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Abstract

We ®rst present a novel general-purpose nonlinear PID controller realized via fuzzy

PID control that uses our newly-introduced simpli®ed Takagi±Sugeno (TS) rule scheme.

Analytical structure of the fuzzy PID controller is derived and its structure is analyzed

in relation to the linear PID controller. The unique features of the fuzzy controller are as

follows. First, the proportional, integral and derivative gains constantly vary with the

output of the system under control. The gain variation leads to a shorter rise-time, a less

overshoot and a smaller settling-time as compared to a comparable linear PID con-

troller. Second, the characteristics of the gain variation are determined by the fuzzy

rules, and can intuitively be designed. We have also investigated the local stability of the

fuzzy PID control systems. As an application demonstration, we have developed a fuzzy

PID control system to regulate, in computer simulation, blood pressure in postsurgical

patients. We have chosen this particular control problem because the studies in the

literature have established that, in order to achieve satisfactory control results, using a

nonlinear controller with variable gains is necessary. The simulation results show that

the fuzzy PID controller signi®cantly outperforms its linear counterpart, and is safer

and more robust over a wide range of patient condition. Ó 2000 Published by Elsevier

Science Inc. All rights reserved.
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1. Introduction

Fuzzy controllers are inherently nonlinear controllers, and hence fuzzy
control technology can be viewed as a new, cost e�ective and practical way
of developing nonlinear controllers [21]. The major advantage of this tech-
nology over the traditional control technology is its capability of capturing
and utilizing qualitative human experience and knowledge in a quantitative
manner through the use of fuzzy sets, fuzzy rules and fuzzy logic. However,
carrying out analytical analysis and design of fuzzy control systems is
di�cult not only because the explicit structure of fuzzy controllers is gen-
erally unknown, but also due to their inherent nonlinear and time-varying
nature.

There exist two di�erent types of fuzzy controllers: the Mamdani type [6,10]
and the Takagi±Sugeno (TS, for short) [15] type. They mainly di�er in the
fuzzy rule consequent: a Mamdani fuzzy controller utilizes fuzzy sets as the
consequent whereas a TS fuzzy controller employs linear functions of input
variables. Signi®cant e�ort has been made to analytically study Mamdani fuzzy
controllers (e.g., [2,4,5,7±9,12,17,22,24]). In contrast, analytical results of TS
fuzzy controllers are still rather limited [16,18,20]. We recently derived ana-
lytical structures of some classes of TS fuzzy controllers, including the PI and
PD types, and revealed their relationship with the classical controllers
[25,27,28]. We also developed a new, more e�cient TS rule scheme, called
simpli®ed TS fuzzy rule scheme, which greatly reduces the number of adjust-
able parameters in the rule consequent [27,28].

In the present paper, we will expand our studies from the fuzzy PI and PD
controllers to a fuzzy PID controller that uses the simpli®ed linear TS rule
scheme. We revealed already, in a previous paper [27], its general structure to
be a nonlinear PID controller with variable gains. However, the explicit
expressions of the gains were not derived. We will ®rst provide the con®g-
uration of the fuzzy controller and then derive its structure. We will then
analyze the peculiar characteristics of the gain variation and point out the
performance advantages that they bring to the fuzzy controller over the
linear PID controller. Finally, as an application example, we will show,
through computer simulation, how the fuzzy controller ®ts naturally and
nicely to closed-loop control of blood pressure in postsurgical patients, a
challenging control problem that has long been known for its need of a
nonlinear controller.
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2. Con®guration of the TS fuzzy PID controller

The TS fuzzy PID controller under this investigation uses the same input
variables as the linear PID controller does:

x1�n� � SP�n� ÿ y�n�;
x2�n� � x1�n� ÿ x1�nÿ 1�;
x3�n� � x2�n� ÿ x2�nÿ 1�;

�1�

where SP�n� is the setpoint/reference signal of system output, and y�n� is the
system output at sampling time n. Variables x1�n�; x2�n� and x3�n� represent the
position, velocity and acceleration of the system output. Each variable is
fuzzi®ed by two input fuzzy sets, namely ``Positive'' and ``Negative'' and their
mathematical de®nitions are identical for the input variables:

lP�xi� �
0; xi < ÿL
xi�L

2L ; ÿL6 xi6 L

1; xi > L

8>><>>:
lN�xi� �

1; xi < ÿL
ÿxi�L

2L ; ÿL6 xi6L

0; xi > L

8>><>>:
�2�

where the subscripts P and N mean ``Positive'' and ``Negative,'' respectively. L
is a design parameter whose value a�ects the control performance and should
be carefully chosen during design. Fig. 1 gives a graphical illustration of their
mathematical de®nitions.

A total eight di�erent combinations of the input fuzzy sets exist, and hence
we need eight fuzzy rules to cover them. Instead of using the original TS fuzzy
rule scheme [15], we use our simpli®ed linear TS rules scheme:

Fig. 1. The graphical de®nition of the input fuzzy sets given in Eq. (2). Input variables, speci®ed as

xi where i � 1; 2 or 3, are fuzzi®ed by the identical fuzzy sets.
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R1 : IF x1�n� is A11 AND x2�n� is A21 AND x3�n� is A31

THEN v1�n� � k1�a1x1�n� � a2x2�n� � a3x3�n��
R2 : IF x1�n� is A12 AND x2�n� is A22 AND x3�n� is A32

THEN v2�n� � k2v1�n�
:

:

R8 : IF x1�n� is A18 AND x2�n� is A28 AND x3�n� is A38

THEN v8�n� � k8v1�n�;

�3�

where vj�n� denotes the contribution of the jth rule to the controller output.
Without loss of generality, we assume that k1 � 1. In the rule consequent,
a1; a2; a3; k2; . . . ; k8 are ten constant parameters. Compared with the original TS
rule scheme, parameter reduction is signi®cant: 10 vs. 24. The rule consequent
is proportional and kjÕs represent the proportionality. Although the propor-
tionality is ®xed, all the consequent, being linear functions of input variables,
constantly change with input variables. This will be shown later. Our simpli®ed
rule scheme is not restrictive as it can produce fuzzy controllers and systems
that are universal approximators [26]. We use the product fuzzy logic AND
operator to combine the three membership values in each of the rule ante-
cedents to generate a combined membership, denoted as lj; for vj�n�:

lj � lb�x1�lb�x2�lb�x3�;
where the subscript b is either P (representing ``Positive'') or N (signifying
``Negative'').

Finally, we use the popular centroid defuzzi®er for defuzzi®cation. The re-
sult can be either incremental output of the fuzzy controller, Du�n�, if vj�n�
represents incremental output, or output of the fuzzy controller, u�n�, if vj�n�
means controller output:

Du�n� �
P8

j�1 lj vj�n�P8
j�1 lj

or u�n� �
P8

j�1 lj vj�n�P8
j�1 lj

: �4�

Note that there is no di�erence on the right sides of the two equations in form:
the di�erences are on the left side as well as in the meaning of vj�n�.

3. The fuzzy PID controller as a nonlinear PID controller with variable gains

We now derive the explicit structure of the fuzzy PID controller and relate
the resulting structure to the linear PID controller. We will focus on the in-
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cremental type of the fuzzy controller but the expressions are exactly the same
for the other type.

Due to the nature of the chosen membership functions of the input fuzzy
sets (i.e., lP�xi� � lN�xi� � 1), it can easily be proven that the denominator of
(4) is always equal to 1. Hence, (4) reduces to

Du�n� �
X8

j�1

ljvj�n� � v1�n� �
X8

j�1

ljkj

� G�x1; x2; x3� a1x1�n�� � a2x2�n� � a3x3�n��; �5�

where

G�x1; x2; x3� �
X8

j�1

lj kj � k1lP�x1�lP�x2�lP�x3� � k2lP�x1�lP�x2�lN�x3�

� k3lP�x1�lN�x2�lP�x3� � k4lP�x1�lN�x2�lN�x3�
� k5lN�x1�lP�x2�lP�x3� � k6lN�x1�lP�x2�lN�x3�
� k7lN�x1�lN�x2�lP�x3� � k8lN�x1�lN�x2�lN�x3�: �6�

Recall that a discrete-time linear PID controller in incremental form is:

DuPID�n� � �Kix1�n� � �Kpx2�n� � �Kdx3�n�; �7�
where �Kp; �Ki and �Kd are proportional-gain, integral-gain and derivative-gain,
respectively. In comparison, the fuzzy PID controller is a nonlinear PID
controller with variable proportional-gain, integral-gain and derivative-gain
being a2 � G�x1; x2; x3�; a1 � G�x1; x2; x3� and a3 � G�x1; x2; x3�, respectively. The
same can be said to the fuzzy PID controller using u�n� as output: it is a po-
sition-form nonlinear PID controller with variables gains.

Since the gains are proportional to G�x1; x2; x3�, we only need to study
G�x1; x2; x3� in order to understand the characteristics of the variable gains.
G�x1; x2; x3� is de®ned over the input space of �ÿ1;1� � �ÿ1;1��
�ÿ1;1�. Inside the cube �ÿL; L� � �ÿL; L� � �ÿL; L�, it is explicitly derived
as

G�x1; x2; x3� � k1

8L3
c1L3
ÿ � c2L2x1 � c3L2x2 � c4L2x3 � c5Lx1x2

� c6Lx1x3 � c7Lx2x3 � c8x1x2x3

�
; �8�

where
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c1 � 1� k2 � k3 � k4 � k5 � k6 � k7 � k8;

c2 � 1� k2 � k3 � k4 ÿ k5 ÿ k6 ÿ k7 ÿ k8;

c3 � 1� k2 ÿ k3 ÿ k4 � k5 � k6 ÿ k7 ÿ k8;

c4 � 1ÿ k2 � k3 ÿ k4 � k5 ÿ k6 � k7 ÿ k8;

c5 � 1� k2 ÿ k3 ÿ k4 ÿ k5 ÿ k6 � k7 � k8;

c6 � 1ÿ k2 � k3 ÿ k4 ÿ k5 � k6 ÿ k7 � k8;

c7 � 1ÿ k2 ÿ k3 � k4 � k5 ÿ k6 ÿ k7 � k8;

c8 � 1ÿ k2 ÿ k3 � k4 ÿ k5 � k6 � k7 ÿ k8:

�9�

G�x1; x2; x3� outside the cube has also been derived in a similar fashion, but the
result is omitted here for brevity. G�x1; x2; x3� given in (8) is of most importance
because it is more nonlinear than anywhere else in the input space [27,28].
Hence, we will discuss this region only below.

Some important characteristics of the fuzzy PID controller can be observed
from the expression of G�x1; x2; x3� in (8). First, G�x1; x2; x3� is a continuous
function with respect to x1; x2 and x3 over the entire input space. Accordingly,
the gain variation is always continuous. Second, the characteristics of the gain
variation are parameterized by the rule proportionality (i.e., kjÕs). This is to say
that kjÕs determine the geometry of G�x1; x2; x3�. For instance, at the equilib-
rium point (0, 0, 0), G�0; 0; 0� � c1=8. The values of G�x1; x2; x3� at the eight
vertexes of the cube are also directly related to kjÕs (e.g., G�L;ÿL;L� � k3�. The
values of G�x1; x2; x3� at these nine locations provide some rough ideas about
the characteristics of the gain variation. Whether the gain variation is sensible
in the context of control depends on the values of kjÕs, which can be intuitively
selected [28]. Interestingly, if all the values of kjÕs are the same (i.e., 1),
G�x1; x2; x3� � 1 and the fuzzy controller actually becomes a conventional linear
PID controller. In other words, the linear PID controller is just a special case of
the fuzzy PID controller.

One of the best approaches to illustrating these characteristics is probably
through graphical demonstration. Nevertheless, how G�x1; x2; x3� changes with
the input variables is four-dimensional, and cannot be directly visualized. As
an alternative, we will only discuss a simple case here, which demonstrates the
same characteristics. We will exclude x3�n� in the analysis below and reduce the
fuzzy PID controller to a fuzzy PI controller. This means that a3 � 0; and
k5 � k6 � k7 � k8 � 0 (Note that a fuzzy PI controller only needs four fuzzy
rules). Under these conditions, we have (see also [27]):
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G�x1; x2� � k1

4L2
� 1� � k2 � k3 � k4�L2 � �1� k2 ÿ k3 ÿ k4�L x1�n�

� �1ÿ k2 � k3 ÿ k4�L x2�n� � �1ÿ k2 ÿ k3 � k4�x1�n�x2�n��:
�10�

Without losing generality, we now assume that L � 1, which is not restrictive as
one can always rescale the input variables to ®t any given intervals, and the
scaled input variables can then be treated as x1�n� and x2�n�. To further sim-
plify the analysis, we let k2 � k3 � 0 and concentrate on the e�ect of k4 on the
characteristics of G�x1; x2�.

Fig. 2 shows three-dimensional plots of G�x1; x2�, when k4 � 1; 0:5 and 0,
respectively. The plots are with respect to x1�n� and x2�n� whose ranges are
�ÿ2L; 2L�. When k4 � 1, G�x1; x2� is a symmetrical function with respect to the
lines x1�n� � x2�n� and x1�n� � ÿx2�n�, which means that the proportional-gain
and integral-gain vary symmetrically as well. The symmetry is achieved because
k1 � k4 and k2 � k3. At (0, 0), G�x1; x2� � 0:5: G�x1; x2� reaches its maximum, 1,
at �L; L� and �ÿL;ÿL�, and achieves its minimum, 0, at �L;ÿL� and �ÿL;L�.
We de®ne the proportional-gain and integral-gain at (0, 0) as steady-state
proportional-gain and integral-gain, respectively. The gains at any other states
are named dynamic proportional-gain and integral-gain. Based on the maxi-
mum and minimum of G�x1; x2�, one sees that the dynamic gains can be en-
larged to as much as twice of the steady-state gains or can be reduced to as little
as zero. In [27], we have provided a detailed analysis of the gain variation in the
context of control and in comparison with the linear PI controller that uses the
steady-state gains of the fuzzy controller. The analysis shows that the variable
gains empower the fuzzy PI controller to outperform the linear PI controller.

The cases of k4 � 0:5 and 0 in Fig. 2 are intended to show how the rule
proportionality can be used to achieve di�erent characteristics of the gain
variation. The in¯uence of the proportionality is evident as compared with the
case of k4 � 1. G�x1; x2� is no longer a symmetrical function with respect to the
lines x1�n� � ÿx2�n� because k1 6� k4. Moreover, the value of G�x1; x2� around
�0;ÿ2� � �0;ÿ2� decreases as the value of k4 reduces. One can also adjust k2 and
k3 to manipulate the gain variation characteristics. Indeed, an endless number
of characteristics can be realized through these parameters. What kind of
characteristics should be used depends on the particular control problem in-
volved.

The fuzzy PID controller has one more input variable (i.e., x3�n�) and ®ve
more parameters than the fuzzy PI controller (i.e., a3 and k5 to k8�. Hence, it is
more di�cult to analyze because of the higher dimensionality. In theory, its
control performance is enhanced by the additional degrees of freedom intro-
duced by the extra parameters. Such enhancement, however, is at the expense of
di�cult parameter tuning and complicated controller structure. One remedy is
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Fig. 2. Three-dimensional plots of G�x1; x2� when (a) k4 � 1; (b) k4 � 0:5; and (c) k4 � 0. Values of

the other parameters are: L � 1; k1 � 1; k2 � k3 � 0. The mathematical expression is given in (8)

where k5 to k8 are 0.
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to let some parameters be zero, as did above to obtain a fuzzy PI controller.
Useful and interesting nonlinear gain variation characteristics can still be gen-
erated to produce a superior controller even when the majority of kjÕs are zero.

One may wonder about the stability of the control systems involving the
fuzzy PID controller. We have established a simple yet powerful criterion: the
fuzzy PID control system is locally stable around the equilibrium point if and
only if the corresponding linear PID control system is locally stable [24]. This
criterion is tight in that it is a necessary and su�cient criterion. Global stability
criteria can also be established either through the LyapunovÕs methods
[16,18,19] or through the Small Gain Theorem [3].

This novel fuzzy PID controller is general-purpose and can be used for
control problems in diverse ®elds. Most practical control problems are non-
linear in nature and require nonlinear control as the best solution. Because of
the technical di�culties, a nonlinear control problem is usually approximated
as a linear problem and solved as such using the relatively simpler linear
control theory. Among all the linear controllers, the PID controller is the most
popular and e�ective controller for its simplicity in structure and tuning [1].
Based on the above analysis of the fuzzy PID controller, we can say that if a
linear PID controller works, the fuzzy PID controller will, too, and could
perform even better for the same system.

Control problems in biomedicine are intrinsically nonlinear, time-varying
and often associated with time-delay. They are the most challenging control

Fig. 2. (Continued).
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problems in existence, and demand sophisticated nonlinear controllers with
time-varying characteristics. Below, we will show how the above-developed
fuzzy PID controller ®ts naturally and nicely to an important medical control
problem.

4. A medical application of the fuzzy PID controller

We will ®rst brie¯y describe the medical problem. After the open-heart
surgery, the patient stays in a Cardiac Surgical Intensive Care Unit for re-
covery. Some patients exhibit hypertension, that is, mean arterial pressure
(MAP) higher than normal, which should be treated to prevent potential
complications. The blood pressure is lowered and maintained at a normal level
(usually 80 mm Hg) through manually regulating infusion rate of a vasodi-
lating drug, called sodium nitropresside (SNP), that is delivered to the patient
intravenously. Increasing the infusion rate lowers the blood pressure whereas
decreasing the rate creates an opposite e�ect on the blood pressure. A math-
ematical model has been established in the literature to describe the dynamic
relationship between SNP infusion rate and change in MAP (i.e., DMAP) [13]

DMAP�s�
SNP�s� �

Keÿ30s 1� 0:4eÿ50s� �
1� 40s

; �11�

where K represents the sensitivity of patients to SNP. K is )0.72 for the typical
patients,)0.18 for the insensitive patients and )2.88 for the over-sensitive pa-
tients. The ratio is 1:16 between the insensitive and the over-sensitive.

Because a lower blood pressure, say 50 mm Hg, is far more life-threatening
than a higher one, say 110 mm Hg, biased change of the infusion rate must be
implemented for patientÕs safety. The infusion rate must be reduced much more
quickly when the blood pressure is quite below the normal level. The farther
the blood pressure is below the normal level, the faster the rate reduction must
be. The ®rst automatic blood pressure controller implemented clinically in
1970s [13] indeed used this kind of biased control strategies. Speci®cally, the
controller was a PI controller with a decision table that had seven rules for
changing the proportional-gain and integral-gain according to the current state
of the blood pressure. One of the rules doubled the controller gains whenever
the blood pressure became 5 mm Hg below the normal level, trying to speed up
the reduction of the infusion rate. In late 1980s, we developed a Mamdani
fuzzy PI controller to clinically treat the patients with superior results to those
of the linear PID controller [23].

With the fuzzy PID controller, these biased control strategies are realized in
a more smooth and natural fashion. The key is to select the proper values of the
design parameters. After experimenting some parameter values with the patient
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model (11), we found the following values adequate: k1 � 1; k2 � 0:5;
k3 � k4 � k5 � k6 � 0; k7 � 0:1; k8 � 0:85; L � 40; a1 � ÿ0:024; a2 � ÿ1:6 and
a3 � ÿ25. The sampling period was 10 s. Fig. 3 shows the simulated control

performance comparisons between the fuzzy PID controller and the linear PID

Fig. 3. Simulated performance comparisons of mean arterial pressure for patients with di�erent

sensitivities under the fuzzy PID control (FPID) and the linear PID control (PID) that uses the

steady-state gains of the fuzzy controller: (a) typical patients, (b) insensitive patients, and (c) over-

sensitive patients. The patient model (11) is used. The parameter values are: k1 � 1; k2 � 0:5;

k3 � k4 � k5 � k6 � 0, k7 � 0:1; k8 � 0:85; L � 40; a1 � ÿ0:024; a2 � ÿ1:6; a3 � ÿ25, and the sam-

pling period is 10 s.
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controller that uses the steady-state gains of the fuzzy controller. All the typ-
ical, insensitive and over-sensitive patient cases are included. The parameters
are ®xed at the same values for both controllers in all the comparisons. For
typical and insensitive patients, one sees from Fig. 3(a) that the rise-time of
both control systems is about the same, although the response of the linear
controller is slower during the initial time period (i.e., 0±300 s for the typical
patients, and 0±600 s for the insensitive patients). No MAP overshoot exists for
both systems. For the over-sensitive patients, however, the fuzzy control sys-
tem performs much better: little overshoot and much more stable MAP re-
sponse vs. dangerous 15 mm Hg overshoot and oscillatory MAP trajectory of
the system controlled by the linear PI controller. The settling-time of the linear
system is also signi®cantly longer. The superiority of the fuzzy controller is
especially convincing because it results in both smaller overshoot and smaller
rise-time. According to the linear control theory, achieving these two seemingly
contradictory control objectives simultaneously is virtually impossible [11].
One can only achieve one objective at the expense of the other. The fuzzy PID
control system can do both because it is nonlinear [14].

5. Conclusions

We have developed a novel fuzzy PID controller, which is realized via our
newly-introduced simpli®ed TS rule scheme. Analytical analysis reveals that
the fuzzy controller is a nonlinear PID controller with time-dependent variable
gains. We have investigated the characteristics of the gains and shown the fuzzy
controller to be superior to its linear counterpart due to the variable gains. To
demonstrate the usefulness and e�ectiveness of the variable gains, we have
developed a fuzzy PID controller for closed-loop control of mean arterial
pressure in postsurgical patients through drug regulation. The simulation re-
sults show that the fuzzy PID control system indeed signi®cantly outperforms
the linear PID control system, especially with enhanced safety and robustness
for the over-sensitive patients.
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