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Abstract—In multi-hop wireless networks, designing dis-
tributed scheduling algorithms to achieve the maximal through-
put is a challenging problem because of the complex interference
constraints among different links. Traditional maximal-weight
(MW) scheduling, although throughput-optimal, is difficult
to implement in distributed networks; whereas a distributed
greedy protocol similar to IEEE 802.11 does not guarantee the
maximal throughput. In this paper, we introduce an adaptive
CSMA scheduling algorithm that can achieve the maximal
throughput distributedly under some assumptions. Major ad-
vantages of the algorithm include: (1) It applies to a very general
interference model; (2) It is simple, distributed and asyn-
chronous. Furthermore, we combine the algorithm with end-
to-end flow control to achieve the optimal utility and fairness
of competing flows. The effectiveness of the algorithm is verified
by simulations. Finally, we consider some implementation issues
in the setting of 802.11 networks.

Index Terms—Cross-layer optimization, joint scheduling and
congestion control, maximal throughput, CSMA

I. INTRODUCTION

In multi-hop wireless networks, it is important to effi-
ciently utilize the network resources and provide fairness to
competing data flows. This objective requires the cooperation
of different network layers. The transport layer needs to
inject the right amount of traffic into the network based
on the congestion level and the MAC layer needs to serve
the traffic efficiently to achieve high throughput. Through
a utility optimization framework [1], this problem can be
naturally decomposed into rate control at the transport layer
and scheduling at the MAC layer.

It turns out that MAC-layer scheduling is the bottleneck of
the algorithm [1]. In particular, it is not easy to achieve the
maximal throughput through distributed scheduling, which
in turn prevents full utilization of the wireless network.
Scheduling is challenging since the conflicting relationships
between different links can be complicated.

It is well known that maximal-weight (MW) scheduling
[12] is throughput-optimal (that is, it can support any incom-
ing rates within the capacity region; or it can achieve the
“maximal throughput”). In MW scheduling, time is assumed
to be slotted. In each slot, a set of non-conflicting links (called
an “Independent Set”, or “IS”) that have the maximal weight
are scheduled, where the “weight” is the summation of the
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queue lengths of these non-conflicting links. (This algorithm
has also been applied to achieve 100% throughput in input-
queued switches [13].) However, finding such a maximal-
weighted IS is NP-complete in general and is hard even for
centralized algorithms. So its distributed implementation is
not trivial in wireless networks.

A few recent works proposed throughput-optimal algo-
rithms for certain interference models. For example, Eryilmaz
et al. [2] proposed a polynomial-complexity algorithm for the
“two-hop interference model”1. Modiano et al. [3] introduced
a gossip algorithm for the “node-exclusive model”2. The
extensions to more general interference models, as discussed
in [2] and [3], usually involves extra challenges. Sanghavi
et al. [4] introduced an algorithm that can approach the
throughput capacity (with increasing overhead) for the node-
exclusive model.

On the other hand, by using a distributed greedy protocol
similar to IEEE 802.11, reference [7] shows that only a
fraction of the throughput region can be achieved (after
ignoring collisions). The size of the fraction depends on the
network topology and interference relationships. Reference
[8] studied the impact of such imperfect scheduling on utility
maximization in wireless networks.

Our first contribution in this paper is to introduce a dis-
tributed adaptive CSMA (Carrier Sensing Multiple Access)
algorithm for a general interference model. It is inspired
by CSMA but may be applied to more general resource
sharing problems (i.e., not limited to wireless networks). We
show that if packet collisions are ignored (as in the above
references), the algorithm can achieve maximal throughput,
if the adaptation is slow enough3. The algorithm may not
be directly comparable to the throughput-optimal algorithms
mentioned above since it utilizes the carrier-sensing capabil-
ity. But it does have a few distinct features:

• Each node only uses its local information (e.g., its
backlog). No explicit control messages are required
among the nodes.

• It is based on CSMA random access, which is similar

1In this model, a transmission over a link (n; m) is successful iff none
the one-hop neighbors of n and m is in any conversation at the time.

2In this model, a transmission over a link (n; m) is successful iff neither
n nor m is in another conversation at the time.

3However, the algorithm works well with a wide range of step sizes in
our simulations.
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to the IEEE 802.11 protocol and is easy to implement.
• Time is not divided into synchronous slots. Thus no

synchronization of transmissions is needed.

In a related work, Marbach et al. [9] studied a model
of CSMA with collisions. It was shown that under the
“node-exclusive” interference model, CSMA can be made
asymptotically throughput-optimal in the limiting regime of
large networks with a small sensing delay.

Our second contribution is to combine the proposed
scheduling algorithm with end-to-end flow control using
a novel technique, to achieve fairness among competing
flows as well as maximal throughput (sections III, IV). The
performance is evaluated by simulations (section V). Finally,
we considered some practical issues (e.g., packet collisions)
in the setting of 802.11 networks (section VI).

There is extensive research in joint MAC and transport-
layer optimization, for example [5] and [6]. Their studies
have assumed the slotted-Aloha random access protocol in
the MAC layer, instead of the CSMA-like protocol we
consider here. Other related works assume physical-layer
models which are quite different from ours. For example, [10]
considered CDMA interference model; and [11] considered
time-varying wireless channel.

II. ADAPTIVE CSMA FOR MAXIMAL THROUGHPUT

A. Interference model

First we describe the general interference model we will
consider in this paper. Assume there are K links in the
network, where each link is an (ordered) transmitter-receiver
pair. The network is associated with a link contention graph
(or “LCG”) G = {V, E}, where V is the set of vertexes (each
of them represents a link) and E is the set of edges. Two links
cannot transmit at the same time (i.e., “conflict”) iff there is
an edge between them. Note that this framework includes the
“node-exclusive model” and “two-hop interference model”
mentioned above as two special cases.

Assume that G has N different Independent Sets (“IS”, not
confined to “Maximal Independent Sets”). Denote the i’th IS
as xi ∈ {0, 1}K , a 0-1 vector that indicates which links are
transmitting in this IS. The k’th element of xi, xi

k = 1 if
link k is transmitting, and xi

k = 0 otherwise. We also refer
to xi as a “transmission state”, and xi

k as the “transmission
state of link k”.

B. An idealized CSMA protocol and the average throughput

We use an idealized model of CSMA as in [15][16]. In
this subsection, assume that the links are always backlogged.
If the transmitter of link k senses the transmission of any
conflicting link (i.e., any link m such that (k,m) ∈ E), then
it keeps silent. If none of its conflicting links is transmitting,
then the transmitter of link k waits (or backs-off) for a
random period of time which is exponentially distributed
with mean 1/Rk and then starts its transmission4. During the

4If more than one backlogged links share the same transmitter, the
transmitter maintains independent backoff timers for these links.

backoff if some conflicting link starts transmitting, then link
k suspends its backoff and resumes it after the conflicting
transmission is over. The transmission time of link k is
exponentially distributed with mean 1. (The assumption on
exponential distribution can be relaxed [16].) Assume that the
sensing time is negligible (in particular, assume an infinite
speed of light), then with the continuous distributions of
the backoff time, the probability for two conflicting links
to start transmission at the same time is 0. So in the model
of [15][16], collisions are ignored. (In section VI, however,
we will discuss adaptations of our algorithm which consider
collisions in an 802.11 network.) Also, it is assumed that the
carrier-sensing mechanism works well such that there is no
hidden-terminal (HT) problem. In other words, any pair of
conflicting links (in particular, their transmitters) can sense
the transmission of each other. (This is possible if the range
of carrier-sensing is large enough [17].5 )

There are a few reasons for using this model in our con-
text, although it makes some simplifying assumptions about
collisions and the HT problem: (1) It is simple, tractable, and
captures the essence of CSMA/CA; (2) Even without consid-
ering collisions and hidden-terminals, distributed scheduling
to achieve maximal throughput is not an easy problem, as
discussed in the Introduction section. In this paper, we would
like to focus on the scheduling problem, without mixing it too
much with the other problems specific in wireless networks
and trying to solve them at once. Similar approaches have
been taken in related works, for example [7], [1]; (3) The
scheduling algorithm we propose here is inspired by CSMA,
but it may be applied to more general resource sharing
problems (i.e., not limited to wireless networks).

It is not difficult to see that the transitions of the transmis-
sion states form a Continuous Time Markov Chain, which is
called CSMA Markov Chain. Denote link k’s neighboring set
N (k) := {m : (k, m) ∈ E}. If in state xi, link k is not active
(xi

k = 0) and all of its conflicting links are not active (i.e.,
xi

m = 0,∀m ∈ N (k)), then state xi transits to state xi + ek

with a rate of Rk, where ek is the K-dimension vector whose
k’th element is 1 and all other elements are 0’s. Similarly,
state xi + ek transits to state xi with a rate of 1. However,
if in state xi, any link in its neighboring set N (k) is active,
then state xi + ek does not exist.

Fig 1 gives an example network whose LCG is shown in
(a). There are two links, with an edge between them, which
means that they cannot transmit together. Fig 1 (b) shows the
corresponding CSMA Markov Chain. State (0,0) means that
no link is transmitting, state (1,0) means that only link 1 is
transmitting, and (0,1) means that only link 2 is transmitting.
The state (1,1) is not feasible.

Denote rk = log(Rk). We call rk the “transmission

5A related problem that affects the performance of wireless networks is
the exposed-terminal (ET) problem. Reference [17] proposed a protocol to
address HT and ET problems in a systematic way. We assume in this paper
that the HT and ET are negligible with the use of such a protocol. Note that
however, although ET problem may reduce the capacity region, it does not
affect the applicability of our model, since we can define an edge between
two links in the LCG as long as they can sense the transmission of each
other, even if this results in ET.
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Link 1 Link 2

(a) Link contention graph
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(b) Markov Chain

Fig. 1. Example: link contention graph and corresponding Markov Chain.

aggressiveness” (“TA”) of link k. The stationary distribution
of any feasible state xi in the Markov Chain is

p(xi; r) =
exp(

∑K
k=1 xi

krk)

C(r)
(1)

where

C(r) =
∑

j exp(
∑K

k=1 xj
krk) . (2)

Note that the summation “
∑

j” is over all feasible states (or
IS’s), and the vector r = (r1, r2, · · · , rK). (Later, we also
write p(xi; r) as pi(r) for simplicity. These notations are
interchangeable throughout the paper.) For example, in Fig
1, the probabilities of state (0,0), (1,0) and (0,1) are 1/(1 +
R1 + R2), R1/(1 + R1 + R2) and R2/(1 + R1 + R2) in the
stationary distribution.

Indeed, we can verify the detailed balance equation is
satisfied [14]. Consider state xi (where xi

k = 0 and xi
m =

0,∀m ∈ N (k)) and xi + ek again. From (1), we have

p(xi + ek; r)

p(xi; r)
= exp(rk) = Rk

which is exactly the detailed balance equation between state
xi and xi +ek. Similar relations hold for any two states that
differ in only one element. And all infeasible states have
probability zero.

Also,
∑

i p(xi; r) = 1. Therefore (1) is the stationary
distribution of the Markov Chain given r. Furthermore, the
Markov Chain is time-reversible since the detailed balance
equations hold. In fact, the Markov chain is a reversible
“spatial process” and its stationary distribution (1) is a
Markov Random Field ([14], page 189). (This means that for
each link k, given the transmission states of its conflicting
links, the state of link k is conditionally independent of all
other links.)

Consequently, the normalized throughput (or service rate)
of link k is

sk(r) =
∑

i xi
k · p(xi; r) . (3)

Even if the distributions of the waiting time and transmis-
sion time are not exponential distributed but have the same
means (1/Rk and 1), reference [16] shows that the stationary
distribution (1) still holds. That is, the stationary distribution
is insensitive.

C. Adaptive CSMA for maximal throughput

Assume i.i.d. traffic arrival at each link k with a normalized
arrival rate λk. And denote the vector of arrival rates as λ ∈
RK

+ . Without loss of generality, assume that λk > 0,∀k.
(The link(s) with zero arrival rate can be removed from the
problem.) We say that λ is feasible if and only if λ =

∑
i p̄i ·

xi for some probability distribution p̄ ∈ RN
+ satisfying p̄i ≥

0 and
∑

i p̄i = 1. That is, λ is a convex combination of the
IS’s, such that it is possible to serve the arriving traffic with
some transmission schedule. We say that λ is strictly feasible
iff it is in the interior of the capacity region, i.e., iff it can
be written as λ =

∑
i p̄i · x

i where p̄i > 0 and
∑

i p̄i = 1.
Denote the set of strictly feasible λ as C.

Define the following function (the “log likelihood func-
tion” if we estimate the parameter r with the observation
p̄i)

F (r) :=
∑

i p̄i log(pi(r))

=
∑

i p̄i[
∑K

k=1 xi
krk − log(C(r))]

=
∑

k λkrk − log(
∑

j exp(
∑K

k=1 xj
krk))

where λk =
∑

i p̄ix
i
k is the traffic arrival rate at link k.

Consider the following optimization problem

supr≥0 F (r) . (4)

Since log(p(xi; r)) ≤ 0, we have F (r) ≤ 0. Therefore
supr≥0 F (r) exists. Also, F (r) is concave in r [18]. We
show that the following proposition holds.

Proposition 1: If supr≥0 F (r) is attainable (i.e., there
exists finite r∗ ≥ 0 such that F (r∗) = supr≥0 F (r)), then
sk(r∗) ≥ λk,∀k. That is, the service rate is not less than the
arrival rate when r = r∗.

Proof: Let d ≥ 0 be a vector of dual variables asso-
ciated with the constraints r ≥ 0 in problem (4), then the
Lagrangian is L(r;d) = F (r)+dT r. At the optimal solution
r∗, we have

∂L(r∗;d∗)

∂rk
= λk −

∑
j xj

k exp(
∑K

k=1 xj
kr∗k)

C(r∗)
+ d∗k

= λk − sk(r∗) + d∗k = 0 (5)

where sk(r), according to (3), is the service rate (at stationary
distribution) given r. Since d∗k ≥ 0, λk ≤ sk(r∗).
The following condition, proved in the Appendix, ensures
that supr≥0 F (r) is attainable.

Proposition 2: If the arrival rate λ is strictly feasible, then
supr≥0 F (r) is attainable.
Combining Proposition 1 and 2, we know that for any strictly
feasible λ, there exists a finite r∗ such that sk(r∗) ≥ λk,∀k.
To see why “strict feasibility” is necessary, consider the
network in Fig. 1. If λ1 = λ2 = 0.5 (not strictly fea-
sible), then only when r1 = r2 → ∞, the service rates
s1(r) = s2(r) → 0.5 but cannot reach 0.5.

Since ∂F (r)/∂rk = λk − sk(r), a simple gradient algo-
rithm to solve (4) is

rk(t + 1) = [rk(t) + α(t) · (λk − sk(r(t)))]+ (6)

where α(t) is some (small) step sizes. The algorithm is easy
for distributed implementation in wireless networks, because
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link k can adjust rk based on its local information: arrival
rate λk and service rate sk(r(t)). (If the arrival rate is larger
than the service rate, then rk should be increased, and vice
versa.) Note that however, the arrival and service rates are
generally random variables in actual networks, unlike in (6).

Let link k adjust rk every b time units. So t is incremented
by 1 every b time units. For convenience, assume that at link
k, the arrived traffic between moment t−1 and t is stored in a
temporary buffer, and is added to the queue at moment t. Let
λ′

k(t) be the average arrival rate between moment t− 1 and
t, and let s′k(t) be the average service rate between moment
t and t + 1. Then the dynamics of Qk (the queue length at
the transmitter of link k) is

Qk(t + 1) = [Qk(t) + b · (λ′
k(t) − s′k(t))]+ (7)

where λ′
k(t) and s′k(t) are generally random variables. We

design the following distributed algorithm
Algorithm 1: Adjust the TA (transmission aggressive-

ness) in CSMA

rk(t + 1) = [rk(t) + α · (λ′
k(t) − s′k(t))]+ (8)

where α is a small constant step size. Let rk = 0 when
Qk = 0. Then, by (8) and (7), Algorithm 1 is simply

rk(t) = α/b · Qk(t). (9)

We can see that if r is stable (i.e., does not go to infinity),
then the queues are also stable (which means that the arriving
traffic can be served). Consider the following two cases (both
mean slow changes of r):

(1) If b is very large (but finite), then as the CSMA Markov
Chain converges, s′k(t) ≈ sk(r(t)).6 Also, λ′

k(t) ≈ λk. Then
(8) is a gradient algorithm to solve (4). Since the step size is
constant, r may not converge to r∗, but to a neighborhood of
r∗ if α is small enough. This is not an issue since we only
require that r (and the queues) does not go to infinity.

(2) If b is of typical length but α is very small, then
vector r (and the stationary distribution pi(r),∀i) changes
slowly. Assume that the distribution of the transmission states
can “track” the slowly-varying stationary distribution, i.e.,
E[s′k(t)] = sk(r(t)), then algorithm (8) is a stochastic
gradient algorithm (with constant step-size) [20] [19], which
can stabilize r (and the queues) if α is small enough.

In practice, on the other hand, the above choices may not
be preferable since they slow down the system and reduce
its responsiveness to variations of queue lengths. In case (1),
it may take a long time for the CSMA Markov chain to
converge, especially in large networks. So a more practical
approach is to adjust r faster, without waiting for the conver-
gence of the Markov chain in each iteration. Our simulations
show good performance, suggesting that very slow adaptation
is not necessary (although sufficient) for maximal throughput.
However, identifying the exact conditions on the step size to
ensure stability is a challenging problem and deserves future
research.

6A subtle point: If between moment t and t + 1, the queue of link k
′

becomes empty, then link k
′ can continue to transmit dummy packets with

rk′ (t) until t+1. This ensures that the average service rate is still sk(r(t))
for all k.

III. THE PRIMAL-DUAL RELATIONSHIP

In the previous section we have described the adaptive
CSMA algorithm to support any strictly-feasible arrival rates.
For joint scheduling and flow control, however, directly
using the above expression of service rate (3) will lead to
a non-convex problem. This section gives another look at the
problem and also helps to avoid the difficulty.

Rewrite (4) as

maxr,z {
∑

k λkrk − log(
∑

j exp(zj))}

s.t. zj =
∑K

k=1 xj
krk,∀j

rk ≥ 0,∀k.

(10)

For each j = 1, 2, . . . , N , associate a dual variable uj to
the constraint zj =

∑K
k=1 xj

krk. Write the vector of dual
variables as u ∈ RN

+ . Then it is not difficult to find the dual
problem of (10) as follows. (We omit the computation here
due to the limit of space.)

maxu −
∑

i ui log(ui)
s.t.

∑
i(ui · x

i
k) ≥ λk,∀k

ui ≥ 0,
∑

i ui = 1.
(11)

where the objective function is the entropy of the distribution
u, H(u) := −

∑
i ui log(ui). 7

Also, if for each k, we associate a dual variable rk to the
constraint

∑
i(ui · x

i
k) ≥ λk in problem (11), then one can

compute that the dual problem of (11) is the original problem
maxr≥0 F (r) (This is shown in the Appendix as a by-product
of the proof of Proposition 2). This is not surprising, since
in convex optimization, the dual problem of dual problem is
often the original problem.

What is interesting is that both r and u have concrete
physical meanings. We have seen that rk is the TA of link k.
Also, ui can be regarded as the stationary probability of state
i in the CSMA Markov Chain given the dual variable r. This
observation will be useful in later sections. A convenient way
to guess this is by observing the constraint

∑
i(ui ·x

i
k) ≥ λk.

If ui is the probability of state i, then the constraint simply
means that the service rate of link k,

∑
i(ui · xi

k), is larger
than the arrival rate.

Proposition 3: Given some (finite) TA’s of the links (that
is, given the dual variable r of problem (11)), the stationary
distribution of the CSMA Markov Chain maximizes the par-
tial Lagrangian L(u; r) = −

∑
i ui log(ui) +

∑
k rk(

∑
i ui ·

xi
k − λk) over all possible distributions u. Also, Algorithm

1 can be viewed as a (stochastic) subgradient algorithm to
update the dual variable r in order to solve problem (11).

Proof: Given some finite dual variables r, a partial
Lagrangian of problem (11) is

L(u; r) = −
∑

i

ui log(ui) +
∑

k

rk(
∑

i

ui · x
i
k − λk).

Denote u∗(r) = arg maxu L(u; r), where u is a distribu-
tion. Since

∑
i ui = 1, if we can find some w, and u∗(r) > 0

7In fact, there is a more general relationship between ML estimation
problem such as (4) and Maximal-Entropy problem such as (11) [21].
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(i.e., in the interior of the feasible region) such that

∂L(u∗(r); r)

∂ui
= − log(u∗

i (r)) − 1 +
∑

k

rkxi
k = w,∀i,

then u∗(r) is the desired distribution. The above conditions
are

u∗
i (r) = exp(

∑

k

rkxi
k − w − 1),∀i. and

∑

i

u∗
i (r) = 1.

By solving the two equations, we find that w =
log[

∑
j exp(

∑
k rkxj

k)] − 1 and

u∗
i (r) =

exp(
∑

k rkxi
k)

∑
j exp(

∑
k rkxj

k)
,∀i (12)

satisfy the conditions.
Note that in (12), u∗

i (r) is exactly the stationary probability
of state i in the CSMA Markov Chain given the TA of all
links. So Algorithm 1 can be viewed as a stochastic subgradi-
ent algorithm to search for the optimal dual variable. Indeed,
given r, u∗

i (r) maximizes L(u; r); then, r can be updated by
the subgradient algorithm rk ← [rk+α(λk−

∑
i u∗

i (r)x
i
k)]+,

which is the deterministic version of Algorithm 1. The whole
system is trying to solve problem (11) or (4).

IV. JOINT SCHEDULING AND RATE CONTROL

Now, we combine end-to-end rate control with the CSMA
scheduling algorithm to achieve fairness among competing
flows as well as maximal throughput. Here, the input rates
are distributedly adjusted by the source of each flow.

A. Formulation

Assume there are M flows, and let m be the index
(m = 1, 2, . . . ,M ). Define amk = 1 if flow m uses link
k, and amk = 0 otherwise. Let fm be the rate of flow m,
and vm(fm) be the “utility function” of this flow, which is
assumed to be increasing and strictly concave. Assume all
links have the same PHY data rates (it is easy to extend the
algorithm to different PHY rates).

Assume that each link k maintains a separate queue for
each flow that traverses it. Then, the service rate of flow
m by link k, denoted by skm, should be no less than the
incoming rate of flow m to link k. For flow m, if link k
is its first link (i.e., the source link), we say δ(m) = k.
In this case, the constraint is skm ≥ fm. If k 
= δ(m),
denote flow m’s upstream link of link k by up(k, m), then
the constraint is skm ≥ sup(k,m),m, where sup(k,m),m is
equal to the incoming rate of flow m to link k. We also
have

∑
i ui · x

i
k =

∑
m:amk=1 skm,∀k, i.e., the total service

rate of link k is divided among the flows.
Then, consider the following optimization problem:

maxu,s,f −
∑

i ui log(ui) +
∑M

m=1 vm(fm)
s.t. skm ≥ 0,∀k,m : amk = 1

skm ≥ sup(k,m),m,∀m, k : amk = 1, k 
= δ(m)
skm ≥ fm,∀m, k : k = δ(m)∑

i ui · x
i
k =

∑
m:amk=1 skm,∀k

ui ≥ 0,
∑

i ui = 1.
(13)

Notice that the objective function is not exactly the total
utility, but it has an extra term −

∑
i ui log(ui). In section

IV-B, we will introduce a method to approach the maximal
utility. Associate dual variables qkm ≥ 0 to the 2nd and
3rd lines of constraints of (13). Then a partial Lagrangian
(subject to skm ≥ 0,

∑
i ui · x

i
k =

∑
m:amk=1 skm and ui ≥

0,
∑

i ui = 1) is

L(u, s, f ;q)

= −
∑

i ui log(ui) +
∑M

m=1 vm(fm)
+

∑
m,k:amk=1,k �=δ(m) qkm(skm − sup(k,m),m)

+
∑

m,k:,k=δ(m) qkm(skm − fm)

= −
∑

i ui log(ui)

+
∑M

m=1 vm(fm) −
∑

m,k:k=δ(m) qkmfm

+
∑

k,m:amk=1 skm[(qkm − qdown(k,m),m)]
(14)

where down(k, m) means flow m’s downstream link of link
k (Note that down(up(k, m), m) = k). If k is the last link
of flow m, then define qdown(k,m),m = 0.

Fix the vectors u and q first, we solve for skm in the
sub-problem

maxs

∑
k,m:amk=1 skm[(qkm − qdown(k,m),m)]

s.t. skm ≥ 0,∀k, m : amk = 1∑
m:amk=1 skm =

∑
i(ui · x

i
k),∀k.

(15)

The solution is easy to find: at link k, for an m′ ∈
arg maxm:amk=1(qkm−qdown(k,m),m), let skm′ =

∑
i ui·xi

k;
and let skm = 0,∀m 
= m′. In other words, each link
schedules a flow with the maximal “back-pressure” qkm −
qdown(k,m),m. (This is similar to [1] and related references
therein.) Since the value of qdown(k,m),m can be obtained
from a one-hop neighbor, this algorithm is distributed.

Plug the solution of (15) back into (14), we get

L(u, f ;q) = [−
∑

i=1 ui log(ui) +
∑

k zk(
∑

i ui · xi
k)]

+[
∑M

m=1 vm(fm) −
∑

m,k:k=δ(m) qkmfm]

where zk := maxm(qkm − qdown(k,m),m) is the maximal
back-pressure at link k. So a distributed algorithm to solve
(13) is

Algorithm 2: Joint scheduling and rate control
Initially, assume that all queues are empty, and set qkm =

0,∀k, m. Then iterate:
• Link k transmits the head-of-line packet from

a flow with the maximal back-pressure zk =
maxm:amk=1(qkm − qdown(k,m),m) when it gets the
opportunity to transmit.

• Link k lets rk = zk in the CSMA operation. This
is because given z, the optimal u (that maximizes
L(u, f ;q) over u) is the stationary distribution of the
CSMA Markov Chain with rk = zk (similar to the proof
of Proposition 3)8.

• Rate control: For each flow m, if link k is its source link,
then the transmitter of link k let fm = arg maxf ′

m
{β ·

vm(f ′
m) − qkmf ′

m}. This maximizes L(u, f ;q) over f .

8Similar to section II-C, if we do not wait for the convergence of the
CSMA Markov Chain in each iteration, then the resulting service rates s

are random variables in Item 4 of Algorithm 2.
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• The dual variables qkm (maintained by the transmitter
of each link) are updated by a sub-gradient algorithm:
qkm ← [qkm +α(sup(k,m),m−skm)]+ if k 
= δ(m); and
qkm ← [qkm + α(fm − skm)]+ if k = δ(m). Note that
by doing this, qkm ∝ Qkm, where Qkm is the queue
length of flow m at link k.

Remark: Using similar derivations, the adaptive CSMA al-
gorithm can be combined with optimal routing, anycast or
multicast. So it is a modular MAC-layer protocol which can
work with other algorithms in transport layer and network
layer.

B. Approaching the maximal utility

Define Vm(fm) := β ·vm(fm), where β > 0 is a weighting
factor. And we use the above algorithm to solve

maxu,s,f{−
∑

i ui log(ui) +
∑

m Vm(fm)} (16)

subject to the same constraints as in (13). Assume that when
the optimum is achieved, the flow rates f = f̂ , and u = û.

Notice that −
∑

i ui log(ui), the entropy of the distribution
u, is bounded. Since there are N ≤ 2K possible states, then,
0 ≤ −

∑
i ui log(ui) ≤ log N ≤ log 2K = K ·log 2. So when

β is large, the “importance” of the total utility dominates the
objective function of (16). (This is similar in spirit to the
weighting factor used in [11].) As a result, the solution of
(16) approximately achieves the maximal utility. Denote the
highest total utility achievable as W̄ , i.e.,

W̄ := maxu,s,f

∑
m vm(fm) (17)

subject to the same constraints as in (13). It is not difficult
to show the following bound [25].

Proposition 4: The difference between the total utility
(
∑M

m=1 vm(f̂m)) resulting from solving (16) and the max-
imal total utility W̄ is bounded. The bound of difference
decreases with the increase of β. In particular,

W̄ − (K · log 2)/β ≤
∑

m vm(f̂m) ≤ W̄ . (18)

V. SIMULATIONS

A. CSMA scheduling: i.i.d. input traffic with fixed average
rates

In our C++ simulations, the transmission time of all
links is exponentially distributed with mean 0.5ms, and the
backoff time of link k is exponentially distributed with mean
0.5/ exp(rk) ms. Here we have proportionally decreased
the two mean values, which does not affect the stationary
distribution (1). Assume that the full speed of transmission
of each link (without contentions from other links) is 1(data
unit)/ms. (For example, the link transmits 0.6 unit of data in
0.6 ms.) Initially, all queues are empty, and the initial value
of rk is 0 for all k. rk is then adjusted using Algorithm 1
once every b = 5ms, with a constant step size α = 0.23.

There are 6 links in the “Network 1”, whose LCG is
shown in Fig. 2 (a). (Each link only needs to know the
set of links which conflict with itself.) Define 0 ≤ ρ < 1
as the “load factor”, and let ρ = 0.99 in this simulation.

Link 1

Link 2

Link 3

Link 4Link 5

Link 6

(a) Link Contention Graph
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(b) Queue lengths, with constant step size. The vector r is
not shown since it is proportional to the queue length.

Fig. 2. Adaptive CSMA Scheduling with fixed input rates (Network 1)

The arrival rate vector is set to λ=ρ*[0.2*(1,0,1,0,0,0) +
0.3*(1,0,0,1,0,1) + 0.2*(0,1,0,0,1,0) + 0.3*(0,0,1,0,1,0)] =
ρ*(0.5,0.2,0.5,0.3,0.5,0.3) (data units/ms). We have multi-
plied ρ to a convex combination of some Maximal IS’s to
ensure that λ is in the interior of the capacity region. Fig. 2
(b) shows the evolution of the queue lengths. They are stable
(do not go to infinity) despite some oscillations. The vector
r is not shown since it is just α/b times the queue lengths.

Since r oscillates around a neighborhood of r∗ (the optimal
solution of (4)), the queue lengths Q = b/α · r oscillate near
b/α · r∗. Since r∗ is generally not zero, the queue lengths
are generally not around zero, which causes some queueing
delays. In [25], we introduced an enhancement of Algorithm
1 to reduce the delay. Apart from throughput-optimality, it
also keeps the queues short.

B. Joint scheduling and rate control

In Fig 3, we simulate a more complex network (“Network
2”). We also go one step further than Network 1 by giving
the actual locations of the nodes, not only the LCG. Fig 3
(a) shows the network topology, where each circle represents
a node. The nodes are arranged in a grid for convenience,
and the distance between two adjacent nodes (horizontally
or vertically) is 1. Assume that the transmission range is
1, so that a link can only be formed by two adjacent nodes.
Assume that two links cannot transmit simultaneously if there
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(a) Network 2 and flow directions
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Fig. 3. Flow rates in Network 2 (Grid Topology) with Joint scheduling
and rate control

are two nodes, one in each link, being within a distance of 1.1
(In IEEE 802.11, for example, DATA and ACK packets are
transmitted in opposite directions. This model has considered
the interference among the two links in both directions). The
paths of 3 multi-hop flows are plotted. The utility function
of each flow is log(·). The weighting factor is β = 3. (Note
that the input rates are adjusted by the flow control algorithm
instead of being specified as in the last subsection.)

Fig 3 (b) shows the evolution of the flow rates (using Al-
gorithm 2). We see that they become relatively constant after
an initial convergence. By directly solving (17) centrally, we
find that the theoretical optimal flow rates for the three flows
are 0.1111, 0.1333 and 0.1333 (data unit/ms), very close to
the simulation results. The queue lengths are also stable but
not shown here due to the limit on space.

VI. IMPLEMENTATION CONSIDERATIONS IN 802.11
NETWORKS

A. Packet Collisions

In the idealized CSMA model we used, the distribution
of backoff time is continuous and there is no collision. This

allows us to focus on the scheduling problem without worry-
ing about the contention resolution problem. (The resulting
performance can serve as a benchmark in the following.)
However in practice, the backoff time is a multiple of
mini-slots, where each mini-slot cannot be arbitrarily small
(since the sensing time is not zero). Given the discrete
distribution of backoff time, collisions are possible to occur.
Clearly, 100% throughput cannot be achieved in this case.
In this section we consider this practical issue and propose
adaptations of our algorithm for 802.11 networks. (Note
that collisions affect the performance of all random access
protocols, not only the one proposed here. On the other hand,
ignoring collisions in no way implies maximal throughput.
For example, the 802.11-like distributed greedy algorithm is
not throughput-optimal [7]. )

Assume that for link k, the average transmission time is
T . Then the average backoff time is T/Rk. Denote Wk as
the Contention Window (CW) that gives the same average
backoff time (Recall that the distribution of the backoff time
is not important, as long as it has the correct mean). Since a
random number is uniformly picked from 0 to Wk − 1, then
the average backoff time is tm · (Wk − 1)/2, where tm is
the length of a mini-slot. (For simplicity, we do not consider
Binary Exponential Backoff, or BEB, in this calculation.)
Equating the two quantities gives

Wk =
T

Rk

2

tm
+ 1. (19)

We know that larger CW’s lead to lower collision prob-
abilities. By equation (19), for given Rk’s, small mini-slot
tm or large transmission time T can lead to large CW. (If
tm → 0 or T → +∞, then collisions can be ignored and we
return to the previous model.) However, tm is limited by the
speed of light. The mean transmission time T can be made
large, but should not be too large in practice since that will
increase access delays. So, it seems more realistic to impose
an upper bound, rmax, to all rk’s. This gives Wk’s a lower
bound: Wk ≥ 2T/(exp(rmax)·tm)+1. For example, assume
T = 1ms. And a mini-slot in 802.11a is tm := 9μs. If we
require that rk ≤ rmax = 2. Then Wk ≥ 31. This gives
reasonably low collision probabilities if the number of nodes
in a collision domain is not too high [22].

In the following, we introduce two methods of adapting
Algorithm 2 for 802.11 networks with collisions.

1) Method 1: Approximating Algorithm 2 by directly
bounding r: As an approximation, we modify the second
item in Algorithm 2 to “Link k lets rk = min{zk, rmax}
in the CSMA operation”. We call the modified algorithm as
Algorithm 3. (Note that the source of flow m still takes qkm,
where k = δ(m), as the “price” for rate control. No upper
bound is imposed on the price.) Smaller rmax tends to give
lower total utility of the flows.

For any flow m, the solution of maxfm
{vm(fm)−qkmfm}

tends to 0 as qkm tends to infinity. Then it is easy to see that
with Algorithm 3, the queue lengths of all links are stable.
Otherwise the input rate will be reduced to 0 which leads to
a contradiction.
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Fig. 4. Flow rates in Network 2 (Grid Topology) with rmax = 2, compared
to the ideal case

We perform simulations in the grid topology (Network
2), with T = 1ms, and compare the resulting flow rates in
three cases: (1) The idealized case where there is no upper
bound of r (i.e., rmax = +∞) and there is no collision (with
continuous backoff time); (2) the case with rmax = 2 but no
collision (with continuous backoff time) and (3) the case with
rmax = 2, and collisions (i.e., with discrete backoff time and
Binary Exponential Backoff). In (3), the contention window
of link k is computed by plugging rk(t) into equation (19)
and rounding the result to the nearest integer, where rk(t) is
determined by Algorithm 3. The results are shown in Fig 4.
We observe that the systems are stable. And as expected, the
flow rates are reduced compared to the ideal case. However,
the reduction is reasonable considering the small rmax value
and packet collisions.

2) Method 2: Choosing a suitable weighting factor β: In
this alternative method, we don’t bound r directly. Instead, by
choosing a suitable weighting factor β of the total utility, all
rk is guaranteed to be smaller than rmax, if certain conditions
are satisfied. (In [23], a similar approach is used to control
the amount of backlog in the network.)

Proposition 5: Assume that each utility function vm(fm)
satisfies that v′

m(0) < V < ∞, i.e., the derivative at 0 is
bounded by V . (For example, if vm(fm) = log(1 + fm),
then V = 1.) Then by setting β = rmax/V in the following
Algorithm 4 (a minor revision of Algorithm 2), we have rk ≤
rmax,∀k at all time.

Algorithm 4: Modified joint scheduling and rate control
algorithm

Initially, assume that all queues are empty, and set qkm =
0,∀k,m. Then iterate:

• Link k computes the maximal back-pressure zk =
maxm:amk=1(qkm − qdown(k,m),m). When link k gets
the opportunity to transmit, (1) if zk > 0, it
transmits the head-of-line packet of a flow m′ ∈
arg maxm:amk=1(qkm − qdown(k,m),m) ; (2) if zk ≤ 0,
then it transmits a dummy packet.

• Link k lets rk = (zk)+ in the CSMA operation.
• Rate control: For each flow m, if link k is its source link,

then the transmitter of link k let fm = arg maxf ′

m
{β ·

vm(f ′
m) − qkmf ′

m}.
• The dual variables qkm are updated in the same way as

Algorithm 2.

Due to the limit of space, the proof is included in [24].

B. Discrete TA and a real-world implementation

Although rk is continuous in our model, one may find
it convenient to quantize rk into a set of discrete values
in real implementation. Each discrete value corresponds to
a different Contention Window (smaller rk corresponds to
larger CW), and this can be easily mapped to the “service
classes” in IEEE 802.11e. Note that here the prioritization is
based on the back-pressure instead of service type originally
defined in 802.11e. Indeed, in [26], a similar protocol is
implemented with 802.11e hardware and shows superior
performance compared to normal 802.11. (Different from our
work, however, [26] only focuses on implementation study.
Also, the CW’s there are set in a more heuristic way.)

VII. CONCLUSION

In this paper, we have proposed a distributed CSMA
scheduling algorithm, and showed that it is throughput-
optimal in wireless networks with a general interference
model. We have utilized the Markov Random Field property
of CSMA networks in order to obtain the distributed algo-
rithm and the maximal throughput. Furthermore, we have
combined it with end-to-end flow control to approach the
optimal utility, and showed its connection with maximal
backpressure scheduling. The algorithm is easy to implement,
and the simulation results are encouraging.

The adaptive CSMA algorithm is a modular MAC-layer
protocol that can work with other algorithms in transport
layer and network layer. For example, it can be combined
with optimal routing, anycast and multicast using protocols
similar to Algorithm 2.

We also considered some practical issues when implement-
ing the algorithm in an 802.11 setting. To avoid excessive
collisions, transmissions should not be too aggressive. This
leads to reasonable performance reduction compared to the
idealized model.

As mentioned before, the current proof of the throughput
optimality is based on the stationary distribution of the
CSMA Markov chain. This is certainly sufficient, but may
not be necessary according to our simulations. However,
identifying the exact conditions on the step sizes to ensure
stability is difficult since they may depend on network size,
network topology, and arrival rates, etc. This is a direction
for future research.
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APPENDIX: PROOF THE PROPOSITION 2

Consider the convex optimization problem (11), where λ is
strictly feasible (i.e., λ =

∑
i p̄i ·x

i for some p̄i > 0,∀xi and∑
i p̄i = 1). Problem (11) is clearly feasible and the feasible

region is closed and convex. The objective function (the
entropy) is bounded in the feasible region. So, the optimal
value is bounded.

We now check whether the Slater condition [18] (page
226-227) is satisfied. Since all the constraints in (11) are
linear, we only need to check whether there exists a feasible
u which is in the relative interior [18] of the domain D of the
objective function −

∑
i ui log(ui), which is D = {u|ui ≥

0,
∑

i ui = 1}. Since λ =
∑

i p̄i · x
i where p̄i > 0,∀i and∑

i p̄i = 1, letting u = p̄ satisfies the requirement. Therefore
the Slater condition is satisfied. As a result, there exist (finite)
dual variables y∗

k ≥ 0, w∗
i ≥ 0, z∗ such that the Lagrangian

L(u;y∗,w∗, z∗)
= −

∑
i ui log(ui) +

∑
k y∗

k(
∑

i ui · x
i
k − λk)

+z∗(
∑

i ui − 1) +
∑

i w∗
i ui

(20)

is maximized by the optimal solution u∗, and the maximum
is attained.

We first claim that the optimal solution satisfies u∗
i > 0,∀i.

Suppose u∗
i = 0 for all i’s in a non-empty set I. For

convenience, denote p̄ as the vector of p̄i’s. Since both u∗

and p̄ are feasible to the problem (11), any point on the line
segment between them is also feasible. Then, if we slightly
move u from u∗ along the direction of p̄ − u∗, the change
of the objective function h(u) := −

∑
i ui log(ui) (at u∗) is

proportional to

(p̄ − u∗)T∇h(u∗)

=
∑

i

(p̄i − u∗
i )[− log(u∗

i ) − 1]

=
∑

i/∈I

(p̄i − u∗
i )[− log(u∗

i ) − 1] +
∑

i∈I

p̄i[− log(u∗
i ) − 1].

For i 
/∈ I, u∗
i > 0, so

∑
i/∈I(p̄i − u∗

i )[− log(u∗
i ) − 1] is

bounded. But for i ∈ I, u∗
i = 0, thus − log(u∗

i ) − 1 = +∞.
Also, since p̄i > 0, we have (p̄−u∗)T∇h(u∗) = +∞. This
means that h(u) increases when we slightly move u away
from u∗ towards p̄. Thus, u∗ is not the optimal solution.

Therefore u∗
i > 0,∀i. By complementary slackness, w∗

i =
0. So the term

∑
i w∗

i ui in (20) is 0. Since u∗ maximizes
L(u;y∗,w∗, z∗), then

∂L(u∗;y∗,w∗, z∗)

∂ui
= − log(u∗

i )−1+
∑

k

y∗
kxi

k +z = 0,∀i.

Combining this and
∑

i u∗
i = 1, we have

u∗
i =

exp(
∑

k y∗
kxi

k)
∑

j exp(
∑

k y∗
kxj

k)
,∀i. (21)

Plug (21) back into (20), we have
maxu L(u;y∗,w∗, z∗) = −F (y∗). Since u∗ and the
dual variables y∗ solves (11), y∗ is the solution of
miny≥0{−F (y)} (and the optimum is attained). So,
supr≥0 F (r) is attained by r = y∗. The above proof also
shows that (4) is the dual problem of (11).
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