely used similarity measures. 

We use the following notation for this description. The images to be aligned are 

reference image (RI) and the floating image (FI). A transformation T is applied to the 

voxels of the reference image. An image similarity measure is calculated over the 

region of overlap ( 0X ) between the RI and the FI and x represents the location of a 

voxel in RI. N represents the number of RI voxel that belong to 0X . The 

notations RIp , FIp , and ,RI FIp represent the individual probability distribution function 

(PDF) of RI, individual PDF of FI, and the mutual PDF of RI and FI, respectively. 

2.3.2.1.   Sum of Squared Intensity Differences (SSD) 

One of the simplest ways to achieve image alignments is to minimize the 

intensity difference between the RI and FI. The sum of squared intensity differences 

(SSD) measure tries to achieve that. The SSD between the two images is defined as: 

 
0

21( , ) ( ( ) ( ( ))) .
x X

SSD RI FI RI x FI T x
N ∈

= −∑  (2.4) 

As expected this measure will be minimized when two images are aligned well. 

However, this measure is limited to work with images with same intensity patterns, or 

in other words, for mono-modality image registration. Furthermore, Holden et al. [48] 

have shown this similarity measure to be error-prone in the presence of noise. 

2.3.2.2.   Normalized Cross-Correlation (NCC) 

If the assumption that registered images differ only by Gaussian noise is 

replaced with a less restrictive one, namely that there is a linear relationship between 

the two images, then the optimum similarity measure is the normalized cross-
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correlation. Cross-correlation in both space and frequency domains has been used as a 

voxel similarity metric. Cross-correlation in the space domain is defined by: 

 0

2

( ( ) )( ( ( )) )1( , ) x X

RI FI

RI x RI FI T x FI
NCC RI FI

N σ σ
∈

− −∑
=

⋅
 (2.5) 

where RI and FI are the mean intensities of the RI and FI respectively, whereas 

RIσ and FIσ represent the standard deviations of RI and FI, respectively: 
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= −∑  (2.6) 
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Computation of this similarity measure can be time consuming as it requires 

calculating the mean and the standard deviation as well as the cross-correlation 

coefficient for the entire 3D images. Because of this high computational cost of 

performing cross-correlation, spatial domain correlation is usually performed between 

a whole image and a small portion of the other image. Cross-correlation is an 

effective voxel similarity measure for images with low noise, but it high calculation 

requirements make it a poor choice for real-time applications. Furthermore, it may not 

yield optimal performance when applied to noisy images [46], such as ultrasound and 

low-dose CT.  

2.3.2.3.   Mutual Information (MI) 

Mutual information is a popular image similarity metric based on information theory. 

The rationale behind this similarity measure is to consider image registration as the 

process of maximizing the amount of information common to RI and FI, or 
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minimizing the amount of information present in the combined images. When the 

images are perfectly aligned, the corresponding structures from both images will 

overlap, minimizing the combined-information. The use of mutual information for 

image registration was introduced by Collignon et al. [61] and Viola and Wells [62]. 

The MI is defined by:  

 ( , ) ( ) ( ) ( , ) ,MI RI FI h RI h FI h RI FI= + −  (2.8) 

where the individual and mutual entropies are calculated as: 

 ( ) ( ) ln( ( )) ,RI RIh RI p x p x= − ⋅∑  (2.9) 

 ( ) ( ) ln( ( )) ,FI FIh FI p x p x= − ⋅∑  (2.10) 

 , ,( , ) ( ) ln( ( ))RI FI RI FIh RI FI p x p x= − ⋅ ⋅∑∑  (2.11) 

A comprehensive survey of MI-based registration was presented by Pluim et al. [47]. 

Mutual information is a very effective similarity measure for multimodal image 

registration because it can handle nonlinear information relations between data sets 

[63]. Holden et al. [48] have demonstrated that mutual information-based techniques 

are, in general, superior to other techniques for deformable image registration. 

A broadly used variant of mutual information is called normalized mutual 

information. The advantage of this similarity measure over mutual information is its 

overlap-independence. It was introduced by Studholme et al. [64] as:  

 ( ) ( )( , ) .
( , )

h RI h FINMI RI FI
h RI FI

+
=  (2.12) 

There are several other intensity-based similarity measures beyond the ones 

listed and described here. These include ratio of image uniformity, pattern intensity, 

entropy of the difference image, etc. Mutual information, in comparison, is versatile, 
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inherently multimodal, and accurate; and hence has emerged as a popular choice for 

both rigid and deformable image registration. In particular, the deformable 

registration algorithm, being accelerated through custom hardware implementation in 

this dissertation work, is also based on MI. See Chapter 4, for additional details. 

2.3.3.   Optimization Algorithms 

Optimization algorithms are used to navigate the search space of 

transformation parameters and to identify the optimal combination of transformation 

parameters that best aligns a pair of images. It must be noted, that most often the 

number of parameters to be searched for is more than one and this requires multi-

dimensional optimization algorithms. Another desired feature of an optimization 

algorithm is that it requires fewer number of objective function evaluations. In the 

case of intensity-based image registration, the objective function to be optimized is 

the voxel similarity function. This calculation, usually, is compute intensive and 

hence faster convergence is ideal. We briefly summarize common multidimensional 

optimization scheme employed in the context of image registration. 

The downhill simplex method, first introduced by Nelder and Mead [65]  is an 

unconstrained nonlinear optimization technique. A simplex is a geometrical figure 

defined by N+1 points in an N-dimensional space. The simplex method starts by 

placing a regular simplex in the solution space and then moves its vertices gradually 

towards the optimum point through an iterative process. The downhill simplex 

algorithm searches for the optimum value through a series of geometrical operations 

on the simplex. Examples of these operations include reflection, reflection and 

expansion, contraction, multiple contractions etc. Shekhar et al. [49, 66] and Walimbe 
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et al. [60, 67] have reported successful use of this optimization technique for voxel 

similarity–based image registration. 

Univariate optimization method tries to solve the multidimensional 

optimization problem by breaking it into multiple one-dimensional optimization 

problems. This is achieved by optimizing the variables, one variable at a time and 

then repeating this step until convergence. This method is simple, but can suffer from 

poor convergence in the presence of steep valleys in the search space. Powell’s 

method builds upon the univariate method with an important distinction, that the 

search direction does not have to be parallel with any of the variable axes. Thus, it is 

possible to change multiple variables at the same time. This can achieve faster 

convergence and effectively eliminate the convergence problem of the univariate 

method. This algorithm has widely been used for optimizing intensity-based image 

registration [47, 68, 69]. 

Optimization based on genetic algorithms is a technique that mimics the 

genetic processes of biological organisms. Over many generations, natural 

populations evolve according to the Darwinian principles of natural selection and the 

“survival of the fittest”. Common operations involved in this method are crossover, 

mutation and fitness evaluation. By following this process, genetic algorithms are 

able to adapt starting solutions and ultimately find the optimal solution. These 

techniques are capable of efficiently searching a complex optimization space. 

However, representation of solutions in a genetic algorithm framework can be 

challenging and limit their effectiveness especially in the context of deformable 
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registration (due to large number of parameters). Examples of genetic algorithm–

based optimization for image registration can be found in [70, 71]. 

Optimization using simulated annealing techniques involves minimization 

methods based on the way crystals are generated when a liquid is frozen by slowly 

reducing its temperature [65]. These algorithms work distinctly from the techniques 

described earlier, in that they do not strictly follow the gradients of the similarity 

measure. Instead, they move randomly, depending on the “temperature” parameter. 

While the “temperature” is high, the algorithm allows greater variations in the 

variables to be optimized. As the “temperature” decreases, the algorithm further 

constrains the variation of the variables until a global optimum is reached. In general, 

simulated annealing techniques are more robust than earlier described methods. 

However, these techniques may require a large number of iterations to converge, 

especially in the presence of local minima. Some applications of simulated annealing 

techniques for image registration are described in [72, 73]. 

2.4.   Image Preprocessing 

As described in the previous section, intensity-based image registration (both 

rigid and deformable) utilizes similarity measures that are based on the voxel 

intensities of the images to be registered. As a consequence, these similarity measures 

are sensitive to quality of the images involved. Images with poor SNR can affect the 

calculation of a similarity measure and result into less-accurate image registration. 

While some similarity measures such as MI and NMI are less sensitive to noise, 

Holden et al. [48] have demonstrated that most intensity-based similarity measures 
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(and resulting accuracy of image registration) are adversely affected in the presence 

of noise. 

To address this aspect, several techniques for preprocessing images prior to 

image registration have been described. While some techniques focus on identifying a 

region or structures of interest in the images and exclude structures that may 

negatively influence the registration results [48, 49, 74], most preprocessing 

techniques rely on spatial-domain filtering operations on the images. Some reported 

techniques have employed low-pass filtering to remove speckle noise in ultrasound 

images, thresholding or filtering to remove noise, and blurring to correct for 

differences in the intrinsic resolution of the images [49, 64, 75]. All these spatial 

filtering techniques have shown to be effective in improving the image quality and 

the accuracy of image registration. 

In the context of IGI, which is the primary application of the work presented 

in this dissertation, low-dose computed tomography (CT) and 3D ultrasound have 

emerged as the preferred intraprocedural volumetric imaging modalities. These 

modalities, although sufficiently fast for intraprocedural use, suffer from quantum 

noise and speckle noise respectively. Furthermore, due to presence of metallic tools 

 
Ultrasound Image Filtered US Image Low-dose CT Image Filtered CT Image 

Anisotropic Diffusion Filtering Median Filtering 
Figure 2.4: Example of preprocessing techniques employed prior to intensity-
based image registration. 
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such as needles and catheters and associated photon scattering effects, intraprocedural 

CT images also suffer from metal artifacts. As a result, these images must be 

preprocessed and enhanced prior to registration with preprocedural images and 

subsequent visualization. Toward this end, anisotropic diffusion filtering and median 

filtering have been shown to be effective. Figure 2.4 shows an example application of 

these filtering operations. In particular, anisotropic diffusion filtering has been 

successfully applied for preprocessing of ultrasound, CT, and low-dose CT images 

[76-78]. Similarly, median filtering has been employed, both in spatial and sinogram 

domains, to reduce or eliminate metal artifacts and for filtering low-dose CT images 

[79, 80]. In this dissertation we, therefore, focus on these two filtering techniques. 

2.4.1.   Anisotropic Diffusion Filtering 

Anisotropic diffusion filtering is an iterative process which progressively 

smoothes an image while maintaining the significant edges. The nonlinear anisotropic 

diffusion algorithm for edge-preserving image smoothing was first proposed by 

Perona and Malik [81]. For a 3D image I with intensities ( , )I v t , where v  is a vector 

in the 3D space and t  is a given point in time (for the purposes of modeling the 

diffusion process), the diffusion process is described by the following equation:  

 ( ) ( )( ), , ,I div c v t I v t
t

∂
∂

= ∇i  (2.13) 

where c  is the diffusion coefficient and takes a value between zero and 1. In general, 

the diffusion coefficient is defined as a function of the image gradient (i.e., 

( )c f I= ∇ ). For noisy images, Whitaker and Pizer [82] showed that gradient 

estimates taken from the image itself tend to be unreliable and proposed, instead, the 
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use of a Gaussian-filtered version of the image to calculate the gradient values. Their 

proposed Gaussian filter has a standard deviation ( )tσ  that decreases as the time ( t ) 

increases, thus resulting in a multiscale approach. Dorati et al. [83] demonstrated the 

usefulness of Whitaker and Pizer’s approach to 3D ultrasound image preprocessing. 

The diffusion coefficient that uses the Gaussian-filtered image (indicated as ( ( ))G tσ ) 

is then defined as: 

 ( )( ) ( )( ), .c f G t I v tσ= ∇ i  (2.14) 

 Several diffusion functions have been proposed in the literature. The two most 

widely used are: 
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These diffusion functions depend on the gradient of the Gaussian-filtered image, 

while the parameter K  adjusts the levels at which edges are diffused or preserved, to 

achieve the desired filtering effect. 

2.4.2.   Median Filtering 

Median filtering is a nonlinear technique commonly used to eliminate speckle 

noise from ultrasound and impulse noise from other noisy images. This technique is 

called non-linear because it can not be represented as a direct convolution operation. 



 32 
 

This technique is based on rank-ordering of the intensity values present in an image. 

In addition, this filter is an edge-preserving filter. The advantage of this technique 

when compared to most linear (convolution-based) smoothing operators is that it 

smooths areas within a particular object, while preserving its edges. This feature is 

important, especially in the context of medical image registration, since it generally 

improves the accuracy of the image registration, segmentation, and visualization 

operations by preserving anatomical boundaries, while reducing random noise in the 

interiors of the structures. However, such filters, due to their nonlinear nature, tend to 

be computationally more intensive as compared with linear filtering operations. 

The 3D realizations of these preprocessing operations, despite their 

effectiveness, can take several seconds when implemented in software. Consequently, 

for seamless integration into the IGI workflow these techniques must be accelerated 

so that their performance is comparable to the acquisition speed of intraprocedural 

images. This dissertation addresses this need through real-time implementation of 3D 

realizations of these operations as described in Chapter 3.  

2.5.   Optimization of Finite Precision Implementations 

An emerging trend in image processing, and medical image processing, in 

particular, is custom hardware implementation of computationally intensive 

algorithms in the quest to achieve real-time performance. The work presented in this 

dissertation has a similar spirit in the context of advanced 3D image processing 

required during IGIs. For reasons of area (and power)-efficiency and performance, 

these implementations often employ limited-precision datapaths. In comparison, the 

original algorithms are often developed in software using the double-precision 
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representation. Identifying effective wordlengths for these datapaths while accounting 

for tradeoffs between design complexity and accuracy is a critical and time 

consuming aspect of this hardware design process. This problem of converting 

floating-point implementations into fixed-point (or other limited precision 

representations) through identification of optimum wordlengths is an important 

problem in signal processing applications and has received considerable attention in 

the literature. Cantin et al. [84] and Todman et al. [85] provide a comprehensive 

review of techniques to identify optimal wordlengths. We briefly summarize some 

important approaches here. 

2.5.1.   Optimal Wordlength Formulation 

Consider a system with m internal variables and a wordlength iw  associated 

with each variable. Further, each variable can take values between the lower ( mini
w ) 

and upper ( maxi
w ) bound on the wordlength such that min max( , )

i iiw w w∈ . Each 

wordlength is an integer variable, and the wordlength configuration for the entire 

system can then be represented using a wordlength vector ( )mW W I∈  such as 

1 2{ , , , }mw w w . Furthermore, min max( , )W W W∈ ; where 
1 2min min min min{ , , , }

m
W w w w=  

and 
1 2max max max max{ , , , }

m
W w w w= . Consider a function H associated with the system 

that defines the hardware implementation cost associated with a wordlength 

configuration W . Also, consider that the performance of this limited-precision, 

quantized system is characterized by function ( )p W  and that the system must 

achieve a certain performance minP . The wordlength optimization problem can then be 

presented as: 
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min max

min
( , )

arg min ( ), such that ( ) .
W W W

H W p W P
∈

≥  (2.17) 

It must be noted that this formulation, for simplicity, considers only one objective 

function H with respect to a predefined performance criterion minP . The more general 

multi-objective formulation is briefly described below and revisited in detail later in 

the context of FPGA-based implementation of deformable image registration (see 

Chapter 5). 

2.5.2.   Simulation-Based Optimal Wordlength Search 

Optimal wordlength configuration that meets a certain performance criterion 

can be identified by solving analytical expressions, when the performance function 

p can be represented analytically. Some earlier reported approaches have adopted 

this technique [86-90]. However, if the performance function can not be represented 

analytically, which is often the case for practical complex systems, simulation-based 

methods can be used to search for the optimal configuration. This involves searching 

the design space (defined by the wordlength vector ranges) and finding a solution that 

satisfies the design criteria. Some popular methods in this category are briefly 

described below. A detailed description of these methods can be found in [84, 91]. 

An exhaustive search attempts every possible combination of wordlengths 

between the predefined lower and upper bounds and evaluates the performance of 

each combination through simulation. The optimum wordlengths can then be selected 

from the simulation results. An exhaustive search is guaranteed to find the global 

optimal configuration, however, the number of solutions explored and the associated 

execution time increase exponentially as the number of variables increases.  
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Another method, proposed by Sung and Kum [92] searches for the first 

solution that satisfies a given performance requirement or an error criterion. These 

method starts with an initial guess for the system configuration based on uni-variable 

simulations. The wordlength of each variable, as provided by this initial guess, is then 

sequentially incremented by one until a configuration that meets the error criterion is 

found. Although, this method is more efficient than the exhaustive search, finding the 

globally optimal configuration is not guaranteed. 

A sequential search method [84, 93] that takes into account the performance 

sensitivity to determine the direction of the search is another way to approach this 

problem. This method starts with an initial guess based on uni-variable simulations; 

however, the further search direction is determined by the sensitivity of the 

performance to each variable. This sensitivity is estimated by calculating the gradient 

of the system performance with respect to all the variables and the search progresses 

in the direction of the variable (that is wordlength of that variable is incremented) that 

offers most improvement. It is also possible to consider hardware cost sensitivity 

instead of the performance sensitivity in this search method. 

2.5.3.   Multiobjective Optimization 

One of the limitations of the optimization formulation described above is that 

search methods based on this formulation are limited to finding a single solution that 

satisfies a design objective. Most real-world problems (including the wordlength 

optimization problem), however, can have several objectives (that generally conflict 

with each other) that need to be achieved at the same time. For example, in the case 

of finite-precision implementations, hardware resource requirements and the 
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implementation accuracy are two such conflicting objectives. Because of the 

conflicting nature of the involved objectives, multiobjective optimization problems do 

not normally have a single optimal solution and even necessitate a new definition of 

optimality. 

The most commonly adopted notion in multiobjective optimization problems 

is that of Pareto optimality. A vector of decision variables *x ∈F is Pareto optimal if 

there does not exist another solution x ∈F such that fi(x) ≤ fi(x∗), for all i, and 

fj(x) < fj(x∗), for at least one j, where fi  represents an objective function defined for 

every  x∈F . This definition of optimality almost always provides a set of solutions 

called the Pareto-optimal set. The set of vectors x∗ corresponding to the solutions in 

the Pareto-optimal set are called non-dominated solutions. This concept is pictorially 

illustrated in Figure 2.5. 

Formulating the wordlength optimization as a multiobjective problem has 

merit because it allows finding a set of Pareto-optimal configurations representing 

strategically-chosen tradeoffs among the various objectives. This allows a designer to 

choose an efficient configuration that satisfies given design constraints and provides 

ease and flexibility in modifying the design configuration as the constraints change. 

 
Figure 2.5: Pareto front in the context of multiobjective optimization. 
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For example, Leban and Tasic [94] used error, delay, and area as objectives. Han and 

Evans [91] performed optimization of area and error through linear aggregation, 

while Givargis et al. [95] considered power and execution performance trade-off for 

system-on-chip architecture through series of monobjective optimizations. There are 

also some heuristic techniques that take into account tradeoffs between hardware cost 

and implementation error and enable automatic conversion from floating-point to 

fixed-point representations [96]. In this dissertation work, we develop a framework 

for multiobjective optimization of finite precision implementations. This framework 

has been developed for optimization of the FPGA-based image registration and has 

been validated through post-synthesis evaluation. 

2.6.   Related Work 

2.6.1.   Real-Time Image Preprocessing 

Image preprocessing plays a crucial role in image understanding based 

systems, video processing, and in the medical imaging domain. Over last two decades 

much work was done on implementing image processing components in hardware. A 

detailed description of various single instruction multiple data (SIMD) and multiple 

instruction multiple data (MIMD) architectures can be found in [97, 98]. With 

availability of variety of computing platforms such as digital signal processors 

(DSPs), graphics processing units (GPUs), and FPGAs some of the image processing 

algorithms have also been mapped to these platforms for achieving superior 

performance. Most reported techniques, however, focus on 1D or 2D realizations and 

do not adequately address the need for accelerating these operations in 3D. Moreover, 
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because of the larger 3D neighborhoods (N3 as opposed to N or N2), data input 

requirements are increased and the performance achieved for 1D or 2D realizations 

may not translate to their corresponding 3D implementations. This additional 

complexity, coupled with the sheer size of 3D images (typically 2–5 million voxels), 

makes achieving real-time performance extremely challenging. Consequently, only a 

few designs for high-speed implementation of 3D image preprocessing techniques 

have been reported in the literature. We focus on implementations of anisotropic 

diffusion and median filtering and summarize those efforts here.  

Rumph et al. [10] implemented the 2D nonlinear diffusion process on a 

graphics hardware. The primary focus of this work was to achieve acceleration 

through parallelism and better memory bandwidth. Gijbels et al. [8], on the other 

hand, have reported a VLSI architecture based on linear array technique for 

implementation of iterative diffusion process. A similar VLSI-based approach was 

also reported recently for 1D nonlinear signal processing [11]. Accelerated 

implementations of 3D anisotropic diffusion filtering using computing clusters have 

also been reported. Bruhn et al. [99, 100] have reported an approach using a 256-node 

Myrinet  cluster, whereas Tabik et al. [101] have explored multiple parallel 

programming paradigms built on message passing and shared-memory architectures. 

Both these techniques have yielded near-linear speedups. 

Accelerated implementations of median filters based on searching, sorting, 

and bit-level methods have previously been reported in the literature. We particularly 

focus on bit-level methods because they are well suited to finding the median of large 

3D neighborhoods in hardware. Bit-level methods for median filtering can be 
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classified into the bit-serial sorting, bit-serial searching, threshold decomposition, and 

majority voting–based methods. Bit-serial sorting is performed using sorting 

networks such as the odd–even exchange network and reduced bubble sort network 

[102, 103]. Bit-serial searching [104], also called the radix method, involves a bit-by-

bit search to find the median. The threshold decomposition method [105] provides a 

modular and parallel design, but the hardware requirements grow exponentially with 

the number of bits used to represent images. Majority voting methods are based on 

determining bit-wise majority starting from the most significant bits (MSBs). Lee and 

Jen [9, 106] have described a novel binary majority gate that can determine the 

majority of binary input signals using an inverter circuit. A compact majority voting 

circuit using an adder array to count the number of 1s and a threshold comparator to 

determine an individual bit of the median is described by Benkrid et al.[7]. Variations 

on this approach have been described in the literature [107-109]. Systolic array 

architectures for bit-level sorting networks have been shown to improve concurrency 

of the bit-serial sorting designs [102, 103, 110-113]. The median filter design 

presented in this work is a combination and 3D extension of bit-serial searching and 

majority voting approaches. 

In this dissertation work, we introduce a novel FPGA-based architecture of 3D 

anisotropic diffusion filtering. In addition, this work develops an architecture for 3D 

median filtering kernel, which is faster than existing solutions and is capable of 

supporting higher 3D kernel sizes. Our solution is compact, easily deployable and is 

capable of processing the intraprocedural images faster than their acquisition speeds. 
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2.6.2.   Acceleration of Image Registration 

Intensity-based automatic image registration is a key component of modern 

medical imaging. Fast and accurate image registration can enhance many diagnostic 

and interventional applications. However, this task is also computationally intensive 

due to dimensionality of the images involved and memory-bound nature of the 

operation. It is this aspect that has limited the integration of intensity-based image 

registration (and that of deformable nature, in particular) in clinical applications. To 

address this aspect many researches have independently attempted to accelerate 

intensity-based image registration. Classification of these acceleration attempts has 

been reported by Plishker et al. [114]. We briefly summarize these attempts here. 

2.6.2.1.   Multi-Processor and Supercomputer–Based Approaches 

Image registration problem lends itself well for acceleration through parallel 

implementation. Inherent data-parallel nature (same operations to be performed on 

every voxel of an image) of these algorithms makes them readily amenable to 

parallelization. The majority of earlier reported attempts to accelerate intensity-based 

deformable registration have primarily employed a multiprocessor approach. Ourselin 

et al. [115] reported a parallel implementation of affine registration using a 10-

processor cluster that provided a 6-fold speedup. Stefanescu et al. [116] implemented 

Demons algorithm [44] on a similar cluster of 15 2-GHz Pentium CPUs and achieved 

an 11-fold speedup for non-rigid image registration between a pair of  magnetic 

resonance images. Similarly, Ino et al. [117] have reported a fast implementation of 

MI-based deformable registration using a 128-processor cluster. Another acceleration 

approach has been to use supercomputers, which offer a high degree of parallelism. 
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Warfield et al. [118] performed deformable registration on a Sun supercomputer in 15 

sec. However, interactive segmentation of the brain surface in the intraprocedural MR 

images took several minutes. Moreover, this implementation was specific to brain 

MR images because of high surface correspondence. Rohlfing et al. [57] have 

reported a speedup of 40 for a splines-based deformable registration algorithm using a 

64-processor shared-memory supercomputer (SGI Origin 3800). Although these 

solutions delivered high performance by virtue of parallelization, the speedup 

achieved per processor was less than unity. Moreover, these solutions may not be cost 

effective, and because of their size, are unlikely to be suitable for clinical deployment. 

2.6.2.2.   Graphics Processor (GPU)–based Approaches 

The recent emergence of powerful graphics processors (GPUs) has enabled a 

new direction for accelerating computationally intensive applications. Modern GPUs 

offer an array of processing elements that can offer customized data parallel 

processing. Many high level languages, such as Cg, Brook, CUDA, are emerging to 

aid the task of programming GPUs. This has enabled the use of GPUs for many other 

applications such as image registration beyond graphics domain. Strzodka et al. [119] 

reported the first implementation of image registration using the graphics hardware. 

This implementation accelerated a gradient flow–based image registration using 

graphics hardware. However, it was limited to registration of 2D images only and 

offered only limited speedup. Kohn et al. [120] have reported another implementation 

of gradient-flow based image registration that supports 3D images. Although, this 

implementation offered moderate speedup for rigid registration, the performance 

achieved for 3D deformable image registration was poor. Plishker et al. [121] have 
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employed GPUs for applying transformations to images during rigid registration. This 

implementation achieved 3-fold improvement in execution time over a CPU-based 

implementation. More recently, Vetter et al. [122] have reported acceleration of MI-

based multimodal registration using graphics hardware. Although, this 

implementation achieved accuracy comparable to that achieved using a software 

implementation, the speedup achieved was only about 5-fold. In summary, these 

reported solutions demonstrate how this promising platform can be utilized for certain 

image registration techniques. However, the architecture of GPUs along with their 

lack of efficient scatter operation is not optimally suitable for operations such as 

accumulation which is a prerequisite (accumulation of the mutual histogram [MH]) 

for calculation of MI. As a result, GPU-based solutions, despite being compact and 

low-cost, may not provide substantial acceleration for calculation of MI, which is the 

most versatile and robust image similarity measure. 

2.6.2.3.   Other Approaches 

Emerging multi-core processors are able to accelerate medical imaging 

applications by exploiting the parallelism available in their algorithms. Ohara et al. 

[123] have implemented an MI-based 3D rigid registration algorithm on the Cell 

Broadband Engine (CBE) processor, which has nine processor cores on a chip and 

has a 4-way SIMD unit for each core. By exploiting the highly parallel architecture 

and its high memory bandwidth, this implementation with two CBE processors can 

compute MI around 11-times faster than a sequential implementation. However, this 

implementation does not support deformable image registration. 
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General purpose hardware languages and compilers for transforming high-

level descriptions into hardware are becoming increasingly popular. Streams-C, 

Handel-C, Mitrion-C are examples of such tools. These tools allow direct translation 

of code developed using high-level languages such as C, Java, or Matlab into efficient 

hardware implementations. Although, these techniques have provided considerable 

speedup for applications involving matrix operations, linear algebra, and search, their 

performance in complex applications requiring architectural insights has been limited. 

For example, Jiang et al. [124] have reported a method for acceleration of splines-

based deformable image registration using Handel-C. The converted design, when 

implemented using a Xilinx device, could achieve speedup a of only 3.2 when 

compared with an equivalent software implementation.  

In comparison with the techniques mentioned above, this dissertation work 

presents a novel FPGA-based architecture for high-speed implementation of MI-

based deformable 3D image registration. This architecture is capable of accelerating 

MI calculation by a factor of 40 using a single computing element. Consequently, the 

execution time for deformable image registration is reduced from hours to a few 

minutes. Furthermore, this implementation is accurate, automatic, compact, and 

completely retrospective. 

2.6.3.   Optimization of Finite Precision Implementations 

With the need for real-time performance in signal processing applications an 

increasing trend is to accelerate computationally intensive algorithms using custom 

hardware implementation. The architectures presented in this dissertation, for 

accelerated implementation of image preprocessing and image registration, fall into 
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the same category. A critical step in going to a custom hardware implementation is 

converting floating-point implementations to fixed-point realizations for performance 

reasons. This conversion process is an inherently multidimensional problem, as 

several conflicting objectives, such as area and error, have to be simultaneously 

minimized. By systematically deriving efficient tradeoff configurations, one can not 

only reduce the design time [125] but can also enable automated design synthesis [96, 

126]. Furthermore, these tradeoff configurations will allow designers to identify 

optimized, high quality designs for reconfigurable computing applications. The work 

presented in this dissertation develops a framework for optimizing tradeoff relations 

between hardware cost and implementation error in the context of FPGA-based image 

registration. 

Earlier approaches to optimizing wordlengths used analytical approaches for 

range and error estimation [86-90]. Some of these have used the error propagation 

method (e.g., see [89]), whereas others have employed models of worst-case error 

[87, 90]. Although, these approaches are faster and do not require simulation, 

formulating analytical models for complex objective functions, such as MI, is 

difficult. Statistical approaches have also been employed for optimizing wordlengths 

[127, 128]. These methods employ range and error monitoring for identifying 

appropriate wordlengths. These techniques do not require range or error models. 

However, they often need long execution times and are less accurate in determining 

effective wordlengths. 

Some published methods search for optimum wordlengths using error or cost 

sensitivity information. These approaches are based on search algorithms such as 
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“Local,” “Preplanned,” and “Max-1” search [84, 93]. However, for a given design 

scenario, these methods are limited to finding a single feasible solution, as opposed to 

a multiobjective tradeoff curve. In contrast, the techniques we present in this 

dissertation are capable of deriving efficient tradeoff curves across multiple objective 

functions.  

Other heuristic techniques that take into account tradeoffs between hardware 

cost and implementation error and enable automatic conversion from floating-point to 

fixed-point representations are limited to software implementations only [96]. Also, 

some of the methods based on heuristics do not support different degrees of fractional 

precision for different internal variables [87].  In contrast, the framework presented in 

this dissertation allows multiple fractional precisions, supports a variety of search 

methods, and thereby captures more comprehensively the complexity of the 

underlying multiobjective optimization problem. 

Other approaches to solve this multiobjective optimization problem have 

employed weighted combinations of multiple objectives and have reduced the 

problem to mono-objective optimization [91]. This approach, however, is prone to 

finding suboptimal solutions when the search space is nonconvex [129]. Some 

methods have also attempted to model this problem as a sequence of multiple mono-

objective optimizations [95]. The underlying assumption in this approximation, 

however, is that the design parameters are completely independent, which is rarely 

the case in complex systems. Modeling this problem as an integer linear 

programming formulation has also been shown to be effective [86]. But this approach 
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is limited to cases in which the objective functions can be represented or 

approximated as linear functions of design variables.  

Evolutionary algorithms (EAs) have been shown to be effective in solving 

various kinds of multiobjective optimization problems [130, 131] but have not been 

extensively applied to finding optimal wordlength configurations. An exception is the 

work of [94], which employs mono-objective EAs. In contrast, our work 

demonstrates the applicability of EA-based search for finding superior Pareto-

optimized solutions in an efficient manner, even in the presence of a non-linear 

objective function, such as MI. Moreover, our optimization framework supports 

multiple search algorithms and objective function models; and can easily be extended 

to a wide range of other signal processing applications. This optimization framework, 

which is developed and validated in the context of FPGA-based 3D image 

registration, is described in detail in Chapter 5.  
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Chapter 3:   Real-time 3D Image Processing 

This chapter presents an FPGA-based architecture for real-time 

implementation of 3D image pre-processing techniques commonly employed in IGI. 

First, we outline the filtering algorithms that are being accelerated in this work. Next, 

we present the architecture for their real-time implementation. Finally, we describe 

the realization of this architecture, analyze the effects of finite precision 

implementation, and compare the performance of this implementation with earlier 

reported efforts. 

3.1.   Motivation 

Real-time and high-quality three-dimensional (3D) intraprocedural 

visualization is a critical need for IGIs. Recent advances in computer and transducer 

technology have made high-speed 3D imaging possible with high resolution and 

acquisition speed. Notably, low-dose computed tomography (CT) and 3D ultrasound 

have emerged as the preferred volumetric imaging modalities during many image-

guided procedures [18, 132-135]. The advent of multislice CT allows high-resolution 

and high-frame-rate volumetric imaging of the operative field. In the continuous 

volumetric mode, multislice CT is capable of acquiring images with 256 × 256 × 64 

dimensions and resolutions of 0.625 mm, 8 times per second. Similarly, advances in 

transducer technology have led to improvements in the field of 3D ultrasound 

imaging, which can now acquire images with 128 × 128 × 128 dimensions and 

resolution of 1 mm, 20 times per second. These intraprocedural images, acquired 

during the procedure for navigation, represent the most current anatomical 
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information but often suffer from poor signal-to-noise ratio. To achieve desired 

accuracy for IGIs, these intraprocedural 3D images, therefore, must be preprocessed 

and enhanced before they can be used for advanced image processing operations such 

as segmentation, registration, and visualization. Toward this end, anisotropic 

diffusion filtering and median filtering have been shown to be effective in enhancing 

and improving the visual quality of these images. It is important to note that the 

interactive nature of IGIs necessitates equivalent image processing speed so that these 

procedures can be performed in a streamlined manner without any additional 

processing latency. 

The aforementioned filtering techniques are based on neighborhood (window) 

operations. For volumetric (3D) images, these neighborhoods are considerably larger 

(N3), thus increasing the complexity of filtering operations. This complexity, coupled 

with the sheer size of intraprocedural volumetric images, results in execution times of 

several seconds for software implementations running on general-purpose 

workstations (Table 3.1). This processing speed is only a fraction of the acquisition 

speed of the intraprocedural images and is clearly unacceptable to meet the real-time 

Table 3.1: Software execution time of 3D anisotropic diffusion filtering and 3D 
median filtering of 8-bit images for common kernel sizes (N). 

Filter kernel Kernel 
size (N) 

Image size 
(voxels) 

Execution 
time 

(seconds) 

Voxel  
processing 

rate 
(MHz) 

128 × 128 × 128 2.28 0.92 3D anisotropic 
diffusion filter 7 

256 × 256 × 64 4.58 0.92 
128 × 128 × 128 0.85 2.46 3 
256 × 256 × 64 1.59 2.63 
128 × 128 × 128 3.01 0.7 

3D median 
filter 

5 
256 × 256 × 64 5.67 0.74 
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requirements of IGIs. Previously reported techniques for accelerated implementation 

of these filtering operations primarily focused on one-dimensional (1D) or two-

dimensional (2D) filters [7-11], with only a few implementations attempting to 

accelerate these operations in 3D.  

This dissertation presents an FPGA–based architecture for real-time 

processing of intraprocedural 3D images. Earlier attempts to accelerate 3D 

anisotropic diffusion filtering were targeted toward multiprocessor clusters [100, 

101]. Despite the near-linear speedup offered by these techniques, the need to employ 

up to 256 processors to achieve real-time performance makes them less suitable for 

clinical deployment. In this dissertation, we introduce a novel FPGA-based 

implementation of 3D anisotropic diffusion filtering. The developed solution is 

compact, easily deployable, and capable of processing the intraprocedural images 

faster than acquisition speeds. Some researchers have recently reported high-speed 

implementations of 3D median filtering using graphics processing units [136] and 

FPGAs [137]. This work presents an FPGA-based 3D median filtering module that is 

faster than currently existing solutions and supports higher 3D kernel sizes (3,5,7). 

The designed architecture can achieve a processing rate close to 200 Megavoxels per 

second for both the 3D anisotropic diffusion and 3D median filtering, which is 

equivalent to about 50 processing iterations or operations per second for images of 

size 256 × 256 × 64. Consequently, this design is capable of meeting the real-time 

data processing need of most IGIs. 
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3.2.   Filtering Algorithms 

This section briefly describes the 3D image preprocessing algorithms that are 

being accelerated in the current work. The architecture for their real-time 

implementation is presented in the subsequent section. 

3.2.1.   Anisotropic Diffusion Filtering 

As described earlier, anisotropic diffusion filtering is an iterative process 

which progressively smoothes an image ( ( , )I v t ) while maintaining the significant 

edges. This process can be summarized by the following equation: 

 ( ) ( )( ), , ,I div c v t I v t
t

∂
∂

= ∇i  (3.1) 

where c is the diffusion coefficient. Since the intraprocedural images typically have 

poor SNR, the current implementation employs Gaussian-filtered version of the 

image to estimate the gradient values, as proposed by Whitaker and Pizer [82]. The 

corresponding discrete expression, which is implemented in our design, for this 

filtering operation (shown for a 2D case for simplicity) is: 
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where GI  is the Gaussian-filtered version of the image, c is the discrete realization of 

the chosen diffusion function, and the time step tΔ  controls the rate and stability of 

the diffusion process. Gerig et al. [138] calculated maximum values for tΔ  for 

different neighborhood structures. For a 3D realization, diffusion is calculated in a 3D 



 51 
 

space with 6-connected neighborhood, and that configuration corresponds to a 

maximum tΔ  value of 1/7, which is implemented by the presented design. 

3.2.2.   Median Filtering 

The 3D median filter design presented in this dissertation is based on a 

combination of bit-serial searching and majority voting approaches. This section 

describes this median finding scheme by means of an example. The algorithm is 

executed in b  (for b-bit images) steps, where each step finds 1 bit of the resulting 

median value starting from the most significant to the least significant bit. 

Specifically, at the j th step, the majority bit (‘0’ or ‘1’) amongst the j th significant 

bits of all the input elements in the neighborhood is calculated and represents the j th 

bit of the median of the neighborhood ( 0 1j b≤ ≤ − ).  

At a given step, when a bit of a input element differs from the majority bit 

calculated at that step, the bit value for that element is fixed in subsequent steps and is 

considered to be masked with its current bit value. Bits already masked in a previous 

step are not altered in subsequent steps (i.e., if the j th bit of input value n , 

represented using b bits as: 1 2 0b bn n n− − , is masked, then the algorithm considers 

,  i jn n i j= ∀ < ). The process of finding the median using this approach is illustrated 

in Figure 3.1. In this example, for simplicity, we consider a small input neighborhood 

consisting of only five elements with four bits per voxel ( 4b = ); therefore, only four 

processing steps are required. Processing starts at the MSB position of the data 

elements. The bits of the data elements being considered for calculating the majority 

bit at any step are indicated in gray in the figure. The masking operation that takes 
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place at the end of every step is indicated by arrows. The masked bits are shown to be 

crossed out. One bit of the median is determined at every processing stage starting 

from the MSB position, and the results from all the stages are combined to produce 

the final median value. 

3.3.   Architecture 

We present an FPGA-based architecture that is capable of performing 3D 

anisotropic diffusion and 3D median filtering of intraprocedural images faster than 

their acquisition speed. A top-level block diagram of this architecture is shown in 

Figure 3.2. Input and output images are stored in two independent external memory 

banks, and the memory controller, input and output image buffers, and the filtering 

modules are implemented using an FPGA. The presented architecture supports two 

filtering modules, one for 3D anisotropic diffusion filtering and the other for 3D 

median filtering. The filtering module can be selected and reconfigured statically, 

whereas the memory controller and the image buffers are designed to be common to 

 
Figure 3.1: A median filtering example using majority voting technique. 
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all supported filtering modules. The role of input and output memory banks can be 

switched at runtime, thus enabling execution of consecutive filtering operations (or 

iterations) without additional data transfers between the memory banks. 

In order to achieve real-time performance, it is imperative to aim at a 

throughput of one processed (output) image voxel per clock cycle. Because both 

anisotropic diffusion and median filtering involve neighborhood operations, meeting 

this throughput requirement is challenging, given that an entire neighborhood ( 3N  

voxels, where N is the filter kernel size) must be accessed in order to compute one 

output voxel. Moreover, adjoining neighborhoods must be continuously fetched from 

the input memory bank as next output voxels are computed sequentially. These 

neighborhoods are read by the memory controller from the input image memory bank 

and are stored into the input buffer in an N N N× ×  arrangement. 

The filtering module receives the neighborhood to be processed in a pipelined 

fashion: N N×  new voxels every clock cycle. Once the filtering module pipeline is 

full (after N clock cycles), the filtering module computes one output voxel per clock 

cycle. The sequential input neighborhoods are continuously processed, and the 

resulting output voxels are stored into the output buffer. The memory controller then 

 
Figure 3.2: Block diagram of the FPGA-based real-time 3D image preprocessing 
system. 
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transfers these resultant voxels to the output image memory in a burst of one image 

row at a time. The memory controller uses a brick-caching scheme, specifically 

devised to meet the high input data rate required by this task. This brick-caching 

scheme takes advantage of the fact that adjacent neighborhoods share 

( 1)N N N× × − voxels and only N N×  new voxels need to be supplied every clock 

cycle for continuous neighborhood processing. The implementation of this scheme is 

described in the following sections. For the remainder of this chapter, we use the 

following notations: image dimensions are represented as x y zN N N× × . The 

parameter b indicates the number of bits used to represent the voxel intensity in the 

image, and N  is the filter kernel size with corresponding neighborhood size of 3N . 

.Input and output images are arranged in the memory banks along the z y x− −  order, 

with rows of the memory aligned with the z direction of the image. The output voxels 

are also calculated in z y x− − order. 

3.3.1.   Memory Controller and Brick-caching Scheme 

Memory organization and neighborhood access techniques are often the 

limiting factors in 3D image processing systems [139-142]. However, most practical 

filtering techniques employ standard neighborhood operations that require block-

 
Figure 3.3: Typical voxel access pattern for neighborhood operations–based image 
processing. 



 55 
 

sequential voxel access, as shown in Figure 3.3. The presented FPGA-based 

architecture uses a raster scan order distribution of voxels in the image memory, 

along with a brick-caching scheme to take advantage of this block-sequential access 

pattern. For every output voxel calculation, an entire neighborhood of N N N× ×  

voxels must be accessed. This neighborhood cannot be retrieved in a single burst 

access of a sequentially organized image memory. Moreover, in a pipelined 

implementation, data must be continuously fetched for successive neighborhood 

operations. To sustain the high data rate required to achieve real-time processing 

speeds, this architecture employs a brick-caching scheme that loads the image into the 

input buffer that stores an ( 1)N N× +  array of image rows (i.e., it stores up to 

( 1) zN N N× + ×  voxels). This input buffer is implemented using high-speed and dual-

ported memory blocks internal to the FPGA. The input buffer can be accessed in a 

single clock cycle, which enables fast updates and reads. Figure 3.4 shows the block 

diagram of the input image memory and the input buffer, which consists of an 

( 1)N N× +  array of internal memory blocks, each holding zN voxel intensity values. 

We use the following terminology: a brick is an zN N N× × block of image intensity 

values stored in the internal buffer. A brick plane is an 1 zN N× × section of a brick. A 

brick slice is an 1N N× ×  section of a brick. A brick row (or simply row) is a 

1 1 zN× × section of a brick. Each row corresponds to and contains one input image 

row containing zN voxels. The pictorial representation of this terminology is shown 

in Figure 3.5. Bricks are loaded into the buffer one brick row at a time for an 

available brick plane and are then fed to the filtering pipeline one brick slice at a time. 
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The input buffer, therefore, can store a whole brick plus an extra brick plane. The 

brick-caching operation is described below.  

The memory controller fills up the input buffer row by row. Each row 

contains Nz voxels, and thus transfer of each row takes WNtt zlatRow /+=  clock cycles, 

where latt is the number of clock cycles necessary to start a burst memory transfer and 

W  is the effective data bus width in terms of number of voxels (e.g., double-data-rate 

[DDR] dynamic random access memory [DRAM] will offer twice the effective bus 

width of single-data-rate DRAM with a similar configuration). After the first row is 

cached in, the controller starts caching the row next to it in the x direction. A 

complete brick plane ( N image rows, 1 zN N× × voxels) can be loaded in 

Plane Rowt N t= ⋅ clock cycles. Associated with every brick plane is a ready flag. This 

flag serves a dual purpose; when ‘1’, it indicates the availability of data for that 

particular brick plane, and, when ‘0’, it indicates that the brick plane is empty and 

available for caching image voxels. After one brick plane is loaded into the input 

buffer, the memory controller sets the corresponding ready flag and starts loading the 

 
Figure 3.4: Block diagram showing the input image memory and the input buffer 
configuration. 
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next brick plane (along the y direction). Once a complete zN N N× × brick is available 

in the input buffer, it is fed into the filtering module pipeline one brick slice ( N N×  

voxels) at a time. 

The filtering module pipeline operates on one N N N× ×  neighborhood at a 

time and is fed with a new brick slice every clock cycle. Loading an entire 

zN N N× × brick into the filtering module pipeline thus takes Nz clock cycles. While 

this operation is in progress, the memory controller loads the next brick plane (along 

the y direction) into the buffer plane that is not being used for processing (indicated 

by the ready flag), which requires tPlane clock cycles. After processing of all the 

neighborhoods in the zN N N× ×  brick is complete, the processing window shifts 

along the y  dimension of the image, and the processing of the new neighborhoods 

begins. Simultaneously, the ready flag corresponding to the brick plane that is no 

longer used is set to ‘0’. This available brick plane in the input buffer is then used for 

caching the next image rows (along y direction). In this fashion all brick planes in the 

input buffer are cyclically used for brick caching during processing. These steps 

 
Figure 3.5: Pictorial representation of the notation used in the brick-caching 
scheme. 
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continue until the processing window reaches the end of the column (i.e., until y = 

Ny). At this point, the processing window moves along the x direction. To accomplish 

this, data in the internal buffers are invalidated, and the complete zN N N× ×  brick in 

the next column is cached, which requires a pipeline stall. After the initial brick in the 

new x coordinates is loaded, the processing continues as described earlier. The 

processing of the entire 3D image is completed accordingly. For continuous pipelined 

operation with minimum stalls, the memory controller must provide the next brick 

plane before the processing of the previous brick is completed. Therefore, the 

relationship expressed in the following equation must be met:  

 ( )/ ,lat z mem z procN t N W T N T⋅ + ⋅ ≤ ⋅  (3.3) 

where Tmem is the clock period of the external memory clock and Tproc is the clock 

period of the internal filtering pipeline. The left-hand side of Eq. (3.3)  refers to the 

total time required to load a new brick plane. The right-hand side refers to the total 

time required to process a whole brick. Assuming that efficient burst accesses 

(supported by most modern dynamic memories) are being used (which implies: 

/lat zt N W ), the following relationship must be maintained to minimize pipeline 

stalls: 

 .mem procN T W T⋅ ≤ ⋅  (3.4) 

3.3.2.   3D Anisotropic Diffusion Filtering 

This architecture supports 3D anisotropic diffusion filtering by pipelined 

implementation of the 3D extension of the formulation shown in Eq. (3.2). As 

indicated by that formulation, we use a Gaussian-filtered version of the image for 
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improved diffusion coefficient estimation. Our design implements this Gaussian 

filtering at runtime using an embedded 3D Gaussian filtering module. Figure 3.6 

shows a top level block diagram of the 3D anisotropic diffusion filtering module. This 

filtering pipeline operates on N N N× × voxel neighborhoods. On each clock cycle, 

the input data buffer feeds an N N×  voxel neighborhood (brick) slice into the 

pipeline. The center voxel intensity value is passed to the delay element for 

accumulation at the end of the pipeline per Eq. (3.2). The 3 × 3 voxel neighborhood 

located at the center of the incoming N N× neighborhood is passed to the image 

gradient calculator, which calculates the image gradients with respect to each of the 

6-connected neighbors of the center voxel. The embedded Gaussian filtering module 

calculates, in parallel, the Gaussian-filtered values for each of the six-connected 

neighbors and passes them to the diffusion coefficient calculator, which calculates the 

diffusion coefficients 0..5c  corresponding to each of the input gradients. Taking 

advantage of the parallelism native to FPGAs, these operations are executed in 

parallel, and, as a result, this filtering module can calculate the output at the rate of 

one voxel per clock cycle. The resulting voxel intensity values are fed into the output 

buffer, and the memory controller then stores them in the output memory bank.  

3.3.2.1.   Embedded Gaussian Filtering Module 

Equation (3.5) shows the formula to calculate the coefficients of a 3D 

Gaussian filter kernel, where σ  is the standard deviation of the Gaussian function 

and d is the Euclidean distance between the desired coefficient location and the kernel 

center. For a chosenσ , the coefficient values depend exclusively on the Euclidean 
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distances from the kernel center; thus, the Gaussian filter kernel exhibits symmetries 

with respect to its center (i.e. it is radially symmetric).  

 ( )
2

2exp
2d
dG σ
σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (3.5) 

Our architecture takes advantage of these symmetries to reduce the number of 

multipliers needed for implementing the 3D Gaussian kernel to ( 1) ( 2) 6k k k× + × +  

from 3( 2)N − ; where N  is the size of anisotropic diffusion filtering kernel, the 

corresponding size of the embedded Gaussian filtering kernel is ( 2)N − , and 

( 1) 2k N= − . For example, a 5 5 5× ×  embedded Gaussian kernel that arises in 

anisotropic diffusion filtering with 7N =  can be implemented using only 10 

multipliers (as opposed to 125) as we reported previously [143]. For this kernel, each 

individual slice (5 5×  plane of the kernel) has six isodistance regions and the whole 

3D kernel has 10. During filtering operation, all voxels that are equidistant from the 

kernel center are multiplied against the same Gaussian coefficient. The intensities 

corresponding to these voxels in the same isodistance region can, therefore, be pre-

added before being multiplied against the Gaussian coefficients. Because a 5×5×5 

 
Figure 3.6: Top-level block diagram of 3D anisotropic diffusion filtering. This 
diagram indicates paths that are executed in parallel. 



 61 
 

Gaussian kernel contains 10 isodistance regions, the minimum number of multipliers 

necessary to implement this filter kernel is, therefore, 10.  

A block diagram of the Gaussian filter bank is shown in Figure 3.7. On each 

clock cycle, the input buffer feeds an N N× voxel neighborhood into the bank. This 

neighborhood is decomposed into five ( 2) ( 2)N N− × −  neighborhoods by the input 

demux, and these neighborhoods are then passed to five embedded 3D Gaussian 

filters. Figure 3.8 shows a block diagram of an embedded 3D Gaussian filter. The 

pre-adder accumulates values corresponding to the isodistance groups in the incoming 

( 2) ( 2)N N− × −  neighborhood, thus compressing the neighborhood based on the 

intraneighborhood plane isodistance criterion (e.g., each single 5 5× slice of 

a 35 Gaussian neighborhood has 6 isodistance regions). These pre-added values are 

then passed to ( 2)N −  pipeline buffers, which make values corresponding to the 

entire 3( 2)N −  neighborhood available in parallel. The sorter–accumulator 

aggregates these values corresponding to the isodistance groups between the slices, 

 
Figure 3.7: Block diagram of the embedded Gaussian filter bank (for N = 7, 
corresponding Gaussian kernel size is 5). 
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compressing them further using the isodistance criterion for the entire neighborhood 

(e.g., 10 values that correspond to the 10 unique coefficients in a 5×5×5 Gaussian 

neighborhood). These values are passed to the multiplier array, where they are 

multiplied against their corresponding Gaussian coefficients. The adder tree then adds 

the resulting values and outputs the result for the current 3D neighborhood. The 

results for the subsequent neighborhoods are produced continuously as a result of 

pipelined implementation of the operation. The Gaussian coefficients are 

precomputed for a given value ofσ and are stored in internal registers using fixed-

point representation. The effect of this finite precision representation is analyzed in 

the flowing section. 

The results from the five individual Gaussian filters correspond to a cross-

shaped region of a neighborhood slice. In order to operate on the 3D six-connected 

neighborhood, these results are passed to pipelined registers composed of two cross 

buffers and the center buffer. The cross buffers store all five values in a neighborhood 

slice, whereas the center buffer stores only the center value. As a result, the entire six-

connected neighborhood is available between these buffers. The buffers then send the 

Gaussian-filtered, six-connected 3D voxel neighborhood to the subtractor array, 

 
Figure 3.8: Pipelined implementation of an individual Gaussian filter element 
(Gaussian kernel size = 5). 
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which calculates the six corresponding gradient values and passes them to the 

diffusion coefficient calculator.  

3.3.2.2.   Diffusion Coefficient Calculation 

As noted previously, gradients calculated after Gaussian filtering are used to 

estimate the diffusion coefficients. For a b -bit image, the absolute value of the 

gradient is limited to the range 0  and 2 1b − . Taking advantage of this fact the desired 

diffusion function is discretized in 2b steps and implemented using a lookup table 

(LUT). The use of a LUT allows an efficient implementation of any diffusion 

function. It must be noted that, because the dynamic range of all diffusion functions is 

limited to [0,1] , there is no significant loss in precision by a using a fixed-point 

representation. The effect of this finite precision representation is further analyzed in 

the following section.  

3.3.2.3.   Image Gradient and Result Calculation 

Image gradient calculation is performed by an array of six parallel subtractors. 

These subtractors calculate the difference between the intensity of the voxel located 

in the center of the kernel against its six-connected neighbors. These values are then 

multiplied against their corresponding diffusion coefficients (supplied by the 

diffusion coefficient calculator) using an array of six parallel multipliers. The 

resulting filtered intensity is then obtained by adding the six results from the 

multipliers to the original center voxel intensity. After rounding and truncation, this 

result is then sent to the output buffer and is then further saved into output memory 

bank. 
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3.3.3.   Median Filtering 

The 3D median filtering design presented in this work is an extension of 

majority finding–based implementation proposed by Benkrid et al.[7]. That design 

was reported for a 2D realization and computed only one bit of the median value per 

clock cycle. All bits of the median value were obtained using a feedback loop and 

hence for b -bit images, this approach required b clock cycles to compute the 

resulting median value. The implementation presented in this dissertation extends that 

design to 3D and unrolls the feedback loop by using multiple processing stages. 

Moreover, our implementation exploits the regularity of this median finding 

algorithm with a systolic array architecture that allows a pipelined implementation 

and, therefore, can achieve a throughput of one median value per clock cycle. Thus, 

our implementation can achieve a voxel processing speed b times higher than the 

previously reported architecture [7]. Our linear systolic array employs b identical 

processing stages for filtering a b-bit image. Figure 3.1 illustrates execution of this 

algorithm for a small example and can be used to gain further insights into its 

hardware implementation. Each processing stage of our systolic array implementation 

corresponds to one step of the algorithm execution. Starting from the MSB, each 

stage generates one bit of the resulting median value of the neighborhood being 

processed. We first describe the operation of an individual processing element and 

then explain the functioning of the entire linear systolic pipeline, which contains b-

processing elements. 
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3.3.3.1.   Processing Element 

The processing element is the atomic unit of the proposed linear systolic array 

design. A functional block diagram of the processing element at the jth stage is shown 

in Figure 3.9. The data inputs to this processing element are Data_Bitsj and 

Next_Data_Bitsj, the N3 bits used considered for majority calculation and the (j+1)th 

significant bits (from MSB) of the 3N  neighborhood elements, respectively. It must 

be noted that, although Next_Data_Bitsj are corresponding image intensity bits, 

Data_Bitsj are provided by the (j–1)th processing stage and may have been masked in 

the earlier stages. The accompanying input Mask_Bitsj is a binary flag that indicates 

the bits in Data_Bitsj that have been masked in the prior stages. A processing element 

performs two important tasks. First, it computes the majority bit within the N3 input 

data bits (Data_Bitsj); second, it performs the masking operation based on the 

majority bit calculated and outputs masked data bits (Data_Bitsj+1) and the 

corresponding binary flag (Mask_Bitsj+1) to be used in the next processing stage. The 

units that perform these two operations are described below. 

 
Figure 3.9: A single stage (processing element) of the linear systolic median 
filtering kernel. 
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Majority Finding Unit (MFU) 

The MFU consists of a bit-counting circuit that counts the number of 1s in the 

input bits that are considered for majority calculation (Data_Bitsj). This counting is 

performed using a bit adder tree customized for a chosen neighborhood size. This 

count is then compared against a threshold, which is programmed to be half of the 

number of elements contained in the neighborhood. The binary result of this 

comparison is the jth significant (from MSB) bit of the output median value. The 

highly compact, pipelined, and customized implementation of the MFU minimizes 

the combinational delay within the processing element.  

Mask Selection Unit (MSU) 

After the median bit has been calculated, the MSU performs the masking 

operation. It computes the mask bit for each bit of Data_Bitsj, based on whether it 

matches with the majority bit or not. In addition, it considers and preserves the bits 

that were masked in the prior stages (Mask_Bitsj). Thus, the mask calculated at the jth 

stage (Mask_Bitsj+1) is a combination of the mask bits from the prior stages and the 

mask calculated at the current stage. This masking operation is implemented using an 

exclusive OR (XOR) operation and two multiplexing operations for each data bit. The 

calculated mask (Mask_Bitsj+1) is then used to selectively generate Data_Bitsj+1 from 

the input Next_Data_Bitsj, while ensuring that values corresponding to the masked 

bits are preserved. Data_Bitsj+1 is then used in the next processing stage to calculate 

the (j+1)th significant bit of the median value.  
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3.3.3.2.   Linear Systolic Design for Median Finding 

The proposed linear systolic design is realized by cascading b processing 

elements for filtering b-bit images. On every clock cycle, a complete neighborhood 

containing N3 voxels, b-bits each, is fed to this linear systolic array. However, the 

processing stage (j+1) can not perform its operation until stage j finishes its 

processing and provides Data_Bitsj+1 and Mask_Bitsj+1. Similarly, stage j produces its 

output (jth significant bit of the median) one clock cycle earlier than the corresponding 

output by the stage (j+1). In order to compensate for these delay and processing 

latencies and to provide synchronized operation, additional line delay units and data 

shift registers must be inserted at the input and output of the systolic array. Figure 

3.10 shows a diagram of this configuration with b processing elements and required 

delay buffers. These delays are introduced for synchronization only, and it must be 

noted that as long as the input sequential neighborhoods are continuously supplied 

(new N3 voxels every clock cycle), the systolic array design is capable of computing 

one median result per clock cycle. This result is then sent to the output buffer and 

subsequently saved into the output memory bank by the memory controller. 

For correct operation, the Mask_Bits1 input of the first processing stage (stage 

1, MSB) is grounded (set to “0”), indicating that no bits from the input data 

(Data_Bits1) are masked. Also, in the final processing stage (stage b, LSB), 

Mask_bitsb+1 and Data_Bitsb+1 do not need to be calculated, because the next stage 

does not exist. Consequently, the MSU is not needed in the final stage, which 

contains only an MFU to compute the last median bit. In general, for large 3D 

neighborhoods, the speed of the MFU is the limiting factor of the systolic array 
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performance. In applications requiring high voxel throughput and large filtering 

kernels, the operation of the MFU can be pipelined. However, in those cases the 

depth of the delay elements used to synchronize the inputs and outputs of the different 

processing elements must be adjusted. 

3.4.   Implementation and Results 

The architecture described above was implemented using an Altera Stratix II 

EP2S180F1508C4 FPGA (Altera Corp., San Jose, CA) with two external memory 

banks to serve as input and output image memory. The memory banks used were 1-

GB DDR2 small-outline dual-inline memory DRAM modules with 64-bit data bus 

(i.e., 16W = , for 8b = ) running at a 200-MHz clock speed. The architecture was 

designed using VHSIC hardware description language (VHDL) and synthesized using 

Altera Quartus II 6.1. The memory controller was also implemented using VHDL and 

was built around the DDR2 DRAM controller megacore supplied with Altera Quartus 

 
Figure 3.10: Linear systolic array architecture for median filter kernel using 
majority voting technique. 
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II. Both filtering modules were custom designed using VHDL, as per the design 

description in provided earlier. Functional verification and postsynthesis timing 

simulation for the entire system were performed using Modelsim SE 6.2 (Mentor 

Graphics, San Jose, CA). For this purpose, DDR2 DRAM simulation models 

provided by Micron (www.micron.com) were used. The presented design was then 

realized to support 8-bit images (b = 8) and, consequently, all results in this section 

are presented for 8-bit images. The execution speed of the presented architecture was 

obtained from postsynthesis timing simulation of the design. 

3.4.1.   Effects of Finite Precision Representation 

Real-time filtering performance offered by the presented design is critical for 

the time-sensitive nature of IGIs, but of equal importance is the accuracy of the 

filtering process. Most software implementations represent the arithmetic operations 

involved in the filtering algorithms using a double precision floating-point format. 

This format offers high dynamic range and precision, which may or may not be 

required depending on the filtering technique to be implemented. Median filtering, for 

example, is performed exclusively using integer data (because digital images are 

represented using b-bit integer data), and, hence, there is no loss in precision by using 

Table 3.2: Average error in intensity per voxel for a Gaussian filtered image 
resulting from fixed-point representation of Gaussian coefficients. 

Average error in intensity per voxel resulting from  
fixed-point representation of Gaussian kernel coefficients σ of the 

Gaussian kernel 8-bits 12-bits 16-bits 
0.3 0.20 ± 0.47 0.07 ± 0.26 0.004 ± 0.06 
0.5 0.63 ± 0.68 0.02 ± 0.11 0.004 ± 0.07 
0.7 0.42 ± 0.81 0.03 ± 0.16 0.003 ± 0.06 
1.0 0.21 ± 0.47 0.001 ± 0.04 0.001 ± 0.03 
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a fixed-point implementation with sufficient dynamic range (i.e., using b bits for b-bit 

images). Our implementation of the 3D median filtering uses b-bit integer 

representation for b-bit images, and therefore provides identical results to those 

provided by a software implementation. 

Anisotropic diffusion filtering, however, involves operations with the data in 

real format. Our implementation, for the sake of efficiency in area and execution 

speed, used fixed-point representation to implement these arithmetic operations. A 

general framework for analyzing optimized tradeoff relationships between hardware 

resources and implementation accuracy for finite-precision designs is presented later 

(see Chapter 5). For this implementation, however, given the simplicity of the 

arithmetic operations and relatively minor impact of the fixed-point datapath on the 

total hardware resource requirement, we employed simulation-based wordlength 

search techniques. We analyzed the effect of the number of bits used for this fixed-

point representation on the filtering accuracy, by treating a software (C++) 

implementation employing double-precision floating-point representation as a 

reference. This analysis was performed with an 8-bit image with dimensions 

256 256 64× × . There are two sources at which error resulting from fixed-point 

precision can affect the accuracy of the filtering operation: embedded Gaussian 

Table 3.3: Average error per sample of diffusion function resulting from fixed-
point representation of diffusion coefficients employed in the presented architecture. 

Average error per sample of diffusion function resulting from  
fixed-point representation of diffusion coefficients K 

8-bits 12-bits 16-bits 
10 42 × 10-5 ± 97 × 10-5 3 × 10-5 ± 7 × 10-5 <10-5 
20 78 × 10-5 ± 114 × 10-5 6 × 10-5 ± 8 × 10-5 <10-5 
30 121 × 10-5 ± 125 × 10-5 9 × 10-5 ± 8 × 10-5 <10-5 
50 196 × 10-5 ± 116 × 10-5 13 × 10-5 ± 7 × 10-5 <10-5 
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filtering and diffusion function calculation. To gain additional insight, we evaluated 

accuracy for these individual sources and the accuracy of the anisotropic diffusion 

filtering as their combined effect. 

Table 3.2 presents the average error in intensity per voxel after embedded 

Gaussian filtering (kernel size, N = 5) where the Gaussian kernel coefficients are 

represented using the fixed-point format with the designated number of bits. Because 

the Gaussian kernel was normalized, all coefficients were within the range [0,1] , and, 

hence, we used one bit to represent the integer part and the rest for the fractional part. 

We performed this analysis for typical choices of σ for a Gaussian kernel size of 5, 

which corresponds to the anisotropic diffusion filtering kernel size of 7. The average 

error for various choices of σ  with 8-bit representation is less than one intensity 

value, and, as expected, the average error reduces with the increasing number of bits. 

It must be noted, however, that embedded Gaussian filtering is used only to estimate 

the diffusion coefficients, and, hence, small errors introduced in this operation may 

not have a significant impact on the final anisotropic diffusion filtered intensity value. 

Because this design supported 8-bit images, a 256-entry LUT was used to implement 

the diffusion function described in the background section. We implemented this 

function for reasonable choices of the parameter K, which controls the level of the 

gradient at which edges are diffused or preserved. The value of K depends on the 

image modality and the amount of edge preservation desired. For ultrasound and low-

dose CT images, however, its value is typically less than 20% of the intensity range. 

As the selected diffusion function takes values in the range [0,1] , we used one bit to 

represent the integer part and the rest for the fractional part. Table 3.3 presents the 
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average error per sample of diffusion function resulting from fixed-point 

representation with the designated number of bits for various choices of K. Although 

the average error increases with the choice of K, its mean and standard deviations are 

consistently less than 0.1% of the data range, even with representation using 8-bits. 

Finally, Table 3.4 reports average error in intensity per voxel resulting from the 

combined effect of finite precision implementation of both the Gaussian coefficients 

and the diffusion function. For this analysis, we used the same number of bits for 

fixed-point representation of both entities, with one bit for the integer part and the rest 

for the fractional component. The kernel size (N) of the anisotropic diffusion filter 

was chosen to be 7, with embedded Gaussian filtering with σ = 0.5, and the diffusion 

function shown described earlier was implemented with K = 20. To evaluate error 

accumulation over multiple iterations of anisotropic diffusion filtering, we performed 

this analysis up to 5 iterations, which is typical for filtering of intraprocedural images. 

The average error in intensity increases with the number of iterations, but its mean 

and standard deviations are consistently less than 0.04% of the intensity range, even 

with 8-bit representation. 

Overall, our precision analysis indicates that even when using 8-bit fixed-

Table 3.4: Average error in intensity per voxel for anisotropic diffusion filtered 
resulting from fixed-point representation of Gaussian coefficients and the diffusion 
function 

Average error in intensity per voxel resulting from fixed-point 
representation of the Gaussian kernel and diffusion coefficients 

Number of  
filtering 

iterations 8-bits 12-bits 16-bits 
1 0.008 ± 0.092 0.001 ± 0.018 <0.001 
3 0.021 ± 0.144 0.001 ± 0.031 <0.001 
5 0.030 ± 0.171 0.002 ± 0.039 <0.001 
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point representation to perform Gaussian filtering and diffusion function calculation, 

the average error in intensity is only a very small percentage of the intensity range. 

Such small errors in intensity may not be significant for advanced operations such as 

registration, segmentation, and visualization and are unlikely to affect the accuracy 

and precision of IGIs. Our implementation, therefore, uses 8-bit fixed-point 

representation for these operations. 

3.4.2.   Hardware Requirements 

Table 3.5 lists the significant hardware requirements for the important 

modules in the proposed architecture, parameterized on filter kernel size ( N ) and the 

number of bits used to represent the voxel intensity (b ). The parameter k , introduced 

in the context of 3D anisotropic diffusion filtering, represents the number of unique 

isodistances in the Gaussian kernel and is related to the filter kernel size N  (usually 

odd) as: 

 ( 1) .
2

Nk −
=  (3.6) 

Table 3.5: Hardware requirements of the architecture for real-time 3D image 
preprocessing. 

Significant hardware resources Logic resources and performance 
(as implemented) Hardware 

module Multipliers 
( b b× bit) 

Internal memory
(bits) N  Number of ALUTs 

(% utilization) 
maxf  

(MHz) 
Input buffer 

and controller − ( ( 1) )zN N N b× + × × 7 1957 (1.5%) 233 

Output buffer 
and controller − (2 )zN b× ×  7 1743 (1.5%) 233 

Anisotropic 
diffusion filter 

( 1) ( 2)5
6

k k k× + × +
×

 
(3 2 )b b× ×  7 3824 (3%) 236 

Median filter − − 5 11308 (8%) 224 
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The linear systolic array implementation of the 3D median filter requires logic 

resources only, and the resource requirements for important components of this filter 

kernel are listed separately in Table 3.6. These two tables indicate how the hardware 

requirements of our architecture scale with the parameters N and b . As dictated by 

the resource limitations imposed by the target device (Altera Stratix II 

EP2S180F1508C4) and real-time speed requirements, our current implementation can 

support filter kernel sizes ( )N  from the list { }5,7  and { }3,5 for anisotropic diffusion 

filtering and median filtering, respectively. The corresponding kernel sizes for the 

embedded Gaussian filtering in the case of anisotropic diffusion filter supported by 

our architecture are{ }3,5 . Table 3.5 also lists the absolute and percentage logic 

resources consumed by the important modules in the architecture and the maximum 

operating frequency ( maxf ) at which these modules can run for a specific instantiation 

(choice of N ). The percentage logic resources are reported in reference to the target 

device Altera Stratix II EP2S180F1508C4. The images used for this performance and 

logic consumption analysis were 8-bit images ( 8b = ). The choices for the value of 

N  for this analysis represent common kernel size choices and are listed in the fourth 

column of the table. 

Table 3.6: Hardware requirements for the components of the linear systolic 
implementation of the 3D median filtering. 

Hardware component Number required 
Processing elements b  

Data registers 3b N×  
Mask select registers 3b N×  

Data pipeline registers 3( 1)b N− ×  

Line delay elements ( ) ( ) 32 1 ( 1) 2b b N− × − × +  
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3.4.3.   Filtering Performance  

The 3D median filtering module and 3D anisotropic diffusion filtering module 

were synthesized for kernel sizes of {3,5} and 7 , respectively, for filtering 8-bit 

images. The rest of the system, including the memory controller and input and output 

buffers, was parametrically synthesized to support the desired filtering operation and 

kernel size. The entire system was clocked at 200 MHz, which also corresponds to the 

filtering pipeline frequency (i.e., procT = 5 ns). The image memories were also clocked 

at 200 MHz ( memT = 5 ns). For this configuration, Table 3.7 reports the execution time 

for 3D anisotropic diffusion filtering and 3D median filtering as obtained during 

postsynthesis timing simulation of the entire system. The image sizes used for this 

measurement correspond to typical dimensions of intraprocedural images. 

As indicated in Table 3.7, our implementation of 3D anisotropic diffusion 

filtering and 3D median filtering can easily achieve a processing rate of 46 frames per 

second (fps) for images of size 256 256 64× ×  voxels, which is a typical size of an 

intraprocedural volumetric CT scan. The corresponding processing rate for 

intraprocedural 3D ultrasound scan with typical dimensions of 128 128 128× ×  voxels 

Table 3.7: Execution time of 3D anisotropic diffusion filtering and 3D median 
filtering. 

Filter kernel 
Kernel 

size  
(N) 

Image size 
(voxels) 

Execution 
time 
(ms) 

Voxel  
processing rate

(MHz) 
128 × 128 × 128 10.90 192 3D anisotropic 

diffusion filter 7 
256 × 256 × 64 21.63 194 
128 × 128 × 128 10.75 195 3 
256 × 256 × 64 21.44 196 
128 × 128 × 128 10.82 194 

3D median 
filter 

5 
256 × 256 × 64 21.58 194 
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is around 92 fps. For iterative operations such as anisotropic diffusion filtering or 

sequential filtering operations, this processing rate translates to 18 fps with five 

iterations (or sequential operations) per frame, which is sufficient to meet the real-

time needs of most IGIs. 

Table 3.8 and Table 3.9 compare the execution speed of the presented 

architecture for 3D anisotropic diffusion filtering and 3D median filtering, 

respectively, against a corresponding software implementation and previously 

reported high-speed implementations using different computing platforms. The 

execution time has been normalized by the image dimensions for all implementations, 

and the performance is presented in terms of voxel processing rate to facilitate a fair 

comparison independent of image dimensions. The software implementation was 

developed using C++, and its performance was measured on an Intel Xeon 3.6 GHz 

workstation with 2 gigabytes of DDR2 400 MHz main memory. Although this 

architecture can support various kernel sizes for the filtering operations, for 

consistency the performance has been compared for a kernel size (N) common to all 

implementations: N=3 for the median filtering and N=7 for anisotropic diffusion 

filtering. 

Table 3.8: Performance comparison of the 3D anisotropic diffusion filtering 
kernel. 

Implementation Platform Filter 
kernel 

Voxel 
processing rate 

(MHz) 
Speedup 

Software (C++) Xeon workstation 3D 0.92 208 
Bruhn et al. 

[100] 256-processor cluster 3D 105 1.83 
Tabik et al. [101] 16-processor cluster 3D 5.66 33.9 

Dandekar  
et al. [144] FPGA 3D 192 - 
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As indicated by Table 3.8, our implementation of 3D anisotropic diffusion 

filtering provides more than two orders of magnitude speedup over the software 

implementation using a single workstation. Moreover, the performance of the current 

architecture represents an improvement over a corresponding implementation using a 

256-processor computing cluster reported previously [100]. Our work presented a 

novel FPGA-based implementation of 3D anisotropic diffusion filtering. Salient 

features of this filtering module are an embedded Gaussian filtering implementation 

that minimizes the number of multipliers and a pipelined design that allows 

throughput of one output voxel per clock cycle. This filtering module offers the 

flexibility to support several anisotropic diffusion techniques previously reported in 

the literature. For example, the multiscale approach proposed by Whitaker and Pizer 

[82] can be implemented by changing the embedded Gaussian filter coefficients at the 

end of each iteration, and a time-dependent diffusion function [145] can be 

implemented by reprogramming the values in the diffusion function LUT. One 

limitation of this filtering module is the limit on the size of the embedded Gaussian 

filter kernel; implementing Gaussian kernels larger than 7 would result in 

prohibitively high hardware requirements. Such large kernels, however, are 

uncommon in most applications. Although this architecture performs some of the 

arithmetic functions using fixed-point representation, the variation in the output 

intensity values is only a small fraction of the intensity range, and these variations are 

unlikely to affect the accuracy and precision of IGIs. 

Table 3.9 compares the performance of the FPGA-based 3D median filtering 

operation described in this work with previously reported high-speed 
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implementations. The present implementation provides more than an order of 

magnitude speedup over software- and GPU-based 3D implementations and DSP-

based 2D implementation. Jiang and Crookes [137] recently reported an FPGA-based 

3D implementation that is capable of achieving a voxel processing rate of 50 MHz. 

That design, however, was based on a partial sorting technique and cannot be easily 

extended to kernel sizes beyond 3. Our implementation, in contrast, achieved a 

superior voxel processing rate and is sufficiently compact to allow implementation of 

kernel sizes up to 7, which is sufficient for most common image processing tasks. The 

logic resources required by the described systolic array–based median filter indeed 

scale up as kernel sizes get larger; but as modern FPGAs become denser and offer 

improved logic capacity, this requirement is still a small percentage of the total 

available resources (see Table 3.5).  

3.5.   Summary 

This chapter presented an FPGA-based architecture for real-time 

preprocessing of volumetric images acquired during IGIs. The developed architecture 

enables 3D anisotropic diffusion filtering and 3D median filtering of intraprocedural 

Table 3.9: Performance comparison of the 3D median filtering kernel. 

Implementation Platform Filter 
kernel 

Voxel processing 
rate (MHz) Speedup 

Software (C++) Xeon workstation 3D 2.63 74 
Viola et al. [136] GPU 3D 0.76 257 

Gallegos-Funes and 
Ponomaryov [146] DSP 2D 4.5 43 

Jiang and Crookes 
[137] FPGA 3D 50 3.9 

Dandekar et al. [144] FPGA 3D 195 - 
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images at the rate of 50 fps, which is faster than current acquisition speeds of most 

imaging modalities. The solution presented offers real-time performance, is compact 

and accurate, and, hence, suitable for integration into IGI workflow. As IGI 

applications become increasingly popular, intraprocedural imaging modalities 

continue to offer wider coverage and higher imaging speed. Thus, there is a 

corresponding need for real-time processing of these images. The real-time 

performance of our design along with the throughput of one voxel per cycle can cater 

to these 4D (3D + time) image processing needs. 
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Chapter 4:   Hardware-Accelerated Deformable Image 

Registration 

Intensity-based deformable image registration plays a critical role in many 

diagnostic and interventional applications requiring image combination. Despite the 

advantages (such as accuracy, automation, and retrospective nature) of this approach, 

these algorithms find limited use in clinical applications due to their computational 

complexity. This chapter presents a novel FPGA-based architecture for accelerated 

implementation of MI-based deformable registration. This architecture is capable of 

reducing the execution time of MI-based deformable registration from hours to a few 

minutes. First, we describe the registration algorithm that is being accelerated. Next, 

we present the architecture for its high-speed implementation. Finally, we 

characterize the execution performance of this architecture and provide qualitative 

validation results. The optimization of this architecture for accuracy and hardware 

resources is presented in Chapter 5. The quantitative validation and the clinical 

applicability of this architecture are presented later, in Chapter 6. 

4.1.   Motivation 

Combining complementary information from intraprocedural and 

preprocedural images is a fundamental need in IGI applications. These images, 

however, are acquired at different times and using different imaging scanners and 

protocols and as a result are usually misaligned. Therefore, they need to be registered 

(or aligned) for a meaningful combination and fusion of the information they contain. 

Deformable image registration techniques can compensate for both local deformation 
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and large-scale tissue motion and are the ideal solution for achieving the 

aforementioned image registration. Some studies, in particular, have independently 

underlined the importance of deformable registration and/or soft tissue modeling for 

IGIs [18, 19]. However, despite their advantages, deformable registration algorithms 

are seldom used in current clinical practice. The large number of degrees of freedom 

that these algorithms employ makes them extremely computationally intensive. On a 

modern workstation most deformable registration algorithms can take several hours, 

which is clearly unacceptable for IGIs requiring on-demand performance. As a result, 

most earlier reported techniques for aligning preprocedural and intraprocedural 

images employ rigid body approximation, which is often not valid because of 

underlying nonrigid tissue deformation. In addition, some of these techniques are not 

retrospective (i.e. they require some advanced planning at the time of preprocedural 

imaging), which further limits their applicability. 

Mutual information (MI)–based deformable registration has been shown to be 

effective in multimodality image registration because of the robustness of the 

similarity measure [69]. Moreover, MI-based image registration is automatic and 

completely retrospective because it uses image intensities to achieve the alignment. 

Walimbe and Shekhar [60, 67] have earlier reported an MI-based deformable 

registration algorithm that utilizes volume subdivision. Hierarchical volume 

subdivision–based image registration techniques are inherently faster than most other 

deformable registration techniques and are more amenable to hardware acceleration. 

This algorithm has been used and rigorously validated in the context of PET-CT 

registration [66]. This clinical validation has demonstrated the registration accuracy 
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of the aforementioned algorithm to be comparable to a group of clinical experts and 

the mean registration accuracy for the abdominal region to be superior to an earlier 

reported free-form deformation (FFD)–based technique [147]. This algorithm is 

theoretically general and has been shown to be effective for various applications 

employing multimodal deformable registration [66, 77, 148-151]. Although 

computationally efficient, software implementation of this algorithm can take several 

hours, which is still slow for direct integration into the IGI workflow. It is, therefore, 

necessary to accelerate this algorithm and reduce the processing time to the order of 

minutes and ultimately to seconds for its assimilation into clinical workflow. 

Although, accelerated implementations of MI-based deformable registration 

algorithms using very large multiprocessor clusters have been proposed earlier [57, 

115, 117, 118], their per-node performance does not compare favorably with our 

implementation. Furthermore, these solutions may not be cost effective and are 

unlikely to be suitable for clinical deployment.  

The chapter presents a novel field-programmable gate array (FPGA)–based 

accelerated implementation of the aforementioned deformable registration algorithm, 

specially geared toward improving target delineation during image-guided 

interventions. The reported solution provides a speedup of about 40 for MI 

calculation, thus reducing the deformable registration time from hours to minutes. In 

Chapter 6, we demonstrate fast and successful registration of intraprocedural 

abdominal CT scans with preprocedural CT and PET scans using the developed 

architecture. We further demonstrate that the registration accuracy of the hardware 

implementation is comparable with that using a software implementation and is on 
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the order of a few millimeters. This registration accuracy coupled with the execution 

speed and compact implementation of the reported solution makes it suitable for 

integration in the IGI workflow. 

4.2.   Algorithm for Deformable Image Registration 

Hierarchical volume subdivision–based deformable image registration 

techniques are inherently faster than most intensity-based deformable registration 

techniques (e.g., FFD–based techniques) and are more amenable to acceleration 

through hardware implementation. 3D image registration using volume subdivision 

has been proposed earlier, but the earlier implementations were limited to a locally 

translation-based model. Walimbe and Shekhar [60, 67] enhanced this model by 

incorporating local rotations and reported a quaternion-based scheme for interpolating 

multiple 3D rigid-body transformations for deformable registration using the volume 

subdivision approach. For a pair of images, one treated as reference and the other as 

floating, this algorithm performs deformable registration using a series of 

hierarchical, locally rigid-body registrations. The six-parameter rigid registration at 

Figure 4.1: Pictorial representation of hierarchical volume subdivision–based 
deformable image registration and associated notation. 
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each level is optimized by maximizing the MI between the reference and floating 

images (RI and FI, respectively). This hierarchical registration scheme is shown in 

Figure 4.1.  

The initial optimal rigid alignment (at the root level) between RI and FI can be 

represented using a transformation matrix 0
0T  (where i

jT  represents the cumulative 

optimal transformation at level i  for subvolume j ). Next, the algorithm uses a 

hierarchical octree-based subdivision scheme. At each subdivision level i , the RI is 

divided into 8i  subvolumes, numbered from 0 to 8 1i − . Each of these subvolumes is 

then individually registered with the FI, under transformation range constraints 

derived from the transformation of its parent subvolume at the earlier level 1
( )

i
parent jT − . 

The notation ( )parent j  refers to the subvolume at the previous subdivision level 

1i− , which contains the current subvolume j . For example, at the root level ( 0i = ), 

there is a single subvolume (entire image) numbered 0j = . After one level of 

subdivision ( 1i = ), there will be eight subvolumes numbered from 0j =  to 7j = . At 

level 1i = , (3)parent  refers to subvolume numbered 0  at level 0i = , because it 

contains subvolume 3j =  at the current level ( 1i = ) of subdivision (see Figure 4.1). 

The optimal alignment of the subvolume j  within the FI is also determined by 

maximizing MI under a six-parameter rigid-body transformation model. 

Volume subdivision and subvolume registration continue until the voxel count 

for an individual subvolume remains above a predefined limit (usually 316 ) to yield a 

statistically significant similarity measure. Thus, this algorithm achieves hierarchical 

refinement of the localized matching between RI and FI. The final cumulative non-
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rigid alignment between the image pairs is computed by quaternion-based direct 

interpolation of the individual subvolume transformations at the final subdivision 

level. 

4.2.1.   Calculating MI for a Subvolume 

Registration of a subvolume during the hierarchical refinement process is 

based on maximization of the MI, which is a statistical measure. With progressive 

subdivision, subvolumes at every level become increasingly smaller. The mutual 

histogram (MH) corresponding to an individual subvolume becomes sparse, thus 

rendering MI unreliable. The aforementioned algorithm addresses this issue by using 

the MH of the entire image (all the subvolumes) to calculate MI during the 

registration of a subvolume. The contribution of the current subvolume k  at level i  

to the MH is computed under the current candidate transformation *i
kT  ( *T denotes a 

candidate transformation during the optimization process). The contribution to the 

MH from the rest of the subvolumes remains constant during this registration process 

and is derived from their parent subvolumes. Thus, MI is computed over the entire 

image with local variations corresponding to the subvolume under optimization. 

Equations (4.1)-(4.3) summarize this process. The function ( )
j k

TAccumulate
=

, 

contributes to the MH using the voxels in a given subvolume k , using the mapping 

provided by the given transformation T . The detailed description of this deformable 

registration algorithm can be found in [60]. 

 
k k k

i i i
Total Subvolume RestMH MH MH= +  (4.1) 

 *( )
k

i i
Subvolume j

j k
MH TAccumulate

=
=  (4.2) 



 86 
 

 1

,
( )

k

i i
Rest parent(j)j j k

MH Accumulate T −

∀ ≠
=  (4.3) 

4.3.   Acceleration Approach 

The aforementioned algorithm uses MI as a measure of image similarity. MI 

is an intensity-based similarity measure and calculation of MI requires processing of 

all the voxels in the RI. Registration through maximization of MI attempts to find the 

transformation that best aligns an FI with an RI. This MI-based registration typically 

requires thousands of iterations (MI evaluations), depending on the image complexity 

and the degree of initial misalignment between the images. Repeated MI 

computation, which requires accessing both the images (RI and FI), is memory access 

intensive, and in particular, the memory access in the FI is completely governed by 

the transformation applied. This operation, therefore, does not benefit from the cache-

based memory architectures present in most modern PCs (the caches are too small to 

fit 3D images). Because memory speed has not evolved at the same rate as 

microprocessor speed, introduction of faster microprocessors is not expected to 

significantly speed up image registration. Thus, a factor limiting the performance of 

software implementations is calculating MI for different candidate transformations. 

Castro-Pareja et al. [139] have shown that, for typical medical images, accumulating 

 
Figure 4.2: Pictorial representation of the acceleration approach. 



 87 
 

the MH and calculation of MI can take up to 99% of the total image registration time 

in software. Our efforts for acceleration of this algorithm, consequently, are targeted 

toward optimized and pipelined implementation of MH accumulation and MI 

calculation. This approach is pictorially represented in Figure 4.2. 

In general, the execution time T required by a pipelined implementation (with 

n-stages) of an operation is given as: 

 ( ) ,NT t n
m

= ⋅ +  (4.4) 

where t  is the latency of each stage, N is the amount of data to be processed, and 

m is the number of data units processed in parallel at each stage. In the case of MI 

calculation, N represents the number of RI voxels to be processed. For typical 

volumetric images (which are usually larger than 1283) it can be assumed that 

N n
m

, thus the main parameters that control the MI calculation time are then t  and 

m . Supporting 1m > requires a superscalar architecture and multiple processing 

pipelines with individual image memory access, which is not practical. Therefore, to 

provide maximum pipeline performance, our architecture focuses on reducing t , the 

latency of each pipeline stage. The lower bound on t  is the period of the system clock 

and achieving this bound means that all the pipeline stages (including image memory 

access) complete their operations in one clock cycle. The following section describes 

an architecture geared toward meeting this goal for accelerated calculation of MI. 
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4.4.   Architecture 

MI-based image registration can be thought of as an optimization problem of 

finding the best alignment between two images. During the execution of the 

algorithm, the optimization process is executed from the host workstation. This host 

provides a candidate transformation, while the presented FPGA-based solution 

applies it to the images and performs corresponding MI computation. The computed 

MI value is then further used by the host to update the candidate transformation and 

eventually find the optimal deformable alignment between the RI and the FI. This 

workflow is indicated in Figure 4.2. The top-level block diagram of the FPGA-based 

architecture for accelerated implementation of volume subdivision-based image 

registration is shown in Figure 4.3. The important modules in this architecture are 

described below. 

 
Figure 4.3: Top-level block diagram of the architecture for accelerated 
implementation of deformable image registration. 



 89 
 

4.4.1.   Voxel Counter 

Calculation of MI requires processing every voxel in the RI. This can be 

achieved by sequentially cycling though all the voxels in the RI. In addition, because 

the implemented algorithm is based on volume-subdivision, RI voxels within a 3D 

neighborhood corresponding to an individual subvolume must also be processed 

sequentially. This is implemented as follows: the host programs the FPGA-based MI 

calculator with subvolume start and end addresses. In case of the entire image (as 

required for rigid registration), the start address is (0, 0, 0) whereas the end address is 

equal to the dimensions of the RI. When a subvolume needs to be processed (for 

example, during subvolume optimization after image subdivision), the start and end 

addresses programmed by the host correspond to that of the subvolume. The voxel 

counter sequentially computes the addresses corresponding to all voxels within a 

given neighborhood range (a subvolume, for example) in z−y−x order. This is 

implemented using three synchronized counters, one for each dimension. A functional 

diagram of this module is presented in Figure 4.4. Through pipelined implementation, 

this module is capable of generating address for one RI voxel per clock cycle. This 

 
Figure 4.4: Functional block diagram of voxel counter. 



 90 
 

module operates in two modes: in the reference image processing mode the address 

generated is used to fetch the RI image voxels from the external image memory, 

whereas in the floating image processing mode the RI address generated is 

transformed to the floating image space for further processing. 

4.4.2.   Coordinate Transformation 

The initial step in MI calculation involves applying a candidate transformation 

( *i
jT ), to each voxel coordinate ( rv ) in a subvolume j  of the RI to find the 

corresponding voxel coordinates in the FI (represented using fv ). This is 

mathematically represented as shown in (4.5). Because the algorithm is linear at every 

subvolume, this is implemented using the six-parameter rigid transformation model.  

 *i
f j rv T v= ⋅  (4.5) 

An interesting aspect of this coordinate transformation and subsequent 

operations is that they involve operations in both real (millimeter) space as well as 

voxel address (image index) space. For example, the transformation (translations and 

rotations) is defined in the real space, whereas the voxels to be fetched from RI and 

FI are identified in voxel address space. Thus, there is a need to convert between 

these address spaces during the calculation of MI. This conversion can be performed 

by utilizing the voxel size information associated with each image. To circumvent the 

need for performing this conversion in our FPGA-based architecture, we 

appropriately scale the transformation matrix (in millimeter space) and represent it 

using a mathematically equivalent matrix in voxel address space. This conversion is 

performed in software by the host just prior to MI calculation. This matrix is then fed 
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to the FPGA-based MI calculator and the MI calculator performs all its operations in 

voxel address space. This converted transformation can be represented as: 
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 (4.6) 

In this equation, the tuple (i, j, k) represents the address of a voxel in RI space. This 

address is calculated by the voxel counter. The ijr s represent the components of the 

rotation matrix, whereas iT s represent the components of the translation vector. ivr s 

and ivf s represent the voxel sizes (in millimeters) of the reference image and the 

floating image, respectively. ( , , )cx cy czRI RI RI and ( , , )cx cy czFI FI FI represent the 

centers of the reference image and floating image in voxel address space, 

respectively. 

This transformation model is represented using a 3 × 3 rotation matrix and a 

 
Figure 4.5: Functional block diagram of coordinate transformation unit. 
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3 × 1 translation vector. The host calculates these transformation components by 

appropriate scaling (as described above) of the current candidate transformation 

provided by the optimization routine and sends it to the MI calculator. Fixed-point 

representation is used to store the individual elements of these transformation 

components. The coordinate transformation is accomplished by simple arithmetic 

computations such as additions and multiplications as illustrated in Figure 4.5. The 

pipelined implementation of this module allows transformation of one RI voxel 

address per clock cycle. 

4.4.3.   Partial Volume Interpolation 

The coordinates mapped in the FI space ( fv ) do not normally coincide with a 

grid point (integer location), thus requiring interpolation. This scenario is illustrated 

in Figure 4.6 (a). In this figure, for simplicity, we have presented a 2-dimensional 

case; but similar scenario presents itself in three dimensions as well. The calculation 

of interpolation weights associated with the neighborhood (again, for a 2-dimensional 

case), in which the mapped coordinate lands, is illustrated in Figure 4.6 (b). In 

comparison, a 3-dimensional case will have 8-interpolation weights. Nearest-

neighbor, linear, and partial volume (PV) interpolation schemes have been 

Figure 4.6: Fundamentals of interpolation schemes. 
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traditionally used for this purpose. Mathematical formulation for calculation of the 

interpolation weights using these techniques is presented in Figure 4.6 (c). The 

primary difference between PV and linear interpolation is that, PV interpolation does 

not consolidate the weights and associated intensity values through weighted-

summing. Instead, it preserves the intensity-interpolation weight pairs and updates the 

mutual histogram (MH) at corresponding 8-locations (for a 3D case). PV 

interpolation scheme increases the memory access requirement of the MH 

accumulation operation, but is capable of providing smooth changes in the MH values 

(and associated smoother optimization curve) with small changes in transformation 

[69]. 

Consequently, our architecture implements PV interpolation as the choice of 

interpolation scheme. fv , in general, will have both fractional and integer 

components and will land within an FI neighborhood of size 2 2 2× × . The 

interpolation weights required for the PV interpolation are calculated using the 

fractional components of fv . These weights can be calculated as follows:  
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 (4.7) 

In this equation, the tuple ( , , )xf yf zf  correspond to fractional components of fv  in 

x, y, and z dimensions respectively. This interpolation scheme is implemented in this 

architecture by implementing the above formulation using simple arithmetic 
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computations such as additions and multiplications as illustrated in Figure 4.7.  The 

pipelined implementation of these operations allows processing of one transformed 

RI voxel per clock cycle. Fixed-point arithmetic is used to perform these operations. 

The corresponding floating voxel intensities are fetched by the image controller in 

parallel using the integer component of fv . The image controller also fetches the 

voxel intensity corresponding to rv . The MH, then must to be updated for each pair of 

reference and floating voxel intensities (8 in all), using the corresponding weights 

computed by the PV interpolator. 

4.4.4.   Image Memory Access 

The dimensions of typical 3D medical images are in the range of 128 × 128 × 

128 to 512 × 512 × 512 voxels. Because intensity-based image registration typically 

 
Figure 4.7: Functional block diagram of partial volume interpolation unit. 
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operates on images with 8-bit intensity values per voxel, this corresponds to image 

sizes ranging from 2 to 128 Megabytes. In comparison, the internal, high-speed 

memory provided by modern FPGAs is limited to 16 Megabits (or equivalent to 2 

Megabytes). Consequently, the images to be registered can not be stored using the 

memory that is internal to the FPGA and external storage must be employed for this 

purpose.   

Because of the size of the medical images, use of static random access 

memory (SRAM) modules (which are fast, but offer poor density and capacity) is not 

very efficient. Dynamic random access memory (DRAM) modules, in comparison, 

offer the necessary density to store the large images that are typically encountered in 

medical imaging. Although, these memories do not allow random accesses 

throughout the entire memory module with a uniform latency, they support burst-

mode accesses that allow efficient random accesses within a single row of the 

memory module. Our architecture takes advantage of this feature and uses external 

DRAM memories to store the images to be registered (in other words, the RI and FI). 

 
Figure 4.8: Voxel access patterns of the reference and floating images encountered 
during image registration. 
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During calculation of MI for a given voxel location in the RI, the reference image 

memory must be accessed only once, whereas a complete 2 × 2 × 2 neighborhood (as 

required for PV interpolation) must be fetched from the floating image memory. 

Thus, there is a disparity between the memory access needs for these two images. The 

following subsections briefly describe the access requirements for both these images 

and present the strategies we adopted to meet those requirements. 

4.4.4.1.   Reference Image 

An example of memory access pattern for the RI during image registration is 

illustrated in Figure 4.8. Between the two images, the RI has more relaxed access 

requirements, because it is accessed in a sequential manner (in z−y−x order) and only 

one voxel must be fetched from the RI for a given RI voxel address. This kind of 

access benefits from burst accesses and memory caching techniques. Furthermore, the 

implemented algorithm is based on volume-subdivision and requires traversing 

through the RI on a subvolume basis. This means that the voxels that belong to a 

subvolume need to be consecutively accessed. 

An interesting feature of modern DRAMs is that they are logically partitioned 

into rows and columns. As a result, these memories incur additional latency of several 

clock cycles when switching between different rows of the memory. Accessing 

different columns within a given row, however, is efficiently supported through burst 

accesses and can be performed within one clock cycle. Our architecture takes 

advantage of this feature and stores the RI in such a way that each subvolume is 

aligned with a row of the DRAM memory. This memory organization is illustrated in 

Figure 4.9. This allows efficient access to the voxels that belong to a subvolume. 
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For the architecture presented, both the RI and FI are stored in separate logical 

partitions of the same DRAM module. However, during MI calculation both these 

memories must be accessed simultaneously over a single bus. This can lead to 

memory access conflicts and result into poor performance. To address this issue, our 

architecture uses internal memory of the FPGA to cache a sub-block of RI voxels. 

Thus, during the processing of that block of RI voxels, the image controller has 

parallel access to both RI and FI voxels. The RI voxels are fetched from the internal 

FPGA memory (with access time of 1 clock cycle), whereas the FI voxels are fetched 

directly from the external memory.  

4.4.4.2.   Floating Image 

An example of memory access pattern for the FI during image registration is 

illustrated in Figure 4.8. The FI has much higher memory access requirements when 

compared to the RI. There are two primary reasons for this:  

 
Figure 4.9: Organization of the reference image memory. 
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1. For every RI voxel address to be processed, 8 FI voxels (corresponding to a 

2 2 2× ×  neighborhood) must be fetched. This neighborhood is then further used 

for performing PV interpolation and MH accumulation. 

2. Although, the RI is accessed in a sequential manner, the corresponding access 

pattern in the FI is completely governed by the transformation ( *i
jT ) that is 

currently being applied. For example, in Figure 4.8 the access pattern in FI is not 

aligned with the natural dimensions (x, y, or z) of the image.  

The first aspect of this memory access requirement is similar to that 

encountered in the context of volume rendering. In the graphics domain, this problem 

has been solved by developing techniques that allow parallel access to the entire 

2 2 2× ×  voxel neighborhood. One way to provide this parallel neighborhood access 

is through the use of cubic addressing [140]. Cubic addressing employs eight memory 

modules that are accessed in parallel at different addresses, through arithmetic 

manipulation of the corresponding single “neighborhood address”. These parallel 

memory modules are thus capable of providing the entire 3D neighborhood in one 

 
Figure 4.10: Organization of the floating image memory. 
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clock cycle. This approach, however, requires custom addressing of the memory 

modules. Castro-Pareja et al. [139] have reported a method to implement cubic 

addressing using standard DRAMs, by storing multiple copies of the image. This 

approach does not require special addressing and take advantage of burst-mode 

accesses provided by DRAMs. The presented architecture implements a similar 

scheme by storing eight copies of the FI. This scheme is illustrated in Figure 4.10. 

The FI voxels are arranged sequentially such that, performing a size 2 burst fetches 

two adjacent 2 2×  neighborhood planes, thus making the entire neighborhood 

available simultaneously. Although this approach increases the image storage, it 

enables accessing the entire 3D neighborhood in one clock cycle. Further, the density 

of DRAM chips allows storing multiple copies of the FI. 

The second aspect of the FI memory access requirement is addressed through 

the following strategy: we group the neighborhoods that belong to an image block 

(within the FI), and assign those neighborhoods to a single row in the DRAM module. 

Thus, as long as the transformed address location ( fv ) stays within a FI subvolume, 

the corresponding neighborhoods can be fetched within one clock cycle. Because, the 

RI is traversed one subvolume at a time, it is highly likely that the transformed 

location of that subvolume is confined to one or few FI subvolumes. Our architecture 

takes advantage of this spatial locality of reference. 

4.4.5.   Updating Mutual Histogram 

For a given RI voxel RV , there are eight intensity pairs ( 0 7, :RV FV FV ) and 

corresponding interpolation weights. Because the MH must be updated (read–
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modify–write) at these eight locations, this amounts to 16 accesses to MH memory 

for each RI voxel. This means that MH memory has more stringent access 

requirements when compared with the floating image memory. Moreover, the 

locations that need to be accessed within the MH for a given RI voxel, may not have 

any relationship with each other (such as a neighborhood-relation in the context of FI 

memory) and can be completely random. Fortunately, the size of the MH memory is 

typically much smaller (less than 128 128× ) than that of the images ( 256 256 256× × ). 

As a result, the internal (on-chip), high-speed memory can be used for storing the 

MH. 

Our first strategy to meet this high memory access requirement is to use high-

speed, dual-ported memory internal to the FPGA to store the MH. Because this 

memory is dual-ported, it can be read and written simultaneously (using different 

ports), an operation that is integral to MH accumulation. The overview of pipelined 

MH accumulation design, which takes advantage of this feature, is presented in 

Figure 4.11. Furthermore, because this memory can work at high speeds, the MH 

accumulation pipeline can work at twice the clock rate of the voxel processing 

 
Figure 4.11: Pipelined implementation of MH accumulation using dual port 
memory. 
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pipeline. Thus, a pipelined implementation of MH accumulation can process (read–

modify–write) two voxels per every clock of the main pipeline. Our second strategy is 

multiple parallel MH accumulation pipelines to support the high-memory access 

requirement. We employ four copies of the MH and associated parallel pipelines that 

independently and concurrently update the partial MHs. The partial MHs, stored in 

each MH copy, are eventually combined when the MH is read during the entropy 

calculation. Similar strategy is used for storing the individual histogram for the FI. 

These two strategies, when combined together, provide sufficient memory access 

speed to meet the requirement of MH accumulation.  

While the MH is being computed, the individual histogram accumulator unit 

computes the histograms for the RI and the FI. These individual histograms are also 

stored using internal, dual-ported memories. The valid voxel counter module keeps 

track of the number of valid voxels accumulated in the MH and calculates its 

reciprocal value. The resulting value is then used by the entropy calculation unit for 

calculating the individual and joint probabilities. 

4.4.5.1.   Data Hazards and Preaccumulation Buffers 

The presented architecture implements the operation of updating the MH in a 

pipelined fashion.  This means that for each MH accumulation pipeline (there are four 

such pipelines) one interpolation weight must be accumulated per clock cycle. The 

MH address, which must be updated with this interpolation weight, is determined by 

the RI-FI intensity pair. Furthermore, the realization of this operation using dual-

ported memories (as described above) has a latency of three clock cycles (one clock 

cycle each for read, modify, and write operations). As a result, read-after-write 
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(RAW) hazards could arise if sequential MH update transactions that attempt to 

access identical locations (or in other words, transactions with same RI-FI intensity 

combination) are separated by fewer than three clock cycles.  

To detect and eliminate these RAW hazards, the presented architecture 

employs a preaccumulate buffer in each pipeline. The functional block diagram of 

this buffer is shown in Figure 4.12. This buffer compares the address of the current 

transaction with that of three (equal to the latency of the operation) prior transactions. 

If conflicting transactions are detected, the buffer invalidates the current transaction 

and adds the interpolation weight of the current transaction to that of the first 

conflicting transaction. In summary, this is equivalent to aggregation of the weights 

from all the conflicting transactions and all the transactions that constitute a RAW 

hazard are converted into a single update to the MH. This scheme entirely eliminates 

any possible RAW hazards.  

 
Figure 4.12: Preaccumulate buffers to eliminate RAW hazards in MH accumulation 
pipeline. 
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4.4.5.2.   Calculating RestMH  

During the optimization process of finding the best alignment for a given 

subvolume k  at level i , 
kTotalMH  is computed as shown in equation (4.1). For this 

calculation, it is necessary to compute the contribution of the remaining subvolumes 

to 
kTotalMH  using the registration information at the previous level of subdivision 

( 1
( ) ,

i
parent jT j k− ∀ ≠ ). This process must be repeated for every subvolume at the current 

level i , and the contents of 
kRestMH  will be different every time depending on the 

subvolume under consideration. Computing 
kRestMH , from scratch, for every iteration 

of each subvolume will not be efficient. To avoid this repeated calculation, we 

introduce MH buffers ( PriorMH , RestMH , and LocalMH ), which store the previous-level 

MH and partial MH during various stages of the algorithm. A flow diagram depicting 

the interplay between these MH buffers during various steps of calculating RestMH is 

shown in Figure 4.13, and the detailed description is provided here. 

 
Figure 4.13: A flow diagram of steps involved in calculating MHRest. 
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At a given level i , PriorMH contains the MH for the entire image, which is 

computed using all the subvolumes at the earlier level 1i −  and corresponding 

transformations 1i
jT − . At the beginning of the registration of each subvolume k  at the 

current level i , LocalMH is cleared (thus, all its entries are set to 0). Next, the 

transformation of its parent from the previous level, 1
( )

i
parent kT − , is applied to the current 

subvolume k and the resultant MH is accumulated in LocalMH . LocalMH  now contains 

the contribution of the subvolume k  to PriorMH . LocalMH  is then subtracted from 

PriorMH , and the resultant MH is stored in the buffer RestMH . This step is 

mathematically equivalent to computing 
kRestMH (as in equation (4.3)) for the 

subvolume k . For every subsequent optimization iteration involving this subvolume, 

LocalMH  is initially cleared. The candidate transformation *i
kT  is then applied to the 

current subvolume ( k ) only, and the resultant histogram (contribution of this 

subvolume) is accumulated in LocalMH . It is then added to 
kRestMH , to form the MH 

for the entire image (
kTotalMH in equation (4.1)) for the current optimization step. This 

final histogram is then further used for computing the image similarity measure (MI) 

corresponding to the current transformation *i
kT . This process is repeated for all the 

subvolumes at the current level. At the end of each level (after optimizing all the 

subvolumes at that level), the MH for the entire image is computed using the updated 

transformations ,i
kT k∀  and is stored in PriorMH , which will then subsequently be used 

at the next level of subdivision, 1i + . 
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4.4.6.   Entropy Calculation 

Acceleration of MH accumulation contributes to the most of the performance 

improvement during calculation of MI. However, the final step in MI calculation, 

which is entropy calculation, must also be implemented in the hardware to eliminate 

the overhead of copy the MH back to the host.  The mutual and individual entropies 

are computed by using the probability distributions represented by the mutual and 

individual histograms, respectively.  

To calculate entropy, it is necessary to evaluate the function ( ) ln( )f p p p= ⋅  

for all the probabilities. As probability p  takes values between [0,1] , the 

corresponding range for the function ln( )p is [ ,0]−∞ . In addition, ln( )p  is undefined 

for 0p = . In comparison, the corresponding range for ( )f p  is 1[ ,0]e−− . Thus, ( )f p  

has a finite dynamic range and is defined for all values of p . Several methods for 

calculating logarithmic functions in hardware have been reported earlier [152-154], 

but of particular interest is the multiple lookup table (LUT)–based approach 

introduced by Castro-Pareja et al. [155]. This approach minimizes the error in 

representing ( )f p  for a given number and size of LUTs and, hence, is accurate and 

efficient. Moreover, this approach preserves the shape of the MI curve and the 

location of the extrema and thus does not significantly affect the outcome of the 

optimization process. Following this approach, the presented design implements 

( )f p  using multiple LUT–based piecewise polynomial approximation. We provide a 

brief overview of this method here and identify the multiple LUT configuration 

adopted by our architecture. 
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4.4.6.1.   Multiple LUT–Based Approach for Entropy Calculation 

A LUT-based approach represents the target function (such as ( )f p ) using a 

piecewise-polynomial approximation with n  segments. In particular, approximation 

using Chebyshev polynomials is employed because: 1) the Chebyshev approximation 

is simple to calculate for continuous functions such as ( )f p  and 2) it is very close to 

the true minimax approximation, the most accurate polynomial approximation. The 

polynomials used can be of arbitrarily high order. Higher degree of polynomials 

typically offer better approximation, but require higher degree of arithmetic 

computation (and associated hardware resources) for function evaluation. For this 

reason, only 1st order polynomials are considered.  

In case of a single-LUT based approach, all the segments are stored in a single 

large LUT. Although this approach is simple and allows easy decoding and 

addressing during function evaluation, it suffers from several drawbacks. First, the 

precision of the LUT ( pΔ ) is constant throughout the entire table. As a result, 

segments of the approximated function that require finer precision can not be 

accurately represented. Second, the size of the LUT to achieve a desired 

approximation error is usually quite large and sometimes not practical. For example, 

Table 4.1: Configurations of LUT-based entropy calculation module that were 
considered in the presented architecture. 

LUT Range Configuration #1 Configuration #2 
LUT No. 

minp  maxp  pΔ  Entries pΔ  Entries 
1 0 2-13 2-23 1024 2-24 2048 
2 2-13 2-6 2-16 1024 2-17 2048 
3 2-6 2-2 2-12 1024 2-13 2048 
4 2-2 1 2-10 1024 2-11 2048 
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to keep the error in entropy calculation less than 10-6, a single LUT with 16K entries 

will be required. 

The multiple LUT–based approach introduced by Castro-Pareja et al. [155] 

attempts to address these limitations. In this approach, each segment is stored in a 

different LUT. In addition, each LUT has a different precision ( pΔ ) and uses a 

different polynomial coefficients to represent the individual segments of the function 

( )f p . Thus, this approach allows superior approximation of the target function and 

thereby keeping the approximation error below the allowable maximum. 

Furthermore, this method provides a realization that is optimized for approximation 

accuracy and hardware resources [155]. 

Using this approach the 1st-order polynomial, 4-LUT configuration was 

designed. We realized two such configurations each with a different LUT precision 

( pΔ ). These configurations are listed in Table 4.1. The choice of these configurations 

 
Figure 4.14: Error in entropy calculation corresponding to the two configurations of 
the multiple LUT–based implementation. 
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was based on meeting the error constraints on the entropy calculation and the 

availability of resources in the target FPGA device. We then evaluated the 

approximation error offered by these two realizations. This was done by comparing 

the entropy values calculated by using these designs against that calculated using a 

double-precision software implementation.  Figure 4.14 shows a plot of the error 

magnitude vs. p  for both these realizations. The maximum error was of the order of 

10-8 for a both these configurations, which is sufficient for MI calculation in the 

context of image registration [155]. For our architecture we selected realization with 

8K entries, as it offers superior error performance at a relatively moderate increase in 

the LUT size. As described earlier, using the lower-order polynomials has the 

advantage of reducing the LUT data width and the number of required arithmetic 

operations for function evaluation. 

4.4.7.   Operational Workflow 

The sections above described the design and functional behavior of the 

important modules in the architecture we developed for accelerated calculation of MI. 

Our ultimate goal, however, is to accelerate deformable image registration algorithm 

described earlier. This algorithm utilizes this high-speed implementation to efficiently 

calculate the image similarity measure (MI), the most computationally complex step 

within the algorithm. This deformable registration algorithm is based on volume 

subdivision, and depending on the operational stage of the algorithm, image similarity 

is calculated in a slightly different manner. For example, steps to calculate MI during 

rigid registration are slightly different than those taken during optimization of a 

subvolume after volume subdivision. This section identifies different operational 
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stages of the algorithm and describes how the architecture described above is utilized 

to calculate MI during those stages. The summary of this description is provided in 

Table 4.2. 

4.4.7.1.   Rigid Registration 

Rigid registration is the first step in the aforementioned deformable 

registration algorithm. This step attempts to recover any gross misalignment between 

the RI and FI. During this step, the algorithm repeatedly calculates MI for various 

candidate transformations between RI and FI. To implement this operation using the 

described architecture, we first clear all the mutual histograms internal to the 

architecture ( PriorMH , RestMH , and LocalMH ). Next, the host provides the current 

candidate transformation along with the subvolume address range (equal to the RI 

dimensions, since MI is calculated for the entire image) to the architecture. After this 

operation, the MH corresponding to the given transformation is calculated and stored 

Table 4.2: Operational workflow for performing volume subdivision–based 
deformable image registration using the presented architecture. 

Operation Workflow 

Rigid Registration Clear All MHs → Accumulate (entire RI) → Calculate 
Entropy using MHLocal 

Calculating MHPrior 
(First subvolume) Clear All MHs → Accumulate (current subvolume) 

Calculating MHPrior 
(Other subvolumes) Accumulate (current subvolume) 

Calculating MHPrior 
(Copying MH) Copy MHLocal to MHPrior 

Calculating MHRest 
Clear MHLocal → Accumulate (current subvolume) →  
Subtract MHLocal from MHPrior and store into  MHRest 

Subvolume 
Registration 

Clear  MHLocal  → Accumulate ( current subvolume ) → 
Calculate Entropy using MHLocal + MHRest 
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in LocalMH . Later on, the individual and joint entropies are calculated using LocalMH .  

4.4.7.2.   Calculating PriorMH  

Calculating PriorMH requires applying transformations to all the subvolumes at 

a given level of subdivision and calculating the cumulative MH corresponding to all 

subvolumes with their associated transformations. To implement this operation using 

the described architecture, we first clear LocalMH , which is used for subvolume MH 

accumulation. Next, the host provides the address range for the first subvolume and 

the transformation associated with that subvolume from the previous level.  The MH 

corresponding to the given transformation is calculated and stored in LocalMH . This 

step is repeated for all the subvolumes at a given level of subdivision, with a 

difference that LocalMH  is cleared only during the first subvolume. This allows the 

calculation of the cumulative MH for all the subvolumes. After all the subvolumes are 

processed, LocalMH  is copied to PriorMH (an internal MH buffer).  No entropy 

calculation is required during this step. This step is repeated after each level of image 

subdivision. 

4.4.7.3.   Calculating RestMH  

Calculation of RestMH is a prerequisite for optimizing subvolumes after 

volume subdivision. As described earlier, we utilize PriorMH to efficiently calculate 

RestMH for a given subvolume. To implement this operation using our architecture, 

we first clear LocalMH , which is used for subvolume MH accumulation. Next, the host 
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provides the address range for the current subvolume and the transformation 

associated with that subvolume from the previous level.  The MH corresponding to 

the given transformation is calculated and stored in LocalMH . Following this operation, 

we subtract  LocalMH  from PriorMH  and store the resulting MH into RestMH (another 

internal MH buffer). This step is repeated prior to registration of every subvolume at 

a given level of subdivision. 

4.4.7.4.   Subvolume Registration 

After image subdivision, the resulting subvolumes are individually registered 

with the FI. However, the image registration algorithm also considers the contribution 

of the rest of the image for improved statistical reliability.  Our architecture supports 

this operation by taking advantage of the RestMH computed in the previous step. First, 

we clear LocalMH , which is used for subvolume MH accumulation. Next, the host 

provides the address range for the current subvolume and the current candidate 

transformation for that subvolume. The MH corresponding to the given candidate 

transformation is calculated and stored in LocalMH . Later on, the individual and joint 

entropies are calculated using ( )Local RestMH MH+ , thus taking into account the 

contribution  of the rest of the image. This step is repeated for each iteration during 

the registration of a subvolume. 

4.5.   Implementation and Results 

The architecture presented above was implemented using an Altera Stratix II 

EP2S180F1508C4 FPGA (Altera Corp., San Jose, CA) in a PCI prototyping board 
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(DN7000K10PCI) manufactured by the Dini Group (La Jolla, CA). The board 

featured 1 GB double-data-rate (DDR2) DRAM in a small-outline dual-inline 

memory module (SoDIMM) external to the FPGA. This memory was used to store 

the RI and the FI. The board provided a 64-bit bus interface between the memory and 

the FPGA running at 200 MHz clock speed. The architecture was designed using 

VHSIC hardware description language (VHDL) and synthesized using Altera 

Quartus II 6.1. The memory controller was also implemented using VHDL and was 

built around the DDR2 DRAM controller megacore supplied with Altera Quartus II. 

All the modules in the architecture were custom designed using VHDL, per the 

design description provided earlier. Functional verification and postsynthesis timing 

simulation for the entire system were performed using Modelsim SE 6.2 (Mentor 

Graphics, San Jose, CA). For this purpose, DDR2 DRAM simulation models 

provided by Micron (www.micron.com) were used. The resource availability of the 

target FPGA, primarily internal memory, which is used for MH accumulation, limited 

the synthesis of the reported design to support 7-bit mutual histogram and, 

consequently, all results in this section are presented for this configuration. In 

comparison, the software implementation uses 8-bit mutual histogram. In spite of this 

difference, we demonstrate that the registration accuracy for both these 

implementations is comparable (see Chapter 6), which further confirms the findings 

of Studholme  et al. [64]. 

To verify the functional correctness and evaluate the performance of this 

implementation we considered image registration between intraprocedural 

noncontrast CT (iCT) with preprocedural contrast-enhanced CT (preCT) and positron 
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emission tomography (PET) images. The registration between these image-pair 

combinations is clinically relevant and routinely encountered in the context of CT-

guided interventions. We considered five abdominal iCT-preCT and five abdominal 

iCT-PET image pairs for this evaluation. The image size for iCT and preCT was 256 

× 256 × 200−350 with a voxel size of 1.4−1.7 mm × 1.4−1.7 mm × 1.5 mm, whereas 

the typical image size for PET was 128 × 128 × 154−202 voxels with a voxel size of 

5.15 mm × 5.15 mm × 5.15 mm. The iCT, preCT, and PET images were converted to 

8 bits and 7 bits, respectively, for software and FPGA-based implementations. This 

conversion was performed using adaptive reduction in intensity levels [156]. The 

converted iCT and preCT images were then preprocessed using 3D anisotropic 

diffusion filtering. No preprocessing steps were used for the PET images. The real-

time implementation of anisotropic diffusion filtering that we presented earlier can 

facilitate this preprocessing without adding any significant latency to IGI workflow 

[144]. For the hardware implementation, the RI was stored in a sequential format 

organized by subvolumes, while eight interleaving copies of the FI were arranged in 

memory to facilitate cubic addressing. This arrangement allows simultaneous access 

to an entire 3D neighborhood within the FI, as described earlier. The execution speed 

of the reported architecture was obtained from postsynthesis timing measurements 

using the entire system. 

The design achieved a maximum internal frequency of 200 MHz, with a 

theoretical maximum RI voxel processing rate of 100 MHz. The coordinate 

transformation, PV interpolation, and MH accumulation operations were 

implemented using fixed-point representation. Entropy calculation was implemented 
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using the 4-LUT, first-order polynomial configuration as described earlier. The 

precision employed for this fixed-point datapath can affect both the implementation 

accuracy and the hardware resource requirement of this architecture. An optimization 

framework to systematically explore this effect is presented in the following chapter. 

This framework is capable of identifying the optimized tradeoff relationship between 

the hardware resources and the accuracy. The optimization of our architecture by 

using this framework is presented in Chapter 5. We further evaluated the accuracy of 

deformable image registration offered by that optimized architectural configuration 

and those results are presented in Chapter 6. In this section, however, we focus on the 

execution performance of our architecture and demonstrate its functional correctness 

through qualitative validation of image registration. For this purpose we used a 

designer identified architectural configuration which was not optimized for area-

implementation error tradeoff. Consequently, all the results presented in this section 

are corresponding to that design configuration. 

4.5.1.   Execution Speed 

The presented architecture is targeted toward accelerating the calculation of 

MI for a hierarchical volume subdivision–based deformable registration algorithm. 

During the execution of this algorithm, MI must be repeatedly calculated under a 

candidate transformation for every subvolume at every level of subdivision. 

Moreover, as described earlier, RestMH must be calculated once for every subvolume. 

To analyze the speedup offered by the presented FPGA-based solution for calculation 

of MI, we compare its calculation time with that of a software (C++) implementation 

running on an Intel Xeon 3.6 GHz workstation with 2 GB of RAM. Table 4.3 details 
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this performance comparison for a iCT-preCT image pair with dimensions of 256 × 

256 × 256. The last column of the table shows the speedup offered by the reported 

solution over the software implementation for a given level of subdivision. The time 

to calculate MI primarily depends on the size of the subvolume and is independent of 

the imaging modality and voxel size. This calculation time, however, may vary 

slightly based on the actual value of the transformation used to calculate MI. These 

variations are caused by differences in access patterns to the FI memory under 

different transformation values. To compensate for this effect and report average MI 

calculation time at a given level of subdivision, we measured the MI calculation times 

for a subvolume using 100 randomly generated transformations (within the range of 

±30 voxels for translations and ±20° for rotations).  

The same set of transformations was used for both software and hardware 

implementations. The MI calculation time reported in Table 4.3 is averaged over all 

the transformations. Hardware timings reported in Table 4.3 also include the 

communication time, required for writing the transformation matrix and reading back 

Table 4.3: Comparison of mutual information calculation time for subvolumes at 
various levels in volume subdivision–based deformable registration algorithm. 

Mutual information  
calculation time (ms) Subdivision 

level 
Subvolume 

size Software 
implementation 

FPGA-based 
implementation 

Speedup 

0a 256 × 256 × 256 9410 225.42 41.74 

1 128 × 128 × 128 1209 30.19 40.05 

2 64 × 64 × 64 166 4.16 39.90 
3 32 × 32 × 32 18 0.78 23.08 
4 16 × 16 × 16 10 0.46 21.74 

aThis corresponds to rigid registration between the reference and floating images. 
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the calculated entropy values, between the host and the MI calculator. Furthermore, 

consistent with the scenario during the execution of the registration algorithm, the 

time to compute RestMH (once per subvolume) is also included in the hardware and 

software MI calculation time. Our acrchitecture offers a speedup of about 40 for 

calculating MI up to subvolumes of size 643; whereas for smaller subvolumes the 

speedup achieved is around 20. This drop in achieved speedup is explained by taking 

into account overheads incurred during computation of MI. Calculating MI requires 

accumulation of MH, which in turn, requires initial clearing of the MH memory. 

Because the current implementation employs an MH with size 128 128×  (to support 

7-bit images), the process of clearing MH, which involves writing ‘0’s to all MH 

entries, can consume more than 16,000 clock cycles. For smaller subvolumes, the 

time required to clear MH memory becomes comparable to or larger than that 

required to process a subvolume (images are processed at the rate of approximately 

one voxel per clock cycle). In addition, the communication time between the host and 

the MI calculator, required for exchanging the transformation matrix and the 

calculated MI value, becomes comparable to the computation time. These two factors 

limit the net speedup achieved for smaller subvolumes. 

Table 4.4 compares the total execution time for deformable registration using 

a software (C++) implementation running on an Intel Xeon 3.6 GHz workstation with 

Table 4.4: Execution time of deformable image registration. 
Execution time (s) Image pair 

used for 
registration 

Software 
implementation

FPGA-based 
implementation 

Speedup 

iCT-preCT 11520 371 31.05 
iCT-PET 11146 339 32.88 
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2 GB of RAM against the presented FPGA-based architecutre. This execution time 

was measured for deformable registration between five iCT-preCT and five iCT-PET 

image pairs, described earlier. The maximum number of global and local iterations 

was set to 200 and 100 respectively. The same optimization algorithm was used for 

both the software and hardware implementations, and volume subdivision continued 

until the subvolume size was larger than 163. For each image modality pair, the 

execution time reported is the average of execution times of the five cases. The 

execution time of intensity-based image registration is directly proportional to the 

size of the RI. iCT image was used as the RI for both the image modality pairs and, 

hence, the execution time for deformable registration is similar for these two image 

modalities, despite the fact that PET images are smaller than preCT images (128 × 

128 × 154−202 and 256 × 256 × 200−350, respectively). For both image modality 

pairs, our architecture provided a speedup of about 30 over an equivalent software 

implementation and achieved an execution time of around 6 minutes. This speedup is 

a direct outcome of acceleration of MI calculation using the presented architecture. 

4.5.2.   Performance Comparison 

Intensity-based image registration has been identified to be a computationally 

intensive problem. Given the impact the acceleration of image registration can have 

on a variety of diagnostic and interventional applications, there have been significant 

efforts towards realizing high-speed implementations of image registration 

algorithms. Further, given that this problem is extremely compute-extensive and 

multi-faceted; researchers have applied a range of computing platforms and 

acceleration strategies at different levels of this problem to improve its execution 
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performance. In Chapter 2, we provided a survey of some acceleration approaches 

that are somewhat related to the work presented in this dissertation. In this section we 

compare the performance improvement provided by the FPGA-based implementation 

we developed in this dissertation work against that provided by the earlier reported 

solutions.  

For this comparison we focused on acceleration approaches involving 

intensity-based image registration, since these approaches can be retrospective, 

automatic and have the potential to be integrated into the clinical workflow. The 

algorithms considered included FFD-based, and gradient flow-based approaches as 

well as those based on the demon’s algorithm. Moreover, these implementations used 

different similarity measures (MI, NMI, SSD etc.), transformation models (spline-

based, rigid, volume-subdivision based) and acceleration strategies as dictated by the 

computational platform (GPUs, clusters, FPGAs etc.) used for their implementation. 

Thus, there is a substantial variation in the implementation details (both, for original 

and accelerated implementation) of each of these realizations, even though they try to 

address the same fundamental problem of accelerating intensity-based registration. To 

account for these variations and provide a fair comparison, we consider the net 

speedup offered by these accelerated implementations against their corresponding un-

accelerated versions. This comparison can be used to judge the efficiency of various 

strategies to accelerate intensity-based image registration. To compare the raw 

computational performance these realizations, we normalize their corresponding 

execution times by the dimensions of reference image used for registration and 

calculate the effective voxel processing rate (throughput) offered. In some cases, 
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where sufficient implementation details (such as number of iterations, number of 

voxels processed etc.) were not provided the voxel processing rate could not be 

calculated. 

Table 4.5 presents the results of this analysis and compares the performance 

of the presented architecture for high-speed implementation of deformable image 

registration, against a corresponding software implementation and previously 

reported acceleration approaches. The software implementation refers to the 

implementation of the volume subdivision–based algorithm. This implementation was 

developed using C++, and its performance was measured on an Intel Xeon 3.6 GHz 

workstation with 2 gigabytes of DDR2 400 MHz main memory. The presented 

implementation of FPGA-based MI calculation provides more than an order of 

magnitude speedup and superior voxel processing rate when compared to this 

software implementation. 

The majority of earlier reported attempts to accelerate intensity-based image 

registration have primarily employed a multiprocessor or supercomputer approach 

(see [57, 116, 117] , for example). Although these solutions delivered high 

performance and speedup by virtue of parallelization and high-speed network 

interconnects, the speedup achieved per processor was less than unity. Also, in some 

cases [116] the voxel processing rate achieved was substantially less than that offered 

by the presented implementation. In addition, these solutions may not be cost 

effective and, because of their size, are unlikely to be suitable for clinical deployment. 

Some solutions based on graphics processors [120, 122] attempt to provide 

performance improvement by exploiting data parallelism native to this platform. 
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Although this platform yielded reasonable speedups for rigid registration, the 

performance gain and voxel throughput for deformable registration and in particular, 

for that based on MI, were poor. Ohara et al. [123] attempted to accelerate MI-based 

rigid registration using a pair of cell processors, by exploiting the inherent parallelism 

offered by multiple cores (8 per processor) and high memory bandwidth. Using these 

16 computing cores, this implementation achieved speedup of only 11 for rigid 

registration. The voxel throughput of this implementation (6 MHz), however, was 

slightly better when compared with other multiprocessor implementations. This can 

be attributed to the high memory bandwidth and additional designer optimizations to 

take advantage of spatial locality. Jiang et al. [124] employed a high-level description 

language (Handel-C) and mapped B-spline computation (a common component in 

FFD-based image registration) to Xilinx FPGA devices. This implementation 

leveraged elimination of nested loops and pipelined implementation to achieve 

performance improvement. Despite the semi-automated nature of this approach and 

high clock rate of the synthesized design, the speedup and the voxel throughput 

achieved were limited to 3.2 and 4 MHz respectively. 

In comparison with these acceleration approaches, the FPGA-based 

implementation developed in this dissertation addresses the fundamental memory 

access bottleneck in intensity-based image registration. Furthermore, voxel-level 

parallelism is achieved through pipelined implementation and this implementation 

can offer voxel processing rate close to one voxel per clock cycle. Thus, this solution 

is not only compact, but offers high speedup (around 30) and superior voxel 

throughput (> 70 MHz) using a single processing element.  
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Table 4.5: Performance comparison of the presented FPGA-based 
implementation of intensity-based deformable image registration with an equivalent 
software implementation and prior approaches for acceleration of intensity-based 
registration. 

Implementation Algorithm Platform Speedup 

Voxel 
processing 
rate (MHz) 

(if available)
Stefanescu  
et al. [116] 

Demon’s 
algorithm 

15-processor 
cluster 11 1.8 

Rohlfing  
et al. [57] 

FFD-based 
deformable,  

using MI 

64-processor 
shared-memory 
supercomputer 

40 – 

Ino  
et al. [117] 

FFD-based 
deformable, using 

MI 

128-processor 
cluster, Myrinet 

connectivity 
90 – 

Kohn  
et al. [120] 

Gradient flow, 
rigid/deformable 

GPU (6800) 
(using GLSL) 12 2.15 

Vetter  
et al. [122] 

MI-based 
deformable 

GPU (7800) 
(using GLSL) 6 3.21 

Ohara  
et al. [123] 

MI-based  
rigid 

2 cell broadband 
engine processors 11 5.75 

Jiang  
et al. [124] 

B-spline 
interpolation 

FPGA 
 (using Handel-C) 3 4.19 

Software  
(C++) 

MI-based 
deformable Xeon workstation – 1.75 

Dandekar  
et al. [157] 

MI-based 
deformable FPGA 33 74.43 
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4.5.3.   Qualitative Evaluation of Deformable Image Registration 

Acceleration of deformable registration, as offered by the presented 

architecture, is critical for the time-sensitive nature of IGIs; however the accuracy of 

the registration process is of equal importance. As described earlier, we present the 

results of qualitative validation in this section, which demonstrate the functional 

correctness of our architecture. The results of the quantitative validation are presented 

later, in Chapter 6.  The qualitative validation of deformable registration was 

performed using five iCT-preCT and five iCT-PET image pairs. For all the cases 

visually correct alignment was achieved after deformable image registration. 

Furthermore, the results of the registration performed using our architecture was 

qualitatively similar to that obtained using the software implementation. 

 
Figure 4.15: Qualitative validation of deformable registration between iCT and 
preCT images performed using the presented FPGA-based solution. 
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Figure 4.15 shows an example of deformable registration between a 

representative pair of iCT and preCT images. This registration was performed using 

the presented FPGA-based solution. The initial seed alignment between these images 

was obtained using a single-click operation to compensate for different scanner 

coordinate systems and ensure reasonable overlap of common regions between two 

images. Subfigures (a) and (b) show coronal slices from iCT and preCT images, 

respectively. Subfigure (c) shows the overlay of these two images using the 

checkerboard pattern. In this checkerboard overlay, blocks from both the images are 

displayed alternately. The structural misalignment between iCT and preCT images is 

evident from mismatches at the boundaries of these blocks. Subfigure (e) shows a 

coronal slice from the preCT image registered to the iCT image, and subfigure (f) 

shows the overlay of this image with the original iCT image. Better structural 

alignment after deformable registration is evident from improved matching at the 

boundaries of the blocks of the checkerboard overlay.  

Similarly, Figure 4.16 shows an example of deformable registration between a 

representative pair of iCT and PET images. This registration was also performed 

using the reported FPGA-based solution. The initial alignment between these two 

Figure 4.16: Qualitative validation of deformable registration between iCT and PET 
images performed using the presented FPGA-based solution. 
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images was obtained as for the previous case. Subfigures (a) and (b) show coronal 

slices from iCT and PET images, respectively. Subfigure (c) shows the fusion of 

these two images. Subfigure (d) shows the fusion of the registered PET image with 

the original iCT image. Improved alignment after deformable registration is evident 

from better matching of structures in the fusion image. 

4.6.   Summary 

In this chapter we presented a novel FPGA-based architecture for high-speed 

implementation of MI-based deformable image registration. This architecture 

achieved voxel-level parallelism through pipelined implementation and employed 

several strategies to address the fundamental bottleneck in the intensity-based image 

registration, namely memory access management. As a result of these enhancements, 

the presented architecture is capable of achieving high voxel processing rate and a 

speedup of about 30 and consequently reduces the execution time of deformable 

registration from hours to only a few minutes. The results of the qualitative validation 

indicate that this performance improvement does not significantly compromise the 

accuracy of deformable registration. As qualitatively presented in this chapter and 

demonstrated quantitatively later (see Chapter 6), this implementation enables 

improved target delineation during image-guided interventions through deformable 

registration with preprocedural images. The robustness, speed, and accuracy offered 

by this architecture, in conjunction with its compact implementation, make it ideally 

suitable for integration into IGI workflow. 

Accurate, robust, and real-time deformable image registration between intra- 

and preprocedural images is an unmet need, critical to the success of image-guided 
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procedures. The work presented in this chapter of the dissertation represents an 

important first step toward meeting this goal. With further algorithmic and hardware 

improvements, geared toward enhancing its accuracy and performance, this approach 

has the potential to elevate the precision of current procedures and expand the scope 

of IGI to moving and deformable organs. 
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Chapter 5:   Framework for Optimization of Finite Precision 

Implementations 

Computationally intensive algorithmic components are routinely accelerated 

by mapping them to custom or reconfigurable hardware platforms. The work 

presented in the earlier chapters of this dissertation has a similar flavor. An important 

consideration for these implementations, which often employ finite precision 

datapaths, is the tradeoff between hardware resources and implementation accuracy. 

This chapter presents a methodology for systematically exploring this tradeoff and 

identifying design configurations that efficiently balance these two conflicting 

objectives. First, we formulate this problem as a multiobjective optimization problem. 

Next, we present a multiobjective optimization framework developed in the context 

of FPGA-based architecture for image registration presented in the previous chapter. 

Finally, we demonstrate the applicability of the proposed approach through 

simulation and post-synthesis validation results. 

5.1.   Motivation 

An emerging trend in real-time signal processing systems is to accelerate 

computationally intensive algorithmic components (for example, MI calculation as 

described in the previous chapter) by mapping them to custom or reconfigurable 

hardware platforms, such as ASICs and FPGAs. Most of these algorithms are initially 

developed in software using floating-point representation and later migrated to 

hardware using finite precision (e.g., fixed-point representation) for achieving 

improved computational performance and reduced hardware cost. These 
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implementations are often parameterized, so that a wide range of finite precision 

representations can be supported [158] by choosing an appropriate wordlength for 

each internal variable. As a consequence, the accuracy and hardware resource 

requirements of such a system are functions of the wordlengths used to represent the 

internal variables. Determining an optimal wordlength configuration has been shown 

to be NP-hard [159] and can take up to 50% of the design time for complex systems 

[125]. Moreover, a single optimal solution may not exist, especially in the presence of 

multiple conflicting objectives, as is the case in the current work. In addition, a new 

configuration generally needs to be derived when the design constraints or application 

requirements are altered. 

An exhaustive search of the entire design space is guaranteed to find Pareto-

optimal configurations. Execution time for such exhaustive search, however, 

increases exponentially with the number of design parameters, making it unfeasible 

for most practical systems. Some earlier reported techniques have attempted to solve 

this problem through the use of analytical modeling [86-90], gradient-based search 

[93], linear programming strategies [86], or through the use of linear aggregation of 

objective functions. These approaches, although successfully demonstrated, may have 

limited applicability for complex designs, with non-linear objective functions and a 

non-convex search space [129]. For example, in the case of FPGA-based 

implementation of image registration, analytically representing the error induced in 

MI-calculation will be non-trivial. In addition, MI is a non-linear objective function. 

Techniques based on evolutionary methods have been shown to be effective in 

searching large search spaces with complex objective functions in an efficient manner 
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[130, 131]. Furthermore, these techniques are inherently capable of performing 

multipoint searches. As a result, techniques based on evolutionary algorithms (EAs) 

have been employed in the context of multiobjective optimization (see SPEA2 [160], 

NSGA-II [161]). 

We formulate this problem of finding optimal wordlength configurations as a 

multiobjective optimization, where different objectives — for example, accuracy and 

area — generally conflict with one another. Although this approach increases the 

complexity of the search, it can find a set of Pareto-optimized configurations 

representing strategically-chosen tradeoffs among the various objectives. This novel 

multiobjective optimization strategy is developed and validated in the context of 

FPGA-based implementation of image registration. The tradeoff between FPGA 

resources (area and memory) and implementation accuracy is systematically 

explored, and Pareto-optimized solutions are identified such that a designer could use 

these solutions to satisfy given design constrains or meet image registration accuracy 

required by an application. This analysis is performed by treating the wordlengths of 

the internal variables of the architecture presented in the previous chapter as design 

variables. We also compare several search methods for finding Pareto-optimized 

solutions and demonstrate in our context the applicability of search based on 

evolutionary techniques for efficiently identifying superior multiobjective tradeoff 

curves. This optimization strategy can easily be adapted to a wide range of signal 

processing applications, including applications for image and video processing. 
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5.2.   Multiobjective Optimization 

The architecture presented in the previous chapter is designed to accelerate the 

calculation of MI for performing intensity-based image registration. We have 

demonstrated this architecture to be capable of offering execution performance 

superior to that of a software implementation [157]. The accuracy of MI calculation 

(and by extension, that of image registration) offered by this implementation, 

however, is a function of the wordlengths chosen for the internal variables of the 

design. Similarly, these wordlengths also control the hardware implementation cost of 

the design. For medical imaging applications, the ability of an implementation to 

achieve the desired level of accuracy is of paramount importance. It is, therefore, 

necessary to understand the tradeoff between accuracy and hardware implementation 

cost for a design and to identify wordlength configurations that provide effective 

tradeoffs between these conflicting criteria. This multiobjective optimization allows a 

designer to systematically maximize accuracy for a given hardware cost limitation 

(imposed by a target device, for example) or minimize hardware resources to meet the 

accuracy requirements of a medical application. 

The following section provides a formal definition of this problem and the 

subsequent section describes a framework developed for multiobjective optimization 

of FPGA-based medical image registration. 

5.2.1.   Problem Statement 

Consider a system Q  that is parameterized by N  parameters 

( 1, 2, , )in i N= … , where each parameter can take on a single value from a 
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corresponding set of valid values ( iv ). Let the design configuration space 

corresponding to this system be S , which is defined by a set consisting of all N-

tuples generated by the Cartesian product of the sets ,iv i∀ :  

 1 2 3 .NS v v v v= × × × ×  (5.1) 

The size of this design configuration space is then equal to the cardinality of the set 

S , or in other words, the product of the cardinalities of the sets iv : 

 1 2 3 .NS v v v v= × × × ×  (5.2) 

For most systems, not all configurations that belong to S may be valid or practical. 

We therefore define a subset ( )Sℑ ℑ⊆ , such that it contains all the feasible system 

configurations.  Now consider m  objective functions 1 2( , , , )mf f f…  defined for 

system Q , such that each function associates a real value for every feasible 

configuration c∈ℑ . 

The problem of multiobjective optimization is then to find a set of solutions 

that simultaneously optimizes the m  objective functions according to an appropriate 

criterion. The most commonly adopted notion of optimality in multiobjective 

optimization is that of Pareto optimality. According to this notion, a solution c∗  is 

Pareto optimal if there does not exist another solution c∈ℑ  such that 

*( ) ( )i if c f c≤ , for all i , and *( ) ( )j jf c f c< , for at least one j . The solution c∗
 is also 

called a non-dominated solution, because no other solution dominates (or is superior 

than) solution c∗  as per the Pareto-optimality criteria. The set of Pareto optimal 

solutions, therefore, comprises of all non-dominated solutions.  
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Given a multiobjective optimization problem and a heuristic technique for this 

problem that attempts to derive Pareto-optimal or near-Pareto-optimal solutions, we 

refer to solutions derived by the heuristic as “Pareto-optimized” solutions. 

5.2.2.   Parameterized Architectural Design 

Implementations of signal processing algorithms using microprocessor- or 

DSP-based approaches are characterized by a fixed datapath width. This width is 

determined by the hard-wired datapath of the underlying processor architecture. 

Reconfigurable implementation based on FPGAs, in contrast, allows the size of 

datapath to be customized to achieve better tradeoffs among accuracy, area, and 

power. The use of such custom data representation for optimizing designs is one of 

the main strengths of reconfigurable computing [85]. To take advantage of the 

described multiobjective optimization strategy, the architecture being optimized must 

be able to support various design configurations as identified by the optimization 

scheme. It has even been contended that the most efficient hardware implementation 

of an algorithm is one that supports a variety of finite precision representations of 

different sizes for its internal variables [158]. In this spirit, many commercial and 

research efforts have employed parameterized design style for intellectual property 

(IP) cores [162-166]. This parameterization capability not only facilitates reuse of 

design cores, but also allows them to be reconfigured to meet design requirements. 

During the design of the aforementioned architecture for accelerated 

computation of MI, we adopted a similar design style that allows configuration of the 

wordlengths of the internal variables. Hardware design languages such as VHDL and 

Verilog natively support hierarchical parameterization of a design through use of 
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generics and parameters, respectively. This design style takes advantage of these 

language features and is employed for the design of all the modules described earlier. 

We highlight the main features of this design style using illustrative examples and 

design senarios. Consider a design module with two input variables that computes an 

output variable through arithmetic manipulation of the input variables. The 

wordlength of the input variables (denoted by IP1_WIDTH, IP2_WIDTH) and that of 

the output variable (denoted by OP_WIDTH) are the design parameters for this 

module. The module can then be parameterized for these design variables as 

illustrated in Figure 5.1a.  

In a pipelined implementation of an operation, a module may have multiple 

internal pipeline stages and corresponding intermediate variables. Wordlengths 

chosen for these intermediate variables can also impact the accuracy and hardware 

requirements of a design. In our implementation scheme, we do not employ any 

rounding or truncation for the intermediate variables, but deduce their wordlengths 

based on the wordlengths of the input operands and the arithmetic operation to be 

implemented. For example, multiplication of two 8-bit variables will, at the most, 

require a 16-bit wide intermediate output variable. A parameterized implementation 

of this scenario is illustrated in Figure 5.1c. Sometimes, it is also necessary to 

instantiate a vendor-provided or a third-party IP core, such as a FIFO module or an 

arithmetic unit, within a design module. In such cases, we simply pass the wordlength 

parameters down the design hierarchy to configure the IP core appropriately and 

thereby maintain the parameterized design style (see Figure 5.1b for example).  
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When signals cross module boundaries, the output wordlength and format 

(position of the binary point) of the source module should match the input wordlength 

and format of the destination module. This is usually achieved through use of a 

rounding strategy and right- or left-shifting of the signals. Adopting “rounding toward 

the nearest” strategy to achieve wordlength-matching is expected to introduce the 

smallest error, but requires additional logic resources. In our design, we therefore 

 
Figure 5.1: Examples of parameterized architectural design style. 



 134 
 

implement truncation (or “rounding toward zero” strategy), while the signal shifting 

is achieved through zero-padding. Both these operations are parameterized and take 

into account the wordlengths and the format at the module boundaries (see Figure 

5.1c for example). Thus, this parameterized design style enables the architecture to 

support multiple wordlength configurations for its internal variables. The parameters 

of this architecture, and in particular the fractional wordlengths of the internal 

variables, are being treated as design variables in this multiobjective optimization 

framework. These design variables are identified in the following section. 

5.2.3.   Multiobjective Optimization Framework 

Figure 5.2 illustrates the framework that we have developed for multiobjective 

optimization of the architecture for high-speed implementation of image registration 

 
Figure 5.2: Framework for multiobjective optimization of FPGA-based image 
registration. 
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described in the previous chapter. There are two basic components of this framework. 

The first component is the search algorithm that explores the design space and 

generates feasible candidate solutions; and the second component is the objective 

function evaluation module that evaluates candidate solutions. The solutions and 

associated objective values are fed back to the search algorithm so that they can be 

used to refine the search. These two components are loosely coupled so that different 

search algorithms can be easily incorporated into the framework. Moreover, the 

objective function evaluation module is parallelized using a message passing interface 

(MPI) on a 32-processor cluster. With this parallel implementation, multiple solutions 

can be evaluated in parallel, thereby increasing search performance. These 

components are described in detail in the following sections. 

5.2.3.1.   Design Parameters  

As described in the earlier section, the architecture performs MI calculation 

using a fixed-point datapath. As a result, the accuracy of MI calculation depends on 

the precision (wordlength) offered by this datapath. The design parameters in this 

datapath define the design space and are identified and listed along with the 

corresponding design module (see Figure 4.3) in Table 5.1. 

A fixed-point representation consists of an integer part and a fractional part. 

The numbers of bits assigned to these two parts are called the integer wordlength 

(IWL) and fractional wordlength (FWL), respectively. The individual numbers of bits 

allocated to these parts control the range and precision of the fixed-point 

representation.  
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-

Range ( ) [ 2 ,2 ) ... for signed numbers
[0,2 )       ... for unsigned numbers

Precison ( ) 2

IWL IWL

IWL

FWL

R = −
=

Δ =

 (5.3) 

For this architecture, the IWL required for each design parameter can be deduced 

from the range information specific to the image registration application. For 

example, in order to support translations in the range of [–64, 63] voxels, 7 bits of 

IWL (with 1 bit assigned as a sign bit) are required for the translation parameter. 

Similarly, since the current architecture supports images with dimensions up to 512, 9  

bits (log2 512) of IWL is required for the floating image address. We used similar 

range information to choose the IWL for all the parameters, and these values are 

reported in Table 5.1.  The precision required for each parameter, which is 

determined by its FWL, is not known a priori. We, therefore, determine this by 

performing multiobjective optimization using the FWL of each parameter as a design 

variable. In our experiments, we used the design range of [1, 32] bits for FWLs of all 

the parameters. The optimization framework can support different wordlength ranges 

for different parameters, which can be used to account for additional design 

Table 5.1: Design variables for FPGA-based architecture. Integer wordlengths are 
determined based on application-specific range information, and fractional 
wordlengths are used as parameters in the multiobjective optimization framework. 

Architectural 
Module 

Design 
Variable 

Integer 
wordlength 

(IWL ) (bits) 

Fractional 
wordlength (FWL) 

range (bits) 
Translation vector 7 [1,32] Voxel coordinate 

transformation Rotation matrix 4 [1,32] 
Partial volume 
interpolation Floating image address 9 [1,32] 

Mutual histogram 
accumulation 

Mutual histogram 
bin 25 [1,32] 
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constraints, such as, for example, certain kinds of constraints imposed by third-party 

intellectual property. 

The entropy calculation module is implemented using a multiple-LUT–based 

approach and also employs fixed-point arithmetic. However, this module has already 

been optimized for accuracy and hardware resources, as described in [155]. The 

optimization strategy employed in [155] uses an analytical approach that is specific to 

entropy calculation and is distinct from the strategy presented in this work. This 

module, therefore, does not participate in the multiobjective optimization framework 

presented in this work, and we simply use the optimized configuration identified 

earlier. This further demonstrates the flexibility of our optimization framework to 

accommodate arbitrary designer- or externally-optimized modules. 

5.2.3.2.   Search Algorithms  

An exhaustive search that explores the entire design space is guaranteed to 

find all Pareto-optimal solutions. However, this search can lead to unreasonable 

execution time, especially when the objective function evaluation is computationally 

intensive. For example, with four design variables, each taking one of 32 possible 

values, the design space consists of 324 solutions. If the objective function evaluation 

takes 1 minute per trial (which is quite realistic for multiple MI calculations using 

large images), the exhaustive search will take 2 years. Consequently, we have 

considered alternative search methods, as described below. 

The first method is partial search, which explores only a portion of the entire 

design space. For every design variable, the number of possible values it can take is 

reduced by half by choosing every alternate value. A complete search is then 
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performed in this reduced search space. This method, although not exhaustive, can 

effectively sample the breadth of the design space. The second method is random 

search, which involves randomly generating a fixed number of feasible solutions. For 

both of these methods, Pareto-optimized solutions are subsequently identified from 

the set of solutions explored. 

The third method is performing a search using evolutionary techniques. EAs 

have been shown to be effective in efficiently exploring large search spaces [130, 

131]. In particular, we have employed SPEA2 [160], which is very effective in 

sampling from along an entire Pareto-optimal front and distributing the solutions 

generated relatively evenly over the optimal tradeoff surface. Moreover, SPEA2 

incorporates a fine-grained fitness assignment strategy and an enhanced archive 

truncation method, which further assist in finding Pareto-optimal solutions. The flow 

of operations in this search algorithm is shown in Figure 5.2. 

For the EA-based search algorithm, the representation of the system 

configuration is mapped onto a “chromosome” whose “genes” define the wordlength 

parameters of the system. Each gene, corresponding to the wordlength of a design 

variable i, is represented using an integer allele that can take values from the set vi, 

described earlier. Thus, every gene is confined to wordlength values that are 

predefined and feasible for a given design variable. The genetic operators for 

crossover and mutation are also designed to adhere to this constraint and always 

produce values from set vi, for a gene i within a chromosome. This representation 

scheme is both symmetric and repair-free and, hence, is favored by the schema theory 

[167], and is computationally efficient, as described in [168]. 
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5.2.3.3.   Objective Function Models and their Fidelity 

Search for Pareto-optimized configurations requires evaluating candidate 

solutions and determining Pareto-dominance relationships between them. This can be 

achieved by calculating objective functions for all the candidate solutions and by 

relative ordering of the solutions with respect to the values of their corresponding 

objective functions. We consider the error in MI calculation and the hardware 

implementation cost to be the conflicting objectives that must be minimized for our 

FPGA implementation problem. We model the FPGA implementation cost using two 

components: the first is the amount of logic resources (number of LUTs) required by 

the design, and the second is the internal memory consumed by the design. We treat 

these as independent objectives in order to explore the synergistic effects between 

these complementary resources. Because of the size of the design space and 

limitations due to execution time, it is not practical to synthesize and evaluate each 

solution. We, therefore, employ models for calculating objective functions to evaluate 

the solutions. The quality of the Pareto-optimized solutions will then depend on the 

fidelity of these objective function models. 

The error in MI calculation can be computed by comparing the MI value 

reported by the limited-precision FPGA implementation against that calculated by a 

double-precision software implementation. For this purpose, we have utilized a bit-

true emulator of the hardware. This emulator was developed in C++ and uses fixed-

point arithmetic to accurately represent the behavior of the limited-precision 

hardware. It supports multiple wordlengths for internal variables and is capable of 

accurately calculating the MI value corresponding to any feasible configuration. We 
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have verified its equivalence with the hardware implementation for a range of 

configurations and image transformations. This emulator was used to compute the MI 

calculation error. The MI calculation error was averaged for three distinct image pairs 

(with different image modality combinations) and for 50 randomly generated image 

transformations. The same sets of image pairs and image transformations were used 

for evaluating all feasible configurations. 

The memory required for a configuration is primarily needed for intermediate 

FIFOs, which are used to buffer internal variables, and the MH memory. For 

example, a 64-word deep FIFO used to buffer a signal with a wordlength of b will 

require 64×b bits of memory. In our architecture, the depth of the FIFOs and the 

dimensions of the MH are constant, whereas their corresponding widths are 

determined by the wordlength of the design parameters. Using these insights, we have 

developed an architecture-specific analytical expression that accurately represents the 

cumulative amount of memory required for all internal FIFOs and MH.  We used this 

expression to calculate the memory requirement of a configuration. 

For estimating the area requirements of a configuration, we adopt the area 

models reported in [86, 169]. These are high-level models of common functional 

units such as adders, multipliers, delays. These models are derived from the 

knowledge of the internal architecture of these components. Area cost for 

interconnects and routing is not taken into account in this analysis. These models 

have been verified for the Xilinx Virtex series of FPGAs and are equally applicable to 

alternative FPGA families and for ASIC implementations. These models have also 

been previously used in the context of wordlength optimization [86, 91, 169].  
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We further evaluated the fidelity of these area models using a representative 

module, PV Interpolator, from the aforementioned architecture. This module receives 

the fractional components of the floating image address and computes corresponding 

interpolation weights. We varied the FWL of the floating image address from 1 to 32 

bits and synthesized the module using the Altera Stratix II and Xilinx Virtex 5 as 

target devices. For a meaningful comparison, the settings for the analysis, synthesis, 

and optimization algorithms (for example, settings to favor area or speed) for the 

design tools (Altera Quartus II and Xilinx ISE) were chosen to be comparable. After 

complete synthesis, routing, and placement, we recorded the area (number of LUTs) 

consumed by the synthesized design. This process was automated by using the Tcl 

scripting feature provided by the design tools and through the parameterized design 

style described earlier. We then compared the consumed area against that predicted 

by the adopted area models for all FWL configurations. The results of this experiment 

are presented in Figure 5.3. These results indicate that the area estimates (number of 

 
Figure 5.3: Comparison of the area values predicted by the adopted area models 
with those obtained after physical synthesis.
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LUTs) predicted by the model are comparable to that obtained through physical 

synthesis for both the target devices. For quantitative evaluation, the fidelity of the 

area models was calculated as below: 
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In this equation, the iM s represent the values predicted by the area models; and the 

iS s represent the values obtained after physical synthesis. The fidelity of the area 

models when evaluated with respect to the synthesis results obtained for both Altera 

and Xilinx devices was 1, which corresponds to maximum (“perfect”) fidelity. This 

indicates that the relative ordering of FWLs with respect to their area requirements is 

consistent for the model and synthesized designs. These results further validate the 

applicability of using the aforementioned area models for multiobjective 

optimization. 

5.3.   Experiments and Results 

We performed multiobjective optimization of the aforementioned architecture 

using the search algorithms outlined in the previous section. To account for the 

Table 5.2: Number of solutions explored by search methods. 

Search Method Number of  
solutions explored 

Partial search 65,536 
Random search 6,000 

EA-based search 6,000 
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effects of random number generation, the EA-based search and random search were 

repeated five times each, and the average behavior from these repeated trials is 

reported. The number of solutions explored by each search algorithm in a single run 

is reported in Table 5.2. The execution time of each search algorithm was roughly 

proportional to the number of solutions explored, and the objective function 

evaluation for each solution took approximately 1 minute using a single computing 

node. As expected, the partial search algorithm explored the largest number of 

solutions. The parameters used for the EA-based search are listed in Table 5.3. The 

crossover and mutation operators were chosen to be one-point crossover and flip 

mutator, respectively. For a fair comparison, the number of solutions explored by the 

random search algorithm was set to be equal to that explored by the EA-based 

algorithm. 

The solution sets obtained by each search method were then further reduced to 

corresponding nondominated solution sets using the concept of Pareto optimality. As 

described earlier, the objectives considered for this evaluation were the MI 

calculation error and the memory and area requirements of the solutions. Figure 5.4 

shows the Pareto-optimized solution set obtained for each search method. 

Qualitatively, the Pareto front identified by the EA-based search is denser and more 

widely distributed and demonstrates better diversity than other search methods.  

Table 5.3: Parameters used for the EA-based search. 
Parameter Value 

Population size 200 
Number of generations 30 
Crossover probability 1.0 
Mutation probability 0.06 
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(a)  
Partial Search 

 

(b) 
EA-based Search 

 

(c) 
Random Search 

 
Figure 5.4: Pareto-optimized solutions identified by various search methods. 
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Figure 5.5 compares the Pareto fronts obtained by partial search and EA-based search 

by overlaying them and illustrates that the EA-based search can identify better Pareto-

optimized solutions, which indicates the superior quality of solutions obtained by this 

search method. Moreover, it must be noted that the execution time required for the 

EA-based search was over 10-times faster than that required for the partial search. 

(a) Area vs. MI 
calculation error 

 

(b) Memory vs. MI 
calculation error 

 
Figure 5.5: Qualitative comparison of solutions found by partial search and EA-
based search. 
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5.3.1.   Metrics for Comparison of Pareto-optimized Solution Sets 

Quantitative comparison of the Pareto-optimized solution sets is essential in 

order to compare more precisely the effectiveness of various search methods. As with 

most real-world complex problems, the Pareto-optimal solution set is unknown for 

this application. We, therefore, employ the following two metrics to perform 

quantitative comparison between different solution sets. We use the ratio of non-

dominated individuals (RNI) to judge the quality of a given solution set, and the 

diversity of a solution set is measured using the cover rate. These performance 

measures are similar to those reported in [170] and are described below. 

The RNI is a metric that measures how close a solution set is to the Pareto-

optimal solution set. Consider two solution sets ( 1P  and 2P ) that each contain only 

non-dominated solutions. Let the union of these two sets be UP . Furthermore, let NDP  

be a set of all non-dominated solutions in ( )U ND UP P P⊆ . The RNI for the solution set 

iP  is then calculated as: 

 ,i ND
i

ND

P P
RNI

P
=

∩
 (5.6) 

where ⋅  is the cardinality of a set. The closer this ratio is to 100%, the more superior 

the solution set is and the closer it is to the Pareto-optimal front. We computed this 

metric for all the search algorithms previously described, and the results are presented 

in Figure 5.6. Our EA-based search offers better RNI and, hence, superior quality 

solutions to those achieve7d with either the partial or random search. 
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The cover rate estimates the spread and distribution (or diversity) of a solution 

set in the objective space. Consider the region between the minimum and maximum 

of an objective function as being divided into an arbitrary number of partitions. The 

cover rate is then calculated as the ratio of the number of partitions that is covered 

(that is, there exists at least one solution with an objective value that falls within a 

given partition) by a solution set to the total number of partitions. The cover rate ( kC ) 

of a solution set for an objective function ( kf ) can then be calculated as: 

 ,k
k

NC
N

=  (5.7) 

where kN  is the number of covered partitions and N  is the total number of 

partitions. If there are multiple objective functions ( m , for example), then the net 

cover rate can be obtained by averaging the cover rates for each objective function as: 
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The maximum cover rate is 1, and the minimum value is 0. The closer the cover rate 

of a solution set is to 1, the better coverage and more even (more diverse) distribution 

it has. Because the Pareto-optimal front is unknown for our targeted application, the 

 
Figure 5.6: Quantitative comparison of search methods using the ratio of non-
dominated individuals (RNI). 
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minimum and maximum values for each objective function were selected from the 

solutions identified by all the search methods. We used 20 partitions/decade for MI 

calculation error (represented using a logarithmic scale), 1 partition for every 50 

LUTs for the area requirement, and 1 partition for every 50 Kbits of memory 

requirement. The cover rate for all the search algorithms described earlier was 

calculated using the method outlined above, and the results are illustrated in Figure 

5.7. The EA-based search offers a better cover rate, which translates to better range 

and diversity of solutions when compared with either partial or random searches. In 

summary, our EA-based search outperforms the random search and is capable of 

offering more diverse and superior quality solutions when compared with the partial 

search, using only 10% of the execution time. 

5.3.2.   Accuracy of Image Registration 

An important performance measure for any image registration algorithm, 

especially in the context of medical imaging, is its accuracy. We did not choose 

 
Figure 5.7: Quantitative comparison of search methods using cover rate. 
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registration accuracy as an objective function because of its dependence on data 

(image pairs), the degree of misalignment between images, and the behavior of the 

optimization algorithm that is used for image registration. These factors, along with 

its execution time, in our experience, may render registration accuracy as an 

unsuitable objective function, especially if there is non-monotonic behavior with 

respect to the wordlength of design variables. 

Instead, we evaluated the affect of error in MI calculation on the image 

registration accuracy for a set of image pairs. This analysis was performed using three 

computed tomography image pairs for the Pareto-optimized solutions identified by all 

of the search algorithms that we experimented with. Image registration was 

performed using limited-precision configurations corresponding to each solution 

using the aforementioned bit-true simulator. The result of registration was then 

compared with that obtained using double-precision software implementation. 

Registration accuracy was calculated by comparing deformations at the vertices of a 

 
Figure 5.8: Relationship between MI calculation error and resulting image 
registration error. 
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cuboid (with size equal to half the image dimensions) located at the center of the 

image. The results of this analysis are illustrated in Figure 5.8. As expected, there is a 

good correlation between the MI calculation error and the accuracy of image 

registration. This demonstrates that optimized tradeoff curves between MI calculation 

error and hardware cost, as identified by our reported analysis, can be used to 

represent the relationships between registration accuracy and hardware cost with high 

fidelity. This analysis also provides better insight about the sensitivity of image 

registration accuracy to various design parameters. 

5.3.3.   Post-synthesis Validation 

We performed further validation of the presented multiobjective optimization 

strategy through physical design synthesis. We identified three solutions from the 

Pareto-optimized set obtained using the EA-based search and synthesized the 

aforementioned architecture with configurations corresponding to these solutions. 

These three configurations, which offer gradual tradeoff between hardware resource 

requirement and error in MI calculation, are listed in the first column of Table 5.4. 

The wordlengths associated with each configuration correspond to the FWLs of the 

design variables identified in Table 5.1.  The design was synthesized for these 

configurations and the resulting realizations were implemented using an Altera Stratix 

II EP2S180F1508C4 FPGA (Altera Corporation, San Jose, CA) on a PCI prototyping 

board (DN7000K10PCI) manufactured by the Dini Group (La Jolla, CA). We then 

evaluated the performance of the synthesized designs and compared it with that 

predicted by the objective function models. The results of this analysis are 

summarized in Table 5.4 and are described below.  
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The error in MI calculation was computed by comparing the MI value 

reported by the limited-precision FPGA implementation against that calculated by a 

double-precision software implementation. The MI calculation error was averaged for 

three distinct image pairs and for 50 randomly generated image transformations for 

each pair. These image pairs and the associated transformations were identical to 

those employed in the objective function calculation. In this case, the average MI 

calculation error obtained by all the design configurations was identical to that 

predicted by the objective function model. This is expected due to the bit-true nature 

of the simulator used to predict the MI calculation error. We repeated this calculation 

with a different set of three image pairs and 50 randomly generated new 

transformations associated with each image pair. The MI calculation error 

corresponding to this setup is reported in the second column of Table 5.4.  The small 

difference when compared to the error predicted by the models is explained by the 

different sets of images and transformations used. The area and memory requirement 

corresponding to each configuration after synthesis are reported in columns three and 

Table 5.4: Validation of the objective function models using post-synthesis 
results. The wordlengths in a design configuration correspond to the FWLs of the 
design variables identified earlier. 

Objective Functions 
Post-Synthesis Value  

(Predicted Value) Design 
Configuration 

MI Calculation  
Error 

Area  
(No. of LUTs) 

Memory  
(Mbits) 

Image 
Registration 

Error 
(mm) 

{5, 6, 4, 9} 2.4×10-3  
(2.1×10-3)

6527  
(5899)

2.23  
(2.23) 3.82 

{8, 9, 7, 12} 5.3×10-4 

 (5.2×10-4) 
7612  

(6754) 
2.45  

(2.45) 1.57 

{9, 12, 10, 17} 7.7×10-5  
(7.8×10-5) 

10356 
 (8073) 

2.81  
(2.81) 0.45 
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four of Table 5.4, respectively. For comparison, we have also included the values 

predicted by the corresponding objective function models in parenthesis. It must be 

noted that for all the three configurations, the relative ordering based on Pareto-

dominance relationships with respect to each objective function is identical for both 

post-synthesis and model-predicted values.  

We also evaluated the accuracy of image registration performed using the 

implementation corresponding to each design configuration. For this analysis, we 

considered five computed tomography image pairs. The image registration results for 

a representative image-pair are illustrated in Figure 5.9. Subfigures (a) and (b) show 

two distinct poses for the same subject; and (c) shows fusion of (a) and (b) using a 

checkerboard pattern. The misalignment between images is evident at the edges of the 

squares within the checkerboard pattern. Subfigures (d)-(f) show fusion images after 

registration using the identified design configurations. These configurations offer 

progressively reducing image registration error (3.82 mm, 1.57 mm, and 0.45 mm, 

respectively), and result into correspondingly improved image alignment. The arrows 

indicate representative regions with misalignment that are better-aligned after 

registration. The registration error was calculated by comparing the obtained 

registration results with that obtained using double-precision software 

implementation. The average registration error for each configuration is reported in 

the last column of Table 5.4. There is a good correlation between the MI calculation 

error and the registration error, reinforcing the results presented in the previous 

section. 
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This post-synthesis validation further demonstrates the efficacy of the 

presented optimization approach for reconfigurable implementation of image 

registration. It also further demonstrates how the approach enables a designer to 

systematically choose an efficient system configuration to meet the registration 

accuracy requirements for a reconfigurable implementation. 

As described previously, we used error in calculation of MI as one of the 

objective functions. The Pareto-optimized solutions identified by the search schemes 

employed in this multiobjective optimization framework can then be used to select a 

design configurations that offer best (lowest) error in calculation of MI for various 

hardware resource requirements. Through additional experiments, both simulation-

based and post-synthesis validation–based, we have further demonstrated that there is 

Figure 5.9: Results of image registration performed using the high-speed, FPGA-
based implementation for design configurations offering various registration errors. 
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a good correlation between error in MI calculation and the image registration error. In 

general, reducing the error in the calculation of MI will translate into improved image 

registration accuracy. This is expected, since MI is used as a similarity measure for 

performing image registration. Although, the image registration algorithm being 

accelerated in the current work is of deformable nature, it achieves deformable 

alignment through a series of hierarchical, locally rigid registrations that use MI as a 

similarity measure.  We, therefore, contend that the accuracy of the deformable 

registration is directly dependant on and highly correlated with the accuracy of MI 

calculation. Consequently, the design configuration offering better accuracy (lower 

error) in MI calculation will lead to superior image registration accuracy. This is also 

supported by the data presented in Table 5.4. As accuracy of image registration can 

play a crucial rule in IGI applications (and other medical applications, in general), we 

selected the system configuration that offered lowest error in MI calculation (and by 

extension lowest image registration error) from Table 5.4. This system configuration 

({9, 12, 10, 17}) was then used for validation of deformable registration in the 

context of novel IGI applications described in the following chapter. 

5.4.   Summary 

One of the main strengths of reconfigurable architectures over general-

purpose processor–based implementations is their ability to utilize more streamlined 

representations for internal variables. This ability can often lead to superior 

performance, as demonstrated by our architectures (for performing 3D image 

preprocessing and deformable image registration) presented in the previous chapters 

and by other researchers in the context of myriad of other applications. Furthermore, 
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this approach can result into optimized utilization of FPGA resources, by employing 

just enough precision for each of its internal variables to satisfy design requirements 

of a given application. Given this advantage, it is highly desirable to automate the 

derivation of optimized design configurations that offer varying degree of tradeoff 

between implementation accuracy and hardware resources. Toward that end, this 

work has presented a framework for multiobjective optimization of finite precision, 

reconfigurable implementations. This framework considers multiple conflicting 

objectives, such as hardware resource consumption and implementation accuracy, and 

systematically explores tradeoff relationships among the targeted objectives. This 

work has also further demonstrated the applicability of EA-based techniques for 

efficiently identifying Pareto-optimized tradeoff relations in the presence of complex 

and non-linear objective functions. The evaluation that we have performed in the 

context of the architecture for FPGA-based deformable image registration 

demonstrates that such an analysis can be used to enhance automated hardware design 

processes, and efficiently identify a system configuration that meets given design 

constraints. This approach may also be applied in the context of reconfigurable 

computing for identifying suitable design configurations that can be switched among 

at runtime. Furthermore, the multiobjective optimization approach that we have 

presented is quite general, and can be extended to a multitude of other signal 

processing applications. 
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Chapter 6:   Clinical Applications 

Earlier chapters of this dissertation have identified, described, and optimized 

the core components of an advanced image-guidance system for IGI applications. 

These components, namely real-time image processing and high-speed deformable 

image registration, enable the use of 3D image processing in the IGI workflow. This 

workflow is illustrated pictorially in Figure 6.1. For this example, we considered CT 

to be the intraprocedural imaging modality (labeled as iCT) and PET to be the 

preprocedural image modality (labeled as PET). However, it must be noted, that this 

workflow is only representative and can be extended to incorporate multiple image 

modality combinations (such as CT and contrast-enhanced CT, or MRI, etc.) for 

various IGI applications. This chapter validates the high-speed implementation of 

deformable image registration and demonstrates the feasibility of using these 

components to improve existing procedures and enable development of novel image-

guided applications. We consider two such clinical applications. First, we propose a 

strategy for intraprocedural radiation dose reduction in the context of CT-guided 

 
Figure 6.1: Integration of deformable registration into IGI workflow. 
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procedures. Second, we demonstrate the feasibility of incorporating PET into liver 

radiofrequency ablations, a common procedure for treating liver tumors. 

6.1.   Radiation Dose Reduction 

6.1.1.   Motivation 

3D visualization is a critical need of image guided interventions. To perform true 3D 

visualization, a volumetric  image of the operative field is essential, the type of data 

which is native to modern CT/MRI, but not to 2D-ultrasound or fluoroscopic imaging 

which are conventionally used for image-guided interventions [18, 20, 21] . 

Continuous real-time 3D imaging in an interventional suite is the first step to equip 

interventionists with enhanced visualization capabilities. However, continuous 3D 

imaging has been technologically difficult until recently. MRI remains slow and 

while real-time 3D ultrasonography was recently released, its image quality remains 

suboptimal compared with that of CT and MRI. Recently introduced multi-slice CT 

does not suffer from these limitations and can, in fact, image the operative field at a 

high resolution and a very high frame rate (sub-seconds). As a result of this, many 

interventional procedures such as liver biopsies, cryo-and radio-frequency ablations 

are now being routinely carried out under volumetric CT-guidance [171-173]. With 

time, its speed, image resolution and coverage will only improve, making it even 

more desirable for live intraprocedural imaging. Several imaging equipment 

manufacturers, Toshiba and Philips, for example, have announced availability of 256-

slice scanners [25, 174] providing sufficient coverage (8-12 cm) for most image 

guided interventions. Radiation exposure to the patient and the interventionist, 
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however, continues to be a concern with use of continuous or on-demand CT. It is, 

therefore, necessary to acquire the intraprocedural images at a lower dose, such that 

the net radiation dose is within the safe limits. There are some previous studies which 

have reported use of low-dose CT [175-177], however, these techniques were 

primarily employed for diagnostic and computer-aided detection applications and did 

not involve image registration. 

6.1.2.   Dose Reduction Strategy 

Our primary radiation dose reduction strategy is to acquire a standard-dose 

preprocedural CT image and scan the dynamic operative field subsequently using 

low-dose CT. Using the high-speed deformable registration technique described 

earlier, the preprocedural CT image can then be registered to low-dose 

intraprocedural CT images. Registered preprocedural CT will then show the dynamic 

intraprocedural anatomy and will substitute the low-dose CT images. These 

diagnostic quality images can then be 3D rendered and used for intraprocedural 

guidance and navigation. Capability of viewing hidden vasculature using 

preprocedural contrast-enhanced CT together with the additional capability of 

virtually inserting intraprocedural tools in the 3D renderings will add a new 

dimension to CT-guided interventions. 

This proposed dose reduction strategy necessitates the determination of the 

threshold radiation dose for intraprocedural CT, which permits its accurate image 

registration with preprocedural CT. The following sections describe a preliminary 

study to evaluate the registration accuracy with low-dose CT.  
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6.1.3.   Evaluation of Registration Accuracy with Low-Dose CT 

Quantifying the accuracy of deformable registration, in general, is a very 

difficult task due to the lack of a well known gold standard. It is, however, necessary 

to judge the registration accuracy in the proposed application to determine the optimal 

radiation dose that does not sacrifice the precision of an image-guided procedure. 

Since our images are to be registered in the present case, our validation strategy has 

been to test how well the deformable registration algorithm recovers a user-

introduced, known non-rigid misalignment. Our overall strategy can then be 

described in following main steps:  1) Generate images representing the same 

anatomy at varying radiation doses, 2) introduce the same known deformation in low-

dose CT images, 3) preprocess the deformed low-dose CT images to improve SNR 

prior to the registration, 4) register the preprocedural standard-dose image with the 

deformed intraprocedural (simulated) low-dose images using deformable image 

 
Figure 6.2: Important steps for evaluating registration accuracy with low-dose CT.
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registration and finally, 5) compare the transformation field obtained after image 

registration with the original, user-introduced deformation field to calculate the 

registration accuracy at various doses. The important steps in this workflow are 

illustrated in Figure 6.2 and are described below. 

6.1.3.1.   Generating Low-Dose CT Images 

Low dose images corresponding to a standard dose abdominal scan were 

generated using syngo-based Somaris/5 simulator from Siemens. This simulator 

models the noise and attenuation effects at lower radiation doses and can generate 

low-dose equivalent images from tomographic projection data corresponding to an 

input standard-dose image. The performance and accuracy of this simulator has been 

previously reported [178]. This approach ensures that scans at all radiation doses 

represent exactly the same anatomy. Example low-dose images generated using this 

simulator are shown in Figure 6.3.  Subfigure (a) shows a coronal slice for an input 

image at a standard dose (200 mAs), and subfigures (b-d) show the corresponding 

coronal slice for the low-dose images generated using the dose simulator at various 

doses. 

 
a) 200 mAs b) 50 mAs c) 20 mAs d) 10 mAs 

Figure 6.3: Low-dose CT images generated by the dose-simulator. 



 161 
 

6.1.3.2.   Creating Anatomically Realistic Deformations 

Human body, and abdominal organs and tissues in particular, undergo non-

rigid deformation during day-to-day activities, respiratory and cardiac cycles, etc. 

These deformations manifest as misalignment between preprocedural and 

intraprocedural scans. Further misalignments are introduced due to differences in 

patient position during imaging as well as different scan parameter settings. In order 

to create a realistic deformation that incorporates all these effects, it is necessary to 

estimate this deformation from scans of the same anatomy taken on different days, 

thus ensuring sufficient temporal separation. 

We, therefore, consider CT images for the same subject acquired at different 

times as a suitable image-pair. We then identify several significant anatomical 

landmarks from both these images. Deformation vectors between homologous 

anatomical landmarks in such two images represent the local misalignment at those 

landmarks. Using these vectors, deformation field for the entire anatomy can then 

approximated using thin-plate spline (TPS)-based interpolation [179]. TPS is an 

interpolation scheme based on radial basis functions and is capable of providing 

smooth 2D or 3D interpolation for non-uniformly spaced sample points. This 

technique has been applied extensively for various medical imaging applications 

[180, 181]. 

6.1.3.3.   Image Preprocessing 

Ultra low-dose CT scans acquired during the procedure show the exact same 

anatomy as a standard dose scan would but are characterized by high level of 

quantum noise. These scans may not be acceptable for diagnostic purposes, but 
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contain sufficient information regarding the current anatomical state. From the 

perspective of MI-based deformable image registration, using these low-dose images 

as is will cause the dispersion of the mutual histogram (due to noise, in an otherwise 

uniform structure) leading to poor image registration. Anisotropic diffusion filtering 

has been shown to be an effective processing step prior to advanced image processing 

[76, 83, 182, 183]. Figure 6.4 compares the performance of anisotropic diffusion 

filtering against other standard preprocessing techniques. Higher value of mutual 

information between the original and the filtered image after preprocessing, which 

represents increased structural similarity, indicates superior filtering performance for 

a given pair of images. We, therefore, enhance the low-dose CT images through use 

of anisotropic diffusion filtering prior to image registration. Anisotropic diffusion 

filtering, however, is an iterative process which can take up to minutes on a modern 

CPU. The FPGA-based real-time implementation of this operation, which has been 

described earlier, can be employed to accelerate the execution of this step. 

6.1.3.4.   Applying Deformation and Image Registration 

The deformation field generated using TPS-based interpolation is applied to 

the low-dose images for all the simulated doses. This involves resampling of the low-

Standard Dose 
(200 mAs) 

Ultra Low Dose 
(10 mAs) 

Median 
Filtered 

Gaussian 
Filtered 

Anisotropic 
Diffusion Filtered

MI = 3.49 MI = 1.11 MI = 1.43 MI = 1.23 MI = 1.62 
Figure 6.4: Comparison of techniques for preprocessing low-dose CT images. 
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dose image on to a regular grid using the anatomical mapping provided by the TPS-

generated deformation field. The image registration between these deformed low-

dose images and the original standard-dose image yields a registration field, which 

attempts to estimate and recover the induced anatomically realistic deformation. The 

mean-squared difference between the deformation vectors at every voxel 

corresponding to the registration field and the induced deformation field provides a 

measure of registration accuracy at a particular radiation dose. 

6.1.4.   Experiments 

An abdominal scan acquired under clinical settings at the standard dose (200 

mAs) was selected for this study. Dose correction feature of the scanner, which 

automatically modulates the radiation dose based on the anatomy to be scanned, was 

turned off for this scan to keep the dose consistent across all the slices. The CT image 

acquired measured 256×256×300 voxels, with voxel dimensions of 1.56 mm×1.56 

mm×1.5 mm and field of view restricted mostly to lower thorax and abdomen. 

Four different CT scans of the same subject acquired at different times within 

a span of one to sixty days were used for creating anatomically realistic deformations. 

These prior scans had dimensions and resolution of 256×256×280-315 and 1.48 

mm×1.48 mm×1.5 mm respectively. Based on a predetermined, well-described list of 

32 anatomical landmarks, a clinical expert identified and marked a set of homologous 

points in all the CT scans (one standard-dose scan and four older scans). Based on the 

expert-defined landmarks, TPS-based starting deformation fields (DF1, DF2, DF3, and 

DF4) corresponding to each prior scans were generated. 
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Treating the standard-dose scan as a reference, we generated eleven low-dose 

scans (at 10, 15, 20, 25, 30, 40, 50, 70, 85, 100, 150 mAs) using the Somaris/5 

simulator. 10mAs was the lowest setting possible for the current version of the 

simulator. Each of these scans (including the standard dose scan) was deformed using 

the realistic deformation fields DF1, DF2, DF3, and DF4 described above. 

We registered these deformed and preprocessed low-dose images (reference 

image) with the original standard-dose image (floating image) using the deformable 

registration algorithm and its accelerated implementation described earlier. 

Alignment between the floating and reference after deformable image registration 

yields a registration field (RFi) which maps each reference image voxel into floating 

image coordinate space. Comparison of this registration field (RFi) with the originally 

introduced deformation field (DFj) was used to judge the registration accuracy for 

each dose. 

6.1.5.   Results 

Result of the deformable registration using the hardware implementation of 

the registration algorithm for a representative image-pair generated using one of the 

deformations (DF1) is shown in Figure 6.5. Columns a) and b) show the two starting 

poses, and column c) the starting pose difference that the image registration must 

recover. The difference images after image registration at various CT doses are 

shown in columns d) to f). The top row shows coronal slices of the image and the 

corresponding axial slices are shown in the bottom row. The software implementation 

produced qualitatively similar registration results. Visually correct registration of the 

standard-dose image with the deformed images at various low doses (evident from the 
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reduced features in the difference image) demonstrates the feasibility of deformable 

registration at low CT doses.  

The process of deformable registration attempts to recover any misalignment 

between the reference and floating images. A perfect registration will completely 

recover this misalignment and yield a non-rigid transformation field that is identical 

to the deformation field representing the original misalignment. A comparison 

between these two fields can be used as a performance index for the registration 

accuracy. 

For this experiment, the deformation field introduced (DFi) is known at every 

voxel. The volume subdivision-based deformable registration algorithm generates the 

transformation field (RFj), which provides the transformation at every voxel in scan 

with dose j. The average of the magnitude of the vector differences between these two 

fields at all doses for the software implementation is reported in Figure 6.6. This 

average was calculated over the region of the image which contains sufficient part of 

the subject and hence information to yield meaningful registration. The regions of the 

image which contain no information (very low entropy) (e.g. black areas surrounding 

   

   
d) 200 mAs e) 20 mAs f) 10 mAs a) Standard 

CT 
Pose-1 

b) Standard 
CT 

Pose-2 

c) Starting 
Difference Difference after registration at various doses

Figure 6.5: Qualitative comparison of registration accuracy with low-dose CT. 
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the subject) are masked out using a simple threshold operation. The results show a 

maximum error of about 10% at the doses of 10 mAs and 20 mAs, respectively. 

Moreover the maximum registration error at the lowest dose (10 mAs) is less than 2.5 

mm, which is within acceptable limits of IGI applications. As expected, the average 

error improves steadily with dose.  

We repeated the experiment with the high-speed implementation of the 

deformable registration algorithm described earlier, and compared the registration 

field produced by the hardware implementation with the user induced deformation. 

The same optimization algorithm (downhill Simplex) was used for these two 

implementations and equal number of optimization iterations were used. Figure 6.6 

also shows the comparison of the average registration accuracy achieved using the 

software and hardware implementations. The blue curve corresponds to the average 

registration accuracy using the software implementation and the red curve 

corresponds to the average registration accuracy of the hardware implementation. 

 
Figure 6.6: Average registration error with respect to dose using software and 
FPGA-based implementations. 
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This comparison of the registration accuracies indicates that the hardware 

implementation is capable of achieving comparable registration accuracy. The 

average execution time for these two implementations is reported in Table 6.1. The 

hardware implementation achieved a speedup of about 30 and offers comparable 

registration accuracy. Moreover, both the implementations offer acceptable 

registration accuracy for most IGI applications and demonstrate the applicability of 

deformable image registration to lower the radiation dose during intraprocedural 

imaging. 

6.1.6.   Summary 

In this study, we have demonstrated successful registration of standard-dose 

abdominal CT images with lower-dose images of the same anatomy. Even at 10 mAs, 

the smallest dose achievable using the simulator, the registration accuracy achieved 

was comparable to that achieved at the standard dose. Our results demonstrate ten- to 

twenty fold reduction in radiation dose with the use of low-dose CT. Reduction of 

radiation dose to safe levels is highly significant in that it enables navigating 

interventions using more powerful, multislice CT. Moreover, through the use of 

hardware accelerated implementation, deformable image registration (which allows 

this reduction in radiation dose) can be performed in a matter of minutes. This 

enables assimilation of this novel dose reduction strategy in the IGI workflow. The 

Table 6.1: Execution time for deformable image registration using low-dose CT. 
Execution Time (s) 

Software 
Implementation 

FPGA-based 
Implementation 

Speedup 

11,976 392 30.55 
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introduction of true 3D visualization possible through safe, volumetric CT imaging of 

the intraprocedural anatomy may enable development of novel image-guided 

interventional applications such as CT-guided minimally invasive surgery [149, 184].   

6.2.   Incorporation of PET into CT-Guided Liver Radio-Frequency 

Ablation 

I would like to thank Mr. Peng Lei from Prof. Shekhar’s research group for 

his help in the quantitative validation aspect of the deformable registration presented 

in this section. 

6.2.1.   Motivation 

The liver is a common site of both primary and metastatic cancers. Performing 

resection of malignant liver tumors has been shown to increase the 5-year survival 

rate of patients with liver cancer [185]. However, the majority (85%–90%) of hepatic 

tumors are considered unresectable at diagnosis [186], either because of their 

anatomic location, size, or number or because of inadequate viable liver tissue and 

morbidity. Radiofrequency ablation (RFA) as a minimally invasive procedure is often 

the treatment of choice for patients who are not suitable candidates for resection 

[187]. RFA is a treatment technique that uses high-frequency alternating electrical 

current to destroy tissue cells by heating [188]. For small lesions (<5 cm in diameter), 

RFA has been reported to achieve 4-year survival rates, comparable with those 

achieved with resection [189, 190]. 

RFA has conventionally been performed under fluoroscopic or ultrasound 

guidance. With the advent of multislie CT, many of these procedures are being 



 169 
 

carried out under intraprocedural volumetric CT guidance. The volumetric CT scan 

provides better 3D orientation and a detailed anatomic structural map. However, 

some lesions (particularly small untreated masses or recurrent or residual tumors in a 

large treated mass) are not clearly visible (see Figure 2.1) because intraprocedural CT 

scanning is usually not contrast enhanced. Even in contrast-enhanced diagnostic CT 

images, hepatic lesions with abnormal metabolic activity are sometimes overlooked 

[191]. Consequently, local recurrence after liver RFA as a result of these missed 

tumors remains one of the major factors in relapse [192], which is in the range of 

3%–39% [193]. Thus, precise targeting of lesions remains a challenging task when 

guided solely by volumetric CT with or without contrast enhancement. 

Because malignancies are better characterized by increased metabolic activity 

than CT number variations, PET (as a functional imaging modality) has higher 

sensitivity and specificity than CT for tumor localization. Active lesions show up 

clearly as regions of high uptake in a conventional PET scan. However, compared 

with CT, PET is devoid of structural tissue details, which are also important for 

intraprocedural targeting and needle placement. Moreover, PET is also challenged by 

slow scanning speed, radiation exposure risks, logistic challenges, etc. Currently PET 

remains primarily a preprocedural imaging modality, used to identify a treatment site 

rather than provide intraprocedural guidance during an ablative procedure. To 

combine the strengths and overcome disadvantages of both PET and CT as 

intraprocedural imaging modalities, registration between PET and CT is essential. In 

a clinical study by Veit et al. [186], PET and CT fusion images were reported to 

greatly improve recognition and localization of liver masses. Our work, therefore, is 
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focused on demonstrating fast, automatic, and accurate deformable image registration 

between preprocedural PET and intraprocedural CT to improve localization of liver 

malignancies during RFA. 

6.2.2.   Registration of PET and CT 

As described earlier, combining of PET and CT images is crucial during liver 

RFA. PET, however, cannot be repeated intraprocedurally because of time and 

logistic challenges, as well as radiation risks [194].  Consequently, the interventionist 

must mentally correlate preprocedural PET data onto intraprocedural CT images to 

localize the lesion into which the RFA needle will be advanced, a subjective task 

dependent on operator expertise. Combined PET/CT scanners, which are based on 

mechanically achieved rigid registration, have emerged in recent years. They have 

provided significant improvement over separate CT and PET scanning. But in 

abdominal procedures such as liver RFA (unlike thoracic or brain surgery), non-rigid 

misalignment resulting from tissue deformation and respiration motion can be 

significant, so rigid registration approaches such as combined PET/CT scanning and 

fiducial marker–based registration may misrepresent the actual transformation of the 

liver. Combined PET/CT scanners have been shown to be unable to fully compensate 

for involuntary non-rigid motions, such as those from respiration [185], and the 

resulting images have been found to have significant misregistration in areas close to 

the diaphragm. Moreover, as mentioned previously, PET has challenges including 

slow scanning speed and radiation exposure risks. A combined PET/CT scanner is not 

an appropriate choice as an intraprocedural imaging modality in this application or 

any other image-guided procedure.  
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Intensity-based, retrospective deformable image registration and fusion 

together form the only alternative, which is also proposed here. To be clinically 

practical, the registration algorithm must be automatic, which means that manual 

segmentation–based registration is excluded. Moreover, as mentioned before, the 

registration must be achieved sufficiently fast so as not to obstruct the clinical 

workflow. The deformable registration algorithm described in the dissertation has 

been previously validated for intensity based registration of whole-body PET and CT 

images [66] and PET/CT images for liver RFA [78, 148]. In this work, we validate 

this algorithm and its FPGA-based high-speed implementation of this algorithm in the 

context of the aforementioned clinical application. 

6.2.3.   Experiments 

This study was geared toward demonstrating the feasibility of image 

registration between preprocedural PET and intraprocedural CT in the context of liver 

RFA using the earlier described high-speed image registration solution. This 

retrospective study involved 20 CT-PET image pairs of patients who had undergone 

percutaneous abdominal RFA under CT guidance. The preprocedural PET scans had 

size and resolution of 150 × 150 × 187–240 and 4.0 × 4.0 × 4.0 mm, respectively. 

Noncontrast-enhanced intraprocedural abdominal CT scans were acquired for guiding 

needle placement during RFA procedures. The intraprocedural CT scans had size and 

resolution of 512 × 512 × 35–62 and 0.78–1.17 × 0.78–1.17 × 5 mm, respectively. 
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6.2.3.1.   Image Preprocessing 

The intraprocedural CT images were acquired during the RFA with the RFA 

needle in the field of view. As a result, some metal artifacts were present in the CT 

images.  We preprocessed the CT images using 3D median filtering and 3D 

anisotropic diffusion filtering in order to minimize these artifacts.  To achieve a trade-

off between maintaining CT resolution and obtaining nearly isotropic voxels, we 

resampled the intraprocedural CT images for all cases to have the dimensions of 256 

× 256 × 128. Resampling reduced the spatial resolution of CT images in x and y 

dimensions; however, the resulting images still had better spatial resolution than the 

preprocedural PET images (the lower resolution image controls the accuracy of 

intensity-based image registration in general). No preprocessing steps were used for 

the preprocedural PET images. 

6.2.3.2.   Validation of Image Registration 

We evaluated the accuracy of the deformable registration between PET and 

CT by comparing the alignment of several anatomic landmarks (3D locations within 

the images) as predicted by the algorithm (both software and FPGA-based 

implementations) against a reference. Because of the lack of a gold standard for 

validation of deformable registration algorithms, we assumed the ability of clinical 

experts to locate landmarks in both intraprocedural CT and preprocedural PET 

images as a suitable benchmark performance. We then contend that comparing the 

variability in landmark matching between algorithm- and expert-defined registrations 

with the variability among the three expert-defined correspondence between the 
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landmarks is a reasonable way to evaluate the registration accuracy of the algorithm 

and assess whether its performance is comparable to that of the experts.  

 
Our validation scheme is graphically represented in Figure 6.7. Three clinical 

experts, experienced in interpreting CT and PET images, were involved in the 

validation procedure. Each expert was asked to identify and mark anatomic 

landmarks identifiable in both PET and CT images. Because the location of a specific 

landmark as marked by an expert can vary slightly from expert to expert, a set of “test 

landmarks” were created for each case separately. This was achieved by defining the 

location of each landmark as the centroid of the expert-defined locations for that 

landmark in intraprocedural CT (represented by CTTEST in Figure 6.7). The expert-

defined transformation fields were then used to determine distinct sets of homologous 

preprocedural PET landmarks (PETE1, PETE2, and PETE3, respectively), each 

representing the transformed locations of the test landmark (CTTEST) according to the 

manual registration performed by each expert. The average expert-defined 

transformed location (PETEXPERT) was calculated as the centroid of PETE1, PETE2, 

and PETE3. The algorithm-determined transformation field was used to determine a 

 
Figure 6.7: Graphic illustration of the quantitative validation approach used in the 
context of deformable registration between intraprocedural and preprocedural PET. 
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set of landmarks in the PET image (PETALGO) representing the transformed locations 

of the test landmarks after automatic deformable registration. These locations were 

calculated for both the software and FPGA-based high-speed implementation of the 

algorithm. 

For each case, the mean error between PETEXPERT and PETALGO was then 

evaluated to quantify the registration accuracy for that case. To further evaluate the 

algorithm performance in the context of inter-expert variability, we allocated the 4 

sets of PET landmark points to separate groups of 3 sets each: reference group 

(PETE1, PETE2, and PETE3); test group 1 (PETALGO, PETE2, and PETE3); test group 2 

(PETE1, PETALGO, and PETE3); and test group 3 (PETE1, PETE2, and PETALGO). For 

each group, the mean difference (Euclidean distance) in the transformed location of 

corresponding landmarks was obtained for all pair wise combinations of sets of PET 

points within that group. The mean difference for each group was determined by 

averaging over all the cases. The variability of locations was then calculated for each 

group. If the group variability of test groups 1, 2, and 3 is statistically similar to that 

of the reference group, we can conclude that the algorithm and experts agree on the 

PET location of a specific landmark in CT. If the group variability is statistically 

different, the algorithm differs significantly from that of the experts. As mentioned 

earlier, we performed this analysis for both software and the FPGA-accelerated 

implementation of the deformable registration algorithm. 

6.2.4.   Results 

All the cases were successfully registered when evaluated both qualitatively 

and quantitatively. Both the software and hardware implementations yielded 
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qualitatively similar results. The average execution time for these two 

implementations is reported in Table 6.2. The hardware implementation provides a 

speedup of around 30 and offers comparable registration accuracy, as presented later. 

Qualitative evaluation included visual assessment of improvement in image 

alignment by the clinical experts. No visually apparent gross misregistration was 

found in any case. Example of registration using FPGA-based high-speed 

implementation of the intensity-based deformable registration is presented in Figure 

6.8. For this example, axial, coronal, and sagittal views through the intraprocedural 

CT and preprocedural PET, as well as fused PET-CT images before and after 

deformable image registration, are shown. The first row shows the original 

preprocedural CT image. The second row shows the unregistered preprocedural PET 

image. The third row presents the fusion of intraprocedural CT and preprocedural 

PET prior to image registration. Misalignment of anatomical structures in this fusion 

image is indicated by overlaid arrows. The final row illustrates the fusion of 

intraprocedural CT with registered (through FPGA-based deformable image 

registration) PET image. In all three views, deformable image registration between 

PET and CT images provided superior image alignment when compared with 

unregistered fusion images. Deformable registration recovered the misalignment 

between anatomical structures and lesions. For example, in Figure 6.8, edges of 

anatomical structures in PET and CT agree quite well.  
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We performed the quantitative validation of deformable registration using the 

validation strategy described earlier. Table 6.3 presents the results of this validation 

for software implementation. The interexpert variability (i.e., group variability) in the 

identification of each of the four landmarks was averaged for all the 20 image pairs 

after software-based registration between intraprocedural CT and preprocedural PET. 

Table 6.2: Execution time for deformable image registration using 
intraprocedural CT and preprocedural PET images. 

Execution Time (s) 
Software 

Implementation 
FPGA-based 

Implementation 
Speedup 

5217 164 31.81 

Figure 6.8: Registration of intraprocedural CT and preprocedural PET images 
using the FPGA-based implementation of deformable image registration.  
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The t-tests showed no statistically significant difference between the reference group 

and any test group for any of the four landmarks (the reference group value lies 

within the 95% confidence intervals of all test groups), indicating that the algorithm’s 

solutions were statistically similar to those of experts. For quantitative validation of 

the FPGA-based implementation, we repeated the above validation procedure, 

replacing the software implementation by the FPGA-based implementation. Table 6.4 

presents the results of this quantitative validation. The TRE derived from the mean of 

⎢PETEXPERT - PETALGO⎥ over all cases and landmarks was 6.7 mm and 7.0 mm for 

software and hardware-accelerated implementations, respectively. This result is 

comparable with the accuracy reported earlier for deformable registration using 

whole-body 3D PET-CT images [66]. This indicates that the accuracy of the 

deformable image registration algorithm is approximately independent of the 

anatomy.  

The TRE obtained for the FPGA-based, high speed implementation of 

Table 6.3: Interexpert variability in landmark identification across 20 image 
pairs. PETALGO corresponds to the software implementation of the algorithm. 

 
Mean Difference in Landmark Location (mm) ( 95% Confidence 

Interval (mm) ) 
P Value 

Group 
Reference group

(PET1, PET2, 
PET3) 

Group 1 
(PETALGO, PET2, 

PET3) 

Group 2 
(PET1, PETALGO, 

PET3) 

Group 3 
(PET1, PET2, 

PETALGO) 
Dome  

of Liver 6.7 6.8 (6.2, 7.4) 
P = 0.76 

7.2 (6.6, 7.7) 
P = 0.11 

7.0 (6.4, 7.6) 
P = 0.34 

Inferior Tip  
of Liver 6.5 6.4 (5.9, 6.9) 

P = 0.76 
6.2 (5.7, 6.7) 

P = 0.22 
6.5 (6.0, 7.0) 

P = 0.95 
Right Kidney 
Upper Pole 6.1 6.0 (5.4, 6.6) 

P = 0.74 
6.2 (5.5 , 6.8) 

P = 0.76 
6.3 (5.7, 7.0) 

P = 0.52 
Right Kidney 
Lower Pole 5.8 5.6 (5.1, 6.1) 

P = 0.43 
5.7 (5.2, 6.2) 

P = 0.64 
6.0 (5.5, 6.5) 

P = 0.39 
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deformable image registration is slightly inferior to that obtained using the software 

implementation. However, the t-tests indicate no statistically significant difference 

between the reference group and any test group for any of the four landmarks (the 

reference group value lies within the 95% confidence intervals of all test groups). 

This further indicates that the registration solutions provided by the FPGA-based 

implementation were statistically similar to those of experts. Thus, the hardware 

solution developed in this dissertation not only reduces the execution time of 

deformable registration to a few minutes, but also offers accuracy that is statistically 

similar to that of a group of clinical experts. This fast and accurate implementation 

can, therefore, be used to incorporate preprocedural PET images during CT-guided 

liver RFA.  

6.2.5.   Summary 

In this study, we have demonstrated successful registration of intraprocedural 

abdominal CT images acquired during liver RFA with preprocedural PET images. 

Table 6.4: Interexpert variability in landmark identification across 20 image 
pairs. PETALGO corresponds to the FPGA-based implementation of the algorithm. 

 
Mean Difference in Landmark Location (mm) ( 95% Confidence 

Interval (mm) ) 
P Value 

Group 
Reference group

(PET1, PET2, 
PET3) 

Group 1 
(PETALGO, PET2, 

PET3) 

Group 2 
(PET1, PETALGO, 

PET3) 

Group 3 
(PET1, PET2, 

PETALGO) 
Dome  

of Liver 6.7 7.1 (6.5, 7.8) 
P = 0.16 

7.3 (6.6, 8.0) 
P = 0.08 

7.2 (6.5, 7.9) 
P = 0.13 

Inferior Tip  
of Liver 6.5 6.8 (6.3, 7.4) 

P = 0.32 
6.5 (5.9, 7.0) 

P = 0.88 
6.8 (6.2, 7.4) 

P = 0.38 
Right Kidney 
Upper Pole 6.1 6.3 (5.6, 7.0) 

P = 0.50 
6.5 (5.7 , 7.2) 

P = 0.32 
6.4 (5.7, 7.1) 

P = 0.36 
Right Kidney 
Lower Pole 5.8 5.7 (5.2, 6.2) 

P = 0.70 
5.9 (5.4, 6.4) 

P = 0.67 
6.2 (5.8, 6.7) 

P = 0.06 
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This can enable incorporation of PET into RFA procedures through algorithmic 

image registration. The hardware-accelerated implementation of image registration, 

developed as part of this dissertation work, can perform this image registration task in 

a matter of minutes and yet offers comparable accuracy. This represents a first 

significant step toward integration deformable registration in RFA procedures. With 

further technological advances, such as integration with the imaging equipment, this 

approach can be made routine under clinical settings. This would lead to precise 

ablation of the area of malignant activity, as indicated on PET, and avoid unnecessary 

ablation of healthy tissues. For large and multiple lesions, this technique may shorten 

procedure time and minimize post-procedural morbidity. Precise targeting of lesions 

could allow definitive and complete treatment, potentially reducing relapse rates and 

the number of repeat procedures. 
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Chapter 7:   Conclusions and Future Work 

7.1.   Conclusion 

Minimally invasive IGIs are time and cost efficient, minimize unintended 

damage to healthy tissue, and lead to faster patient recovery. Consequently, these 

procedures are becoming increasingly popular. With the availability of high-speed 

volumetric imaging devices there is an increasing thrust on using 3D images for 

navigation and target delineation during IGIs. However, processing and analysis of 

these volumetric images, while meeting the on-demand performance requirements of 

IGI applications remains a challenging task. To address this problem, this dissertation 

has presented core components of an advanced image-guidance system that will allow 

high-speed processing and analysis of these images. The execution performance 

along with the accuracy and compact and reconfigurable nature of these components 

enables their integration into clinical applications. 

Image preprocessing and enhancement is an important prerequisite step in the 

IGI workflow prior to advanced image analysis and visualization. Chapter 3 presented 

a novel FPGA-based architecture for real-time preprocessing of volumetric images 

acquired during IGIs. We presented a brick-caching scheme that allows efficient, 

low-latency access to sequential 3D neighborhoods, a scenario common to most 

filtering operations. We introduced an FPGA-based implementation of 3D anisotropic 

diffusion filtering. This design takes advantage of the symmetries present in the 

Gaussian kernel and implements this filtering kernel with a reduced number of 

multipliers. We further presented a linear systolic array–based architecture for 
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accelerated implementation of 3D median filtering. The developed architecture 

enables 3D anisotropic diffusion filtering and 3D median filtering of intraprocedural 

images at the rate of 50 fps, which is faster than current acquisition speeds of most 

intraprocedural imaging modalities. The solution presented offers real-time 

performance, is compact and accurate, and, hence, suitable for integration into IGI 

workflow. Furthermore, the additional filtering kernels that are based on 

neighborhood operations (for example, general purpose convolution) can be easily 

incorporated into the same framework.  

As IGI applications become increasingly popular, intraprocedural imaging 

modalities continue to offer wider coverage and higher imaging speed. Thus, there is 

a corresponding need for real-time processing of these images. The real-time 

performance of our design along with the throughput of one voxel per cycle can cater 

to these 4D (3D + time) image processing needs. 

Image registration between intra- and preprocedural images is a fundamental 

need in the IGI workflow. To facilitate that, Chapter 4 presented a novel FPGA-based 

architecture for high-speed implementation of MI-based deformable image 

registration. This architecture achieved voxel-level parallelism through pipelined 

implementation and employed several strategies to address the fundamental 

bottleneck in the intensity-based image registration, namely memory access 

management. As a result of these enhancements, the presented architecture is capable 

of achieving high voxel processing rate and a speedup of about 30 and consequently 

reduces the execution time of deformable registration from hours to only a few 

minutes. The results of the qualitative and quantitative validation demonstrate that 
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this performance improvement does not significantly compromise the accuracy of 

deformable registration. Further clinical validation performed in the context of novel 

IGI applications illustrated the potential of this implementation to enable improved 

target delineation during image-guided interventions through deformable registration 

with preprocedural images. The robustness, speed, and accuracy offered by this 

architecture, in conjunction with its compact implementation, make it ideally suitable 

for integration into IGI workflow. 

Accurate, robust, and real-time deformable image registration between intra- 

and preprocedural images has been an unmet need, critical to the success of image-

guided procedures. The work presented in this dissertation constitutes an important 

first step toward meeting this goal. With further algorithmic and hardware 

improvements, geared toward enhancing its accuracy and performance, this approach 

has the potential to elevate the precision of current procedures and expand the scope 

of IGI to moving and deformable organs. 

The work presented in this dissertation achieved superior performance 

through custom design on a reconfigurable computing platform, by addressing the 

fundamental bottlenecks in the considered computationally intensive applications. 

One of the primary strengths of reconfigurable architectures over general purpose 

processor–based implementations is their ability to utilize more streamlined 

representations for internal variables. Furthermore, this approach can result into 

optimized utilization of FPGA resources, by employing just enough precision for 

each of its internal variables to satisfy design requirements of a given application. 

Given this advantage, it is highly desirable to automate the derivation of optimized 
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design configurations that offer varying degree of tradeoff between implementation 

accuracy and hardware resources. Toward that end, this dissertation has presented a 

framework for multiobjective optimization of finite precision, reconfigurable 

implementations. This framework considered multiple conflicting objectives, such as 

hardware resource consumption and implementation accuracy, and systematically 

explored tradeoff relationships among the targeted objectives. This dissertation has 

also further demonstrated the applicability of EA-based techniques for efficiently 

identifying Pareto-optimized tradeoff relations in the presence of complex and non-

linear objective functions. The evaluation that this work has conducted in the context 

of the FPGA-based architecture for deformable image registration demonstrated that 

such an analysis can be used to enhance automated hardware design processes, and to 

efficiently identify a system configuration that meets given design constraints. This 

approach may also be applied in the context of reconfigurable computing for 

identifying suitable design configurations that can be switched among at runtime. 

Furthermore, the multiobjective optimization approach presented in this dissertation 

is quite general, and can be extended to a multitude of other signal processing 

applications. 

We have extensively validated the applicability of our approach in the context 

of CT-guided interventions. In the first clinical application, we demonstrated 

successful registration of standard-dose abdominal CT images with lower-dose 

images of the same anatomy. Our results demonstrated ten- to twenty fold reduction 

in intraprocedural radiation dose through the use of low-dose CT. Reduction of 

radiation dose to safe levels is highly significant in that it enables navigating 
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interventions using more powerful, multislice CT. Moreover, through the use of 

hardware accelerated implementation, deformable image registration (which allows 

this reduction in radiation dose) can be performed in a matter of minutes. This 

enables assimilation of this novel dose reduction strategy in the IGI workflow. In the 

second IGI application, we have further demonstrated successful registration of 

intraprocedural abdominal CT images acquired during liver RFA with preprocedural 

PET images. This can enable incorporation of PET into RFA procedures through 

algorithmic image registration. We demonstrated that the hardware-accelerated 

implementation of image registration, developed in this dissertation work, can 

perform this image registration task in a matter of minutes and yet offers comparable 

accuracy.  

Our approach represents a first significant step toward integration of 3D 

image processing and deformable image registration in image-guided procedures. 

This approach can not only improve target delineation and reduce radiation dose but 

can also trigger the development of novel image-guided procedures. With further 

technological advances, such as integration with the imaging and visualization 

equipment, and additional enhancements in speed and accuracy, this approach can be 

made routine under clinical settings. This approach has the potential to elevate the 

precision of current IGI procedures, expand the scope of IGI to moving and 

deformable organs, and thereby to provide a new level of sophistication and accuracy 

during IGIs. 
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7.2.   Future Work 

The FPGA-based architecture for real-time implementation of image 

preprocessing operations is capable of providing a high voxel throughput and a 

volumetric processing rate higher than the acquisition speed of most current 

generation imaging modalities. This architecture presented implementation of 3D 

anisotropic diffusion filtering and 3D median filtering, the preprocessing steps most 

commonly used in the context of IGI. However, the core components of this 

architecture, in particular the memory controller and the brick-caching scheme, are 

general enough to allow real-time realization of a range of image processing kernels 

based on neighborhood operations. For example, a kernel for general-purpose 3D 

convolution reported by Venugopal et al. [195] can easily be incorporated in the same 

image processing framework. Similarly, certain morphological and contrast-

enhancement operations that are based on neighborhood operations can also be 

supported by the same framework while providing equivalent voxel throughput. The 

current implementation of this framework supports sequential image processing 

operations through static reconfiguration of the filtering kernels. With the advent of 

modern FPGAs that are capable of runtime reconfiguration, it is possible to support 

adaptive image preprocessing by changing the preprocessing steps or tuning the 

filtering kernel parameters at run-time. This will enable the preprocessing system to 

adapt to the requirements of the subsequent advanced image processing applications 

(for example, registration, volume rendering, or segmentation).  

The architecture presented for accelerated calculation of MI, is capable of 

achieving deformable registration between a pair of images with size 256 × 256 × 256 
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in about 6 minutes, while providing accuracy comparable to a software 

implementation. This represents a significant first step toward enabling integration of 

deformable registration in the IGI workflow. Further acceleration of the 

aforementioned registration algorithm to satisfy the interactive requirement of IGIs 

can be achieved through additional strategies. First, the current architecture uses the 

same external memory module to store both the RI and FI. Storing these images in 

two separate memory modules will allow their independent parallel access. This will 

eliminate the need to prefetch the RI voxels and thus provide speedup. In addition, 

using high-speed static random access memory (SRAM) modules for storing the 

randomly accessed FI is likely to provide further speedup by providing faster access 

to the FI with minimal latencies. Second, as showed by Studholme et al. [64], varying 

MH size between 32 × 32 and 256 × 256 does not significantly affect the accuracy of 

MI-based registration. Based on this observation, the size of the MH within the 

FPGA-based implementation can be adaptively reduced with every level of 

subdivision. This will reduce the overhead of clearing the MH for smaller 

subvolumes, thereby lending additional speedup. Third, the overhead of 

communication time required for exchanging the transformation matrix and the 

calculated MI value between the host and the MI calculator can be minimized by 

reducing the communication latency. This will provide additional speedup, especially 

at finer levels of image subdivision where the computation time becomes comparable 

to the communication time. Most modern FPGAs support an embedded hard- or soft- 

processor core that can be utilized to implement the optimization algorithm. Thus, 

both the components of the registration routine will be located on the same platform, 



 187 
 

thereby reducing the communication latency. Finally, as described earlier, the 

registration algorithm optimizes the individual subvolumes at a given level of 

subdivision sequentially, but independently of each other. Thus, using multiple FPGA 

modules in parallel it is possible to simultaneously optimize these subvolumes. This 

multi-FPGA implementation will likely provide near-linear speedup. This 

architecture can also be incorporated in a broader, heterogeneous computing 

framework such as the one described by Plishker et al. [121]. All these strategies, in 

combination, can further reduce the execution time of deformable image registration 

and ultimately achieve near-real time performance for its seamless integration into 

IGI applications.  

The framework we presented for optimization of finite-precision 

implementations considers multiple conflicting objectives, such as hardware resource 

consumption and implementation accuracy, and systematically explores tradeoff 

relationships among the targeted objectives. Although this framework was developed 

and validated in the context of FPGA-based image registration, the presented 

optimization approach is quite general and can be extended to many signal processing 

applications beyond medical image processing domain. However, for demonstration 

of this capability, further validation of this optimization strategy must be performed 

in the context of multiple signal processing applications with known benchmarks. The 

hardware area models we adopted while developing this framework, model the FPGA 

area consumption using the number of look-up tables required. Modern FPGA 

families, however, provide a large number of special functional units that may be 

utilized for performing arithmetic operations such as multiplication, addition, etc. 
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Although we demonstrated the high fidelity of the adopted area models, enhancing 

these models to take into account the utilization of specialized functional units will 

better represent the area requirements of a design configuration and, in general, 

provide more accurate area estimation. In addition to the approaches mentioned 

above, the framework for optimization of finite precision implementations can be 

enhanced in the following ways: first, the search methods could be refined further to 

efficiently explore the search space. For example, the multi-objective optimization 

could be preceded by univariable simulations that can help to reduce the size of the 

search space. Also, the parameters used for EA-based search, such as representation 

scheme, population size, crossover and mutation operators, etc. can be optimized as 

well. Second, the framework could be tuned for automated selection of search 

methods that are ideally suited for a given problem. For example, for small design 

search spaces a technique based on exhaustive search could be utilized. Further, EA-

based search schemes could be enhanced further by exploring selection schemes 

based on techniques such as NSGA-II, epsilon dominance and quality indicators. 

Finally, this framework and/or the Pareto-optimized solutions identified by this 

framework can be incorporated into automated design optimization flows. This will 

enable selection of optimized design configurations that balance the tradeoff between 

implementation accuracy and hardware cost at run-time. Further, additional objective 

functions such as power requirement and operating frequency could also be 

incorporated in this framework to comprehensively capture the effects of various 

design configurations. 
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