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Non-normal growth in symmetric shear flow
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ABSTRACT: An analysis of symmetric instability from the perspective of Generalized Stability Theory is presented.
For Richardson number smaller than one, the optimal growth exceeds that predicted by normal mode analysis yielding
potentially a much faster generation of slantwise convection. In both normal and non-normal evolution, the parcel trajectory
remains close to the isentropes and energy growth results primarily from the vertical Reynolds stress term in the energy
equation. The large non-normal growth obtained results from the optimal perturbations having parcel trajectories in the
mean shear plane, in the initial stage, that maximize the growth by Reynolds stress. This plane is perpendicular to the
plane of the isentropes and the absolute momentum isolines, usually associated with slantwise convection. For Richardson
number larger than unity, transient growth results primarily from the meridional heat flux term in the energy equation,
however this growth is relatively small. Copyright c© 2008 Royal Meteorological Society
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1. Introduction

Symmetric Instability (SI) resulting in slantwise convec-
tion is considered to be an important mechanism of rain
bands formation in frontal regions. A thorough review
(together with a rich reference list) of different types of
SI and the ‘use and misuse’ of them appears in Schultz
and Schumacher (1999). Theoretical treatment of linear
SI dynamics (Stone, 1966, 1970; Hoskins, 1974; Bennetts
and Hoskins, 1979; Emanuel, 1983a,b; Xu, 1986a,b)
focused mainly on normal mode analysis, in which atten-
tion was focused on the necessary Richardson number
condition for instability, and on the largest modal growth
rate as a measure of the potential for occurrence of slant-
wise convection.

However, shear flow in general is non-normal, e.g.
Farrell (1984), in the sense that the normal modes are
not orthogonal. As a result, an initial perturbation can
transiently grow even if all normal modes are stable.
Furthermore, if unstable normal modes exist one can
almost always find a transiently growing perturbation
with growth rate exceeding the growth rate of the most
unstable mode. The Generalized Stability Theory (GST)
derived by Farrell and Ioannou (1996, hereafter FI96)
shows how a Singular Value Decomposition (SVD) of the
propagator matrix of the linearized dynamical equation
determines the optimal evolution which yields the largest
possible growth in a given target time.

Recently, Heifetz and Farrell (2007) examined the GST
for non-geostrophic baroclinic shear flows for Richardson
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numbers of order one, however they did not analyze
the symmetric instability since the focus of that work
(continuing an analysis for large Richardson number
regime; Heifetz and Farrell, 2003) was on the loss of
orthogonality between Rossby and gravity waves. In
this note we look at non-normal optimal growth of SI
for Ri = O(0.1 − 1). While recognizing the fundamental
role of moisture in the development of rain bands, we
concentrate here on the simplest dry SI version in order
to examine the essence of non-normality in this system.

In section 2 we formulate the problem, then examine
the normal versus the optimal non-normal perturbation
growth in section 3, and conclude our results in section 4.

2. Formulation

Consider a Boussinesq, quasi-hydrostatic basic state with
constant vertical shear ∂U/∂z = �, on an f plane. Both
the basic state and the perturbations are assumed to
be constant in the zonal direction x. The linearized
momentum, thermodynamic and continuity equations for
zonally symmetric perturbations are:

u̇ = f v − �w, (1a)

v̇ = −f u − ∂p

∂y
, (1b)

θ − ∂p

∂z
= 0, (1c)

θ̇ = f �v − N2w, (1d)

∂v

∂y
+ ∂w

∂z
= 0, (1e)
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in which (u, v,w) are the perturbation velocity com-
ponents in the (x, y, z) directions, θ = (g/θ0)θ

′ is the
perturbation scaled potential temperature and the per-
turbation pressure p is scaled by an assumed constant
density, N2 = (g/θ0)(∂�/∂z) is the Brunt–Väisälä fre-
quency and the basic state is in thermal wind balance,
f � = −(g/θ0)(∂�/∂y). Note that, since there is no
mean shear in the meridional direction, the meridional
derivative of the absolute momentum, M = fy − U(z),
is simply the Coriolis parameter f .

For periodic perturbations in the meridional and verti-
cal directions, (1) yields the energy equation:

Ė = ∂

∂t

∫
y

∫
z

1

2

[
u2 + v2 +

(
θ

N

)2
]

dydz

= �

∫
y

∫
z

(
f

N2
vθ − uw

)
dydz,

(2)

where the terms on the RHS are the meridional heat flux
and the vertical Reynolds stress sources for potential and
kinetic energy growth, respectively.

We look for plane wave perturbations of the form
ei(ly+mz) so we can write (1a,b,d), with the aid of (1c,e) as:

u̇ =
(

f + l

m
�

)
v, (3a)

v̇ = −f u − l

m
θ, (3b)

θ̇ =
(

f � + l

m
N2

)
v. (3c)

Next, we non-dimensionalize time by f −1, horizontal
and vertical distance by L and H , and velocity and
η = (θ/N) by U . Denoting the aspect ratio by α = H/L,
the effective Rossby, Richardson and Burger numbers can
be written as:

Ro = U

f L
= α

�

f
, (4a)

Ri =
(

N

�

)2

, (4b)

Br =
(

α
N

f

)2

= Ro2Ri. (4c)

Equation set (3) can now be rewritten as:

u̇ =
(

1 + l

m
Ro

)
v, (5a)

v̇ = −u − l

m

√
Br η, (5b)

η̇ =
(

1√
Ri

+ l

m

√
Br

)
v. (5c)

The non-dimensional energy equation (2) becomes

Ė = 1√
Ri

∫
y

∫
z

(
ηv +

√
Br

l

m
uv

)
dydz. (6)

While both the energy sources are proportional to 1/
√

Ri,
the ratio between the vertical Reynolds stress and the
meridional heat flux is proportional to

√
Br .

Equation (5) can be written in the matrix form:

ė = Ae , (7)

where the normalized energy coordinate vector, e, and
the matrix A are:

e=

 u

v

η


, A=




0
(
1+ l

m
Ro

)
0

−1 0 − l
m

√
Br

0
(

1√
Ri

+ l
m

√
Br

)
0


. (8)

3. Normal and non-normal growth

3.1. Normal growth

The three eigenvalues of A are:

λ1,2 = ±i

[(
l

m

)2

Br+ 2
l

m
Ro+1

]1/2

, λ3 = 0. (9)

Hence, in order to have modal instability, (l/m) must
be negative, i.e. the normal modes are tilted northward
with height, as expected. (The absolute momentum iso-
lines and the isentropes are also tilted northward with
height.) With the definition χ ≡ |l/m|, the condition for
instability (to obtain positive real λ) is therefore

Br χ2 − 2Ro χ + 1 < 0 (10a)

�⇒ Ro

Br

[
1 − √

1 − Ri
]
<χ <

Ro

Br

[
1 + √

1 − Ri
]
,

(10b)

and since χ must be real, this implies the well-known
condition for modal instability Ri < 1. The largest
modal growth rate λnm−max = √

1/Ri − 1, is obtained
when χ = Ro/Br , that is when the perturbation slope
αχ = αRo/Br = f �/N2 = tan γ �, where tan γ � is
the mean isentrope slope. (Recall that the mean
absolute momentum slope tan γ M = f/�, therefore
tan γ M/ tan γ � = Ri. Hence, to obtain modal symmet-
ric instability, the slope of the isentropes should exceed
the slope of the absolute momentum isolines).

For this case of χ = Ro/Br the growing, decaying and
neutral normal modes become

eg =
√

Ri




1

−
√

1
Ri

− 1

0


 , (11a)

ed = √
Ri




1√
1
Ri

− 1

0


 , (11b)

en = 1√
1 + Ri




1

0√
Ri


 . (11c)

Copyright c© 2008 Royal Meteorological Society Q. J. R. Meteorol. Soc. 134: 1627–1633 (2008)
DOI: 10.1002/qj



NON-NORMAL GROWTH IN SYMMETRIC SHEAR FLOW 1629

The most unstable mode has zero potential temperature
perturbation. (This is a degenerate property of the most
unstable mode due to the hydrostatic approximation used
here for the sake of simplicity. As was shown by Xu and
Zhou (1982), this degenerate property is seen only in the
hydrostatic limit. Without the hydrostatic approximation,
the most unstable mode will have non-zero potential tem-
perature perturbation yielding air parcel slope to be much
less steep than the isentrope slopes, cf. Xu and Clark,
1985.) Therefore, according to (6), all of the unstable
mode energy growth results from the vertical Reynolds
stress. The decaying mode is the complex conjugate of
the growing mode. The neutral mode has non-zero poten-
tial temperature but zero meridional velocity. Therefore
it cannot exhibit growth, neither from the meridional heat
flux, nor from the vertical Reynolds stress. According to
(1e), the neutral mode has no vertical circulation. Hence,
the zonal velocity perturbation and potential temperature
perturbation in the neutral mode are stationary and satisfy
the thermal-wind balance (11c).

The unstable, decaying and neutral modes are not
orthogonal in general and this leaves open the possibility
of transient growth. λnm−max is plotted as a function
of Ri in Figure 1(a). The inner product between the
three modes of (11) is plotted in Figure 1(b). The
growing and the decaying normal modes are parallel

when the Richardson number is zero and one, and
perpendicular when Ri = 0.5. The non-orthogonality
between the growing or the decaying mode (one is
the complex conjugate of the other) with the neutral
mode is maximized at zero Richardson number (at which
the modes become parallel) and decays to zero (the modes
are perpendicular) for unit Richardson number. The three
vectors are plotted, for Ri = 0.5, in Figure 1(d), where
the orthogonality between the unstable and decaying
modes is clearly seen. In the stable regime the growing
and decaying normal modes become neutral but preserve
a zero potential temperature signature and become more
orthogonal as Ri increases. Apart from the ill-posed
solution at Ri = 1 (when the three modes are parallel)
the third neutral mode is perpendicular to the other modes
in the neutral regime (Figure 1(b)).

3.2. Non-normal growth

Due to the non-orthogonality among the modes, the
matrix A is generally non-normal, and this implies that
transient growth occurs in the modal stable regime
Ri > 1, and that the optimal growth, when Ri < 1,
is greater than the most unstable modal growth rate
λnm−max. According to FI96, the greatest instantaneous
growth rate is the largest eigenvalue of the matrix

Figure 1. (a) The most unstable normal mode growth rate (dashed), the largest instantaneous growth rate (solid), and their difference (dash-dot),
as a function of the Richardson number. (b) Energy norm inner product between the three normal modes, as a function of the Richardson number.
The inner product between the growing and decaying normal modes (solid), and between the growing and the neutral modes (dashed). (The
latter is also equal to the inner product between the decaying and the neutral modes.) When Ri = 1, the three modes are parallel. (c) The largest
instantaneous growth rate (solid) composed of the meridional heat flux (dashed) and the vertical Reynolds stress (dash-dot) components. (d) A
visual example of the three normal mode vectors in the generalized energy coordinates space for Ri = 0.5. This figure is available in colour

online at www.interscience.wiley.com/journal/qj
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(A + A†)/2, when (l/m) < 1:

1

2

(
A + A†) = 1

2




0 −Roχ 0

−Ro χ 0 1√
Ri

0 1√
Ri

0


 , (12)

which is equal to λmax = 1
2

√
(Br χ 2 + 1)/Ri. We focus

here on the configurations that provide the largest modal
growth, i.e. when χ = Ro/Br , and explore its non-modal
growth. In Figure 1(a), λmax is plotted for compari-
son with λnm−max, together with the difference between
these growth rates. In the unstable regime, the maxi-
mal instantaneous growth rate is indeed larger than the
modal growth rate. Their difference is minimized when
Ri = 0.5, where the growing and decaying modes are
orthogonal. In the stable regime λmax is rather small
(for instance for Ri = 5, λmax ≈ 0.25 ≈ 1/7 hours in
dimensional units) and in the stable regime this growth
is not sustained, since the optimal evolution vacillates
between the three neutral modes. The global optimal,
that is the largest energy amplification the perturbation
can achieve for any time, is smaller than a factor 5
even close to Richardson number unity (at Ri = 1.1,
Figure 2(d)), and decays rapidly as Richardson number
increases.

The instantaneous amplitude growth in the energy
norm is

λinst = Ė

2E
= 1

2E

∫
y

∫
z

(
ηv√
Ri

− uv

Ri

)
dydz , (13)

for χ = Ro/Br . In Figure 1(c), λmax is decomposed into
its two sources – heat flux and Reynolds stress (the
two sources on the RHS of (13)). For small Richardson
numbers, the Reynolds stress source is clearly dominant,
however the two sources become equal for Ri = 1 and
the heat flux dominates as Richardson number increases
further. While the maximal instantaneous growth rate
can be large, it still remains to be determined whether
this growth can be sustained. The optimal growth for
increasing target times is shown in Figure 2 (recall that
the time is scaled by f −1 so a time unit corresponds
approximately to three hours in the midlatitudes) and
compare it with the largest exponential modal growth for
selected Richardson numbers (Ri = 0.1, 0.5, 0.9, 1.1).
The largest growth for a given target time is given by
the first singular value, σ 1, of the propagator matrix eAt

which solves (7), cf. FI96. It is clear from Figure 2
that the optimal growth significantly exceeds the modal
growth in the unstable regime. In the neutral regime, even
very close to the stability boundary, the amplification is
small, since the non-normal growth cannot project on an
unstable growing mode and so sustain its growth (cf. the

Figure 2. The optimal growth, σ 1(t) (solid), the most unstable normal mode growth (dashed) and the growth of its biorthogonal vector (dash-dot)
obtained for consecutive non-dimensionalized time intervals f t (f t = 1 corresponds approximately to three hours) are shown for Ri = (a) 0.1,
(b) 0.5, (c) 0.9 and (d) 1.1. For Ri = 1.1, the unstable normal mode, and hence its biorthogonal vector, do not exist. This figure is available in

colour online at www.interscience.wiley.com/journal/qj
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difference in growth between the two sides of the stability
cut-off, i.e. in Ri = 0.9 versus in Ri = 1.1).

In order to verify the last point, we also address
in Figure 2 the ‘infinite’ target time limit of optimal
growth. According to FI96, the growth rate at large times
converges to that of the most unstable mode, however this
exponential growth is multiplied by the magnitude of the
biorthogonal vector of the most unstable mode (that in
non-normal systems is always larger than one). For large
times the optimal initial perturbation is the biorthogonal
of the most unstable mode that evolves into the structure
of the most unstable mode. The unstable mode growth,
multiplied by the magnitude of its biorthogonal vector is
indicated by the dash-dot lines in Figure 2. We see that
the optimal evolutions converge very quickly to these
‘infinite target time limits’, indicating that the large non-
normal evolution occurs at the initial stage of growth. In
the stable regime (Figure 2(d)), this non-normal growth
cannot be projected on an unstable mode and therefore
the growth that is attained is not sustained.

The evolution of the instantaneous growth rate during
the optimal growth from the initial biorthogonal pertur-
bation to non-dimensional target times t = 2, 5, 10 for
Ri = 0.1, 0.5, 0.9, respectively, are indicated by the plus
symbols in Figure 3. Indeed, most of the growth rate that
greatly exceeds the unstable growth rate (indicated by
the horizontal solid line) occurs at the initial stage of the

evolution. The instantaneous growth rate is decomposed,
according to (13), into meridional heat flux and verti-
cal Reynolds stress components. For small Richardson
numbers the optimal growth rate at the initial time of
the evolution is dominated by the Reynolds stress, how-
ever as Richardson number approaches unity the relative
contribution of the meridional heat flux increases. For
the example in the stable regime (Ri = 1.1, Figure 3(d))
we examine the optimal evolution for non-dimensional
target time 5 (the global optimal time). This optimal per-
turbation for finite time (the first singular vector, V1,
of the matrix V, where U�V† = e5f A, is the singular
value decomposition) is not the biorthogonal vector of
the first singular vector of U. The evolution of the instan-
taneous growth rate of the vector eAt V1 is decomposed
into energy source components showing the dominance of
the meridional heat flux over the vertical Reynolds stress
component. Only for the second global optimal does the
Reynolds stress dominate, but these growths are quite
small.

The dynamics discussed above focus on the case of
perturbation displacement along the isentropes which
therefore have no initial potential temperature perturba-
tion. As shown by Hoskins (1974) this is the structure
of modal perturbations and therefore a growing normal
mode must have zero potential temperature (all fields if
non-zero must grow). This is not true for non-normal
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Figure 3. The evolution of the instantaneous growth rate for Ri = (a) 0.1, (b) 0.5, (c) 0.9 and (d) 1.1 during the optimal growth from the initial
biorthogonal perturbation to non-dimensional target times 2, 5, 10, 15 respectively. The growth rate is indicated by plus symbols, meridional heat
flux by the dashed lines and vertical Reynolds stress components by the dash-dot lines. The most unstable growth rate is indicated for reference

by the horizontal solid line. This figure is available in colour online at www.interscience.wiley.com/journal/qj
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Figure 4. Optimal trajectories (arrows) of air parcels in the (x, z) plane for the cases of Ri = 0.1, 0.5, 0.9 until they converge to the constant
slope of the unstable modes (indicated by the solid lines). The optimal slope (scaled by Ro/Br) to maximize the Reynolds stress is indicated by
the dashed line. The optimal evolution seeks to pass through this slope at the initial time of evolution. This figure is available in colour online

at www.interscience.wiley.com/journal/qj

growth in which the meridional heat flux vθ can evolve
with time. Optimal evolution for cases with Ri < 1 and
the slope of the perturbation taken between the mean
isentropes and the absolute momentum isolines were also
examined (not shown). While the role of the meridional
heat flux is greater in these cases, the optimal growth
is smaller since the evolution rapidly converges on an
unstable mode which has a smaller growth rate than the
gravest unstable mode.

The common interpretation of symmetric instability
is made by looking at the (y, z) plane, in which the
perturbation and the mean flow are independent of the
zonal direction. Nevertheless, in both normal and non-
normal growth, the main energy source is the vertical
Reynolds stress term −uw� (Equation (2)), which takes
place in the (x, z) plane. For normal mode growth,
the slope of the perturbation w/u = (Ro/Br)(v/u) is
constant, however for non-normal transient growth this
slope changes with time. The optimal trajectory of
air parcels in the (x, z) plane for the cases of Ri =
0.1, 0.5, 0.9 until they converge to the constant slope of
the unstable modes is shown in Figure 4 (solid lines).
Since the instantaneous growth rate due to Reynolds
stress is maximized when the displacement slope is in
π/4 (scaled by Ro/Br) against the shear (indicated by the
dashed line), the optimal evolution seeks to pass through
this slope at the initial time of evolution.

4. Concluding remarks

We find that symmetric instability can exhibit non-normal
growth that can be much larger than predicted by the
most unstable mode so that, for instance, the generation
of pre-frontal rain bands could occur much quicker than
predicted by the modal analysis. While the slope of the
parcel trajectory for optimal growth remains close to the
isentropes (or to the equivalent isentropes in moist slant-
wise convection), the difference in this slope, between
modal and optimal non-modal evolution, is in the initial

stage and can be seen to be in the plane perpendicular to
the isentropes and absolute momentum isolines, where
the mean shear is. Furthermore this initial non-modal
stage can be a plausible mechanism allowing moist air
parcels to reach their level of free slantwise convection,
before modal instability is triggered. In general, this trig-
gering perturbation must be externally supplied (e.g. by
frontal lifting, or by orography), however for pre-frontal
rainbands non-modal lifting can be served as an ‘inter-
nal’ triggering source. This could be yet another way
in which non-normal growth can trigger turbulence in a
background stable to modal perturbations.

The analysis presented in this note was applied for
simplicity for unbounded Boussinesq flow. Recently Xu
(2007a,b) conducted a comprehensive thorough analysis
of non-modal growth of non-Boussinesq symmetric shear
flow, bounded by two horizontal boundaries. He showed
that in order to obtain a complete set, one should include
in additional of the paired growing and decaying modes
two other pairs of slow and fast propagating modes. For
instantaneous optimization time, the non-modal growth is
produced mainly by the paired fastest propagating modes,
whereas for intermediate target time, large growth can
be obtained by the paired slowest propagating modes, at
the stable side of the marginal stability curve. In the unsta-
ble regime, these pairs can also contribute significantly
to the energy growth before the fastest-growing mode
becomes the dominant component. Since the Boussinesq
approximation excludes these mechanisms, it seems to
underestimate, especially in the unstable regime, the opti-
mal growth of pre-frontal rainbands.

Xu examined further the different growth mechanisms
in terms of the evolution of the different components
of the total energy perturbation (i.e. available potential
energy, cross-band and along-band kinetic energy). It
would be interesting to analyze these results also in terms
of the different role of the meridional heat flux and the
vertical Reynolds stress sources, and compare it to the
analysis presented here for the simpler Boussinesq set-up.
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