
Principles of Computer
System Design

An Introduction

Part II
Chapters 7–11

Jerome H. Saltzer

M. Frans Kaashoek

Massachusetts Institute of Technology

Version 5.0

Saltzer & Kaashoek Ch. Part II, p. i June 24, 2009 12:14 am

Copyright © 2009 by Jerome H. Saltzer and M. Frans Kaashoek. Some Rights Reserved.

This work is licensed under a Creative Commons Attribution-Non
commercial-Share Alike 3.0 United States License. For more information on what this
license means, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Designations used by companies to distinguish their products are often claimed as trade
marks or registered trademarks. In all instances in which the authors are aware of a claim,
the product names appear in initial capital or all capital letters. All trademarks that
appear or are otherwise referred to in this work belong to their respective owners.

Suggestions, Comments, Corrections, and Requests to waive license restrictions:
Please send correspondence by electronic mail to:

Saltzer@mit.edu
and

kaashoek@mit.edu

Saltzer & Kaashoek Ch. Part II, p. ii June 24, 2009 12:14 am

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
mailto:Saltzer@mit.edu
mailto:kaashoek@mit.edu

CHAPTERContents

PART I [In Printed Textbook]

List of Sidebars. .xix

Preface. xxvii

Where to Find Part II and other On-line Materials . xxxvii

Acknowledgments .xxxix

Computer System Design Principles . xliii

CHAPTER 1 Systems .1

Overview. 2

1.1. Systems and Complexity . 3

1.1.1 Common Problems of Systems in Many Fields 3

1.1.2 Systems, Components, Interfaces and Environments 8

1.1.3 Complexity. 10

1.2. Sources of Complexity. 13

1.2.1 Cascading and Interacting Requirements . 13

1.2.2 Maintaining High Utilization . 17

1.3. Coping with Complexity I. 19

1.3.1 Modularity . 19

1.3.2 Abstraction . 20

1.3.3 Layering . 24

1.3.4 Hierarchy . 25

1.3.5 Putting it Back Together: Names Make Connections 26

1.4. Computer Systems are the Same but Different . 27

1.4.1 Computer Systems Have no Nearby Bounds on Composition 28

1.4.2 d(technology)/dt is Unprecedented. 31

1.5. Coping with Complexity II . 35

1.5.1 	Why Modularity, Abstraction, Layering, and Hierarchy aren’t

Enough . 36

1.5.2 	Iteration . 36

1.5.3 	Keep it Simple . 39

What the Rest of this Book is about . 40

Exercises . 41 iii

Saltzer & Kaashoek Ch. 0, p. iii	 June 24, 2009 12:21 am

iv Contents

CHAPTER 2 Elements of Computer System Organization 43

Overview .44

2.1. The Three Fundamental Abstractions . 45

2.1.1 Memory .45

2.1.2 Interpreters .53

2.1.3 Communication Links .59

2.2. Naming in Computer Systems . 60

2.2.1 The Naming Model. .61

2.2.2 Default and Explicit Context References .66

2.2.3 Path Names, Naming Networks, and Recursive Name Resolution . . .71

2.2.4 Multiple Lookup: Searching through Layered Contexts73

2.2.5 Comparing Names .75

2.2.6 Name Discovery .76

2.3. Organizing Computer Systems with Names and Layers 78

2.3.1 A Hardware Layer: The Bus. .80

2.3.2 A Software Layer: The File Abstraction .87

2.4. Looking Back and Ahead . 90

2.5. Case Study: UNIX® File System Layering and Naming 91

2.5.1 Application Programming Interface for the UNIX File System91

2.5.2 The Block Layer .93

2.5.3 The File Layer .95

2.5.4 The Inode Number Layer .96

2.5.5 The File Name Layer .96

2.5.6 The Path Name Layer .98

2.5.7 Links .99

2.5.8 Renaming .101

2.5.9 The Absolute Path Name Layer .102

2.5.10 The Symbolic Link Layer .104

2.5.11 Implementing the File System API .106

2.5.12 The Shell, Implied Contexts, Search Paths, and Name Discovery .110

2.5.13 Suggestions for Further Reading .112

Exercises. .112

CHAPTER 3 The Design of Naming Schemes . 115

Overview .115

3.1. Considerations in the Design of Naming Schemes 116

3.1.1 Modular Sharing .116

Saltzer & Kaashoek Ch. 0, p. iv June 24, 2009 12:21 am

Contents v

3.1.2 Metadata and Name Overloading . 120

3.1.3 Addresses: Names that Locate Objects . 122

3.1.4 Generating Unique Names . 124

3.1.5 Intended Audience and User-Friendly Names. 127

3.1.6 Relative Lifetimes of Names, Values, and Bindings 129

3.1.7 Looking Back and Ahead: Names are a Basic System Component . 131

3.2. Case Study: The Uniform Resource Locator (URL) 132

3.2.1 Surfing as a Referential Experience; Name Discovery 132

3.2.2 Interpretation of the URL . 133

3.2.3 URL Case Sensitivity . 134

3.2.4 Wrong Context References for a Partial URL 135

3.2.5 Overloading of Names in URLs . 137

3.3. War Stories: Pathologies in the Use of Names. 138

3.3.1 A Name Collision Eliminates Smiling Faces 139

3.3.2 Fragile Names from Overloading, and a Market Solution 139

3.3.3 More Fragile Names from Overloading, with Market Disruption . . 140

3.3.4 Case-Sensitivity in User-Friendly Names . 141

3.3.5 Running Out of Telephone Numbers . 142

Exercises . 144

CHAPTER 4 Enforcing Modularity with Clients and Services147

Overview. 148

4.1. Client/service organization . 149

4.1.1 From soft modularity to enforced modularity 149

4.1.2 Client/service organization . 155

4.1.3 Multiple clients and services . 163

4.1.4 Trusted intermediaries . 163

4.1.5 A simple example service . 165

4.2. Communication between client and service . 167

4.2.1 Remote procedure call (RPC) . 167

4.2.2 RPCs are not identical to procedure calls . 169

4.2.3 Communicating through an intermediary 172

4.3. Summary and the road ahead . 173

4.4. Case study: The Internet Domain Name System (DNS) 175

4.4.1 Name resolution in DNS . 176

4.4.2 Hierarchical name management . 180

4.4.3 Other features of DNS . 181

Saltzer & Kaashoek Ch. 0, p. v June 24, 2009 12:21 am

vi	 Contents

4.4.4 	Name discovery in DNS .183

4.4.5 	Trustworthiness of DNS responses .184

4.5. Case study: The Network File System (NFS). 184

4.5.1 	Naming remote files and directories. .185

4.5.2 	The NFS remote procedure calls .187

4.5.3 	Extending the UNIX file system to support NFS.190

4.5.4 	Coherence .192

4.5.5 	NFS version 3 and beyond .194

Exercises. .195

CHAPTER 5 Enforcing Modularity with Virtualization 199

Overview .200

5.1. Client/Service Organization within a Computer using Virtualization 201

5.1.1 	Abstractions for Virtualizing Computers .203

5.1.1.1 Threads .204

5.1.1.2 Virtual Memory .206

5.1.1.3 Bounded Buffer. .206

5.1.1.4 Operating System Interface .207

5.1.2 	Emulation and Virtual Machines. .208

5.1.3 	Roadmap: Step-by-Step Virtualization. .208

5.2. Virtual Links using SEND, RECEIVE, and a Bounded Buffer 210

5.2.1 	An Interface for SEND and RECEIVE with Bounded Buffers.210

5.2.2 	Sequence Coordination with a Bounded Buffer211

5.2.3 	Race Conditions .214

5.2.4 	Locks and Before-or-After Actions. .218

5.2.5 	Deadlock .221

5.2.6 	Implementing ACQUIRE and RELEASE .222

5.2.7 	Implementing a Before-or-After Action Using the One-Writer

Principle .225

5.2.8 	Coordination between Synchronous Islands with Asynchronous

Connections .228

5.3. Enforcing Modularity in Memory. 230

5.3.1 	Enforcing Modularity with Domains. .230

5.3.2 	Controlled Sharing using Several Domains231

5.3.3 	More Enforced Modularity with Kernel and User Mode234

5.3.4 	Gates and Changing Modes. .235

5.3.5 	Enforcing Modularity for Bounded Buffers237

Saltzer & Kaashoek Ch. 0, p. vi	 June 24, 2009 12:21 am

Contents vii

5.3.6 The Kernel . 238

5.4. Virtualizing Memory . 242

5.4.1 Virtualizing Addresses. 243

5.4.2 Translating Addresses using a Page Map . 245

5.4.3 Virtual Address Spaces . 248

5.4.3.1 Primitives for Virtual Address Spaces 248

5.4.3.2 The Kernel and Address Spaces . 250

5.4.3.3 Discussion . 251

5.4.4 Hardware versus Software and the Translation Look-Aside Buffer. . 252

5.4.5 Segments (Advanced Topic) . 253

5.5. Virtualizing Processors using Threads . 255

5.5.1 Sharing a processor among multiple threads 255

5.5.2 Implementing YIELD . 260

5.5.3 Creating and Terminating Threads . 264

5.5.4 Enforcing Modularity with Threads: Preemptive Scheduling 269

5.5.5 Enforcing Modularity with Threads and Address Spaces 271

5.5.6 Layering Threads . 271

5.6. Thread Primitives for Sequence Coordination 273

5.6.1 	The Lost Notification Problem . 273

5.6.2 	Avoiding the Lost Notification Problem with Eventcounts and

Sequencers . 275

5.6.3 	Implementing AWAIT, ADVANCE, TICKET, and READ (Advanced

Topic). 280

5.6.4 	Polling, Interrupts, and Sequence coordination. 282

5.7. Case study: Evolution of Enforced Modularity in the Intel x86 284

5.7.1 The early designs: no support for enforced modularity 285

5.7.2 Enforcing Modularity using Segmentation 286

5.7.3 Page-Based Virtual Address Spaces . 287

5.7.4 Summary: more evolution . 288

5.8. Application: Enforcing Modularity using Virtual Machines 290

5.8.1 Virtual Machine Uses . 290

5.8.2 Implementing Virtual Machines . 291

5.8.3 Virtualizing Example . 293

Exercises . 294

CHAPTER 6 Performance .299

Overview. 300

Saltzer & Kaashoek Ch. 0, p. vii	 June 24, 2009 12:21 am

viii Contents

6.1. Designing for Performance . 300

6.1.1 Performance Metrics .302

6.1.1.1 Capacity, Utilization, Overhead, and Useful Work302

6.1.1.2 Latency .302

6.1.1.3 Throughput .303

6.1.2 A Systems Approach to Designing for Performance304

6.1.3 Reducing latency by exploiting workload properties306

6.1.4 Reducing Latency Using Concurrency. .307

6.1.5 Improving Throughput: Concurrency .309

6.1.6 Queuing and Overload .311

6.1.7 Fighting Bottlenecks .313

6.1.7.1 Batching .314

6.1.7.2 Dallying .314

6.1.7.3 Speculation .314

6.1.7.4 Challenges with Batching, Dallying, and Speculation315

6.1.8 An Example: the I/O bottleneck .316

6.2. Multilevel Memories. 321

6.2.1 Memory Characterization .322

6.2.2 Multilevel Memory Management using Virtual Memory.323

6.2.3 Adding multilevel memory management to a virtual memory327

6.2.4 Analyzing Multilevel Memory Systems .331

6.2.5 Locality of reference and working sets .333

6.2.6 Multilevel Memory Management Policies .335

6.2.7 Comparative analysis of different policies .340

6.2.8 Other Page-Removal Algorithms .344

6.2.9 Other aspects of multilevel memory management346

6.3. Scheduling . 347

6.3.1 Scheduling Resources .348

6.3.2 Scheduling metrics .349

6.3.3 Scheduling Policies .352

6.3.3.1 First-Come, First-Served .353

6.3.3.2 Shortest-job-first .354

6.3.3.3 Round-Robin .355

6.3.3.4 Priority Scheduling .357

6.3.3.5 Real-time Schedulers .359

Saltzer & Kaashoek Ch. 0, p. viii June 24, 2009 12:21 am

Contents ix

6.3.4 Case study: Scheduling the Disk Arm. 360

Exercises . 362

About Part II . 369

Appendix A: The Binary Classification Trade-off . 371

Suggestions for Further Reading . 375

Problem Sets for Part I . 425

Glossary . 475

Index of Concepts. 513

Part II [On-Line]

CHAPTER 7 The Network as a System and as a System Component 7–1

Overview. 7–2
7.1. Interesting Properties of Networks . 7–3

7.1.1 Isochronous and Asynchronous Multiplexing 7–5

7.1.2 Packet Forwarding; Delay . 7–9

7.1.3 Buffer Overflow and Discarded Packets . 7–12

7.1.4 Duplicate Packets and Duplicate Suppression 7–15

7.1.5 Damaged Packets and Broken Links . 7–18

7.1.6 Reordered Delivery. 7–19

7.1.7 Summary of Interesting Properties and the Best-Effort Contract . 7–20

7.2. Getting Organized: Layers . 7–20

7.2.1 Layers . 7–23

7.2.2 The Link Layer. 7–25

7.2.3 The Network Layer . 7–27

7.2.4 The End-to-End Layer . 7–28

7.2.5 Additional Layers and the End-to-End Argument. 7–30

7.2.6 Mapped and Recursive Applications of the Layered Model 7–32

7.3. The Link Layer. 7–34

7.3.1 Transmitting Digital Data in an Analog World 7–34

7.3.2 Framing Frames . 7–38

7.3.3 Error Handling. 7–40

7.3.4 The Link Layer Interface: Link Protocols and Multiplexing 7–41

7.3.5 Link Properties . 7–44

Saltzer & Kaashoek Ch. 0, p. ix June 24, 2009 12:21 am

x Contents

7.4. The Network Layer . 7–46

7.4.1 Addressing Interface .7–46

7.4.2 Managing the Forwarding Table: Routing7–48

7.4.3 Hierarchical Address Assignment and Hierarchical Routing.7–56

7.4.4 Reporting Network Layer Errors .7–59

7.4.5 Network Address Translation (An Idea That Almost Works) 7–61

7.5. The End-to-End Layer. 7–62

7.5.1 Transport Protocols and Protocol Multiplexing7–63

7.5.2 Assurance of At-Least-Once Delivery; the Role of Timers7–67

7.5.3 Assurance of At-Most-Once Delivery: Duplicate Suppression7–71

7.5.4 Division into Segments and Reassembly of Long Messages 7–73

7.5.5 Assurance of Data Integrity .7–73

7.5.6 End-to-End Performance: Overlapping and Flow Control.7–75

7.5.6.1 Overlapping Transmissions .7–75

7.5.6.2 Bottlenecks, Flow Control, and Fixed Windows7–77

7.5.6.3 Sliding Windows and Self-Pacing .7–79

7.5.6.4 Recovery of Lost Data Segments with Windows7–81

7.5.7 Assurance of Stream Order, and Closing of Connections7–82

7.5.8 Assurance of Jitter Control .7–84

7.5.9 Assurance of Authenticity and Privacy .7–85

7.6. A Network System Design Issue: Congestion Control 7–86

7.6.1 Managing Shared Resources .7–86

7.6.2 Resource Management in Networks .7–89

7.6.3 Cross-layer Cooperation: Feedback .7–91

7.6.4 Cross-layer Cooperation: Control .7–93

7.6.5 Other Ways of Controlling Congestion in Networks7–94

7.6.6 Delay Revisited .7–98

7.7. Wrapping up Networks . 7–99

7.8. Case Study: Mapping the Internet to the Ethernet. 7–100

7.8.1 A Brief Overview of Ethernet .7–100

7.8.2 Broadcast Aspects of Ethernet .7–101

7.8.3 Layer Mapping: Attaching Ethernet to a Forwarding Network . .7–103

7.8.4 The Address Resolution Protocol. .7–105

7.9. War Stories: Surprises in Protocol Design . 7–107

7.9.1 Fixed Timers Lead to Congestion Collapse in NFS7–107

7.9.2 Autonet Broadcast Storms .7–108

7.9.3 Emergent Phase Synchronization of Periodic Protocols7–108

Saltzer & Kaashoek Ch. 0, p. x June 24, 2009 12:21 am

Contents xi

7.9.4 Wisconsin Time Server Meltdown . 7–109

Exercises . 7–111

CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable Components
8–1

Overview. 8–2
8.1. Faults, Failures, and Fault Tolerant Design. 8–3

8.1.1 Faults, Failures, and Modules . 8–3

8.1.2 The Fault-Tolerance Design Process . 8–6

8.2. Measures of Reliability and Failure Tolerance. 8–8

8.2.1 Availability and Mean Time to Failure . 8–8

8.2.2 Reliability Functions. 8–13

8.2.3 Measuring Fault Tolerance . 8–16

8.3. Tolerating Active Faults . 8–16

8.3.1 Responding to Active Faults . 8–16

8.3.2 Fault Tolerance Models . 8–18

8.4. Systematically Applying Redundancy . 8–20

8.4.1 Coding: Incremental Redundancy . 8–21

8.4.2 Replication: Massive Redundancy. 8–25

8.4.3 Voting . 8–26

8.4.4 Repair. 8–31

8.5. Applying Redundancy to Software and Data 8–36

8.5.1 Tolerating Software Faults. 8–36

8.5.2 Tolerating Software (and other) Faults by Separating State 8–37

8.5.3 Durability and Durable Storage . 8–39

8.5.4 Magnetic Disk Fault Tolerance . 8–40

8.5.4.1 Magnetic Disk Fault Modes . 8–41

8.5.4.2 System Faults . 8–42

8.5.4.3 Raw Disk Storage . 8–43

8.5.4.4 Fail-Fast Disk Storage . 8–43

8.5.4.5 Careful Disk Storage . 8–45

8.5.4.6 Durable Storage: RAID 1 . 8–46

8.5.4.7 Improving on RAID 1 . 8–47

8.5.4.8 Detecting Errors Caused by System Crashes 8–49

8.5.4.9 Still More Threats to Durability . 8–49

Saltzer & Kaashoek Ch. 0, p. xi June 24, 2009 12:21 am

xii Contents

8.6. Wrapping up Reliability. 8–51

8.6.1 Design Strategies and Design Principles. .8–51

8.6.2 How about the End-to-End Argument?. .8–52

8.6.3 A Caution on the Use of Reliability Calculations.8–53

8.6.4 Where to Learn More about Reliable Systems8–53

8.7. Application: A Fault Tolerance Model for CMOS RAM 8–55

8.8. War Stories: Fault Tolerant Systems that Failed 8–57

8.8.1 Adventures with Error Correction .8–57

8.8.2 Risks of Rarely-Used Procedures: The National Archives8–59

8.8.3 Non-independent Replicas and Backhoe Fade8–60

8.8.4 Human Error May Be the Biggest Risk .8–61

8.8.5 Introducing a Single Point of Failure .8–63

8.8.6 Multiple Failures: The SOHO Mission Interruption8–63

Exercises. .8–64

CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After 9–1

Overview .9–2
9.1. Atomicity. 9–4

9.1.1 All-or-Nothing Atomicity in a Database .9–5

9.1.2 All-or-Nothing Atomicity in the Interrupt Interface 9–6

9.1.3 All-or-Nothing Atomicity in a Layered Application9–8

9.1.4 Some Actions With and Without the All-or-Nothing Property . . .9–10

9.1.5 Before-or-After Atomicity: Coordinating Concurrent Threads. . . .9–13

9.1.6 Correctness and Serialization .9–16

9.1.7 All-or-Nothing and Before-or-After Atomicity.9–19

9.2. All-or-Nothing Atomicity I: Concepts . 9–21

9.2.1 Achieving All-or-Nothing Atomicity: ALL_OR_NOTHING_PUT . . .9–21

9.2.2 Systematic Atomicity: Commit and the Golden Rule 9–27

9.2.3 Systematic All-or-Nothing Atomicity: Version Histories 9–30

9.2.4 How Version Histories are Used .9–37

9.3. All-or-Nothing Atomicity II: Pragmatics . 9–38

9.3.1 Atomicity Logs .9–39

9.3.2 Logging Protocols .9–42

9.3.3 Recovery Procedures .9–45

9.3.4 Other Logging Configurations: Non-Volatile Cell Storage.9–47

9.3.5 Checkpoints .9–51

9.3.6 What if the Cache is not Write-Through? (Advanced Topic)9–53

Saltzer & Kaashoek Ch. 0, p. xii June 24, 2009 12:21 am

Contents xiii

9.4. Before-or-After Atomicity I: Concepts . 9–54

9.4.1 Achieving Before-or-After Atomicity: Simple Serialization 9–54

9.4.2 	The Mark-Point Discipline. 9–58

9.4.3 	Optimistic Atomicity: Read-Capture (Advanced Topic) 9–63

9.4.4 	Does Anyone Actually Use Version Histories for Before-or-After

Atomicity? . 9–67

9.5. Before-or-After Atomicity II: Pragmatics . 9–69

9.5.1 Locks . 9–70

9.5.2 Simple Locking. 9–72

9.5.3 Two-Phase Locking. 9–73

9.5.4 Performance Optimizations . 9–75

9.5.5 Deadlock; Making Progress . 9–76

9.6. Atomicity across Layers and Multiple Sites . 9–79

9.6.1 Hierarchical Composition of Transactions 9–80

9.6.2 Two-Phase Commit . 9–84

9.6.3 Multiple-Site Atomicity: Distributed Two-Phase Commit 9–85

9.6.4 The Dilemma of the Two Generals . 9–90

9.7. A More Complete Model of Disk Failure (Advanced Topic) 9–92

9.7.1 Storage that is Both All-or-Nothing and Durable 9–92

9.8. Case Studies: Machine Language Atomicity 9–95

9.8.1 	Complex Instruction Sets: The General Electric 600 Line. 9–95

9.8.2 	More Elaborate Instruction Sets: The IBM System/370 9–96

9.8.3 	The Apollo Desktop Computer and the Motorola M68000

Microprocessor. 9–97

Exercises . 9–98

CHAPTER 10 Consistency .10–1

Overview. 10–2
10.1. 	Constraints and Interface Consistency . 10–2

10.2. 	Cache Coherence . 10–4

10.2.1 Coherence, Replication, and Consistency in a Cache 10–4

10.2.2 Eventual Consistency with Timer Expiration 10–5

10.2.3 Obtaining Strict Consistency with a Fluorescent Marking Pen . . 10–7

10.2.4 Obtaining Strict Consistency with the Snoopy Cache. 10–7

10.3. Durable Storage Revisited: Widely Separated Replicas 10–9

10.3.1 Durable Storage and the Durability Mantra 10–9

10.3.2 Replicated State Machines . 10–11

Saltzer & Kaashoek Ch. 0, p. xiii	 June 24, 2009 12:21 am

xiv Contents

10.3.3 Shortcuts to Meet more Modest Requirements 10–13

10.3.4 Maintaining Data Integrity .10–15

10.3.5 Replica Reading and Majorities .10–16

10.3.6 Backup .10–17

10.3.7 Partitioning Data. .10–18

10.4. 	Reconciliation . 10–19

10.4.1 Occasionally Connected Operation .10–20

10.4.2 A Reconciliation Procedure .10–22

10.4.3 Improvements .10–25

10.4.4 Clock Coordination .10–26

10.5. 	Perspectives . 10–26

10.5.1 History .10–27

10.5.2 Trade-Offs .10–28

10.5.3 Directions for Further Study .10–31

Exercises. .10–32

CHAPTER 11 Information Security . 11–1

Overview .11–4
11.1. 	Introduction to Secure Systems . 11–5

11.1.1 Threat Classification .11–7

11.1.2 Security is a Negative Goal .11–9

11.1.3 The Safety Net Approach .11–10

11.1.4 Design Principles. .11–13

11.1.5 A High d(technology)/dt Poses Challenges For Security 11–17

11.1.6 Security Model .11–18

11.1.7 Trusted Computing Base .11–26

11.1.8 The Road Map for this Chapter .11–28

11.2. 	Authenticating Principals. 11–28

11.2.1 Separating Trust from Authenticating Principals 11–29

11.2.2 Authenticating Principals. .11–30

11.2.3 	Cryptographic Hash Functions, Computationally Secure, Window of

Validity .11–32

11.2.4 Using Cryptographic Hash Functions to Protect Passwords11–34

11.3. 	Authenticating Messages . 11–36

11.3.1 Message Authentication is Different from Confidentiality11–37

11.3.2 Closed versus Open Designs and Cryptography 11–38

11.3.3 Key-Based Authentication Model .11–41

Saltzer & Kaashoek Ch. 0, p. xiv	 June 24, 2009 12:21 am

Contents xv

11.3.4 Properties of SIGN and VERIFY . 11–41

11.3.5 Public-key versus Shared-Secret Authentication 11–44

11.3.6 Key Distribution . 11–45

11.3.7 Long-Term Data Integrity with Witnesses 11–48

11.4. Message Confidentiality . 11–49

11.4.1 Message Confidentiality Using Encryption 11–49

11.4.2 Properties of ENCRYPT and DECRYPT . 11–50

11.4.3 Achieving both Confidentiality and Authentication 11–52

11.4.4 Can Encryption be Used for Authentication? 11–53

11.5. Security Protocols. 11–54

11.5.1 Example: Key Distribution . 11–54

11.5.2 Designing Security Protocols . 11–60

11.5.3 Authentication Protocols . 11–63

11.5.4 An Incorrect Key Exchange Protocol . 11–66

11.5.5 Diffie-Hellman Key Exchange Protocol 11–68

11.5.6 A Key Exchange Protocol Using a Public-Key System. 11–69

11.5.7 Summary . 11–71

11.6. Authorization: Controlled Sharing . 11–72

11.6.1 Authorization Operations . 11–73

11.6.2 The Simple Guard Model. 11–73

11.6.2.1 The Ticket System . 11–74

11.6.2.2 The List System . 11–74

11.6.2.3 Tickets Versus Lists, and Agencies 11–75

11.6.2.4 Protection Groups . 11–76

11.6.3 Example: Access Control in UNIX . 11–76

11.6.3.1 Principals in UNIX . 11–76

11.6.3.2 ACLs in UNIX. 11–77

11.6.3.3 The Default Principal and Permissions of a Process 11–78

11.6.3.4 Authenticating Users . 11–79

11.6.3.5 Access Control Check. 11–79

11.6.3.6 Running Services . 11–80

11.6.3.7 Summary of UNIX Access Control 11–80

11.6.4 The Caretaker Model . 11–80

11.6.5 Non-Discretionary Access and Information Flow Control 11–81

11.6.5.1 Information Flow Control Example 11–83

11.6.5.2 Covert Channels. 11–84

Saltzer & Kaashoek Ch. 0, p. xv June 24, 2009 12:21 am

xvi Contents

11.7. Advanced Topic: Reasoning about Authentication. 11–85

11.7.1 Authentication Logic .11–86

11.7.1.1 Hard-wired Approach .11–88

11.7.1.2 Internet Approach .11–88

11.7.2 Authentication in Distributed Systems 11–89

11.7.3 Authentication across Administrative Realms.11–90

11.7.4 Authenticating Public Keys .11–92

11.7.5 Authenticating Certificates .11–94

11.7.6 Certificate Chains .11–97

11.7.6.1 Hierarchy of Central Certificate Authorities 11–97

11.7.6.2 Web of Trust .11–98

11.8. Cryptography as a Building Block (Advanced Topic) 11–99

11.8.1 Unbreakable Cipher for Confidentiality (One-Time Pad)11–99

11.8.2 Pseudorandom Number Generators. .11–101

11.8.2.1 Rc4: A Pseudorandom Generator and its Use 11–101

11.8.2.2 Confidentiality using RC4. .11–102

11.8.3 Block Ciphers .11–103

11.8.3.1 Advanced Encryption Standard (AES).11–103

11.8.3.2 Cipher-Block Chaining .11–105

11.8.4 Computing a Message Authentication Code11–106

11.8.4.1 MACs Using Block Cipher or Stream Cipher11–107

11.8.4.2 MACs Using a Cryptographic Hash Function.11–107

11.8.5 A Public-Key Cipher .11–109

11.8.5.1 Rivest-Shamir-Adleman (RSA) Cipher 11–109

11.8.5.2 Computing a Digital Signature .11–111

11.8.5.3 A Public-Key Encrypting System.11–112

11.9. .Summary . 11–112

11.10. Case Study: Transport Layer Security (TLS) for the Web. 11–116

11.10.1 The TLS Handshake .11–117

11.10.2 Evolution of TLS. .11–120

11.10.3 Authenticating Services with TLS .11–121

11.10.4 User Authentication .11–123

11.11. War Stories: Security System Breaches . 11–125

11.11.1 Residues: Profitable Garbage .11–126

11.11.1.1 1963: Residues in CTSS .11–126

Saltzer & Kaashoek Ch. 0, p. xvi June 24, 2009 12:21 am

Contents xvii

11.11.1.2 1997: Residues in Network Packets 11–127

11.11.1.3 2000: Residues in HTTP . 11–127

11.11.1.4 Residues on Removed Disks . 11–128

11.11.1.5 Residues in Backup Copies. 11–128

11.11.1.6 Magnetic Residues: High-Tech Garbage Analysis 11–129

11.11.1.7 2001 and 2002: More Low-tech Garbage Analysis 11–129

11.11.2 Plaintext Passwords Lead to Two Breaches 11–130

11.11.3 The Multiply Buggy Password Transformation 11–131

11.11.4 Controlling the Configuration . 11–131

11.11.4.1 Authorized People Sometimes do Unauthorized Things 11–132

11.11.4.2 The System Release Trick . 11–132

11.11.4.3 The Slammer Worm. 11–132

11.11.5 The Kernel Trusts the User . 11–135

11.11.5.1 Obvious Trust. 11–135

11.11.5.2 Nonobvious Trust (Tocttou) . 11–136

11.11.5.3 Tocttou 2: Virtualizing the DMA Channel. 11–136

11.11.6 Technology Defeats Economic Barriers. 11–137

11.11.6.1 An Attack on Our System Would be Too Expensive . . . 11–137

11.11.6.2 Well, it Used to be Too Expensive 11–137

11.11.7 Mere Mortals Must be Able to Figure Out How to Use it . . . 11–138

11.11.8 The Web can be a Dangerous Place 11–139

11.11.9 The Reused Password . 11–140

11.11.10 Signaling with Clandestine Channels 11–141

11.11.10.1 Intentionally I: Banging on the Walls 11–141

11.11.10.2 Intentionally II . 11–141

11.11.10.3 Unintentionally . 11–142

11.11.11 It Seems to be Working Just Fine . 11–142

11.11.11.1 I Thought it was Secure . 11–143

11.11.11.2 How Large is the Key Space…Really?. 11–144

11.11.11.3 How Long are the Keys? . 11–145

11.11.12 Injection For Fun and Profit . 11–145

11.11.12.1 Injecting a Bogus Alert Message to the Operator 11–146

11.11.12.2 CardSystems Exposes 40,000,000 Credit Card Records to SQL

Injection . 11–146

11.11.13 Hazards of Rarely-Used Components 11–148

Saltzer & Kaashoek Ch. 0, p. xvii June 24, 2009 12:21 am

xviii Contents

11.11.14 A Thorough System Penetration Job11–148
11.11.15 Framing Enigma .11–149

Exercises. .11–151

Suggestions for Further Reading . SR–1

Problem Sets . PS–1

Glossary . GL–1

Complete Index of Concepts . INDEX–1

Saltzer & Kaashoek Ch. 0, p. xviii June 24, 2009 12:21 am

CHAPTERList of Sidebars

PART I [In Printed Textbook]

CHAPTER 1 Systems

Sidebar 1.1: Stopping a Supertanker .6

Sidebar 1.2: Why Airplanes can’t Fly. .7

Sidebar 1.3: Terminology: Words used to Describe System Composition9

Sidebar 1.4: The Cast of Characters and Organizations .14

Sidebar 1.5: How Modularity Reshaped the Computer Industry.21

Sidebar 1.6: Why Computer Technology has Improved Exponentially with Time. . .32

CHAPTER 2 Elements of Computer System Organization

Sidebar 2.1: Terminology: durability, stability, and persistence46

Sidebar 2.2: How magnetic disks work .49

Sidebar 2.3: Representation: pseudocode and messages .54

Sidebar 2.4: What is an operating system?. .79

Sidebar 2.5: Human engineering and the principle of least astonishment85

CHAPTER 3 The Design of Naming Schemes

Sidebar 3.1: Generating a unique name from a timestamp125

Sidebar 3.2: Hypertext links in the Shakespeare Electronic Archive.129

CHAPTER 4 Enforcing Modularity with Clients and Services

Sidebar 4.1: Enforcing modularity with a high-level languages154

Sidebar 4.2: Representation: Timing diagrams .156

Sidebar 4.3: Representation: Big-Endian or Little-Endian?158

Sidebar 4.4: The X Window System .162

Sidebar 4.5: Peer-to-peer: computing without trusted intermediaries164

CHAPTER 5 Enforcing Modularity with Virtualization

Sidebar 5.1: RSM, test-and-set and avoiding locks .224

Sidebar 5.2: Constructing a before-or-after action without special instructions226

Sidebar 5.3: Bootstrapping an operating system .239

Sidebar 5.4: Process, thread, and address space .249

Sidebar 5.5: Position-independent programs. .251

Sidebar 5.6: Interrupts, exceptions, faults, traps, and signals. 259

Sidebar 5.7: Avoiding the lost notification problem with semaphores277

CHAPTER 6 Performance
Sidebar 6.1: Design hint: When in doubt use brute force .301 xix

Saltzer & Kaashoek Ch. 0, p. xix June 24, 2009 12:21 am

xx List of Sidebars

Sidebar 6.2: Design hint: Optimiz for the common case . 307
Sidebar 6.3: Design hint: Instead of reducing latency, hide it 310
Sidebar 6.4: RAM latency. 323
Sidebar 6.5: Design hint: Separate mechanism from policy. 330
Sidebar 6.6: OPT is a stack algorithm and optimal. 343
Sidebar 6.7: Receive livelock. 350
Sidebar 6.8: Priority inversion . 358

Part II [On-Line]

CHAPTER 7 The Network as a System and as a System Component
Sidebar 7.1: Error detection, checksums, and witnesses . 7–10
Sidebar 7.2: The Internet . 7–32
Sidebar 7.3: Framing phase-encoded bits . 7–37
Sidebar 7.4: Shannon’s capacity theorem . 7–37
Sidebar 7.5: Other end-to-end transport protocol interfaces 7–66
Sidebar 7.6: Exponentially weighted moving averages. 7–70
Sidebar 7.7: What does an acknowledgment really mean?. 7–77
Sidebar 7.8: The tragedy of the commons . 7–93
Sidebar 7.9: Retrofitting TCP. 7–95
Sidebar 7.10: The invisible hand . 7–98

CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable Components
Sidebar 8.1: Reliability functions . 8–14
Sidebar 8.2: Risks of manipulating MTTFs . 8–30
Sidebar 8.3: Are disk system checksums a wasted effort? . 8–49
Sidebar 8.4: Detecting failures with heartbeats. . 8–54

CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After
Sidebar 9.1: Actions and transactions . 9–4
Sidebar 9.2: Events that might lead to invoking an exception handler 9–7
Sidebar 9.3: Cascaded aborts . 9–29
Sidebar 9.4: The many uses of logs . 9–40

Saltzer & Kaashoek Ch. 0, p. xx June 24, 2009 12:21 am

List of Sidebars xxi

CHAPTER 10 Consistency

CHAPTER 11 Information Security
Sidebar 11.1: Privacy .11–7
Sidebar 11.2: Should designs and vulnerabilities be public? 11–14
Sidebar 11.3: Malware: viruses, worms, trojan horses, logic bombs, bots, etc. . . .11–19
Sidebar 11.4: Why are buffer overrun bugs so common? 11–23
Sidebar 11.5: Authenticating personal devices: the resurrecting duckling policy .11–47
Sidebar 11.6: The Kerberos authentication system .11–58
Sidebar 11.7: Secure Hash Algorithm (SHA) .11–108
Sidebar 11.8: Economics of computer security .11–115

Saltzer & Kaashoek Ch. 0, p. xxi June 24, 2009 12:21 am

xxii List of Sidebars

Saltzer & Kaashoek Ch. 0, p. xxii June 24, 2009 12:21 am

CHAPTERPreface to Part II

This textbook, Principles of Computer System Design: An Introduction, is an introduction

to the principles and abstractions used in the design of computer systems. It is an out

growth of notes written by the authors for the M.I.T. Electrical Engineering and

Computer Science course 6.033, Computer System Engineering, over a period of 40

plus years.

The book is published in two parts:

• 	 Part I, containing chapters 1-6 and supporting materials for those chapters, is a
traditional printed textbook published by Morgan Kaufman, an imprint of
Elsevier. (ISBN: 978–012374957–4)

• 	 Part II, consisting of Chapters 7–11 and supporting materials for those chapters,
is made available on-line by M.I.T. OpenCourseWare and the authors as an open
educational resource.

Availability of the two parts and various supporting materials is described in the section
with that title below.

Part II of the textbook continues a main theme of Part I—enforcing modularity—by
introducing still stronger forms of modularity. Part I introduces methods that help pre
vent accidental errors in one module from propagating to another. Part II introduces
stronger forms of modularity that can help protect against component and system fail
ures and against malicious attacks. Part II explores communication networks,
constructing reliable systems from unreliable components, creating all-or-nothing and
before-or-after transactions, and implementing security. In doing so, Part II also contin
ues a second main theme of Part I by introducing several additional design principles
related to stronger forms of modularity.

A detailed description of the contents of the chapters of Part II can be found in Part
I, in the section “About Part II” on page 369. Part II also includes a table of contents for
both Parts I and II, copies of the Suggested Additional Readings and Glossary, Problem
Sets for both Parts I and II, and a comprehensive Index of Concepts with page numbers
for both Parts I and II in a single alphabetic list.

xxiii

Saltzer & Kaashoek Ch. 0, p. xxiii	 June 24, 2009 12:14 am

xxiv Preface to Part II

Availability
The authors and MIT OpenCourseWare provide, free of charge, on-line versions of
Chapters 7 through 11, the problem sets, the glossary, and a comprehensive index.
Those materials can be found at

http://ocw.mit.edu/Saltzer-Kaashoek

in the form of a series of PDF files (requires Adobe Reader), one per chapter or major
supporting section, as well as a single PDF file containing the entire set.

The publisher of the printed book also maintains a set of on-line resources at

www.ElsevierDirect.com/9780123749574

Click on the link “Companion Materials”, where you will find Part II of the book as well
as other resources, including figures from the text in several formats. Additional materials
for instructors (registration required) can be found by clicking the “Manual” link.

There are two additional sources of supporting material related to the teaching of
course 6.033 Computer Systems Engineering, at M.I.T. The first source is an Open-
CourseWare site containing materials from the teaching of the class in 2005: a class
description; lecture, reading, and assignment schedule; board layouts; and many lecture
videos. These materials are at

http://ocw.mit.edu/6-033

The second source is a Web site for the current 6.033 class. This site contains the cur
rernt lecture schedule which includes assignments, lecturer notes, and slides. There is
also a thirteen-year archive of class assignments, design projects, and quizzes. These
materials are all at

http://mit.edu/6.033

(Some copyrighted or privacy-sensitive materials on that Web site are restricted to cur
rent MIT students.)

Saltzer & Kaashoek Ch. 0, p. xxiv June 24, 2009 12:14 am

http://ocw.mit.edu/Saltzer-Kaashoek
http://ocw.mit.edu/6-033
http://mit.edu/6.033

CHAPTERAcknowledgments

This textbook began as a set of notes for the advanced undergraduate course Engineering
of Computer Systems (6.033, originally 6.233), offered by the Department of Electrical
Engineering and Computer Science of the Massachusetts Institute of Technology start
ing in 1968. The text has benefited from some four decades of comments and
suggestions by many faculty members, visitors, recitation instructors, teaching assistants,
and students. Over 5,000 students have used (and suffered through) draft versions, and
observations of their learning experiences (as well as frequent confusion caused by the
text) have informed the writing. We are grateful for those many contributions. In addi
tion, certain aspects deserve specific acknowledgment.

1. Naming (Section 2.2 and Chapter 3)
The concept and organization of the materials on naming grew out of extensive discus
sions with Michael D. Schroeder. The naming model (and part of our development)
follows closely the one developed by D. Austin Henderson in his Ph.D. thesis. Stephen
A. Ward suggested some useful generalizations of the naming model, and Roger
Needham suggested several concepts in response to an earlier version of this material.
That earlier version, including in-depth examples of the naming model applied to
addressing architectures and file systems, and an historical bibliography, was published
as Chapter 3 in Rudolf Bayer et al., editors, Operating Systems: An Advanced Course, Lec
ture Notes in Computer Science 60, pages 99–208. Springer-Verlag, 1978, reprinted 1984.
Additional ideas have been contributed by many others, including Ion Stoica, Karen Sol
lins, Daniel Jackson, Butler Lampson, David Karger, and Hari Balakrishnan.

2. Enforced Modularity and Virtualization (Chapters 4 and 5)
Chapter 4 was heavily influenced by lectures on the same topic by David L. Tennen
house. Both chapters have been improved by substantial feedback from Hari
Balakrishnan, Russ Cox, Michael Ernst, Eddie Kohler, Chris Laas, Barbara H. Liskov,
Nancy Lynch, Samuel Madden, Robert T. Morris, Max Poletto, Martin Rinard, Susan
Ruff, Gerald Jay Sussman, Julie Sussman, and Michael Walfish.

3. Networks (Chapter 7[on-line])
Conversations with David D. Clark and David L. Tennenhouse were instrumental in
laying out the organization of this chapter, and lectures by Clark were the basis for part
of the presentation. Robert H. Halstead Jr. wrote an early draft set of notes about net
working, and some of his ideas have also been borrowed. Hari Balakrishnan provided
many suggestions and corrections and helped sort out muddled explanations, and Julie
Sussman and Susan Ruff pointed out many opportunities to improve the presentation.
The material on congestion control was developed with the help of extensive discussions

xxv

Saltzer & Kaashoek Ch. 0, p. xxv June 24, 2009 12:14 am

xxvi Acknowledgments

with Hari Balakrishnan and Robert T. Morris, and is based in part on ideas from Raj
Jain.

4. Fault Tolerance (Chapter 8[on-line])
Most of the concepts and examples in this chapter were originally articulated by Claude
Shannon, Edward F. Moore, David Huffman, Edward J. McCluskey, Butler W. Lamp-
son, Daniel P. Siewiorek, and Jim N. Gray.

5. Transactions and Consistency (Chapters 9[on-line] and 10[on-line])
The material of the transactions and consistency chapters has been developed over the
course of four decades with aid and ideas from many sources. The concept of version his
tories is due to Jack Dennis, and the particular form of all-or-nothing and before-or-after
atomicity with version histories developed here is due to David P. Reed. Jim N. Gray not
only came up with many of the ideas described in these two chapters, he also provided
extensive comments. (That doesn’t imply endorsement—he disagreed strongly about the
importance of some of the ideas!) Other helpful comments and suggestions were made
by Hari Balakrishnan, Andrew Herbert, Butler W. Lampson, Barbara H. Liskov, Samuel
R. Madden, Larry Rudolph, Gerald Jay Sussman, and Julie Sussman.

6. Computer Security (Chapter 11[on-line])
Sections 11.1 and 11.6 draw heavily from the paper “The Protection of Information in
Computer Systems” by Jerome H. Saltzer and Michael D. Schroeder, Proceedings of the
IEEE 63, 9 (September, 1975), pages 1278–1308. Ronald Rivest, David Mazières, and
Robert T. Morris made significant contributions to material presented throughout the
chapter. Brad Chen, Michael Ernst, Kevin Fu, Charles Leiserson, Susan Ruff, and Seth
Teller made numerous suggestions for improving the text.

7. Suggested Outside Readings
Ideas for suggested readings have come from many sources. Particular thanks must go to
Michael D. Schroeder, who uncovered several of the classic systems papers in places out
side computer science where nobody else would have thought to look, Edward D.
Lazowska, who provided an extensive reading list used at the University of Washington,
and Butler W. Lampson, who provided a thoughtful review of the list.

8. The Exercises and Problem Sets
The exercises at the end of each chapter and the problem sets at the end of the book have
been collected, suggested, tried, debugged, and revised by many different faculty mem
bers, instructors, teaching assistants, and undergraduate students over a period of 40
years in the process of constructing quizzes and examinations while teaching the material
of the text.

Saltzer & Kaashoek Ch. 0, p. xxvi June 24, 2009 12:14 am

Acknowledgments xxvi

Certain of the longer exercises and most of the problem sets, which are based on lead-
in stories and include several related questions, represent a substantial effort by a single
individual. For those problem sets not developed by one of the authors, a credit line
appears in a footnote on the first page of the problem set.

Following each problem or problem set is an identifier of the form “1978–3–14”. This
identifier reports the year, examination number, and problem number of the examina
tion in which some version of that problem first appeared.

Jerome H. Saltzer
M. Frans Kaashoek

2009

Saltzer & Kaashoek Ch. 0, p. xxvii June 24, 2009 12:14 am

xxvi Acknowledgments

Saltzer & Kaashoek Ch. 0, p. xxviii June 24, 2009 12:14 am

CHAPTERComputer System Design
Principles

Throughout the text, the description of a design principle presents its name in a bold
faced display, and each place that the principle is used highlights it in underlined italics.

Design principles applicable to many areas of computer systems

• Adopt sweeping simplifications
So you can see what you are doing.

• Avoid excessive generality
If it is good for everything, it is good for nothing.

• Avoid rarely used components
Deterioration and corruption accumulate unnoticed—until the next use.

• Be explicit
Get all of the assumptions out on the table.

• Decouple modules with indirection
Indirection supports replaceability.

• Design for iteration
You won't get it right the first time, so make it easy to change.

• End-to-end argument
The application knows best.

• Escalating complexity principle
Adding a feature increases complexity out of proportion.

• Incommensurate scaling rule
Changing a parameter by a factor of ten requires a new design.

• Keep digging principle
Complex systems fail for complex reasons.

• Law of diminishing returns
The more one improves some measure of goodness, the more effort the next
improvement will require.

• Open design principle
Let anyone comment on the design; you need all the help you can get.

• Principle of least astonishment
People are part of the system. Choose interfaces that match the user’s experience,

xxix

Saltzer & Kaashoek Ch. 0, p. xxix June 24, 2009 12:21 am

xxx Computer System Design Principles

expectations, and mental models.

• Robustness principle
Be tolerant of inputs, strict on outputs.

• Safety margin principle
Keep track of the distance to the edge of the cliff or you may fall over the edge.

• Unyielding foundations rule
It is easier to change a module than to change the modularity.

Design principles applicable to specific areas of computer systems

• Atomicity: Golden rule of atomicity
Never modify the only copy!

• Coordination: One-writer principle
If each variable has only one writer, coordination is simpler.

• Durability: The durability mantra
Multiple copies, widely separated and independently administered.

• Security: Minimize secrets
Because they probably won’t remain secret for long.

• Security: Complete mediation
Check every operation for authenticity, integrity, and authorization.

• Security: Fail-safe defaults
Most users won’t change them, so set defaults to do something safe.

• Security: Least privilege principle
Don’t store lunch in the safe with the jewels.

• Security: Economy of mechanism
The less there is, the more likely you will get it right.

• Security: Minimize common mechanism
Shared mechanisms provide unwanted communication paths.

Design Hints (useful but not as compelling as design principles)

• Exploit brute force
• Instead of reducing latency, hide it
• Optimize for the common case
• Separate mechanism from policy

Saltzer & Kaashoek Ch. 0, p. xxx June 24, 2009 12:21 am

CHAPTER

The Network as a System
and as a System 7
Component

CHAPTER CONTENTS
Overview..7–2

7.1 Interesting Properties of Networks ...7–3

7.1.1 Isochronous and Asynchronous Multiplexing 7–5

7.1.2 Packet Forwarding; Delay .. 7–9

7.1.3 Buffer Overflow and Discarded Packets 7–12

7.1.4 Duplicate Packets and Duplicate Suppression 7–15

7.1.5 Damaged Packets and Broken Links 7–18

7.1.6 Reordered Delivery ... 7–19

7.1.7 Summary of Interesting Properties and the Best-Effort Contract 7–20

7.2 Getting Organized: Layers...7–20

7.2.1 Layers .. 7–23

7.2.2 The Link Layer ... 7–25

7.2.3 The Network Layer ... 7–27

7.2.4 The End-to-End Layer ... 7–28

7.2.5 Additional Layers and the End-to-End Argument 7–30

7.2.6 Mapped and Recursive Applications of the Layered Model 7–32

7.3 The Link Layer...7–34

7.3.1 Transmitting Digital Data in an Analog World 7–34

7.3.2 Framing Frames ... 7–38

7.3.3 Error Handling ... 7–40

7.3.4 The Link Layer Interface: Link Protocols and Multiplexing 7–41

7.3.5 Link Properties .. 7–44

7.4 The Network Layer ..7–46

7.4.1 Addressing Interface .. 7–46

7.4.2 Managing the Forwarding Table: Routing 7–48

7.4.3 Hierarchical Address Assignment and Hierarchical Routing 7–56

7.4.4 Reporting Network Layer Errors ... 7–59

7.4.5 Network Address Translation (An Idea That Almost Works) 7–61

7.5 The End-to-End Layer..7–62

7.5.1 Transport Protocols and Protocol Multiplexing 7–63

7.5.2 Assurance of At-Least-Once Delivery; the Role of Timers 7–67

7.5.3 Assurance of At-Most-Once Delivery: Duplicate Suppression 7–71
 7–1

Saltzer & Kaashoek Ch. 7, p. 1 June 25, 2009 8:22 am

7–2 CHAPTER 7 The Network as a System and as a System Component

7.5.4 Division into Segments and Reassembly of Long Messages 7–73

7.5.5 Assurance of Data Integrity ... 7–73

7.5.6 End-to-End Performance: Overlapping and Flow Control 7–75

7.5.6.1 Overlapping Transmissions .. 7–75

7.5.6.2 Bottlenecks, Flow Control, and Fixed Windows 7–77

7.5.6.3 Sliding Windows and Self-Pacing 7–79

7.5.6.4 Recovery of Lost Data Segments with Windows................ 7–81

7.5.7 Assurance of Stream Order, and Closing of Connections 7–82

7.5.8 Assurance of Jitter Control .. 7–84

7.5.9 Assurance of Authenticity and Privacy 7–85

7.6 A Network System Design Issue: Congestion Control..............7–86

7.6.1 Managing Shared Resources .. 7–86

7.6.2 Resource Management in Networks 7–89

7.6.3 Cross-layer Cooperation: Feedback 7–91

7.6.4 Cross-layer Cooperation: Control ... 7–93

7.6.5 Other Ways of Controlling Congestion in Networks 7–94

7.6.6 Delay Revisited .. 7–98

7.7 Wrapping up Networks..7–99

7.8 Case Study: Mapping the Internet to the Ethernet7–100

7.8.1 A Brief Overview of Ethernet ...7–100

7.8.2 Broadcast Aspects of Ethernet ..7–101

7.8.3 Layer Mapping: Attaching Ethernet to a Forwarding Network ...7–103

7.8.4 The Address Resolution Protocol ..7–105

7.9 War Stories: Surprises in Protocol Design7–107

7.9.1 Fixed Timers Lead to Congestion Collapse in NFS7–107

7.9.2 Autonet Broadcast Storms ..7–108

7.9.3 Emergent Phase Synchronization of Periodic Protocols7–108

7.9.4 Wisconsin Time Server Meltdown ..7–109

Exercises..7–111
Glossary for Chapter 7 ...7–125
Index of Chapter 7 ...7–135

Last chapter page 7–139

Overview
Almost every computer system includes one or more communication links, and these
communication links are usually organized to form a network, which can be loosely
defined as a communication system that interconnects several entities. The basic abstrac
tion remains SEND (message). and RECEIVE (message), so we can view a network as an
elaboration of a communication link. Networks have several interesting properties—
interface style, interface timing, latency, failure modes, and parameter ranges—that
require careful design attention. Although many of these properties appear in latent form

Saltzer & Kaashoek Ch. 7, p. 2 June 25, 2009 8:22 am

7.1 Interesting Properties of Networks 7–3

in other system components, they become important or even dominate when the design
includes communication.

Our study of networks begins, in Section 7.1, by identifying and investigating the
interesting properties just mentioned, as well as methods of coping with those properties.
Section 7.2 describes a three-layer reference model for a data communication network
that is based on a best-effort contract, and Sections 7.3, 7.4, and 7.5 then explore more
carefully a number of implementation issues and techniques for each of the three layers.
Finally, Section 7.6 examines the problem of controlling network congestion.

A data communication network is an interesting example of a system itself. Most net
work designs make extensive use of layering as a modularization technique. Networks
also provide in-depth examples of the issues involved in naming objects, in achieving
fault tolerance, and in protecting information. (This chapter mentions fault tolerance
and protection only in passing. Later chapters will return to these topics in proper
depth.)

In addition to layering, this chapter identifies several techniques that have wide appli
cability both within computer networks and elsewhere in networked computer
systems—framing, multiplexing, exponential backoff, best-effort contracts, latency masking,
error control, and the end-to-end argument. A glance at the glossary will show that the
chapter defines a large number of concepts. A particular network design is not likely to
require them all, and in some contexts some of the ideas would be overkill. The engineer
ing of a network as a system component requires trade-offs and careful judgement.

It is easy to be diverted into an in-depth study of networks because they are a fasci
nating topic in their own right. However, we will limit our exploration to their uses as
system components and as a case study of system issues. If this treatment sparks a deeper
interest in the topic, the Suggestions for Further Reading at the end of this book include
several good books and papers that provide wide-ranging treatments of all aspects of
networks.

7.1 Interesting Properties of Networks
The design of communication networks is dominated by three intertwined consider
ations: (1) a trio of fundamental physical properties, (2) the mechanics of sharing, and
(3) a remarkably wide range of parameter values.

The first dominating consideration is the trio of fundamental physical properties:

1. 	The speed of light is finite. Using the most direct route, and accounting for the
velocity of propagation in real-world communication media, it takes about 20
milliseconds to transmit a signal across the 2,600 miles from Boston to Los
Angeles. This time is known as the propagation delay, and there is no way to avoid
it without moving the two cities closer together. If the signal travels via a
geostationary satellite perched 22,400 miles above the equator and at a longitude
halfway between those two cities, the propagation delay jumps to 244
milliseconds, a latency large enough that a human, not just a computer, will notice.

Saltzer & Kaashoek Ch. 7, p. 3	 June 25, 2009 8:22 am

7–4 CHAPTER 7 The Network as a System and as a System Component

But communication between two computers in the same room may have a
propagation delay of only 10 nanoseconds. That shorter latency makes some
things easier to do, but the important implication is that network systems may
have to accommodate a range of delay that spans seven orders of magnitude.

2. 	Communication environments are hostile. Computers are usually constructed of
incredibly reliable components, and they are usually operated in relatively benign
environments. But communication is carried out using wires, glass fibers, or radio
signals that must traverse far more hostile environments ranging from under the
floor to deep in the ocean. These environments endanger communication. Threats
range from a burst of noise that wipes out individual bits to careless backhoe
operators who sever cables that can require days to repair.

3. 	Communication media have limited bandwidth. Every transmission medium has a
maximum rate at which one can transmit distinct signals. This maximum rate is
determined by its physical properties, such as the distance between transmitter and
receiver and the attenuation characteristics of the medium. Signals can be
multilevel, not just binary, so the data rate can be greater than the signaling rate.
However, noise limits the ability of a receiver to distinguish one signal level from
another. The combination of limited signaling rate, finite signal power, and the
existence of noise limits the rate at which data can be sent over a communication
link.* Different network links may thus have radically different data rates, ranging
from a few kilobits per second over a long-distance telephone line to several tens
of gigabits per second over an optical fiber. Available data rate thus represents a
second network parameter that may range over seven orders of magnitude.

The second dominating consideration of communications networks is that they are
nearly always shared. Sharing arises for two distinct reasons.

1. 	Any-to-any connection. Any communication system that connects more than two
things intrinsically involves an element of sharing. If you have three computers,
you usually discover quickly that there are times when you want to communicate
between any pair. You can start by building a separate communication path
between each pair, but this approach runs out of steam quickly because the
number of paths required grows with the square of the number of communicating
entities. Even in a small network, a shared communication system is usually much
more practical—it is more economical and it is easier to manage. When the
number of entities that need to communicate begins to grow, as suggested in
Figure 7.1, there is little choice. A closely related observation is that networks may
connect three entities or 300 million entities. The number of connected entities is

* The formula that relates signaling rate, signal power, noise level, and maximum data rate, known
as Shannon’s capacity theorem, appears on page 7–37.

Saltzer & Kaashoek Ch. 7, p. 4	 June 25, 2009 8:22 am

7.1 Interesting Properties of Networks 7–5

thus a third network parameter with a wide range, in this case covering eight orders
of magnitude.

2. 	Sharing of communication costs. Some parts of a communication system follow the
same technological trends as do processors, memory, and disk: things made of
silicon chips seem to fall in price every year. Other parts, such as digging up streets
to lay wire or fiber, launching a satellite, or bidding to displace an existing radio-
based service, are not getting any cheaper. Worse, when communication links leave
a building, they require right-of-way, which usually subjects them to some form of
regulation. Regulation operates on a majestic time scale, with procedures that
involve courts and attorneys, legislative action, long-term policies, political
pressures, and expediency. These procedures can eventually produce useful results,
but on time scales measured in decades, whereas technological change makes new
things feasible every year. This incommensurate rate of change means that
communication costs rarely fall as fast as technology would permit, so sharing of
those costs between otherwise independent users persists even in situations where
the technology might allow them to avoid it.

The third dominating consideration of network design is the wide range of parameter
values. We have already seen that propagation times, data rates, and the number of com
municating computers can each vary by seven or more orders of magnitude. There is a
fourth such wide-ranging parameter: a single computer may at different times present a
network with widely differing loads, ranging from transmitting a file at 30 megabytes per
second to interactive typing at a rate of one byte per second.

These three considerations, unyielding physical limits, sharing of facilities, and exist
ence of four different parameters that can each range over seven or more orders of
magnitude, intrude on every level of network design, and even carefully thought-out
modularity cannot completely mask them. As a result, systems that use networks as a
component must take them into account.

7.1.1 Isochronous and Asynchronous Multiplexing

Sharing has significant consequences. Consider the simplified (and gradually becoming
obsolescent) telephone network of Figure 7.1, which allows telephones in Boston to talk
with telephones in Los Angeles: There are three shared components in this picture: a
switch in Boston, a switch in Los Angeles, and an electrical circuit acting as a communi
cation link between the two switches. The communication link is multiplexed, which
means simply that it is used for several different communications at the same time. Let’s
focus on the multiplexed link. Suppose that there is an earthquake in Los Angeles, and
many people in Boston simultaneously try to call their relatives in Los Angeles to find
out what happened. The multiplexed link has a limited capacity, and at some point the
next caller will be told the “network is busy.” (In the U.S. telephone network this event
is usually signaled with “fast busy,” a series of beeps repeated at twice the speed of a usual
busy signal.)

Saltzer & Kaashoek Ch. 7, p. 5	 June 25, 2009 8:22 am

7–6 CHAPTER 7 The Network as a System and as a System Component

Boston
Switch

Los Angeles
Switch

multiplexed link

shared switches

B1

B2

B3

L1

L2

L3
L4

FIGURE 7.1

A simple telephone network.

This “network busy” phenomenon strikes rather abruptly because the telephone sys
tem traditionally uses a line multiplexing technique known as isochronous (from Greek
roots meaning “equally timed”) communication. Suppose that the telephones are all dig
ital, operating at 64 kilobits per second, and the multiplexed link runs at 45 megabits per
second. If we look for the bits that represent the conversation between B2 and L3, we will
find them on the wire as shown in Figure 7.2: At regular intervals we will find 8-bit
blocks (called frames) carrying data from B2 to L3. To maintain the required data rate of
64 kilobits per second, another B2-to-L3 frame comes by every 5,624 bit times or 125
microseconds, producing a rate of 8,000 frames per second. In between each pair of B2
to-L3 frames there is room for 702 other frames, which may be carrying bits belonging
to other telephone conversations. A 45 megabits/second link can thus carry up to 703
simultaneous conversations, but if a 704th person tries to initiate a call, that person will
receive the “network busy” signal. Such a capacity-limiting scheme is sometimes called
hard-edged, meaning in this case that it offers no resistance to the first 703 calls, but it
absolutely refuses to accept the 704th one.

This scheme of dividing up the data into equal-size frames and transmitting the
frames at equal intervals—known in communications literature as time-division multi
plexing (TDM)—is especially suited to telephony because, from the point of view of any
one telephone conversation, it provides a constant rate of data flow and the delay from
one end to the other is the same for every frame.

Time5,624 bit times

8-bit frame 8-bit frame 8-bit frame

FIGURE 7.2

Data flow on an isochronous multiplexed link.

Saltzer & Kaashoek Ch. 7, p. 6 June 25, 2009 8:22 am

7.1 Interesting Properties of Networks 7–7

One prerequisite to using isochronous communication is that there must be some
prior arrangement between the sending switch and the receiving switch: an agreement
that this periodic series of frames should be sent along to L3. This agreement is an exam
ple of a connection and it requires some previous communication between the two
switches to set up the connection, storage for remembered state at both ends of the link,
and some method to discard (tear down) that remembered state when the conversation
between B2 and L3 is complete.

Data communication networks usually use a strategy different from telephony for
multiplexing shared links. The starting point for this different strategy is to examine the
data rate and latency requirements when one computer sends data to another. Usually,
computer-related activities send data on an irregular basis—in bursts called messages—as
compared with the continuous stream of bits that flows out of a simple digital telephone.
Bursty traffic is particularly ill-suited to fixed size and spacing of isochronous frames.
During those times when B2 has nothing to send to L3 the frames allocated to that con
nection go unused. Yet when B2 does have something to send it may be larger than one
frame in size, in which case the message may take a long time to send because of the rig
idly fixed spacing between frames. Even if intervening frames belonging to other
connections are unfilled, they can’t be used by the connection from B2 to L3. When
communicating data between two computers, a system designer is usually willing to
forgo the guarantee of uniform data rate and uniform latency if in return an entire mes
sage can get through more quickly. Data communication networks achieve this trade-off
by using what is called asynchronous (from Greek roots meaning “untimed”) multiplex
ing. For example, in Figure 7.3, a network connects several personal computers and a
service. In the middle of the network is a 45 megabits/second multiplexed link, shared
by many network users. But, unlike the telephone example, this link is multiplexed
asynchronously.

Personal Computer service

multiplexed
link

data crosses this
link in bursts and
can tolerate variable delay

A

B

C

D

FIGURE 7.3

A simple data communication network.

Saltzer & Kaashoek Ch. 7, p. 7 June 25, 2009 8:22 am

7–8 CHAPTER 7 The Network as a System and as a System Component

frame

Time

B D

Guidance 4000 bits 750 bits
information

FIGURE 7.4

Data flow on an asynchronous multiplexed link.

On an asynchronous link, a frame can be of any convenient length, and can be carried
at any time that the link is not being used for another frame. Thus in the time sequence
shown in Figure 7.4 we see two frames, the first going to B and the second going to D.
Since the receiver can no longer figure out where the message in the frame is destined by
simply counting bits, each frame must include a few extra bits that provide guidance
about where to deliver it. A variable-length frame together with its guidance information
is called a packet. The guidance information can take any of several forms. A common
form is to provide the destination address of the message: the name of the place to which
the message should be delivered. In addition to delivery guidance information, asynchro
nous data transmission requires some way of figuring out where each frame starts and
ends, a process known as framing. In contrast, both addressing and framing with isoch
ronous communication are done implicitly, by watching the clock.

Since a packet carries its own destination guidance, there is no need for any prior
agreement between the ends of the multiplexed link. Asynchronous communication thus
offers the possibility of connectionless transmission, in which the switches do not need to
maintain state about particular end-user communications.*

An additional complication arises because most links place a limit on the maximum
size of a frame. When a message is larger than this maximum size, it is necessary for the
sender to break it up into segments, each of which the network carries in a separate packet,
and include enough information with each segment to allow the original message to be
reassembled at the other end.

Asynchronous transmission can also be used for continuous streams of data such as
from a digital telephone, by breaking the stream up into segments. Doing so does create
a problem that the segments may not arrive at the other end at a uniform rate or with a
uniform delay. On the other hand, if the variations in rate and delay are small enough,

* Network experts make a subtle distinction among different kinds of packets by using the word
datagram to describe a packet that carries all of the state information (for example, its destination
address) needed to guide the packet through a network of packet forwarders that do not themselves
maintain any state about particular end-to-end connections.

Saltzer & Kaashoek Ch. 7, p. 8 June 25, 2009 8:22 am

7.1 Interesting Properties of Networks 7–9

Packet
Switch Packet

Switch

Packet
Switch

Packet
Switch

Service at network

Workstation

packet

1

2 3at network
attachment

attachment
point B

A

B

B

point A

FIGURE 7.5

A packet forwarding network.

or the application can tolerate occasional missing segments of data, the method is still
effective. In the case of telephony, the technique is called “packet voice” and it is gradu
ally replacing many parts of the traditional isochronous voice network.

7.1.2 Packet Forwarding; Delay

Asynchronous communication links are usually organized in a communication structure
known as a packet forwarding network. In this organization, a number of slightly special
ized computers known as packet switches (in contrast with the circuit switches of Figure
7.1) are placed at convenient locations and interconnected with asynchronous links.
Asynchronous links may also connect customers of the network to network attachment
points, as in Figure 7.5. This figure shows two attachment points, named A and B, and
it is evident that a packet going from A to B may follow any of several different paths,
called routes, through the network. Choosing a particular path for a packet is known as
routing. The upper right packet switch has three numbered links connecting it to three
other packet switches. The packet coming in on its link #1, which originated at the work
station at attachment point A and is destined for the service at attachment point B,
contains the address of its destination. By studying this address, the packet switch will be
able to figure out that it should send the packet on its way via its link #3. Choosing an
outgoing link is known as forwarding, and is usually done by table lookup. The construc
tion of the forwarding tables is one of several methods of routing, so packet switches are
also called forwarders or routers. The resulting organization resembles that of the postal
service.

A forwarding network imposes a delay (known as its transit time) in sending some
thing from A to B. There are four contributions to transit time, several of which may be
different from one packet to the next.

Saltzer & Kaashoek Ch. 7, p. 9 June 25, 2009 8:22 am

7–10 CHAPTER 7 The Network as a System and as a System Component

1. 	Propagation delay. The time required for the signal to travel across a link is
determined by the speed of light in the transmission medium connecting the
packet switches and the physical distance the signals travel. Although it does vary
slightly with temperature, from the point of view of a network designer
propagation delay for any given link can be considered constant. (Propagation
delay also applies to the isochronous network.)

2. 	Transmission delay. Since the frame that carries the packet may be long or short,
the time required to send the frame at one switch—and receive it at the next
switch—depends on the data rate of the link and the length of the frame. This time
is known as transmission delay. Although some packet switches are clever enough
to begin sending a packet out before completely receiving it (a trick known as cut-
through), error recovery is simpler if the switch does not forward a packet until the
entire packet is present and has passed some validity checks. Each time the packet
is transmitted over another link, there is another transmission delay. A packet
going from A to B via the dark links in Figure 7.5 will thus be subject to four
transmission delays, one when A sends it to the first packet switch, one at each
forwarding step, and finally one to transmit it to B.

3. 	Processing delay. Each packet switch will have to examine the guidance information
in the packet to decide to which outgoing link to send it. The time required to
figure this out, together with any other work performed on the packet, such as
calculating a checksum (see Sidebar 7.1) to allow error detection or copying it to
an output buffer that is somewhere else in memory, is known as processing delay.

Sidebar 7.1: Error detection, checksums, and witnesses A checksum on a block of data is a
stylized kind of error-detection code in which redundant error-detecting information, rather
than being encoded into the data itself (as Chapter 8[on-line] will explain), is placed in a
separate field. A typical simple checksum algorithm breaks the data block up into k-bit chunks
and performs an exclusive OR on the chunks to produce a k-bit result. (When k = 1, this
procedure is called a parity check.) That simple k-bit checksum would catch any one-bit error,
but it would miss some two-bit errors, and it would not detect that two chunks of the block
have been interchanged. Much more sophisticated checksum algorithms have been devised that
can detect multiple-bit errors or that are good at detecting particular kinds of expected errors.
As will be seen in Chapter 11[on-line], by using cryptographic techniques it is possible to
construct a high-quality checksum with the property that it can detect all changes—even
changes that have been intentionally introduced by a malefactor—with near certainty. Such a
checksum is called a witness, or fingerprint and is useful for ensuring long-term integrity of
stored data.The trade-off is that more elaborate checksums usually require more time to
calculate and thus add to processing delay. For that reason, communication systems typically
use the simplest checksum algorithm that has a reasonable chance of detecting the expected
errors.

Saltzer & Kaashoek Ch. 7, p. 10	 June 25, 2009 8:22 am

7.1 Interesting Properties of Networks 7–11

This delay typically has one part that is relatively constant from one packet to the
next and a second part that is proportional to the length of the packet.

4. 	Queuing delay. When the packet from A to B arrives at the upper right packet
switch, link #3 may already be transmitting another packet, perhaps one that
arrived from link #2, and there may also be other packets queued up waiting to use
link #3. If so, the packet switch will hold the arriving packet in a queue in memory
until it has finished transmitting the earlier packets. The duration of this delay
depends on the amount of other traffic passing through that packet switch, so it
can be quite variable.

Queuing delay can sometimes be estimated with queuing theory, using the queuing
theory formula in Section 6.1.6. If packets arrive according to a random, memoryless
process and have randomly distributed service times (technically, a Poisson distribution
in which for this case the service time is the transmission delay of the outgoing link), the
average queuing delay, measured in units of the packet service time and including the
service time of this packet, will be 1 1 – ρ) . Here ρ is the utilization of the outgoing⁄ (
line, which can range from 0 to 1. When we plot this result in Figure 7.6 we notice a
typical system phenomenon: delay rises rapidly as the line utilization approaches 100%.
This plot tells us that the asynchronous system has introduced a trade-off: if we wish to
limit the average queuing delay, for example to the amount labeled in the figure “maxi
mum tolerable delay,” it will be necessary to leave unused, on average, some of the
capacity of each link; in the example this maximum utilization is labeled ρmax. Alterna
tively, if we allow the utilization to approach 100%, delays will grow without bound.
The asynchronous system seems to have replaced the abrupt appearance of the busy sig
nal of the isochronous network with a gradual trade-off: as the system becomes busier,
the delays increase. However, as we will see in Section 7.1.3, below, the replacement is
actually more subtle than that.

average

1

1
1 ρ–

tolerable delay
queuing
delay

maximum

0 Utilization, r 100%

FIGURE 7.6

rmax

Queuing delay as a function of utilization.

Saltzer & Kaashoek Ch. 7, p. 11	 June 25, 2009 8:22 am

7–12 CHAPTER 7 The Network as a System and as a System Component

The formula and accompanying graph tell us only the average delay. If we try to load
up a link so that its utilization is ρmax, the actual delay will exceed our tolerance threshold
about as often as it is below that threshold. If we are serious about keeping the maximum
delay almost always below a given value, we must prepare for occasional worse peaks by
holding utilization below the level of ρmax suggested by the figure. If packets do not obey
memoryless arrival statistics (for example, they arrive in long convoys, and all are the
same, maximum size), the model no longer applies, and we need a better understanding
of the arrival process before we can say anything about delays. This same utilization ver
sus delay trade-off also applies to non-network components of a computer system that
have queues, for example scheduling the processor or reading and writing a magnetic
disk.

We have talked about queuing theory as if it might be useful in predicting the behav
ior of a network. It is not. In practice, network systems put a bound on link queuing
delays by limiting the size of queues and by exerting control on arrivals. These mecha
nisms allow individual links to achieve high utilization levels, while shifting delays to
other places in the network. The next section explains how, and it also explains just what
happened to the isochronous network’s hard-edged busy signal. Later, in Section 7.6 of
this chapter we will see how the delays can be shifted all the way back to the entry point
of the network.

7.1.3 Buffer Overflow and Discarded Packets

Continuing for a moment to apply queuing theory, queuing has an implication: buffer
space is needed to hold the queue of packets waiting for transmission. How large a buffer
should the designer allocate? Under the memoryless arrival interval assumption, the aver
age number of packets awaiting transmission (including the one currently being
transmitted) is 1 1 – ρ) . As with queuing delay, that number is only the average—⁄ (
queuing theory tells us that the variance of the queue length is also 1 1 – ρ) . For a ρ of⁄ (
0.8 the average queue length and the variance are both 5, so if one wishes to allow enough
buffers to handle peaks that are, say, three standard deviations above the average, one
must be prepared to buffer not only the 5 packets predicted as the average but also
(3 × 5 ≅ 7) more, a total of 12 packets. Worse, in many real networks packets don’t actu
ally arrive independently at random; they come in buffer-bursting batches.

At this point, we can imagine three quite different strategies for choosing a buffer size:

1. 	Plan for the worst case. Examine the network traffic carefully, figure out what the
worst-case traffic situation will be, and allocate enough buffers to handle it.

2. 	Plan for the usual case and fight back. Based on a calculation such as the one above,
choose a buffer size that will work most of the time, and if the buffers fill up send
messages back through the network asking someone to stop sending.

3. 	Plan for the usual case and discard overflow. Again, choose a buffer size that will
work most of the time, and ruthlessly discard packets when the buffers are full.

Saltzer & Kaashoek Ch. 7, p. 12	 June 25, 2009 8:22 am

7.1 Interesting Properties of Networks 7–13

Let’s explore these three possibilities in turn.
Buffer memory is usually low in cost, so planning for the worst case seems like an

attractive idea, but it is actually much harder than it sounds. For one thing, in a large
network, it may be impossible to figure out what the worst case is—there just isn’t
enough information available about what can happen. Even if one can estimate the worst
case, the estimate may not be useful. Consider, for example, the Hypothetical Bank of
Canada, which has 21,000 tellers scattered across the country. The branch at Moose Jaw,
Saskatchewan, has one teller and usually is the target of only three transactions a day.
Although it has never happened, and almost certainly never will, the worst case is that
every one of the 20,999 other tellers simultaneously posts a withdrawal against a Moose
Jaw account. Thus a worst-case design would require that there be enough buffers in the
packet switch leading to Moose Jaw to handle 20,999 simultaneous messages. The prob
lem with worst-case analysis is that the worst case can be many orders of magnitude larger
than the average case, as well as extremely unlikely. Moreover, even if one decided to buy
that large a buffer, the resulting queue to process all the transactions would be so long
that many of the other tellers would give up in disgust and abort their transactions, so
the large buffer wouldn’t really help.

This observation makes it sound attractive to choose a buffer size based on typical,
rather than worst-case, loads. But then there is always going to be a chance that traffic
will exceed the average for long enough to run out of buffer space. This situation is called
congestion. What to do then?

One idea is to push back. If buffer space begins to run low, send a message back along
an incoming link saying “please don’t send any more until you hear from me”. This mes
sage (called a quench request) may go to the packet switch at the other end of that link,
or it may go all the way back to the original source that introduced the data into the net
work. Either way, pushing back is also harder than it sounds. If a packet switch is
experiencing congestion, there is a good chance that the adjacent switch is also congested
(if it is not already congested, it soon will be if it is told to stop sending data over the link
to this switch), and sending an extra message is adding to the congestion. Worse, a set of
packet switches configured in a cycle like that of Figure 7.5 can easily end up in a form
of deadlock (called gridlock when it happens to automobile traffic), with all buffers filled
and each switch waiting for the next switch to say that it is OK to start sending again.

One way to avoid deadlock among the packet switches is to send the quench request
all the way back to the source. This method is hard too, for at least three reasons. First,
it may not be clear to which source to send the quench. In our Moose Jaw example, there
are 21,000 different sources, no one of which is, by itself, the cause of (nor capable of
doing much about) the problem. Second, such a request may not have any effect because
the source you choose to quench is no longer sending anyway. Again in our example, by
the time the packet switch on the way to Moose Jaw detects the overload, all of the
21,000 tellers may have already sent their transaction requests, so asking them not to
send anything else would accomplish nothing. Third, assuming that the quench message
is itself forwarded back through the packet-switched network, it may run into congestion
and be subject to queuing delays. The busier the network, the longer it will take to exert

Saltzer & Kaashoek Ch. 7, p. 13 June 25, 2009 8:22 am

7–14 CHAPTER 7 The Network as a System and as a System Component

control. We are proposing to create a feedback system with delay and should expect to
see oscillations. Even if all the data is coming from one source, by the time the quench
gets back and the source acts on it, the packets already in the pipeline may exceed the
buffer capacity. Controlling congestion by quenching either the adjacent switch or the
source is used in various special situations, but as a general technique it is currently an
unsolved problem.

The remaining possibility is what most packet networks actually do in the face of con
gestion: when the buffers fill up, they start throwing packets away. This seems like a
somewhat startling thing for a communication system to do because it will disrupt the
communication, and eventually each discarded packet will have to be sent again, so the
effort to send the packet this far will have been wasted. Nevertheless, this is an action that
every packet switching network that is not configured for the worst case must be pre
pared to take.

Overflowing buffers and discarded packets lead to two remarkable consequences.
First, the sender of a packet can interpret the lack of its acknowledgment as a sign that
the network is congested, and can in turn reduce the rate at which it introduces new
packets into the network. This idea, called automatic rate adaptation, is explored in depth
in Section 7.6 of this chapter. The combination of discarded packets and automatic rate
adaptation in turn produce the second consequence: simple theoretical models of net
work behavior based on standard queuing theory do not apply when a service may serve
some requests and may discard others. Modeling of networks that have rate adaptation
requires a much deeper understanding of the specific algorithms used not just by the net
work but also by network applications.

In the final analysis, the asynchronous network replaces the hard-edged blocking of
the isochronous network with a variable transmission rate that depends on the instanta
neous network load. Which scheme (asynchronous or isochronous) for dealing with
overload is preferable depends on the application. For some applications it may be better
to be told at the outset of a communications attempt to come back later, rather than to
be allowed to start work only to encounter such variations in available capacity that it is
hard to do anything useful. In other applications it may be more helpful to have some
work done, slowly or at variable rates, rather than none at all.

The possibility that a network may actually discard packets to cope with congestion
leads to a useful distinction between two kinds of forwarding networks. So far, we have
been discussing what is usually described as a best-effort network, which, if it cannot dis
patch a packet soon after receipt, may discard it. The alternative design is the guaranteed-
delivery network (sometimes called a store-and-forward network, although that term is
often applied to all forwarding networks), which takes heroic measures to avoid ever dis
carding payload data. Guaranteed delivery networks usually are designed to work with
complete messages rather than packets. Typically, a guaranteed delivery network uses
non-volatile storage such as a magnetic disk for buffering, so that it can handle large
peaks of message load and can be confident that messages will not be lost even if there is
a power failure or the forwarding computer crashes. Also, a guaranteed delivery network
usually, when faced with the prospect of being completely unable to deliver a message

Saltzer & Kaashoek Ch. 7, p. 14 June 25, 2009 8:22 am

7.1 Interesting Properties of Networks 7–15

(perhaps because the intended recipient has vanished), explicitly returns the message to
its originator along with an explanation of why delivery failed. Finally, in keeping with
the spirit of not losing a message, a guaranteed delivery switch usually tracks individual
messages carefully to make sure that none are lost or damaged during transmission, for
example by a burst of noise. A switch of a best-effort network can be quite a bit simpler
than a switch of a guaranteed-delivery network. Since the best-effort network may casu
ally discard packets anyway, it does not need to make any special provisions for
retransmitting damaged packets, for preserving packets in transit when the switch crashes
and restarts, or for worrying about the case when the link to a destination node suddenly
stops accepting data.

The best-effort network is said to provide a best-effort contract to its customers (this
contract is defined more carefully in Section 7.1.7, below), rather than a guarantee of
delivery. Of course, in the real world there are no absolute guarantees—the real distinc
tion between the two designs is that there is intended to be a significant difference in the
probability of undetected loss. When we examine network layering in Section 7.2 of this
chapter, it will become apparent that these differences can be characterized another way:
guaranteed-delivery networks are usually implemented in a higher network layer, best-
effort networks in a lower network layer.

In these terms, the U.S. Postal Service operates a guaranteed delivery system for first-
class mail, but a best-effort system for third-class (junk) mail, because postal regulations
allow it to discard third-class mail that is misaddressed or when congestion gets out of
hand. The Internet is organized as a best-effort system, but the Internet mechanisms for
handling e-mail are designed as a guaranteed delivery system. The Western Union com
pany has always prided itself on operating a true guaranteed-delivery system, to the
extent that when it decommissions an office it normally disassembles the site completely
in a search for misplaced telegrams. There is a (possibly apocryphal) tale that such a dis
assembly once discovered a 75-year-old telegram that had fallen behind a water pipe. The
company promptly delivered it to the astonished heirs of the original addressee.

7.1.4 Duplicate Packets and Duplicate Suppression

As it turns out, discarded packets are not as much of a problem to the higher-level appli
cation as one might expect because when a client sends a request to a service, it is always
possible that the service is not available, or the service crashed just after receiving the
request. So unanswered requests are actually a routine occurrence, and many network
protocols include some kind of timer expiration and resend mechanism to recover from
such failures. The timing diagram of Figure 7.7* illustrates the situation, showing a first
packet carrying a request, followed by a packet going the other way carrying the response
to the first request. A has set a timer, indicated by a vertical line, but the arrival of
response 1 before the expiration of the timer causes A to switch off the timer, indicated
by the small X. The packet carrying the second request is lost in transit (as indicated by

* The conventions for representation of timing diagrams were described in Sidebar 4.2.

Saltzer & Kaashoek Ch. 7, p. 15 June 25, 2009 8:22 am

7–16 CHAPTER 7 The Network as a System and as a System Component

A B

send request,
set timer

receive response,

reset timer

send request,

set timer

timer expires,

resend request,

set new timer

receive response,

reset timer

FIGURE 7.7

time

X

request 1

response 1

request 2

request 2’

overloaded

response 2’

X

X

forwarder
discards
request
packet.

Lost packet recovery.

the large X), perhaps having been damaged or discarded by an overloaded forwarder, the
timer expires, and A resends request 2 in the packet labeled request 2’.

When a congested forwarder discards a packet, there are two important conse
quences. First, the client doesn’t receive a response as quickly as originally hoped because
a timer expiration period has been added to the overall response time. This extra delay
can have a significant impact on performance. Second, users of the network must be pre
pared for duplicate requests and responses. The reason lies in the recovery mechanism
just described. Suppose a network packet switch gets overloaded and must discard a
response packet, as in Figure 7.8. Client A can’t tell the difference between this case and
the case of Figure 7.7, so it resends its request. The service sees this resent request as a
duplicate. Suppose B does not realize this is a duplicate, does what is requested, and sends
back a response. Client A receives the response and assumes that everything is OK. That
may be a correct assumption, or it may not, depending on whether or not the first arrival
of request 3 changed B’s state. If B is a spelling checker, it will probably give the same
response to both copies of the request. But if B is a bank and the request is to transfer
funds, doing the request twice would be a mistake. So detecting duplicates may or may
not be important, depending on the particular application.

For another example, if for some reason the network delays pile up and exceed the
resend timer expiration period, the client may resend a request even though the original

Saltzer & Kaashoek Ch. 7, p. 16 June 25, 2009 8:22 am

request 3

7.1 Interesting Properties of Networks 7–17

B
send request,

set timer

A

resend request,
set new timer

X overloaded forwarder
timer expires, discards response 3

request 3’

response 3’
duplicate arrives at B
B sends response 3’

receive response,
reset timer X

FIGURE 7.8

ost packet recovery leading to duplicate request.

response is still in transit. Since B can’t tell any difference between this case and the pre
vious one, it responds in the same way, by doing what is requested. But now A receives
a duplicate response, as in Figure 7.9. Again, this duplicate may or may not matter to A,
but at minimum A must take steps not to be confused by the arrival of a duplicate
response.

What if the arrival of a request from A causes B to change state, as in the bank transfer
example? If so, it is usually important to detect and suppress duplicates generated by the
lost packet recovery mechanism. The general procedure to suppress duplicates has two
components. The first component is hinted at by the request and response numbers used
in the illustrations: each request includes a nonce, which is a unique identifier that will

BA

send request,
set timer

timer expires,
resend
receive

response,
reset timer

receive
duplicate
response

FIGURE 7.9

request 4

request 4’

response 4’

response 4

X

packet containing response
gets delayed

duplicate arrives at B
B sends response 4’

Network delay combined with recovery leading to duplicate response.

Saltzer & Kaashoek Ch. 7, p. 17 June 25, 2009 8:22 am

7–18 CHAPTER 7 The Network as a System and as a System Component

never be reused by A when sending requests to B. The illustration uses monotonically
increasing serial numbers as nonces, but any unique identifier will do. The second dupli
cate suppression component is that B must maintain a list of nonces on which it has
taken action or is still working, and whenever a request arrives B should look through
this list to see whether or not this apparently new request is actually a duplicate of one
previously received. If it is a duplicate B must not perform the action requested. On the
other hand, B should not simply ignore the request, either, because the reason for the
duplicate may be that A never received B’s response. So B needs some way of reconstruct
ing and resending that previous response. The simplest way of doing this is usually for B
to add to its list of previously handled nonces a copy of the corresponding responses so
that it can easily resend them. Thus in Figure 7.9, the last action of B should be replaced
with “B resends response 4”.

In some network designs, A may even receive duplicate responses to a single, unre
peated request. The reason is that a forwarding link deep inside the network may be
using a timer expiration and resend protocol similar to the one above. For this reason,
most protocols that are concerned about duplicate suppression include a copy of the
nonce in the response, and the originator, A, maintains a list of nonces used in its out
standing requests. When a response comes back, A can check for the nonce in the list and
delete that list entry or, if there is no list entry, assume it is a duplicate of a previously
received response and ignore it.

The procedure we have just described allows A to keep its list of nonces short, but B
might have to maintain an ever-growing list of nonces and responses to be certain that it
never accidentally processes a request twice. A related problem concerns what happens if
either participant crashes and restarts, losing its volatile memory, which is probably
where it is keeping its list of nonces. Refinements to cope with these problems will be
explored in detail when we revisit the topic of duplicate suppression on page 7–71 of this
chapter.

Ensuring suppression of duplicates is a significant complication so, if possible, it is
wise to design the service and its protocol in such a way that suppression is not required.
Recall that the reason that duplicate suppression became important was that a request
changed the state of the service. It is often possible to design a service interface so that it
is idempotent, which for a network request means that repeating the same request or
sequence of requests several times has the same effect as doing it just once. This design
approach is explored in depth in the discussion of atomicity and error recovery in Chap
ter 9[on-line].

7.1.5 Damaged Packets and Broken Links

At the beginning of the chapter we noted that noise is one of the fundamental consider
ations that dominates the design of data communication. Data can be damaged during
transmission, during transit through a switch, or in the memory of a forwarding node.
Noise, transmission errors, and techniques for detecting and correcting errors are fasci
nating topics in their own right, explored in some depth in Chapter 8[on-line]. As a

Saltzer & Kaashoek Ch. 7, p. 18 June 25, 2009 8:22 am

7.1 Interesting Properties of Networks 7–19

general rule it is possible to sub-contract this area to a specialist in the theory of error
detection and correction, with one requirement in the contract: when we receive data,
we want to know whether or not it is correct. That is, we require that a reliable error
detection mechanism be part of any underlying data transmission system. Section 7.3.3
of this chapter expands a bit on this error detection requirement.

Once we have contracted for data transmission with an error detection mechanism in
which we have confidence, intermediate packet switches can then handle noise-damaged
packets by simply discarding them. This approach changes the noise problem into one
for which there is already a recovery procedure. Put another way, this approach trans
forms data loss into performance degradation.

Finally, because transmission links traverse hostile environments and must be consid
ered fragile, a packet network usually has multiple interconnection paths, as in Figure
7.5. Links can go down while transmitting a frame; they may stay down briefly, e.g.
because of a power interruption, or for long periods of time while waiting for someone
to dig up a street or launch a replacement satellite. Flexibility in routing is an important
property of a network of any size. We will return to the implications of broken links in
the discussion of the network layer, in Section 7.4 of this chapter.

7.1.6 Reordered Delivery

When a packet-forwarding network has an interconnection topology like that of Figure
7.5, in which there is more than one path that a packet can follow from A to B, there is
a possibility that a series of packets departing from A in sequential order may arrive at B
in a different order. Some networks take special precautions to avoid this possibility by
forcing all packets between the same two points to take the same path or by delaying
delivery at the destination until all earlier packets have arrived. Both of these techniques
introduce additional delay, and there are applications for which reducing delay is more
important than receiving the segments of a message in the order in which they were
transmitted.

Recalling that a message may have been divided into segments, the possibility of reor
dered delivery means that reassembly of the original message requires close attention. We
have here a model of communication much like when a friend is touring on holiday by
car, stopping each night in a different motel, and sending a motel postcard with an
account of the day’s adventures. Whenever a day’s story doesn’t fit on one card, your
friend uses two or three postcards, as necessary. The Post Office may deliver these cards
to you in almost any order, and something on the postcard—probably the date—will be
needed to enable you to read them in the proper order. Even when two cards are mailed
at the same time from the same motel (as indicated by the motel photograph on the
front) the Post Office may deliver them to you on different days, so there must be further
information on the postcard to allow you to realize that sender broke the original mes
sage into segments and you may need to wait for the next delivery before starting to read.

Saltzer & Kaashoek Ch. 7, p. 19 June 25, 2009 8:22 am

7–20 CHAPTER 7 The Network as a System and as a System Component

7.1.7 Summary of Interesting Properties and the Best-Effort Contract

Most of the ideas introduced in this section can be captured in just two illustrations. Fig
ure 7.10 summarizes the differences in application characteristics and in response to
overload between isochronous and asynchronous multiplexing.

Similarly, Figure 7.11 briefly summarizes the interesting (the term “challenging” may
also come to mind) properties of computer networks that we have encountered. The
“best-effort contract” of the caption means that when a network accepts a segment, it
offers the expectation that it will usually deliver the segment to its destination, but it does
not guarantee success, and the client of the network is expected to be sophisticated
enough to take in stride the possibility that segments may be lost, duplicated, variably
delayed, or delivered out of order.

7.2 Getting Organized: Layers
To deal with the interesting properties of networks that we identified in Section 7.1, it
is necessary to get organized. The primary organizing tool for networks is an example of
the design principle adopt sweeping simplifications. All networks use the divide-and-con
quer technique known as layering of protocols. But before we come to layers, we must
establish what a protocol is.

Application characteristics

Continuous
 Bursts of data
stream
 (most

(e.g., interactive
 computer-to
voice)

isochronous
(e.g., telephone good match

network)

Network
Type

variable latencyasynchronous
(e.g., Internet) upsets

application

FIGURE 7.10

computer data)

wastes
capacity

good match

Response
to load

variations

(hard-edged)
either accepts
or blocks call

(gradual)
1 variable delay
2 discards data
3 rate adaptation

Isochronous versus asynchronous multiplexing.

Saltzer & Kaashoek Ch. 7, p. 20 June 25, 2009 8:22 am

7.2 Getting Organized: Layers 7–21

Suppose we are examining the set of programs used by a defense contractor who is
retooling for a new business, video games. In the main program we find the procedure
call

FIRE (#_of_missiles, target, action_if_defended)

and elsewhere we find the corresponding procedure, which begins

procedure FIRE (nmissiles, where, reaction)

These constructs are interpreted at two levels. First, the system matches the name FIRE

in the main program with the program that exports a procedure of the same name, and
it arranges to transfer control from the main program to that procedure. The procedure,
in turn, matches the arguments of the calling program, position by position, with its own
parameters. Thus, in this example, the second argument, target, of the calling program
is matched with the second parameter, where, of the called procedure. Beyond this
mechanical matching, there is an implicit agreement between the programmer of the
main program and the programmer of the procedure that this second argument is to be
interpreted as the location that the missiles are intended to hit.

This set of agreements on how to interpret both the order and the meaning of the
arguments stands as a kind of contract between the two programs. In programming lan
guages, such contracts are called “specifications”; in networks, such contracts are called
protocols. More generally, a protocol goes beyond just the interpretation of the argu
ments; it encompasses everything that either of the two parties can depend on about how

FIGURE 7.11

1. Networks encounter a vast range of

• Data rates
• Propagation, transmission, queuing, and processing delays.
• Loads
• Numbers of users

2. Networks traverse hostile environments

• Noise damages data
• Links stop working

3. Best-effort networks have

• Variable delays
• Variable transmission rates
• Discarded packets
• Duplicate packets
• Maximum packet length
• Reordered delivery

A summary of the “interesting” properties of computer networks. The last group of bullets
defines what is called the best-effort contract.

Saltzer & Kaashoek Ch. 7, p. 21 June 25, 2009 8:22 am

7–22 CHAPTER 7 The Network as a System and as a System Component

result ← FIRE (#, target, action) procedure FIRE (nmiss, where, react)

Client stub Service stub

proc: FIRE

args: 3

type: integer
value: 2

type: string
value: “Lucifer”

type: procedure
value: EVADE

Prepare
request
message.
Send to
service

Receive
request
message.
Call
requested
procedure.
Prepare
response
message.
Send to client.

response:

acknowledgment
type: string
value: “destroyed”

request:

Wait for
response.

return result
...

FIGURE 7.12

A remote procedure call.

the other will act or react. For example, in a client/service system, a request/response pro
tocol might specify that the service send an immediate acknowledgment when it gets a
request, so that the client knows that the service is there, and send the eventual response
as a third message. An example of a protocol that we have already seen is that of the Net
work File System shown in Figure 4.10.

Let us suppose that our defense contractor wishes to further convert the software from
a single-user game to a multiuser game, using a client/service organization. The main
program will run as a client and the FIRE program will now run in a multiclient, game-
coordinating service. To simplify the conversion, the contractor has chosen to use the
remote procedure call (RPC) protocol illustrated in Figure 7.12. As described in Chapter
4, a stub procedure that runs in the client machine exports the name FIRE so that when
the main program calls FIRE, control actually passes to the stub with that name. The stub
collects the arguments, marshals them into a request message, and sends them over the
network to the game-coordinating service. At the service, a corresponding stub waits for
such a request to arrive, unmarshals the arguments in the request message, and uses them
to perform a call to the real FIRE procedure. When FIRE completes its operation and
returns, the service stub marshals any output value into a response message and sends it
to the client. The client stub waits for this response message, and when it arrives, it
unmarshals the return value in the response message and returns it as its own value to the
main program. The procedure call protocol has been honored and the main program
continues as if the procedure named FIRE had executed locally.

Figure 7.12 also illustrates a second, somewhat different, protocol between the client
stub and the service stub, as compared with the protocol between the main program and
the procedure it calls. Between the two stubs the request message spells out the name of
the procedure to be called, the number of arguments, and the types of each argument.

Saltzer & Kaashoek Ch. 7, p. 22 June 25, 2009 8:22 am

7.2 Getting Organized: Layers 7–23

Main program called procedureapplication protocol

RPC client stub presentation protocol RPC service stub

FIGURE 7.13

Two protocol layers

The details of the protocol between the RPC stubs need have little in common with the
corresponding details of the protocol between the original main program and the proce
dure it calls.

7.2.1 Layers

In that example, the independence of the MAIN-to-FIRE procedure call protocol from the
RPC stub-to-stub protocol is characteristic of a layered design. We can make those layers
explicit by redrawing our picture as in Figure 7.13. The contract between the main pro
gram and the procedure it calls is called the application protocol. The contract between
the client-side and service-side RPC stubs protocol is known as a presentation protocol
because it translates data formats and semantics to and from locally preferred forms.

The request message must get from the client RPC stub to the service RPC stub. To
communicate, the client stub calls some network procedure, using an elaboration of the
SEND abstraction:

SEND_MESSAGE (request_message, service_name)

specifying in a second argument the identity of the service that should receive this request
message. The service stub invokes a similar procedure that provides the RECEIVE abstrac
tion to pick up the message. These two procedures represent a third layer, which provides
a transport protocol, and we can extend our layered protocol picture as in Figure 7.14.

This figure makes apparent an important property of layering as used in network
designs: every module has not two, but three interfaces. In the usual layered organization,
a module has just two interfaces, an interface to the layer above, which hides a second
interface to the layer below. But as used in a network, layering involves a third interface.
Consider, for example, the RPC client stub in the figure. As expected, it provides an
interface that the main program can use, and it uses an interface of the client network
package below. But the whole point of the RPC client stub is to construct a request mes
sage that convinces its correspondent stub at the service to do something. The
presentation protocol thus represents a third interface of the presentation layer module.
The presentation module thus hides both the lower layer interface and the presentation
protocol from the layer above. This observation is a general one—each layer in a network

Saltzer & Kaashoek Ch. 7, p. 23 June 25, 2009 8:22 am

7–24 CHAPTER 7 The Network as a System and as a System Component

Client network
package

fire

send_ receive_

(return)

Main program

RPC client stub

message message

application protocol

presentation protocol

transport protocol
Service network
package

fire
(return)

called procedure

RPC service stub

receive_
message

send_
message

FIGURE 7.14

Three protocol layers

implementation provides an interface to the layer above, and it hides the interface to the
layer below as well as the protocol interface to the correspondent with which it
communicates.

Layered design has proven to be especially effective, and it is used in some form in
virtually every network implementation. The primary idea of layers is that each layer
hides the operation of the layer below from the layer above, and instead provides its own
interpretation of all the important features of the lower layer. Every module is assigned
to some layer, and interconnections are restricted to go between modules in adjacent lay
ers. Thus in the three-layer system of Figure 7.15, module A may call any of the modules
J, K, or L, but A doesn’t even know of the existence of X, Y, and Z. The figure shows A
using module K. Module K, in turn, may call any of X, Y,, or Z.

Different network designs, of course, will have different layering strategies. The par
ticular layers we have discussed are only an illustration—as we investigate the design of
the transport protocol of Figure 7.14 in more detail, we will find it useful to impose fur-

Layer One

Layer Two

Layer Three

A B C D

X Y Z

J K L

FIGURE 7.15

A layered system.

Saltzer & Kaashoek Ch. 7, p. 24 June 25, 2009 8:22 am

7.2 Getting Organized: Layers 7–25

ther layers, using a three-layer reference model that provides quite a bit of insight into
how networks are organized. Our choice strongly resembles the layering that is used in
the design of the Internet. The three layers we choose divide the problem of implement
ing a network as follows (from the bottom up):

• 	 The link layer: moving data directly from one point to another.
• 	 The network layer: forwarding data through intermediate points to move it to

the place it is wanted.
• 	 The 	 end-to-end layer: everything else required to provide a comfortable

application interface.

The application itself can be thought of as a fourth, highest layer, not part of the net
work. On the other hand, some applications intertwine themselves so thoroughly with
the end-to-end layer that it is hard to make a distinction.

The terms frame, packet, segment, message, and stream that were introduced in Section
7.1 can now be identified with these layers. Each is the unit of transmission of one of the
protocol layers. Working from the top down, an application starts by asking the end-to
end layer to transmit a message or a stream of data to a correspondent. The end-to-end
layer splits long messages and streams into segments, it copes with lost or duplicated seg
ments, it places arriving segments in proper order, it enforces specific communication
semantics, it performs presentation transformations, and it calls on the network layer to
transmit each segment. The network layer accepts segments from the end-to-end layer,
constructs packets, and transmits those packets across the network, choosing which links
to follow to move a given packet from its origin to its destination. The link layer accepts
packets from the network layer, and constructs and transmits frames across a single link
between two forwarders or between a forwarder and a customer of the network.

Some network designs attempt to impose a strict layering among various parts of what
we call the end-to-end layer, but it is often such a hodgepodge of function that no single
layering can describe it in a useful way. On the other hand, the network and link layers
are encountered frequently enough in data communication networks that one can almost
consider them universal.

With this high-level model in mind, we next sketch the basic contracts for each of the
three layers and show how they relate to one another. Later, we examine in much more
depth how each of the three layers is actually implemented.

7.2.2 The Link Layer

At the bottom of a packet-switched network there must be some underlying communi
cation mechanism that connects one packet switch with another or a packet switch to a
customer of the network. The link layer is responsible for managing this low-level com
munication. The goal of the link layer is to move the bits of the packet across one
(usually, but not necessarily, physical) link, hiding the particular mechanics of data trans
mission that are involved.

Saltzer & Kaashoek Ch. 7, p. 25	 June 25, 2009 8:22 am

7–26 CHAPTER 7 The Network as a System and as a System Component

Link
Layer link

protocol
link

protocol

link 1 link 2

LINK_SEND (pkt, link2)

Link
Layer

Link
Layer

A B C

DATA

DATA LH LT

NETWORK_HANDLE

FIGURE 7.16

A link layer in a packet switch that has two physical links

A typical, somewhat simplified, interface to the link layer looks something like this:

LINK_SEND (data_buffer, link_identifier)

where data_buffer names a place in memory that contains a packet of information ready
to be transmitted, and link_identifier names, in a local address space, one of possibly sev
eral links to use. Figure 7.16 illustrates the link layer in packet switch B, which has links
to two other packet switches, A and C. The call to the link layer identifies a packet buffer
named pkt and specifies that the link layer should place the packet in a frame suitable for
transmission over link2, the link to packet switch C. Switches B and C both have imple
mentations of the link layer, a program that knows the particular protocol used to send
and receive frames on this link. The link layer may use a different protocol when sending
a frame to switch A using link number 1. Nevertheless, the link layer typically presents a
uniform interface (LINK_SEND) to higher layers. Packet switch B and packet switch C may
use different labels for the link that connects them. If packet switch C has four links, the
frame may arrive on what C considers to be its link number 3. The link identifier is thus
a name whose scope is limited to one packet switch.

The data that actually appears on the physical wire is usually somewhat different from
the data that appeared in the packet buffer at the interface to the link layer. The link layer
is responsible for taking into account any special properties of the underlying physical
channel, so it may, for example, encode the data in a way that is less fragile in the local
noise environment, it may fragment the data because the link protocol requires shorter
frames, and it may repeatedly resend the data until the other end of the link acknowl
edges that it has received it.

These channel-specific measures generally require that the link layer add information
to the data provided by the network layer. In a layered communication system, the data
passed from an upper layer to a lower layer for transmission is known as the payload.
When a lower layer adds to the front of the payload some data intended only for the use
of the corresponding lower layer at the other end, the addition is called a header, and
when the lower layer adds something to the end, the addition is called a trailer. In Figure

Saltzer & Kaashoek Ch. 7, p. 26 June 25, 2009 8:22 am

7.2 Getting Organized: Layers 7–27

7.16, the link layer has added a link layer header LH (perhaps indicating which network
layer program to deliver the packet to) and a link layer trailer LT (perhaps containing a
checksum for error detection). The combination of the header, payload, and trailer
becomes the link-layer frame. The receiving link layer module will, after establishing that
the frame has been correctly received, remove the link layer header and trailer before
passing the payload to the network layer.

The particular method of waiting for a frame, packet, or message to arrive and trans
ferring payload data and control from a lower layer to an upper layer depends on the
available thread coordination procedures. Throughout this chapter, rather than having
an upper layer call down to a lower-layer procedure named RECEIVE (as Section 2.1.3 sug
gested), we use upcalls, which means that when data arrives, the lower layer makes a
procedure call up to an entry point in the higher layer. Thus in Figure 7.16 the link layer
calls a procedure named NETWORK_HANDLE in the layer above.

7.2.3 The Network Layer

A segment enters a forwarding network at one of its network attachment points (the
source), accompanied by instructions to deliver it to another network attachment point
(the destination). To reach the destination it will probably have to traverse several links.
Providing a systematic naming scheme for network attachment points, determining
which links to traverse, creating a packet that contains the segment, and forwarding the
packet along the intended path are the jobs of the network layer. The interface to the
network layer, again somewhat simplified, resembles that of the link layer:

NETWORK_SEND (segment_buffer, network_identifier, destination)

The NETWORK_SEND procedure transmits the segment found in segment_buffer (the pay
load, from the point of view of the network layer), using the network named in
network_identifier (a single computer may participate in more than one network), to des

tination (the address within that network that names the network attachment point to
which the segment should be delivered).

The network layer, upon receiving this call, creates a network-layer header, labeled
NH in Figure 7.17, and/or trailer, labeled NT, to accompany the segment as it traverses
the network named “IP”, and it assembles these components into a packet. The key item
of information in the network-layer header is the address of the destination, for use by
the next packet switch in the forwarding chain.

Next, the network layer consults its tables to choose the most appropriate link over
which to send this packet with the goal of getting it closer to its destination. Finally, the
network layer calls the link layer asking it to send the packet over the chosen link. When
the frame containing the packet arrives at the other end of the link, the receiving link
layer strips off the link layer header and trailer (LH and LT in the figure) and hands the
packet to its network layer by an upcall to NETWORK_HANDLE. This network layer module
examines the network layer header and trailer to determine the intended destination of
the packet. It consults its own tables to decide on which outgoing link to forward the

Saltzer & Kaashoek Ch. 7, p. 27 June 25, 2009 8:22 am

7–28 CHAPTER 7 The Network as a System and as a System Component

DATA

NETWORK_SEND (segment, “IP”, nap_1197)

Link
Layer

link
protocol

link 2

lINK_SEND (packet, link2)

Link
Layer

Link
Layer

Network
Layer

network

protocol
Network
Layer

LINK_SEND (packet, link5)

link5

DATANT NH

DATANT NH LHLT

NETWORK_HANDLE

FIGURE 7.17

Relation between the network layer and the link layer.

packet, and it calls the link layer to send the packet on its way. The network layer of each
packet switch along the way repeats this procedure, until the packet traverses the link to
its destination. The network layer at the end of that link recognizes that the packet is now
at its destination, it extracts the data segment from the packet, and passes that segment
to the end-to-end layer, with another upcall.

7.2.4 The End-to-End Layer

We can now put the whole picture together. The network and link layers together pro
vide a best-effort network, which has the “interesting” properties that were listed in
Figure 7.11 on page 7–21. These properties may be problematic to an application, and
the function of the end-to-end layer is to create a less “interesting” and thus easier to use
interface for the application. For example, Figure 7.18 shows the remote procedure call
of Figure 7.12 from a different perspective. Here the RPC protocol is viewed as an end-
to-end layer of a complete network implementation. As with the lower layers, the end-
to-end layer has added a header and a trailer to the data that the application gave it, and
inspecting the bits on the wire we now see three distinct headers and trailers, correspond
ing to the three layers of the network implementation.

The RPC implementation in the end-to-end layer provides several distinct end-to
end services, each intended to hide some aspect of the underlying network from its
application:

Saltzer & Kaashoek Ch. 7, p. 28 June 25, 2009 8:22 am

7.2 Getting Organized: Layers 7–29

• 	 Presentation services. Translating data formats and emulating the semantics of a
procedure call. For this purpose the end-to-end header might contain, for
example, a count of the number of arguments in the procedure call.

• 	 Transport services. Dividing streams and messages into segments and dealing with
lost, duplicated, and out-of-order segments. For this purpose, the end-to-end
header might contain serial numbers of the segments.

• 	 Session services. Negotiating a search, handshake, and binding sequence to locate
and prepare to use a service that knows how to perform the requested procedure.
For this purpose, the end-to-end header might contain a unique identifier that
tells the service which client application is making this call.

Depending on the requirements of the application, different end-to-end layer implemen
tations may provide all, some, or none of these services, and the end-to-end header and
trailer may contain various different bits of information.

There is one other important property of this layering that becomes evident in exam
ining Figure 7.18. Each layer considers the payload transmitted by the layer above to be
information that it is not expected, or even permitted, to interpret. Thus the end-to-end
layer constructs a segment with an end-to-end header and trailer that it hands to the net
work layer, with the expectation that the network layer will not look inside or perform
any actions that require interpretation of the segment. The network layer, in turn, adds
a network-layer header and trailer and hands the resulting packet to the link layer, again

FIRE (7, “Lucifer”, evade)	 FIRE (7, “Lucifer”, evade)

Link
Layer

Network
Layer

end-to-end

protocol

End-to-End
Layer

DATA

DATANT NH LHLT

Link
Layer

Link
Layer

Link
Layer

Network
Layer

Network
Layer

End-to-End
Layer

ET EH

DATAET EH

(RPC) (RPC)

DATANT NHET EH

FIGURE 7.18

Three network layers in action.The arguments of the procedure call become the payload of the
end-to-end segment. The network layer forwards the packet across two links on the way from
the client to the service.The frame on the wire contains the headers and trailers of three layers.

Saltzer & Kaashoek Ch. 7, p. 29	 June 25, 2009 8:22 am

7–30 CHAPTER 7 The Network as a System and as a System Component

with the expectation that the link layer will consider this packet to be an opaque string
of bits, a payload to be carried in a link-layer frame. Violation of this rule would lead to
interdependence across layers and consequent loss of modularity of the system.

7.2.5 Additional Layers and the End-to-End Argument

To this point, we have suggested that a three-layer reference model is both necessary and
sufficient to provide insight into how networks operate. Standard textbooks on network
design and implementation mention a reference model from the International Organi
zation for Standardization, known as “Open Systems Interconnect”, or OSI. The OSI
reference model has not three, but seven layers. What is the difference?

There are several differences. Some are trivial; for example, the OSI reference model
divides the link layer into a strategy layer (known as the “data link layer”) and a physical
layer, recognizing that many different kinds of physical links can be managed with a
small number of management strategies. There is a much more significant difference
between our reference model and the OSI reference model in the upper layers. The OSI
reference model systematically divides our end-to-end layer into four distinct layers.
Three of these layers directly correspond, in the RPC example, to the layers of Figure
7.14: an application layer, a presentation layer, and a transport layer. In addition just
above the transport layer the ISO model inserts a layer that provides the session services
mentioned just above.

We have avoided this approach for the simple reason that different applications have
radically different requirements for transport, session, and presentation services—even to
the extent that the order in which they should be applied may be different. This situation
makes it difficult to propose any single layering, since a layering implies an ordering.

For example, an application that consists of sending a file to a printer would find most
useful a transport service that guarantees to deliver to the printer a stream of bytes in the
same order in which they were sent, with none missing and none duplicated. But a file
transfer application might not care in what order different blocks of the file are delivered,
so long as they all eventually arrive at the destination. A digital telephone application
would like to see a stream of bits representing successive samples of the sound waveform
delivered in proper order, but here and there a few samples can be missing without inter
fering with the intelligibility of the conversation. This rather wide range of application
requirements suggests that any implementation decisions that a lower layer makes (for
example, to wait for out-of-order segments to arrive so that data can be delivered in the
correct order to the next higher layer) may be counterproductive for at least some appli
cations. Instead, it is likely to be more effective to provide a library of service modules
that can be selected and organized by the programmer of a specific application. Thus,
our end-to-end layer is an unstructured library of service modules, of which the RPC
protocol is an example.

Saltzer & Kaashoek Ch. 7, p. 30 June 25, 2009 8:22 am

7.2 Getting Organized: Layers 7–31

This argument against additional layers is an example of a design principle known as

The end-to-end argument

The application knows best.

In this case, the basic thrust of the end-to-end argument is that the application knows
best what its real communication requirements are, and for a lower network layer to try
to implement any feature other than transporting the data risks implementing something
that isn’t quite what the application needed. Moreover, if it isn’t exactly what is needed,
the application will probably have to reimplement that function on its own. The end-to
end argument can thus be paraphrased as: don’t bury it in a lower layer, let the end points
deal with it because they know best what they need.

A simple example of this phenomenon is file transfer. To transfer a file carefully, the
appropriate method is to calculate a checksum from the contents of the file as it is stored
in the file system of the originating site. Then, after the file has been transferred and writ
ten to the new file system, the receiving site should read the file back out of its file system,
recalculate the checksum anew, and compare it with the original checksum. If the two
checksums are the same, the file transfer application has quite a bit of confidence that the
new site has a correct copy; if they are different, something went wrong and recovery is
needed.

Given this end-to-end approach to checking the accuracy of the file transfer, one can
question whether or not there is any value in, for example, having the link layer protocol
add a frame checksum to the link layer trailer. This link layer checksum takes time to
calculate, it adds to the data to be sent, and it verifies the correctness of the data only
while it is being transmitted across that link. Despite this protection, the data may still
be damaged while it is being passed through the network layer, or while it is buffered by
the receiving part of the file transfer application, or while it is being written to the disk.
Because of those threats, the careful file transfer application cannot avoid calculating its
end-to-end checksum, despite the protection provided by the link layer checksum.

This is not to say that the link layer checksum is worthless. If the link layer provides
a checksum, that layer will discover data transmission errors at a time when they can be
easily corrected by resending just one frame. Absent this link-layer checksum, a transmis
sion error will not be discovered until the end-to-end layer verifies its checksum, by
which point it may be necessary to redo the entire file transfer. So there may be a signif
icant performance gain in having this feature in a lower-level layer. The interesting
observation is that a lower-layer checksum does not eliminate the need for the application
layer to implement the function, and it is thus not required for application correctness.
It is just a performance enhancement.

The end-to-end argument can be applied to a variety of system design issues in addi
tion to network design. It does not provide an absolute decision technique, but rather a
useful argument that should be weighed against other arguments in deciding where to
place function.

Saltzer & Kaashoek Ch. 7, p. 31 June 25, 2009 8:22 am

7–32 CHAPTER 7 The Network as a System and as a System Component

7.2.6 Mapped and Recursive Applications of the Layered Model

When one begins decomposing a particular existing network into link, network, and
end-to-end layers, it sometimes becomes apparent that some of the layers of the network
are themselves composed of what are obviously link, network, or end-to-end layers.
These compositions come in two forms: mapped and recursive.

Mapped composition occurs when a network layer is built directly on another network
layer by mapping higher-layer network addresses to lower-layer network addresses. A
typical application for mapping arises when a better or more popular network technology
comes along, yet it is desirable to keep running applications that are designed for the old
network. For example, Apple designed a network called Appletalk that was used for
many years, and then later mapped the Appletalk network layer to the Ethernet, which,
as described in Section 7.8, has a network and link layer of its own but uses a somewhat
different scheme for its network layer addresses.

Another application for mapped composition is to interconnect several indepen
dently designed network layers, a scheme called internetworking. Probably the best
example of internetworking is the Internet itself (described in Sidebar 7.2), which links
together many different network layers by mapping them all to a universal network layer
that uses a protocol known as Internet protocol (IP). Section 7.8 explains how the network

Sidebar 7.2: The Internet The Internet provides examples of nearly every concept in this
chapter. Much of the Internet is a network layer that is mapped onto some other network layer
such as a satellite network, a wireless network, or an Ethernet. Internet protocol (IP) is the
primary network layer protocol, but it is not the only network layer protocol used in the
Internet. There is a network layer protocol for managing the Internet, known as ICMP. There
are also several different network layer routing protocols, some providing routing within small
parts of the Internet, others providing routing between major regions. But every point that can
be reached via the Internet implements IP.

The link layer of the Internet includes all of the link layers of the networks that the Internet
maps onto and it also includes many separate, specialized links: a wire, a dial-up telephone line,
a dedicated line provided by the telephone company, a microwave link, a digital subscriber line
(DSL), a free-space optical link, etc. Almost anything that carries bits has been used somewhere
as a link in the Internet.

The end-to-end protocols used on the Internet are many and varied. The primary transport
protocols are TCP, UDP, and RTP, described briefly on page 7–65. Built on these transport
protocols are hundreds of application protocols. A short list of some of the most widely used
application protocols would include file transfer (FTP), the World Wide Web (HTTP), mail
dispatch and pickup (SMTP and POP), text messaging (IRC), telephone (VoIP), and file
exchange (Gnutella, bittorrent, etc.).

The current chapter presents a general model of networks, rather than a description of the
Internet. To learn more about the Internet, see the books and papers listed in Section 7 of the
Suggestions for Further Reading.

Saltzer & Kaashoek Ch. 7, p. 32 June 25, 2009 8:22 am

7.2 Getting Organized: Layers 7–33

layer addresses of the Ethernet are mapped to and from the IP addresses of the Internet
using what is known as an Address Resolution Protocol. The Internet also maps the
internal network addresses of many other networks—wireless networks, satellite net
works, cable TV networks, etc.—into IP addresses.

Recursive composition occurs when a network layer rests on a link layer that itself is a
complete three-layer network. Recursive composition is not a general property of layers,
but rather it is a specific property of layered communication systems: The send/receive
semantics of an end-to-end connection through a network can be designed to be have
the same semantics as a single link, so such an end-to-end connection can be used as a
link in a higher-level network. That property facilitates recursive composition, as well as
the implementation of various interesting and useful network structures. Here are some
examples of recursive composition:

• 	 A dial-up telephone line is often used as a link to an attachment point of the
Internet. This dial-up line goes through a telephone network that has its own
link, network, and end-to-end layers.

• 	 An overlay network is a network layer structure that uses as links the end-to-end
layer of an existing network. Gnutella (see problem set 20) is an example of an
overlay network that uses the end-to-end layer of the Internet for its links.

• 	With the advance of “voice over IP” (VoIP), the traditional voice telephone
network is gradually converting to become an overlay on the Internet.

• 	 A tunnel is a structure that uses the end-to-end layer of an existing network as a
link between a local network-layer attachment point and a distant one to make it
appear that the attachment is at the distant point. Tunnels, combined with the
encryption techniques described in Chapter 11, are used to implement what is
commonly called a “virtual private network” (VPN).

Recursive composition need not be limited to two levels. Figure 7.19 illustrates the
case of Gnutella overlaying the Internet, with a dial-up telephone connection being used
as the Internet link layer.

The primary concern when one is dealing with a link layer that is actually an end-to
end connection through another network is that discussion can become confusing unless
one is careful to identify which level of decomposition is under discussion. Fortunately
our terminology helps keep track of the distinctions among the various layers of a net
work, so it is worth briefly reviewing that terminology. At the interface between the
application and the end-to-end layer, data is identified as a stream or message. The end-
to-end layer divides the stream or message up into a series of segments and hands them to
the network layer for delivery. The network layer encapsulates each segment in a packet
which it forwards through the network with the help of the link layer. The link layer
transmits the packet in a frame. If the link layer is itself a network, then this frame is a
message as viewed by the underlying network.

This discussion of layered network organization has been both general and abstract.
In the next three sections we investigate in more depth the usual functions and some typ-

Saltzer & Kaashoek Ch. 7, p. 33	 June 25, 2009 8:22 am

7–34 CHAPTER 7 The Network as a System and as a System Component

File Transfer Program (end-to-end layer)
File transfer system

Gnutella (network layer)

Transport Protocol (end-to-end layer)
Internet

Internet Protocol (network layer) (link
layer)

dialed connection (end-to-end layer) dial-up
telephone

telephone switch (network layer) (link network
layer)physical wire (link layer)

FIGURE 7.19

A typical recursive network composition.The overlay network Gnutella uses for its link layer an
end-to-end transport protocol of the Internet. The Internet uses for one of its links an end-to
end transport protocol of the dial-up telephone system.

ical implementation techniques of each of the three layers of our reference model.
However, as the introduction pointed out, what follows is not a comprehensive treat
ment of networking. Instead it identifies many of the major issues and for each issue
exhibits one or two examples of how that issue is typically handled in a real network
design. For readers who have a goal of becoming network engineers, and who therefore
would like to learn the whole remarkable range of implementation strategies that have
been used in networks, the Suggestions for Further Reading list several comprehensive
books on the subject.

7.3 The Link Layer
The link layer is the bottom-most of the three layers of our reference model. The link
layer is responsible for moving data directly from one physical location to another. It thus
gets involved in several distinct issues: physical transmission, framing bits and bit
sequences, detecting transmission errors, multiplexing the link, and providing a useful
interface to the network layer above.

7.3.1 Transmitting Digital Data in an Analog World

The purpose of the link layer is to move bits from one place to another. If we are talking
about moving a bit from one register to another on the same chip, the mechanism is fairly
simple: run a wire that connects the output of the first register to the input of the next.
Wait until the first register’s output has settled and the signal has propagated to the input
of the second; the next clock tick reads the data into the second register. If all of the volt-

Saltzer & Kaashoek Ch. 7, p. 34 June 25, 2009 8:22 am

7.3 The Link Layer 7–35

A

FIGURE 7.20data

ready
 B A simple protocol
for data acknowledge
communication.

ages are within their specified tolerances, the clock ticks are separated enough in time to
allow for the propagation, and there is no electrical interference, then that is all there is
to it.

Maintaining those three assumptions is relatively easy within a single chip, and even
between chips on the same printed circuit board. However, as we begin to consider send
ing bits between boards, across the room, or across the country, these assumptions
become less and less plausible, and they must be replaced with explicit measures to ensure
that data is transmitted accurately. In particular, when the sender and receiver are in sep
arate systems, providing a correctly timed clock signal becomes a challenge.

A simple method for getting data from one module to another module that does not
share the same clock is with a three-wire (plus common ground) ready/acknowledge pro
tocol, as shown in figure 7.20. Module A, when it has a bit ready to send, places the bit
on the data line, and then changes the steady-state value on the ready line. When B sees
the ready line change, it acquires the value of the bit on the data line, and then changes
the acknowledge line to tell A that the bit has been safely received. The reason that the
ready and acknowledge lines are needed is that, in the absence of any other synchronizing
scheme, B needs to know when it is appropriate to look at the data line, and A needs to
know when it is safe to stop holding the bit value on the data line. The signals on the
ready and acknowledge lines frame the bit.

If the propagation time from A to B is Δt, then this protocol would allow A to send
one bit to B every 2Δt plus the time required for A to set up its output and for B to
acquire its input, so the maximum data rate would be a little less than 1/(2Δt). Over short
distances, one can replace the single data line with N parallel data lines, all of which are
framed by the same pair of ready/acknowledge lines, and thereby increase the data rate
to N/(2Δt). Many backplane bus designs as well as peripheral attachment systems such
as SCSI and personal computer printer interfaces use this technique, known as parallel
transmission, along with some variant of a ready/acknowledge protocol, to achieve a
higher data rate.

However, as the distance between A and B grows, Δt also grows, and the maximum
data rate declines in proportion, so the ready/acknowledge technique rapidly breaks
down. The usual requirement is to send data at higher rates over longer distances with
fewer wires, and this requirement leads to employment of a different system called serial
transmission. The idea is to send a stream of bits down a single transmission line, without
waiting for any response from the receiver and with the expectation that the receiver will
somehow recover those bits at the other end with no additional signaling. Thus the out
put at the transmitting end of the link looks as in Figure 7.21. Unfortunately, because
the underlying transmission line is analog, the farther these bits travel down the line, the

Saltzer & Kaashoek Ch. 7, p. 35 June 25, 2009 8:22 am

7–36 CHAPTER 7 The Network as a System and as a System Component

more attenuation, noise, and line-charging effects they suffer. By the time they arrive at
the receiver they will be little more than pulses with exponential leading and trailing
edges, as suggested by Figure 7.22. The receiving module, B, now has a significant prob
lem in understanding this transmission: Because it does not have a copy of the clock that
A used to create the bits, it does not know exactly when to sample the incoming line.

A typical solution involves having the two ends agree on an approximate data rate, so
that the receiver can run a voltage-controlled oscillator (VCO) at about that same data
rate. The output of the VCO is multiplied by the voltage of the incoming signal and the
product suitably filtered and sent back to adjust the VCO. If this circuit is designed cor
rectly, it will lock the VCO to both the frequency and phase of the arriving signal. (This
device is commonly known as a phase-locked loop.) The VCO, once locked, then becomes
a clock source that a receiver can use to sample the incoming data.

One complication is that with certain patterns of data (for example, a long string of
zeros) there may be no transitions in the data stream, in which case the phase-locked loop
will not be able to synchronize. To deal with this problem, the transmitter usually
encodes the data in a way that ensures that no matter what pattern of bits is sent, there
will be some transitions on the transmission line. A frequently used method is called
phase encoding, in which there is at least one level transition associated with every data
bit. A common phase encoding is the Manchester code, in which the transmitter encodes
each bit as two bits: a zero is encoded as a zero followed by a one, while a one is encoded
as a one followed by a zero. This encoding guarantees that there is a level transition in
the center of every transmitted bit, thus supplying the receiver with plenty of clocking
information. It has the disadvantage that the maximum data rate of the communication
channel is effectively cut in half, but the resulting simplicity of both the transmitter and
the receiver is often worth this price. Other, more elaborate, encoding schemes can
ensure that there is at least one transition for every few data bits. These schemes don’t
reduce the maximum data rate as much, but they complicate encoding, decoding, and
synchronization.

The usual goal for the design space of a physical communication link is to achieve the
highest possible data rate for the encoding method being used. That highest possible data

FIGURE 7.21 V

Serial transmission.
time

1 1 1 1 10 0 0 0

A B

FIGURE 7.22

Bit shape deteri
oration with
distance.

Saltzer & Kaashoek Ch. 7, p. 36 June 25, 2009 8:22 am

7.3 The Link Layer 7–37

rate will occur exactly at the point where the arriving data signal is just on the ragged edge
of being correctly decodable, and any noise on the line will show up in the form of clock
jitter or signals that just miss expected thresholds, either of which will lead to decoding
errors.

The data rate of a digital link is conven
tionally measured in bits per second. Since Sidebar 7.4: Shannon’s capacity theorem

digital data is ultimately carried using an
≤ ⎛1 + S ⎞analog channel, the question arises of what C W ⋅ log ---------2⎝ NW⎠

might be the maximum digital carrying

capacity of a specified analog channel. A where:

perfect analog channel would have an infi

nite capacity for digital data because one C = channel capacity, in bits per

second
could both set and measure a transmitted
signal level with infinite precision, and W = channel bandwidth, in hertz

then change that setting infinitely often. In S = maximum allowable signal power,

the real world, noise limits the precision as seen by the receiver

with which a receiver can measure the sig- N = noise power per unit of bandwidth

nal value, and physical limitations of the
analog channel such as chromatic dispersion (in an optical fiber), charging capacitance
(in a copper wire), or spectrum availability (in a wireless signal) put a ceiling on the rate
at which a receiver can detect a change in value of a signal. These physical limitations are
summed up in a single measure known as the bandwidth of the analog channel. To be
more precise, the number of different signal values that a receiver can distinguish is pro
portional to the logarithm of the ratio of the signal power to the noise power, and the
maximum rate at which a receiver can distinguish changes in the signal value is propor
tional to the analog bandwidth.xx

These two parameters (signal-to-noise ratio and analog bandwidth) allow one to cal
culate a theoretical maximum possible channel capacity (that is, data transmission rate)
using Shannon’s capacity theorem (see Sidebar 7.4).* Although this formula adopts a par
ticular definition of bandwidth, assumes a particular randomness for the noise, and says
nothing about the delay that might be encountered if one tries to operate near the chan-

Sidebar 7.3: Framing phase-encoded bits The astute reader may have spotted a puzzling gap
in the brief description of the Manchester code: while it is intended as a way of framing bits as
they appear on the transmission line, it is also necessary to frame the data bits themselves, in
order to know whether a data bit is encoded as bits (n, n + 1) or bits (n + 1, n + 2). A typical
approach is to combine code bit framing with data bit framing (and even provide some help in
higher-level framing) by specifying that every transmission must begin with a standard pattern,
such as some minimum number of coded one-bits followed by a coded zero. The series of
consecutive ones gives the Phase-Locked Loop something to synchronize on, and at the same
time provides examples of the positions of known data bits. The zero frames the end of the
framing sequence.

Saltzer & Kaashoek Ch. 7, p. 37 June 25, 2009 8:22 am

7–38 CHAPTER 7 The Network as a System and as a System Component

nel capacity, it turns out to be surprisingly useful for estimating capacities in the real
world.

Since some methods of digital transmission come much closer to Shannon’s theoret
ical capacity than others, it is customary to use as a measure of goodness of a digital
transmission system the number of bits per second that the system can transmit per hertz
of bandwidth. Setting W = 1, the capacity theorem says that the maximum bits per sec
ond per hertz is log2(1 + S/N). An elementary signalling system in a low-noise
environment can easily achieve 1 bit per second per hertz. On the other hand, for a 28
kilobits per second modem to operate over the 2.4 kilohertz telephone network, it must
transmit about 12 bits per second per hertz. The capacity theorem says that the logarithm
must be at least 12, so the signal-to-noise ratio must be at least 212, or using a more tra
ditional analog measure, 36 decibels, which is just about typical for the signal-to-noise
ratio of a properly working telephone connection. The copper-pair link between a tele
phone handset and the telephone office does not go through any switching equipment,
so it actually has a bandwidth closer to 100 kilohertz and a much better signal-to-noise
ratio than the telephone system as a whole; these combine to make possible “digital sub
scriber line” (DSL) modems that operate at 1.5 megabits/second—and even up to 50
megabits/second over short distances—using a physical link that was originally designed
to carry just voice.

One other parameter is often mentioned in characterizing a digital transmission sys
tem: the bit error rate, abbreviated BER and measured as a ratio to the transmission rate.
For a transmission system to be useful, the bit error rate must be quite low; it is typically
reported with numbers such as one error in 106, 107, or 108 transmitted bits. Even the
best of those rates is not good enough for digital systems; higher levels of the system must
be prepared to detect and compensate for errors.

7.3.2 Framing Frames

The previous section explained how to obtain a stream of neatly framed bits, but because
the job of the link layer is to deliver frames across the link, it must also be able to figure
out where in this stream of bits each frame begins and ends. Framing frames is a distinct,
and quite independent, requirement from framing bits, and it is one of the reasons that
some network models divide the link layer into two layers, a lower layer that manages
physical aspects of sending and receiving individual bits and an upper layer that imple
ments the strategy of transporting entire frames.

There are many ways to frame frames. One simple method is to choose some pattern
of bits, for example, seven one-bits in a row, as a frame-separator mark. The sender sim
ply inserts this mark into the bit stream at the end of each frame. Whenever this pattern

* The derivation of this theorem is beyond the scope of this textbook. The capacity theorem was
originally proposed by Claude E. Shannon in the paper “A mathematical theory of communica
tion,” Bell System Technical Journal 27 (1948), pages 379–423 and 623–656. Most modern texts on
information theory explore it in depth.

Saltzer & Kaashoek Ch. 7, p. 38 June 25, 2009 8:22 am

7.3 The Link Layer 7–39

appears in the received data, the receiver takes it to mark the end of the previous frame,
and assumes that any bits that follow belong to the next frame. This scheme works nicely,
as long as the payload data stream never contains the chosen pattern of bits.

Rather than explaining to the higher layers of the network that they cannot transmit
certain bit patterns, the link layer implements a technique known as bit stuffing. The
transmitting end of the link layer, in addition to inserting the frame-separator mark
between frames, examines the data stream itself, and if it discovers six ones in a row it
stuffs an extra bit into the stream, a zero. The receiver, in turn, watches the incoming bit
stream for long strings of ones. When it sees six one-bits in a row it examines the next bit
to decide what to do. If the seventh bit is a zero, the receiver discards the zero bit, thus
reversing the stuffing done by the sender. If the seventh bit is a one, the receiver takes the
seven ones as the frame separator. Figure shows a simple pseudocode implementation of
the procedure to send a frame with bit stuffing, and Figure 7.24 shows the corresponding
procedure on the receiving side of the link. (For simplicity, the illustrated receive proce
dure ignores two important considerations. First, the receiver uses only one frame buffer.
A better implementation would have multiple buffers to allow it to receive the next frame
while processing the current one. Second, the same thread that acquires a bit also runs
the network level protocol by calling LINK_RECEIVE. A better implementation would prob
ably NOTIFY a separate thread that would then call the higher-level protocol, and this
thread could continue processing more incoming bits.)

Bit stuffing is one of many ways to frame frames. There is little need to explore all the
possible alternatives because frame framing is easily specified and subcontracted to the
implementer of the link layer—the entire link layer, along with bit framing, is often done
in the hardware—so we now move on to other issues.

procedure FRAME_TO_BIT (frame_data, length)
ones_in_a_row = 0
for i from 1 to length do // First send frame contents

SEND_BIT (frame_data[i]);
if frame_data[i] = 1 then

ones_in_a_row ← ones_in_a_row + 1;
if ones_in_a_row = 6 then

SEND_BIT (0); // Stuff a zero so that data doesn’t
ones_in_a_row ← 0; // look like a framing marker

else
ones_in_a_row ← 0;

for i from 1 to 7 do // Now send framing marker.

SEND_BIT (1)

FIGURE 7.23

Sending a frame with bit stuffing.

Saltzer & Kaashoek Ch. 7, p. 39 June 25, 2009 8:22 am

7–40 CHAPTER 7 The Network as a System and as a System Component

7.3.3 Error Handling

An important issue is what the receiving side of the link layer should do about bits that
arrive with doubtful values. Since the usual design pushes the data rate of a transmission
link up until the receiver can barely tell the ones from the zeros, even a small amount of
extra noise can cause errors in the received bit stream.

The first and perhaps most important line of defense in dealing with transmission
errors is to require that the design of the link be good at detecting such errors when they
occur. The usual method is to encode the data with an error detection code, which entails
adding a small amount of redundancy. A simple form of such a code is to have the trans
mitter calculate a checksum and place the checksum at the end of each frame. As soon as
the receiver has acquired a complete frame, it recalculates the checksum and compares
its result with the copy that came with the frame. By carefully designing the checksum
algorithm and making the number of bits in the checksum large enough, one can make
the probability of not detecting an error as low as desired. The more interesting issue is
what to do when an error is detected. There are three alternatives:

1. 	Have the sender encode the transmission using an error correction code, which is a
code that has enough redundancy to allow the receiver to identify the particular
bits that have errors and correct them. This technique is widely used in situations
where the noise behavior of the transmission channel is well understood and the
redundancy can be targeted to correct the most likely errors. For example, compact
disks are recorded with a burst error-correction code designed to cope particularly
well with dust and scratches. Error correction is one of the topics of Chapter 8[on
line].

procedure BIT_TO_FRAME (rcvd_bit)

ones_in_a_row integer initially 0

if ones_in_a_row < 6 then

bits_in_frame ← bits_in_frame + 1
frame_data[bits_in_frame] ← rcvd_bit
if rcvd_bit = 1 then ones_in_a_row ← ones_in_a_row + 1
else ones_in_a_row ← 0

else // This may be a seventh one-bit in a row, check it out.
if rcvd_bit = 0 then

ones_in_a_row ← 0 // Stuffed bit, don't use it.
else // This is the end-of-frame marker

LINK_RECEIVE (frame_data, (bits_in_frame - 6), link_id)
bits_in_frame ← 0
ones_in_a_row ← 0

FIGURE 7.24

Receiving a frame with bit stuffing.

Saltzer & Kaashoek Ch. 7, p. 40	 June 25, 2009 8:22 am

7.3 The Link Layer 7–41

2. 	Ask the sender to retransmit the frame that contained an error. This alternative
requires that the sender hold the frame in a buffer until the receiver has had a
chance to recalculate and compare its checksum. The sender needs to know when
it is safe to reuse this buffer for another frame. In most such designs the receiver
explicitly acknowledges the correct (or incorrect) receipt of every frame. If the
propagation time from sender to receiver is long compared with the time required
to send a single frame, there may be several frames in flight, and acknowledgments
(especially the ones that ask for retransmission) are disruptive. On a high-
performance link an explicit acknowledgment system can be surprisingly complex.

3. 	Let the receiver discard the frame. This alternative is a reasonable choice in light
of our previous observation (see page 7–12) that congestion in higher network
levels must be handled by discarding packets anyway. Whatever higher-level
protocol is used to deal with those discarded packets will also take care of any
frames that are discarded because they contained errors.

Real-world designs often involve blending these techniques, for example by having
the sender apply a simple error-correction code that catches and repairs the most com
mon errors and that reliably detects and reports any more complex irreparable errors, and
then by having the receiver discard the frames that the error-correction code could not
repair.

7.3.4 The Link Layer Interface: Link Protocols and Multiplexing

The link layer, in addition to sending bits and frames at one end and receiving them at
the other end, also has interfaces to the network layer above, as illustrated in Figure 7.16
on page 7–26. As described so far, the interface consists of an ordinary procedure call (to
LINK_SEND) that the network layer uses to tell the link layer to send a packet, and an upcall
(to NETWORK_HANDLE) from the link layer to the network layer at the other end to alert the
network layer that a packet arrived.

To be practical, this interface between the network layer and the link layer needs to
be expanded slightly to incorporate two additional features not previously mentioned:
multiple lower-layer protocols, and higher-layer protocol multiplexing. To support these
two functions we add two arguments to LINK_SEND, named link_protocol and
network_protocol:

LINK_SEND (data_buffer, link_identifier, link_protocol, network_protocol)

Over any given link, it is sometimes appropriate to use different protocols at different
times. For example, a wireless link may occasionally encounter a high noise level and
need to switch from the usual link protocol to a “robustness” link protocol that employs
a more expensive form of error detection with repeated retry, but runs more slowly. At
other times it may want to try out a new, experimental link protocol. The third argument
to LINK_SEND, link_protocol tells LINK_SEND which link protocol to use for this_data, and its
addition leads to the protocol layering illustrated in Figure 7.25.

Saltzer & Kaashoek Ch. 7, p. 41	 June 25, 2009 8:22 am

7–42 CHAPTER 7 The Network as a System and as a System Component

Network protocol

Standard High
robustness

protocolprotocol

Network Layer

Link LayerExperimental
protocol

FIGURE 7.25

Layer composition with multiple link protocols.

Internet
Protocol

Address
Resolution
Protocol

Appletalk
Protocol

Path
Vector

Exchange
Protocol

Standard
protocol

High
robustness

protocol
Experimental

protocol

Network Layer

Link Layer

FIGURE 7.26

Layer composition with multiple link protocols and link layer multiplexing to support multiple
network layer protocols.

The second feature of the interface to the link layer is more involved: the interface
should support protocol multiplexing. Multiplexing allows several different network layer
protocols to use the same link. For example, Internet Protocol, Appletalk Protocol, and
Address Resolution Protocol (we will talk about some of these protocols later in this
chapter) might all be using the same link. Several steps are required. First, the network
layer protocol on the sending side needs to specify which protocol handler should be
invoked on the receiving side, so one more argument, network_protocol, is needed in the
interface to LINK_SEND.

Second, the value of network_protocol needs to be transmitted to the receiving side,
for example by adding it to the link-level packet header. Finally, the link layer on the
receiving side needs to examine this new header field to decide to which of the various
network layer implementations it should deliver the packet. Our protocol layering orga
nization is now as illustrated in Figure 7.26. This figure demonstrates the real power of
the layered organization: any of the four network layer protocols in the figure may use
any of the three link layer protocols.

Saltzer & Kaashoek Ch. 7, p. 42 June 25, 2009 8:22 am

7.3 The Link Layer 7–43

With the addition of multiple link protocols and link multiplexing, we can summa
rize the discussion of the link layer in the form of pseudocode for the procedures
LINK_SEND and LINK_RECEIVE, together with a structure describing the frame that passes
between them, as in Figure 7.27. In procedure LINK_SEND, the procedure variable send

proc is selected from an array of link layer protocols; the value found in that array might
be, for example, a version of the procedure PACKET_TO_BIT of Figure 7.24 that has been
extended with a third argument that identifies which link to use. The procedures CHECK

SUM and LENGTH are programs we assume are found in the library. Procedure LINK_RECEIVE

might be called, for example, by procedure BIT_TO_FRAME of Figure 7.24. The procedure

structure frame
structure checked_contents

bit_string net_protocol // multiplexing parameter
bit_string payload // payload data

bit_string checksum

procedure LINK_SEND (data_buffer, link_identifier, link_protocol, network_protocol)
frame instance outgoing_frame
outgoing_frame.checked_contents.payload ← data_buffer
outgoing_frame.checked_contents.net_protocol ← data_buffer.network_protocol
frame_length ← LENGTH (data_buffer) + header_length
outgoing_frame.checksum ← CHECKSUM (frame.checked_contents, frame_length)
sendproc ← link_protocol[that_link.protocol] // Select link protocol.
sendproc (outgoing_frame, frame_length, link_identifier) // Send frame.

procedure LINK_RECEIVE (received_frame, length, link_id)

frame instance received_frame

if CHECKSUM (received_frame.checked_contents, length) =

received_frame.checksum
then // Pass good packets up to next layer.
good_frame_count ← good_frame_count + 1;
GIVE_TO_NETWORK_HANDLER (received_frame.checked_contents.payload,

received_frame.checked_contents.net_protocol);
else bad_frame_count ← bad_frame_count + 1 // Just count damaged frame.

// Each network layer protocol handler must call SET_HANDLER before the first packet
// for that protocol arrives…

procedure SET_HANDLER (handler_procedure, handler_protocol)

net_handler[handler_protocol] ← handler_procedure

procedure GIVE_TO_NETWORK_HANDLER (received_packet, network_protocol)

handler ← net_handler[network_protocol]

if (handler ≠ NULL) call handler(received_packet, network_protocol)

else unexpected_protocol_count ← unexpected_protocol_count + 1

FIGURE 7.27

The LINK_SEND and LINK_RECEIVE procedures, together with the structure of the frame transmit
ted over the link and a dispatching procedure for the network layer.

Saltzer & Kaashoek Ch. 7, p. 43 June 25, 2009 8:22 am

7–44 CHAPTER 7 The Network as a System and as a System Component

LINK_RECEIVE verifies the checksum, and then extracts net_data and net_protocol from the
frame and passes them to the procedure that calls the network handler together with the
identifier of the link over which the packet arrived.

These procedures also illustrate an important property of layering that was discussed
on page 7–29. The link layer handles its argument data_buffer as an unstructured string
of bits. When we examine the network layer in the next section of the chapter, we will
see that data_buffer contains a network-layer packet, which has its own internal struc
ture. The point is that as we pass from an upper layer to a lower layer, the content and
structure of the payload data is not supposed to be any concern of the lower layer.

As an aside, the division we have chosen for our sample implementation of a link
layer, with one program doing framing and another program verifying checksums, cor
responds to the OSI reference model division of the link layer into physical and strategy
layers, as was mentioned in Section 7.2.5.

Since the link is now multiplexed among several network-layer protocols, when a
frame arrives, the link layer must dispatch the packet contained in that frame to the
proper network layer protocol handler. Figure 7.27 shows a handler dispatcher named
GIVE_TO_NETWORK_HANDLER. Each of several different network-layer protocol-implement
ing programs specifies the protocol it knows how to handle, through arguments in a call
to SET_HANDLER. Control then passes to a particular network-layer handler only on arrival
of a frame containing a packet of the protocol it specified. With some additional effort
(not illustrated—the reader can explore this idea as an exercise), one could also make this
dispatcher multithreaded, so that as it passes a packet up to the network layer a new
thread takes over and the link layer thread returns to work on the next arriving frame.

With or without threads, the network_protocol field of a frame indicates to whom in
the network layer the packet contained in the frame should be delivered. From a more
general point of view, we are multiplexing the lower-layer protocol among several higher-
layer protocols. This notion of multiplexing, together with an identification field to sup
port it, generally appears in every protocol layer, and in every layer-to-layer interface, of
a network architecture.

An interesting challenge is that the multiplexing field of a layer names the protocols
of the next higher layer, so some method is needed to assign those names. Since higher-
layer protocols are likely to be defined and implemented by different organizations, the
usual solution is to hand the name conflict avoidance problem to some national or inter
national standard-setting body. For example, the names of the protocols of the Internet
are assigned by an outfit called ICANN, which stands for the Internet Corporation for
Assigned Names and Numbers.

7.3.5 Link Properties

Some final details complete our tour of the link layer. First, links come in several flavors,
for which there is some standard terminology:

A point-to-point link directly connects exactly two communicating entities. A simplex
link has a transmitter at one end and a receiver at the other; two-way communication

Saltzer & Kaashoek Ch. 7, p. 44 June 25, 2009 8:22 am

7.3 The Link Layer 7–45

requires installing two such links, one going in each direction. A duplex link has both a
transmitter and a receiver at each end, allowing the same link to be used in both direc
tions. A half-duplex link is a duplex link in which transmission can take place in only one
direction at a time, whereas a full-duplex link allows transmission in both directions at
the same time over the same physical medium.

A broadcast link is a shared transmission medium in which there can be several trans
mitters and several receivers. Anything sent by any transmitter can be received by
many—perhaps all—receivers. Depending on the physical design details, a broadcast
link may limit use to one transmitter at a time, or it may allow several distinct transmis
sions to be in progress at the same time over the same physical medium. This design
choice is analogous to the distinction between half duplex and full duplex but there is no
standard terminology for it. The link layers of the standard Ethernet and the popular
wireless system known as Wi-Fi are one-transmitter-at-a-time broadcast links. The link
layer of a CDMA Personal Communication System (such as ANSI–J–STD–008, which
is used by cellular providers Verizon and Sprint PCS) is a broadcast link that permits
many transmitters to operate simultaneously.

Finally, most link layers impose a maximum frame size, known as the maximum
transmission unit (MTU). The reasons for limiting the size of a frame are several:

1. 	The MTU puts an upper bound on link commitment time, which is the length of
time that a link will be tied up once it begins to transmit the frame. This
consideration is more important for slow links than for fast ones.

2. 	For a given bit error rate, the longer a frame the greater the chance of an
uncorrectable error in that frame. Since the frame is usually also the unit of error
control, an uncorrectable error generally means loss of the entire frame, so as the
frame length increases not only does the probability of loss increase, but the cost
of the loss increases because the entire frame will probably have to be
retransmitted. The MTU puts a ceiling on both of these costs.

3. 	If congestion leads a forwarder to discard a packet, the MTU limits the amount
of transmission capacity required to retransmit the packet.

4. 	There may be mechanical limits on the maximum length of a frame. A hardware
interface may have a small buffer or a short counter register tracking the number
of bits in the frame. Similar limits sometimes are imposed by software that was
originally designed for another application or to comply with some
interoperability standard.

Whatever the reason for the MTU, when an application needs to send a message that
does not fit in a maximum-sized frame, it becomes the job of some end-to-end protocol
to divide the message into segments for transmission and to reassemble the segments into
the complete message at the other end. The way in which the end-to-end protocol dis
covers the value of the MTU is complicated—it needs to know not just the MTU of the
link it is about to use, but the smallest MTU that the segment will encounter on the path

Saltzer & Kaashoek Ch. 7, p. 45	 June 25, 2009 8:22 am

7–46 CHAPTER 7 The Network as a System and as a System Component

through the network to its destination. For this purpose, it needs some help from the net
work layer, which is our next topic.

7.4 The Network Layer
The network layer is the middle layer of our three-layer reference model. The network
layer moves a packet across a series of links. While conceptually quite simple, the chal
lenges in implementation of this layer are probably the most difficult in network design
because there is usually a requirement that a single design span a wide range of perfor
mance, traffic load, and number of attachment points. In this section we develop a
simple model of the network layer and explore some of the challenges.

7.4.1 Addressing Interface

The conceptual model of a network is a
cloud bristling with network attachment

network
attachment

points identified by numbers known as net
work addresses, as in Figure 7.28 at the left.
A segment enters the network at one
attachment point, known as the source.
The network layer wraps the segment in a
packet and carries the packet across the
network to another attachment point,
known as the destination, where it unwraps
the original segment and delivers it.

The model in the figure is misleading
in one important way: it suggests that
delivery of a segment is accomplished by
sending it over one final, physical link. A FIGURE 7.28

network attachment point is actually a vir- The network layer.
tual concept rather than a physical
concept. Every network participant,
whether a packet forwarder or a client computer system, contains an implementation of
the network layer, and when a packet finally reaches the network layer of its destination,
rather than forwarding it further, the network layer unwraps the segment contained in
the packet and passes that segment to the end-to-end layer inside the system that con
tains the network attachment point. In addition, a single system may have several
network attachment points, each with its own address, all of which result in delivery to
the same end-to-end layer; such a system is said to be multihomed. Even packet forward
ers need network attachment points with their own addresses, so that a network manager
can send them instructions about their configuration and maintenance.

Network

0107

24

16

11

39

33

35

40

41

42 network

point

address

Saltzer & Kaashoek Ch. 7, p. 46 June 25, 2009 8:22 am

7.4 The Network Layer 7–47

Since a network has many attachment points, the the end-to-end layer must specify
to the network layer not only a data segment to transmit but also its intended destina
tion. Further, there may be several available networks and protocols, and several end-to
end protocol handlers, so the interface from the end-to-end layer to the network layer is
parallel to the one between the network layer and the link layer:

NETWORK_SEND (segment_buffer, destination, network_protocol, end_layer_protocol)

The argument network_protocol allows the end-to-end layer to select a network and pro
tocol with which to send the current segment, and the argument end_layer_protocol

allows for multiplexing, this time of the network layer by the end-to-end layer. The value
of end_layer_protocol tells the network layer at the destination to which end-to-end pro
tocol handler the segment should be delivered.

The network layer also has a link-layer interface, across which it receives packets. Fol
lowing the upcall style of the link layer of Section 7.3, this interface would be

NETWORK_HANDLE (packet, network_protocol)

and this procedure would be the handler_procedure argument of a call to SET_HANDLER in
Figure 7.27. Thus whenever the link layer has a packet to deliver to the network layer, it
does so by calling NETWORK_HANDLE.

The pseudocode of Figure 7.29 describes a model network layer in detail, starting
with the structure of a packet, and followed by implementations of the procedures
NETWORK_HANDLE and NETWORK_SEND. NETWORK_SEND creates a packet, starting with the seg
ment provided by the end-to-end layer and adding a network-layer header, which here
comprises three fields: source, destination, and end_layer_protocol. It fills in the destina

tion and end_layer_protocol fields from the corresponding arguments, and it fills in the
source field with the address of its own network attachment point. Figure 7.30 shows
this latest addition to the overhead of a packet.

Procedure NETWORK_HANDLE may do one of two rather different things with a packet,
distinguished by the test on line 11. If the packet is not at its destination, NETWORK_HANDLE

looks up the packet’s destination in forwarding_table to determine the best link on which
to forward it, and then it calls the link layer to send the packet on its way. On the other
hand, if the received packet is at its destination, the network layer passes its payload up
to the end-to-end layer rather than sending the packet out over another link. As in the
case of the interface between the link layer and the network layer, the interface to the
end-to-end layer is another upcall that is intended to go through a handler dispatcher
similar to that of the link layer dispatcher of Figure 7.27. Because in a network, any net
work attachment point can send a packet to any other, the last argument of
GIVE_TO_END_LAYER, the source of the packet, is a piece of information that the end-layer
recipient generally finds useful in deciding how to handle the packet.

One might wonder what led to naming the procedure NETWORK_HANDLE rather than
NETWORK_RECEIVE. The insight in choosing that name is that forwarding a packet is always
done in exactly the same way, whether the packet comes from the layer above or from
the layer below. Thus, when we consider the steps to be taken by NETWORK_SEND, the
straightforward implementation is simply to place the data in a packet, add a network

Saltzer & Kaashoek Ch. 7, p. 47 June 25, 2009 8:22 am

7–48 CHAPTER 7 The Network as a System and as a System Component

layer header, and hand the packet to NETWORK_HANDLE. As an extra feature, this architec
ture allows a source to send a packet to itself without creating a special case.

Just as the link layer used the net_protocol field to decide which of several possible
network handlers to give the packet to, NETWORK_SEND can use the net_protocol argument
for the same purpose. That is, rather than calling NETWORK_HANDLE directly, it could call
the procedure GIVE_TO_NETWORK_HANDLER of Figure 7.27.

7.4.2 Managing the Forwarding Table: Routing

The primary challenge in a packet forwarding network is to set up and manage the for
warding tables, which generally must be different for each network-layer participant.
Constructing these tables requires first figuring out appropriate paths (sometimes called
routes) to follow from each source to each destination, so the exercise is variously known
as path-finding or routing. In a small network, one might set these tables up by hand. As
the scale of a network grows, this approach becomes impractical, for several reasons:

FIGURE 7.29

structure packet
bit_string source
bit_string destination
bit_string end_protocol
bit_string payload

1 procedure NETWORK_SEND (segment_buffer, destination,
2 network_protocol, end_protocol)
3 packet instance outgoing_packet
4 outgoing_packet.payload ← segment_buffer
5 outgoing_packet.end_protocol ← end_protocol
6 outgoing_packet.source ← MY_NETWORK_ADDRESS

7 outgoing_packet.destination ← destination
8 NETWORK_HANDLE (outgoing_packet, net_protocol)

9 procedure NETWORK_HANDLE (net_packet, net_protocol)
10 packet instance net_packet
11 if net_packet.destination ≠ MY_NETWORK_ADDRESS then
12 next_hop ← LOOKUP (net_packet.destination, forwarding_table)
13 LINK_SEND (net_packet, next_hop, link_protocol, net_protocol)
14 else
15 GIVE_TO_END_LAYER (net_packet.payload,
16 net_packet.end_protocol, net_packet.source)

Model implementation of a network layer. The procedure NETWORK_SEND originates packets,
while NETWORK_HANDLE receives packets and either forwards them or passes them to the local
end-to-end layer.

Saltzer & Kaashoek Ch. 7, p. 48 June 25, 2009 8:22 am

7.4 The Network Layer 7–49

1. 	The amount of calculation required to determine the best paths grows
combinatorially with the number of nodes in the network.

2. 	Whenever a link is added or removed, the forwarding tables must be recalculated.
As a network grows in size, the frequency of links being added and removed will
probably grow in proportion, so the combinatorially growing routing calculation
will have to be performed more and more frequently.

3. 	Whenever a link fails or is repaired, the forwarding tables must be recalculated.
For a given link failure rate, the number of such failures will be proportional to the
number of links, so for a second reason the combinatorially growing routing
calculation will have to be performed an increasing number of times.

4. 	There are usually several possible paths available, and if traffic suddenly causes the
originally planned path to become congested, it would be nice if the forwarding
tables could automatically adapt to the new situation.

All four of these reasons encourage the development of automatic routing algorithms.
If reasons 1 and 2 are the only concerns, one can leave the resulting forwarding tables in
place for an indefinite period, a technique known as static routing. The on-the-fly recal
culation called for by reasons 3 and 4 is known as adaptive routing, and because this
feature is vitally important in many networks, routing algorithms that allow for easy
update when things change are almost always used. A packet forwarder that also partic-

Segment presented to DATAthe network layer

Packet presented to
the link layer DATAend

protocol
source &

destination

frame check frameDATAend
protocol

Frame
appearing
on the link

source &
destination sum

network
protocol

1111111 97142 1111111“Fire”RPCExample 41 —> 24
55316

IP

mark mark

FIGURE 7.30

A typical accumulation of network layer and link layer headers and trailers. The additional infor
mation added at each layer can come from control information passed from the higher layer as
arguments (for example, the end protocol type and the destination are arguments in the call to
the network layer). In other cases they are added by the lower layer (for example, the link layer
adds the frame marks and checksum).

Saltzer & Kaashoek Ch. 7, p. 49	 June 25, 2009 8:22 am

7–50 CHAPTER 7 The Network as a System and as a System Component

FIGURE 7.31

Routing example.

G

K

J

source
1

2 3

A

B

C

D

E

F

4

5

3
4 5

1

2

1
2

3
4

1

2
35

1

1

1
1

1

12

4

H

destination

ipates in a routing algorithm is usually called a router. An adaptive routing algorithm
requires exchange of current reachability information. Typically, the routers exchange
this information using a network-layer routing protocol transmitted over the network
itself.

To see how adaptive routing algorithms might work, consider the modest-sized net
work of Figure 7.31. To minimize confusion in interpreting this figure, each network
address is lettered, rather than numbered, while each link is assigned two one-digit link
identifiers, one from the point of view of each of the stations it connects. In this figure,
routers are rectangular while workstations and services are round, but all have network
addresses and all have network layer implementations.

Suppose now that the source A sends a packet addressed to destination D. Since A
has only one outbound link, its forwarding table is short and simple:

destination link

A end-layer
all other 1

Saltzer & Kaashoek Ch. 7, p. 50 June 25, 2009 8:22 am

7.4 The Network Layer 7–51

so the packet departs from A by way of link 1, going to router G for its next stop.
However, the forwarding table at G must be considerably more complicated. It might
contain, for example, the following values:

destination link

A 1
B 2
C 2
D 3
E 4
F 4
G end-layer
H 2
J 3
K 4

This is not the only possible forwarding table for G. Since there are several possible
paths to most destinations, there are several possible values for some of the table entries.
In addition, it is essential that the forwarding tables in the other routers be coordinated
with this forwarding table. If they are not, when router G sends a packet destined for E
to router K, router K might send it back to G, and the packet could loop forever.

The interesting question is how to construct a consistent, efficient set of forwarding
tables. Many algorithms that sound promising have been proposed and tried; few work
well. One that works moderately well for small networks is known as path vector
exchange. Each participant maintains, in addition to its forwarding table, a path vector,
each element of which is a complete path to some destination. Initially, the only path it
knows about is the zero-length path to itself, but as the algorithm proceeds it gradually
learns about other paths. Eventually its path vector accumulates paths to every point in
the network. After each step of the algorithm it can construct a new forwarding table
from its new path vector, so the forwarding table gradually becomes more and more
complete. The algorithm involves two steps that every participant repeats over and over,
path advertising and path selection.

To illustrate the algorithm, suppose par
ticipant G starts with a path vector that to
contains just one item, an entry for itself, as

G
in Figure 7.32. In the advertising step, each
participant sends its own network address
and a copy of its path vector down every FIGURE 7.32
attached link to its immediate neighbors,

path

< >

specifying the network-layer protocol	 Initial state of path vector for G. < > is an
empty path.

PATH_EXCHANGE. The routing algorithm of G

would thus receive from its four neighbors

the four path vectors of Figure 7.33. This advertisement allows G to discover the names,

which are in this case network addresses, of each of its neighbors.

Saltzer & Kaashoek Ch. 7, p. 51	 June 25, 2009 8:22 am

7–52 CHAPTER 7 The Network as a System and as a System Component

From A, From H, From J, From K,

to path

A < >

to path

H < >

to path

J < >

to path

K < >

via link 1 via link 2: via link 3: via link 4:

FIGURE 7.33

Path vectors received by G in the first round.

to path

A <A>

to link

A 1
G
H
J
K

end-layer
2
3
4

forwarding tablepath vector

G < >
H
J
K

<H>
<J>
<K>

FIGURE 7.34

First-round path vector and forwarding table for G.

to path

A < >
G <G>

to path

B

G <G>
H
J
K

< >
<J>
<K>

to path

F <F>
G <G>
H
J
K

<H>
<J>
< >

to path

D <D>

G <G>
H
J
K

<H>
< >
<K>

From A, From H, From J, From K,
via link 1 via link 2: via link 3: via link 4:

C <C>
E <E>

E <E>

FIGURE 7.35

Path vectors received by G in the second round.

to path

A <A>

to link

A 1

G
H
J
K

end-layer
2
3
4

forwarding tablepath vector

G < >
H
J
K

<H>
<J>
<K>

B
C
D
E

B
C
D
E
F F

<H, B>
<H, C>
<J, D>
<J, E>
<K, F>

2
2
3
3
4

FIGURE 7.36

Second-round path vector and forwarding table for G.

Saltzer & Kaashoek Ch. 7, p. 52 June 25, 2009 8:22 am

7.4 The Network Layer 7–53

G now performs the path selection step by merging the information received from its
neighbors with that already in its own previous path vector. To do this merge, G takes
each received path, prepends the network address of the neighbor that supplied it, and
then decides whether or not to use this path in its own path vector. Since on the first
round in our example all of the information from neighbors gives paths to previously
unknown destinations, G adds all of them to its path vector, as in Figure 7.34. G can also
now construct a forwarding table for use by NET_HANDLE that allows NET_HANDLE to forward
packets to destinations A, H, J, and K as well as to the end-to-end layer of G itself. In a
similar way, each of the other participants has also constructed a better path vector and
forwarding table.

Now, each participant advertises its new path vector. This time, G receives the four
path vectors of Figure 7.35, which contain information about several participants of
which G was previously unaware. Following the same procedure again, G prepends to
each element of each received path vector the identity of the router that provided it, and
then considers whether or not to use this path in its own path vector. For previously
unknown destinations, the answer is yes. For previously known destinations, G com
pares the paths that its neighbors have provided with the path it already had in its table
to see if the neighbor has a better path.

This comparison raises the question of what metric to use for “better”. One simple
answer is to count the number of hops. More elaborate schemes might evaluate the data
rate of each link along the way or even try to keep track of the load on each link of the
path by measuring and reporting queue lengths. Assuming G is simply counting hops,
G looks at the path that A has offered to reach G, namely

to G: <A, G>

and notices that G’s own path vector already contains a zero-length path to G, so it
ignores A’s offering. A second reason to ignore this offering is that its own name, G, is
in the path, which means that this path would involve a loop. To ensure loop-free for
warding, the algorithm always ignores any offered path that includes this router’s own
name.

When it is finished with the second round of path selection, G will have constructed
the second-round path vector and forwarding table of Figure 7.36. On the next round
G will begin receiving longer paths. For example it will learn that H offers the path

to D: <H, J, D>

Since this path is longer than the one that G already has in its own path vector for D, G
will ignore the offer. If the participants continue to alternate advertising and path selec
tion steps, this algorithm ensures that eventually every participant will have in its own
path vector the best (in this case, shortest) path to every other participant and there will
be no loops.

If static routing would suffice, the path vector construction procedure described
above could stop once everyone’s tables had stabilized. But a nice feature of this algo
rithm is that it is easily extended to provide adaptive routing. One method of extension
would be, on learning of a change in topology, to redo the entire procedure, starting

Saltzer & Kaashoek Ch. 7, p. 53 June 25, 2009 8:22 am

7–54 CHAPTER 7 The Network as a System and as a System Component

again with path vectors containing just the path to the local end layer. A more efficient
approach is to use the existing path vectors as a first approximation. The one or two par
ticipants who, for example, discover that a link is no longer working simply adjust their
own path vectors to stop using that link and then advertise their new path vectors to the
neighbors they can still reach. Once we realize that readvertising is a way to adjust to
topology change, it is apparent that the straightforward way to achieve adaptive routing
is simply to have every router occasionally repeat the path vector exchange algorithm.

If someone adds a new link to the network, on the next iteration of the exchange algo
rithm, the routers at each end of the new link will discover it and propagate the discovery
throughout the network. On the other hand, if a link goes down, an additional step is
needed to ensure that paths that traversed that link are discarded: each router discards
any paths that a neighbor stops advertising. When a link goes down, the routers on each
end of that link stop receiving advertisements; as soon as they notice this lack they dis
card all paths that went through that link. Those paths will be missing from their own
next advertisements, which will cause any neighbors using those paths to discard them
in turn; in this way the fact of a down link retraces each path that contains the link,
thereby propagating through the network to every router that had a path that traversed
the link. A model implementation of all of the parts of this path vector algorithm appears
in Figure 7.37.

When designing a routing algorithm, there are a number of questions that one should
ask. Does the algorithm converge? (Because it selects the shortest path this algorithm will
converge, assuming that the topology remains constant.) How rapidly does it converge?
(If the shortest path from a router to some participant is N steps, then this algorithm will
insert that shortest path in that router’s table after N advertising/path-selection
exchanges.) Does it respond equally well to link deletions? (No, it can take longer to con
vince all participants of deletions. On the other hand, there are other algorithms—such
as distance vector, which passes around just the lengths of paths rather than the paths
themselves—that are much worse.) Is it safe to send traffic before the algorithm con
verges? (If a link has gone down, some packets may loop for a while until everyone agrees
on the new forwarding tables. This problem is serious, but in the next paragraph we will
see how to fix it by discarding packets that have been forwarded too many times.) How
many destinations can it reasonably handle? (The Border Gateway Protocol, which uses
a path vector algorithm similar to the one described above, has been used in the Internet
to exchange information concerning 100,000 or so routes.)

The possibility of temporary loops in the forwarding tables or more general routing
table inconsistencies, buggy routing algorithms, or misconfigurations can be dealt with
by a network layer mechanism known as the hop limit. The idea is to add a field to the
network-layer header containing a hop limit counter. The originator of the packet ini
tializes the hop limit. Each router that handles the packet decrements the hop limit by
one as the packet goes by. If a router finds that the resulting value is zero, it discards the
packet. The hop limit is thus a safety net that ensures that no packet continues bouncing
around the network forever.

Saltzer & Kaashoek Ch. 7, p. 54 June 25, 2009 8:22 am

7.4 The Network Layer 7–55

FIGURE 7.37

// Maintain routing and forwarding tables.

vector associative array // vector[d_addr] contains path to destination d_addr
neighbor_vector instance of vector // A path vector received from some neighbor
my_vector instance of vector // My current path vector.
addr associative array // addr[j] is the address of the network attachment

// point at the other end of link j.
// my_addr is address of my network attachment point.
// A path is a parsable list of addresses, e.g. {a,b,c,d}

procedure main() // Initialize, then start advertising.
SET_TYPE_HANDLER (HANDLE_ADVERTISEMENT, exchange_protocol)
clear my_vector; // Listen for advertisements
do occasionally // and advertise my paths

for each j in link_ids do // to all of my neighbors.
status ← SEND_PATH_VECTOR (j, my_addr, my_vector, exch_protocol)
if status ≠ 0 then // If the link was down,

clear new_vector // forget about any paths
FLUSH_AND_REBUILD (j) // that start with that link.

procedure HANDLE_ADVERTISEMENT (advt, link_id) // Called when an advt arrives.
addr[link_id] ← GET_SOURCE (advt) // Extract neighbor’s address
neighbor_vector ← GET_PATH_VECTOR (advt) // and path vector.
for each neighbor_vector.d_addr do // Look for better paths.

new_path ←{addr[link_id], neighbor_vector[d_addr]} // Build potential path.
if my_addr is not in new_path then // Skip it if I’m in it.

if my_vector[d_addr] = NULL) then // Is it a new destination?
my_vector[d_addr] ← new_path // Yes, add this one.

else // Not new; if better, use it.
my_vector[d_addr] ← SELECT_PATH (new_path, my_vector[d_addr])

FLUSH_AND_REBUILD (link_id)

procedure SELECT_PATH (new, old) // Decide if new path is better than old one.
if first_hop(new) = first_hop(old) then return new // Update any path we were

// already using.
else if length(new) ≥ length(old) then return old // We know a shorter path, keep
else return new // OK, the new one looks better.

procedure FLUSH_AND_REBUILD (link_id) // Flush out stale paths from this neighbor.
for each d_addr in my_vector

if first_hop(my_vector[d_addr]) = addr[link_id] and new_vector[d_addr] = NULL

then
delete my_vector[d_addr] // Delete paths that are no longer advertised.

REBUILD_FORWARDING_TABLE (my_vector, addr) // Pass info to forwarder.

Model implementation of a path vector exchange routing algorithm. These procedures run in
every participating router. They assume that the link layer discards damaged packets. If an
advertisement is lost, it is of little consequence because the next advertisement will replace it
The procedure REBUILD_FORWARDING_TABLE is not shown; it simply constructs a new forwarding
table for use by this router, using the latest path vector information.

Saltzer & Kaashoek Ch. 7, p. 55 June 25, 2009 8:22 am

7–56 CHAPTER 7 The Network as a System and as a System Component

There are some obvious refinements that can be made to the path vector algorithm.
For example, since nodes such as A, B, C, D, and F are connected by only one link to
the rest of the network, they can skip the path selection step and just assume that all des
tinations are reachable via their one link—but when they first join the network they must
do an advertising step, to ensure that the rest of the network knows how to reach them
(and it would be wise to occasionally repeat the advertising step, to make sure that link
failures and router restarts don’t cause them to be forgotten). A service node such as E,
which has two links to the network but is not intended to be used for transit traffic, may
decide never to advertise anything more than the path to itself. Because each participant
can independently decide which paths it advertises, path vector exchange is sometimes
used to implement restrictive routing policies. For example, a country might decide that
packets that both originate and terminate domestically should not be allowed to transit
another country, even if that country advertises a shorter path.

The exchange of data among routers is just another example of a network layer pro
tocol. Since the link layer already provides network layer protocol multiplexing, no extra
effort is needed to add a routing protocol to the layered system. Further, there is nothing
preventing different groups of routers from choosing to use different routing protocols
among themselves. In the Internet, there are many different routing protocols simulta
neously in use, and it is common for a single router to use different routing protocols
over different links.

7.4.3 Hierarchical Address Assignment and Hierarchical Routing

The system for identifying attachment points of a network as described so far is work
able, but does not scale up well to large numbers of attachment points. There are two
immediate problems:

1. 	Every attachment point must have a unique address. If there are just ten
attachment points, all located in the same room, coming up with a unique
identifier for an eleventh is not difficult. But if there are several hundred million
attachment points in locations around the world, as in the Internet, it is hard to
maintain a complete and accurate list of addresses already assigned.

2. 	The path vector grows in size with the number of attachment points. Again, for
routers to exchange a path vector with ten entries is not a problem; a path vector
with 100 million entries could be a hassle.

The usual way to tackle these two problems is to introduce hierarchy: invent some
scheme by which network addresses have a hierarchical structure that we can take advan
tage of, both for decentralizing address assignments and for reducing the size of
forwarding tables and path vectors.

For example, consider again the abstract network of Figure 7.28, in which we arbi
trarily assigned two-digit numbers as network addresses. Suppose we instead adopt a
more structured network address consisting, say, of two parts, which we might call

Saltzer & Kaashoek Ch. 7, p. 56	 June 25, 2009 8:22 am

7.4 The Network Layer 7–57

“region” and “station”. Thus in Figure 7.31 we might assign to A the network address
“11,75” where 11 is a region identifier and 75 is a station identifier.

By itself, this change merely complicates things. However, if we also adopt a policy
that regions must correspond to the set of network attachment points served by an iden
tifiable group of closely-connected routers, we have a lever that we can use to reduce the
size of forwarding tables and path vectors. Whenever a router for region 11 gets ready to
advertise its path vector to a router that serves region 12, it can condense all of the paths
for the region 11 network destinations it knows about into a single path, and simply
advertise that it knows how to forward things to any region 11 network destination. The
routers that serve region 11 must, of course, still maintain complete path vectors for
every region 11 station, and exchange those vectors among themselves, but these vectors
are now proportional in size to the number of attachment points in region 11, rather
than to the number of attachment points in the whole network.

When a network uses hierarchical addresses, the operation of forwarding involves the
same steps as before, but the table lookup process is slightly more complicated: The for
warder must first extract the region component of the destination address and look that
up in its forwarding table. This lookup has two possible outcomes: either the forwarding
table contains an entry showing a link over which to send the packet to that region, or
the forwarding table contains an entry saying that this forwarder is already in the desti
nation region, in which case it is necessary to extract the station identifier from the
destination address and look that up in a distinct part of the forwarding table. In most
implementations, the structure of the forwarding table reflects the hierarchical structure
of network addresses. Figure 7.38 illustrates the use of a forwarding table for hierarchical
addresses that is constructed of two sections.

Hierarchical addresses also offer an opportunity to grapple with the problem of
assigning unique addresses in a large network because the station part of a network
address needs to be unique only within its region. A central authority can assign region
identifiers, while different local authorities can assign the station identifiers within each
region, without consulting other regional authorities. For this decentralization to work,
the boundaries of each local administrative authority must coincide with the boundaries
of the regions served by the packet forwarders. While this seems like a simple thing to
arrange, it can actually be problematic. One easy way to define regions of closely con
nected packet forwarders is to do it geographically. However, administrative authority is
often not organized on a strictly geographic basis. So there may be a significant tension
between the needs of address assignment and the needs of packet forwarding.

Hierarchical network addresses are not a panacea—in addition to complexity, they
introduce at least two new problems. With the non-hierarchical scheme, the geographi
cal location of a network attachment point did not matter, so a portable computer could,
for example, connect to the network in either Boston or San Francisco, announce its net
work address, and after the routers have exchanged path vectors a few times, expect to
communicate with its peers. But with hierarchical routing, this feature stops working.
When a portable computer attaches to the network in a different region, it cannot simply
advertise the same network address that it had in its old region. It will instead have to

Saltzer & Kaashoek Ch. 7, p. 57 June 25, 2009 8:22 am

7–58 CHAPTER 7 The Network as a System and as a System Component

first acquire a network address within the region to which it is attaching. In addition,
unless some provision has been made at the old address for forwarding, other stations in
the network that remember the old network address will find that they receive no-answer
responses when they try to contact this station, even though it is again attached to the
network.

The second complication is that paths may no longer be the shortest possible because
the path vector algorithm is working with less detailed information. If there are two dif
ferent routers in region 5 that have paths leading to region 7, the algorithm will choose
the path to the nearest of those two routers, even though the other router may be much
closer to the actual destination inside region 7.

We have used in this example a network address with two hierarchical levels, but the
same principle can be extended to as many levels as are needed to manage the network.
In fact, any region can do hierarchical addressing within just the part of the address space
that it controls, so the number of hierarchical levels can be different in different places.
The public Internet uses just two hierarchical addressing levels, but some large subnet
works of the Internet implement the second level internally as a two-level hierarchy.
Similarly, North American telephone providers have created a four-level hierarchy for
telephone numbers: country code, area code, exchange, and line number, for exactly the
same reasons: to reduce the size of the tables used in routing calls, and to allow local
administration of line numbers. Other countries agree on the country codes but inter
nally may have a different number of hierarchical levels.

region R1

to link

R1.A 1

forwarding table in R1.B

R1.B
R1.C

end-layer
2

to link

R1 local
R2
R3
R4

1
1
3

region forwarding local forwarding

region R2

region R3

R1.B

R3.C

R1.C

1

32 R1.A

R1.D 3

R1.D section section

region R4

FIGURE 7.38

Example of a forwarding table with regional addressing in network node R1.B. The forwarder
first looks up the region identifier in the region forwarding section of the table. If the target
address is R3.C, the region identifier is R3, so the table tells it that it should forward the packet
on link 1. If the target address is R1.C, which is in its own region R1, the region forwarding table
tells it that R1 is the local region, so it then looks up R1.C in the local forwarding section of the
table. There may be hundreds of network attachment points in region R3, but just one entry is
needed in the forwarding table at node R1.B.

Saltzer & Kaashoek Ch. 7, p. 58 June 25, 2009 8:22 am

7.4 The Network Layer 7–59

7.4.4 Reporting Network Layer Errors

The network layer can encounter trouble when trying to forward a packet, so it needs a
way of reporting that trouble. The network layer is in a uniquely awkward position when
this happens because the usual reporting method (return a status value to the higher-layer
program that asked for this operation) may not be available. An intermediate router
receives a packet from a link layer below, and it is expected to forward that packet via
another link layer. Even if there is a higher layer in the router, that layer probably has no
interest in this packet. Instead, the entity that needs to hear about the problem is more
likely to be the upper layer program that originated the packet, and that program may
be located several hops away in another computer. Even the network layer at the desti
nation address may need to report something to the original sender such as the lack of
an upper-layer handler for the end-to-end type that the sender specified.

The obvious thing to do is send a message to the entity that needs to know about the
problem. The usual method is that the network layer of the router creates a new packet
on the spot and sends it back to the source address shown in the problem packet. The
message in this new packet reports details of the problem using some standard error
reporting protocol. With this design, the original higher-layer sender of a packet is
expected to listen not only for replies but also for messages of the error reporting proto
col. Here are some typical error reports:

• The buffers of the router were full, so the packet had to be discarded.
• The buffers of the router are getting full—please stop sending so many packets.
• The region identifier part of the target address does not exist.
• The station identifier part of the target address does not exist.
• The end type identifier was not recognized.
• The packet is larger than the maximum transmission unit of the next link.
• The packet hop limit has been exceeded.

In addition, a copy of the header of the doomed packet goes into a data field of the error
message, so that the recipient can match it with an outstanding SEND request.

One might suggest that a router send an error report when discarding a packet that is
received with a wrong checksum. This idea is not as good as it sounds because a damaged
packet may have garbled header information, in which case the error message might be
sent to a wrong—or even nonexistent—place. Once a packet has been identified as con
taining unknown damage, it is not a good idea to take any action that depends on its
contents.

A network-layer error reporting protocol is a bit unusual. An error message originates
in the network layer, but is delivered to the end-to-end layer. Since it crosses layers, it
can be seen as violating (in a minor way) the usual separation of layers: we have a network
layer program preparing an end-to-end header and inserting end-to-end data; a strict
layer doctrine would insist that the network layer not touch anything but network layer
headers.

Saltzer & Kaashoek Ch. 7, p. 59 June 25, 2009 8:22 am

7–60 CHAPTER 7 The Network as a System and as a System Component

An error reporting protocol is usually specified to be a best-effort protocol, rather
than one that takes heroic efforts to get the message through. There are two reasons why
this design decision makes sense. First, as will be seen in Section 7.5 of this chapter,
implementing a more reliable protocol adds a fair amount of machinery: timers, keeping
copies of messages in case they need to be retransmitted, and watching for receipt
acknowledgments. The network layer is not usually equipped to do any of these func
tions, and not implementing them minimizes the violation of layer separation. Second,
error messages can be thought of as hints that allow the originator of a packet to more
quickly discover a problem. If an error message gets lost, the originator should, one way
or another, eventually discover the problem in some other way, perhaps after timing out,
resending the original packet, and getting an error message on the retry.

A good example of the best-effort nature of an error reporting protocol is that it is
common to not send an error message about every discarded packet; if congestion is caus
ing the discard rate to climb, that is exactly the wrong time to increase the network load
by sending many “I discarded your packet” notices. But sending a few such notices can
help alert sources who are flooding the network that they need to back off—this topic is
explored in more depth in Section 7.6.

The basic idea of an error reporting protocol can be used for other communications
to and from the network layer of any participant in the network. For example, the Inter
net has a protocol named internet control message protocol (ICMP) that includes an echo
request message (also known as a “ping,” from an analogy with submarine active sonar
systems). If an end node sends an echo request to any network participant, whether a
packet forwarder or another end node, the network layer in that participant is expected
to respond by immediately sending the data of the message back to the sender in an echo
reply message. Echo request/reply messages are widely used to determine whether or not
a participant is actually up and running. They are also sometimes used to assess network
congestion by measuring the time until the reply comes back.

Another useful network error report is “hop limit exceeded”. Recall from page 7–54
that to provide a safety net against the possibility of forwarding loops, a packet may con
tain a hop limit field, which a router decrements in each packet that it forwards. If a
router finds that the hop limit field contains zero, it discards the packet and it also sends
back a message containing the error report. The “hop limit exceeded” error message pro
vides feedback to the originator, for example it may have chosen a hop limit that is too
small for the network configuration. The “hop limit exceeded” error message can also be
used in an interesting way to help locate network problems: send a test message (usually
called a probe) to some distant destination address, but with the hop limit set to 1. This
probe will cause the first router that sees it to send back a “hop limit exceeded” message
whose source address identifies that first router. Repeat the experiment, sending probes
with hop limits set to 2, 3,…, etc. Each response will reveal the network address of the
next router along the current path between the source and the destination. In addition,
the time required for the response to return gives a rough indication of the network load
between the source and that router. In this way one can trace the current path through
the network to the destination address, and identify points of congestion.

Saltzer & Kaashoek Ch. 7, p. 60 June 25, 2009 8:22 am

7.4 The Network Layer 7–61

Another way to use an error reporting protocol is for the end-to-end layer to send a
series of probes to learn the smallest maximum transmission unit (MTU) that lies on the
current path between it and another network attachment point. It first sends a packet of
the largest size the application has in mind. If this probe results in an “MTU exceeded”
error response, it halves the packet size and tries again. A continued binary search will
quickly home in on the smallest MTU along the path. This procedure is known as MTU
discovery.

7.4.5 Network Address Translation (An Idea That Almost Works)

From a naming point of view, the Internet provides a layered naming environment with
two contexts for its network attachment points, known as “Internet addresses”. An Inter
net address has two components, a network number and a host number. Most network
numbers are global names, but a few, such as network 10, are designated for use in pri
vate networks. These network numbers can be used either completely privately, or in
conjunction with the public Internet. Completely private use involves setting up an inde
pendent private network, and assigning host addresses using the network number 10.
Routers within this network advertise and forward just as in the public Internet. Routers
on the public Internet follow the convention that they do not accept routes to network
10, so if this private network is also directly attached to the public Internet, there is no
confusion. Assuming that the private network accepts routes to globally named net
works, a host inside the private network could send a message to a host on the public
Internet, but a host on the public Internet cannot send a response back because of the
routing convention. Thus any number of private networks can each independently
assign numbers using network number 10—but hosts on different private networks can
not talk to one another and hosts on the public Internet cannot talk to them.

Network Address Translation (NAT) is a scheme to bridge this gap. The idea is that
a specialized translating router (known informally as a “NAT box”) stands at the border
between a private network and the public Internet. When a host inside the private net
work wishes to communicate with a service on the public Internet, it first makes a request
to the translating router. The translator sets up a binding between that host’s private
address and a temporarily assigned public address, which the translator advertises to the
public Internet. The private host then launches a packet that has a destination address in
the public Internet, and its own private network source address. As this packet passes
through the translating router, the translator modifies the source address by replacing it
with the temporarily assigned public address. It then sends the packet on its way into the
public Internet. When a response from the service on the public Internet comes back to
the translating router, the translator extracts the destination address from the response,
looks it up in its table of temporarily assigned public addresses, finds the internal address
to which it corresponds, modifies the destination address in the packet, and sends the
packet on its way on the internal network, where it finds its way to the private host that
initiated the communication.

Saltzer & Kaashoek Ch. 7, p. 61 June 25, 2009 8:22 am

7–62 CHAPTER 7 The Network as a System and as a System Component

The scheme works, after a fashion, but it has a number of limitations. The most severe
limitation is that some end-to-end network protocols place Internet addresses in fields
buried in their payloads; there is nothing restricting Internet addresses to packet source
and destination fields of the network layer header. For example, some protocols between
two parties start by mentioning the Internet address of a third party, such as a bank, that
must also participate in the protocol. If the Internet address of the third party is on the
public Internet, there may be no problem, but if it is an address on the private network,
the translator needs to translate it as it goes by. The trouble is that translation requires
that the translator peer into the payload data of the packet and understand the format of
the higher-layer protocol. The result is that NAT works only for those protocols that the
translator is programmed to understand. Some protocols may present great difficulties.
For example, if a secure protocol uses key-driven cryptographic transformations for
either privacy or authentication, the NAT gateway would need to have a copy of the
keys, but giving it the keys may defeat the purpose of the secure protocol. (This concern
will become clearer after reading Chapter 11[on-line].)

A second problem is that all of the packets between the public Internet and the private
network must pass through the translating router, since it is the only place that knows
how to do the address translation. The translator thus introduces both a potential bot
tleneck and a potential single point of failure, and NAT becomes a constraint on routing
policy.

A third problem arises if two such organizations later merge. Each organization will
have assigned addresses in network 10, but since their assignments were not coordinated,
some addresses will probably have been assigned in both organizations, and all of the col
liding addresses must be discovered and changed.

Although originally devised as a scheme to interconnect private networks to the pub
lic Internet, NAT has become popular as a technique to beef up security of computer
systems that have insecure operating system or network implementations. In this appli
cation, the NAT translator inspects every packet coming from the public Internet and
refuses to pass along any whose origin seems suspicious or that try to invoke services that
are not intended for public use. The scheme does not in itself provide much security, but
in conjunction with other security mechanisms described in Chapter 11[on-line], it can
help create what that chapter describes as “defense in depth”.

7.5 The End-to-End Layer
The network layer provides a useful but not completely dependable best-effort commu
nication environment that will deliver data segments to any destination, but with no
guarantees about delay, order of arrival, certainty of arrival, accuracy of content, or even
of delivery to the right place. This environment is too hostile for most applications, and
the job of the end-to-end layer is to create a more comfortable communication environ
ment that has the features of performance, reliability, and certainty that an application
needs. The complication is that different applications can have quite different commu-

Saltzer & Kaashoek Ch. 7, p. 62 June 25, 2009 8:22 am

7.5 The End-to-End Layer 7–63

nication needs, so no single end-to-end design is likely to suffice. At the same time,
applications tend to fall in classes all of whose members have somewhat similar require
ments. For each such class it is usually possible to design a broadly useful protocol,
known as a transport protocol, for use by all the members of the class.

7.5.1 Transport Protocols and Protocol Multiplexing

A transport protocol operates between two attachment points of a network, with the goal
of moving either messages or a stream of data between those points while providing a
particular set of specified assurances. As was explained in Chapter 4, it is convenient to
distinguish the two attachment points by referring to the application program that ini
tiates action as the client and the application program that responds as the service. At the
same time, data may flow either from client to service, from service to client, or both, so
we will need to refer to the sending and receiving sides for each message or stream. Trans
port protocols almost always include multiplexing, to tell the receiving side to which
application it should deliver the message or direct the stream. Because the mechanics of
application multiplexing can be more intricate than in lower layers, we first describe a
transport protocol interface that omits multiplexing, and then add multiplexing to the
interface.

In contrast with the network layer, where an important feature is a uniform applica
tion programming interface, the interface to an end-to-end transport protocol varies
with the particular end-to-end semantics that the protocol provides. Thus a simple mes
sage-sending protocol that is intended to be used by only one application might have a
first-version interface such as:

v.1 SEND_MESSAGE (destination, message)

in which, in addition to supplying the content of the message, the sender specifies in des

tination the network attachment point to which the message should be delivered. The
sender of a message needs to know both the message format that the recipient expects
and the destination address. Chapter 3 described several methods of discovering destina
tion addresses, any of which might be used.

The prospective receiver must provide an interface by which the transport protocol
delivers the message to the application. Just as in the link and network layers, receiving
a message can’t happen until the message arrives, so receiving involves waiting and the
corresponding receive-side interface depends on the system mechanisms that are avail
able for waiting and for thread or event coordination. For illustration, we again use an
upcall: when a message arrives, the message transport protocol delivers it by calling an
application-provided procedure entry point:

V.1 DELIVER_MESSAGE (message)

This first version of an upcall interface omits not only multiplexing but another impor
tant requirement: When sending a message, the sender usually expects a reply. While a
programmer may be able to ask someone down the hall the appropriate destination
address to use for some service, it is usually the case that a service has many clients. Thus

Saltzer & Kaashoek Ch. 7, p. 63 June 25, 2009 8:22 am

7–64 CHAPTER 7 The Network as a System and as a System Component

the service needs to know where each message came from so that it can send a reply. A
message transport protocol usually provides this information, for example by including
a second argument in the upcall interface:

V.2 DELIVER_MESSAGE (source, message)

In this second (but not quite final) version of the upcall, the transport protocol sets the
value of source to the address from which this message originated. The transport proto
col obtains the value of source as an argument of an upcall from the network layer.

Since the reason for designing a message transport protocol is that it is expected to be
useful to several applications, the interface needs additional information to allow the pro
tocol to know which messages belong to which application. End-to-end layer
multiplexing is generally a bit more complicated than that of lower layers because not
only can there be multiple applications, there can be multiple instances of the same appli
cation using the same transport protocol. Rather than assigning a single multiplexing
identifier to an application, each instance of an application receives a distinct multiplex
ing identifier, usually known as a port. In a client/service situation, most application
services advertise one of these identifiers, called that application’s well-known port. Thus
the second (and again not final) version of the send interface is

v.2SEND_MESSAGE (destination, service_port, message)

where service_port identifies the well-known port of the application service to which the
sender wants to have the message delivered. At the receiving side each application that
expects to receive messages needs to tell the message transport protocol what port it
expects clients to use, and it must also tell the protocol what program to call to deliver
messages. The application can provide both pieces of information invoking the transport
protocol procedure

LISTEN_FOR_MESSAGES (service_port, message_handler)

which alerts the transport protocol implementation that whenever a message arrives at
this destination carrying the port identifier service_port, the protocol should deliver it by
calling the procedure named in the second argument (that is, the procedure
message_handler). LISTEN_FOR_MESSAGES enters its two arguments in a transport layer
table for future reference. Later, when the transport protocol receives a message and is
ready to deliver it, it invokes a dispatcher similar to that of Figure 7.27, on page 7–43.
The dispatcher looks in the table for the service port that came with the message, iden
tifies the associated message_handler procedure, and calls it, giving as arguments the
source and the message.

One might expect that the service might send replies back to the client using the same
application port number, but since one service might have several clients at the same net
work attachment point, each client instance will typically choose a distinct port number
for its own replies, and the service needs to know to which port to send the reply. So the

Saltzer & Kaashoek Ch. 7, p. 64 June 25, 2009 8:22 am

7.5 The End-to-End Layer 7–65

SEND interface must be extended one final time to allow the sender to specify a port num
ber to use for reply:

v.3 SEND_MESSAGE (destination, service_port, reply_port, message)

where reply_port is the identifier that the service can use to send a message back to this
particular client. When the service does send its reply message, it may similarly specify a
reply_port that is different from its well-known port if it expects that same client to send
further, related messages. The reply_port arguments in the two directions thus allow a
series of messages between a client and a service to be associated with one another.

Having added the port number to SEND_MESSAGE, we must communicate that port
number to the recipient by adding an argument to the upcall by the message transport
protocol when it delivers a message to the recipient:

v.3 DELIVER_MESSAGE (source, reply_port, message)

This third and final version of DELIVER_MESSAGE is the handler that the application desig
nated when it called LISTEN_FOR_MESSAGES. The three arguments tell the handler (1) who
sent the message (source), (2) the port on which that sender said it will listen for a pos
sible reply (reply_port) and (3) the content of the message itself (message).

The interface set {LISTEN_FOR_MESSAGE, SEND_MESSAGE, DELIVER_MESSAGE} is specialized
to end-to-end transport of discrete messages. Sidebar 7.5 illustrates two other, somewhat
different, end-to-end transport protocol interfaces, one for a request/response protocol
and the second for streams. Each different transport protocol can be thought of as a pre
packaged set of improvements on the best-effort contract of the network layer. Here are
three examples of transport protocols used widely in the Internet, and the assurances they
provide:

1. 	User datagram protocol (UDP). This protocol adds ports for multiple applications
and a checksum for data integrity to the network-layer packet. Although UDP is
used directly for some simple request/reply applications such as asking for the time
of day or looking up the network address of a service, its primary use is as a
component of other message transport protocols, to provide end-to-end
multiplexing and data integrity. [For details, see Internet standard STD0006 or
Internet request for comments RFC–768.]

2. 	Transmission control protocol (TCP). Provides a stream of bytes with the assurances
that data is delivered in the order it was originally sent, nothing is missing, nothing
is duplicated, and the data has a modest (but not terribly high) probability of
integrity. There is also provision for flow control, which means that the sender
takes care not to overrun the ability of the receiver to accept data, and TCP
cooperates with the network layer to avoid congestion. This protocol is used for
applications such as interactive typing that require a telephone-like connection in
which the order of delivery of data is important. (It is also used in many bulk
transfer applications that do not require delivery order, but that do want to take
advantage of its data integrity, flow control, and congestion avoidance assurances.)

Saltzer & Kaashoek Ch. 7, p. 65	 June 25, 2009 8:22 am

7–66 CHAPTER 7 The Network as a System and as a System Component

Sidebar 7.5: Other end-to-end transport protocol interfaces Since there are many different
combinations of services that an end-to-end transport protocol might provide, there are equally
many transport protocol interfaces. Here are two more examples:

1. A request/response protocol sends a request message and waits for a response to that message
before returning to the application. Since an interface that waits for a response ensures that
there can be only one such call per thread outstanding, neither an explicit multiplexing
parameter nor an upcall are necessary. A typical client interface to a request/response transport
protocol is

response ← SEND_REQUEST (service_identifier, request)

where service_identifier is a name used by the transport protocol to locate the service
destination and service port. It then sends a message, waits for a matching response, and
delivers the result. The corresponding application programming interface at the service side of
a request/response protocol may be equally simple or it can be quite complex, depending on
the performance requirements.

2. A reliable message stream protocol sends several messages to the same destination with the
intent that they be delivered reliably and in the order in which they were sent. There are many
ways of defining a stream protocol interface. In the following example, an application client
begins by creating a stream:

client_stream_id ← OPEN_STREAM (destination, service_port, reply_port)

followed by several invocations of:

WRITE_STREAM (client_stream_id, message)

and finally ends with:

CLOSE_STREAM (client_stream_id)

The service-side programming interface allows for several streams to be coming in to an
application at the same time. The application starts by calling a LISTEN_FOR_STREAMS

procedure to post a listener on the service port, just as with the message interface. When a client
opens a new stream, the service’s network layer, upon receiving the open request, upcalls to the
stream listener that the application posted:

OPEN_STREAM_REQUEST (source, reply_port)

and upon receiving such an upcall OPEN_STREAM_REQUEST assigns a stream identifier for use
within the service and invokes a transport layer dispatcher with

ACCEPT_STREAM (service_stream_id, next_message_handler)

The arrival of each message on the stream then leads the dispatcher to perform an upcall to the
program identified in the variable next_message_handler:

HANDLE_NEXT_MESSAGE (stream_id, message);

With this design, a message value of NULL might signal that the client has closed the stream.

Saltzer & Kaashoek Ch. 7, p. 66 June 25, 2009 8:22 am

7.5 The End-to-End Layer 7–67

[For details, see Internet standard STD0007 or Internet request for comments
RFC–793.]

3. 	Real-time transport protocol (RTP). Built on UDP (but with checksums switched
off), RTP provides a stream of time-stamped packets with no other integrity
guarantee. This kind of protocol is useful for applications such as streaming video
or voice, where order and stream timing are important, but an occasional lost
packet is not a catastrophe, so out-of-order packets can be discarded, and packets
with bits in error may still contain useful data. [For details, see Internet request for
comments RFC–1889.]

There have, over the years, been several other transport protocols designed for use
with the Internet, but they have not found enough application to be widely imple
mented. There are also several end-to-end protocols that provide services in addition to
message transport, such as file transfer, file access, remote procedure call, and remote sys
tem management, and that are built using UDP or TCP as their underlying transport
mechanism. These protocols are usually classified as presentation protocols because the pri
mary additional service they provide is translating data formats between different
computer platforms. This collection of protocols illustrates that the end-to-end layer is
itself sometimes layered and sometimes not, depending on the requirements of the
application.

Finally, end-to-end protocols can be multipoint, which means they involve more than
two players. For example, to complete a purchase transaction, there may be a buyer, a
seller, and one or more banks, each of which needs various end-to-end assurances about
agreement, order of delivery, and data integrity.

In the next several sections, we explore techniques for providing various kinds of end-
to-end assurances. Any of these techniques may be applied in the design of a message
transport protocol, a presentation protocol, or by the application itself.

7.5.2 Assurance of At-Least-Once Delivery; the Role of Timers

A property of a best-effort network is that it may lose packets, so a goal of many end-to
end transport protocols is to eliminate the resulting uncertainty about delivery. A persis
tent sender is a protocol participant that tries to ensure that at least one copy of each data
segment is delivered, by sending it repeatedly until it receives an acknowledgment. The
usual implementation of a persistent sender is to add to the application data a header
containing a nonce and to set a timer that the designer estimates will expire in a little
more than one network round-trip time, which is the sum of the network transit time for
the outbound segment, the time the receiver spends absorbing the segment and prepar
ing an acknowledgment, and the network transit time for the acknowledgment. Having
set the timer, the sender passes the segment to the network layer for delivery, taking care
to keep a copy. The receiving side of the protocol strips off the end-to-end header, passes
the application data along to the application, and in addition sends back an acknowledg
ment that contains the nonce. When the acknowledgment gets back to the sender, the

Saltzer & Kaashoek Ch. 7, p. 67	 June 25, 2009 8:22 am

7–68 CHAPTER 7 The Network as a System and as a System Component

sender uses the nonce to identify which previously-sent segment is being acknowledged.
It then turns off the corresponding timer and discards its copy of that segment. If the
timer expires before the acknowledgment returns, the sender restarts the timer and
resends the segment, repeating this sequence indefinitely, until it receives an acknowl
edgment. For its part, the receiver sends back an acknowledgment every time it receives
a segment, thereby extending the persistence in the reverse direction, thus covering the
possibility that the best-effort network has lost one or more acknowledgments.

A protocol that includes a persistent sender does its best to provide an assurance of
at-least-once delivery, which has semantics similar to the at-least-once RPC introducd in
Section 4.2.2. The nonce, timer, retry, and acknowledgment together act to ensure that
the data segment will eventually get through. As long as there is a non-zero probability
of a message getting through, this protocol will eventually succeed. On the other hand,
the probability may actually be zero, either for an indefinite time—perhaps the network
is partitioned or the destination is not currently listening, or permanently—perhaps the
destination is on a ship that has sunk. Because of the possibility that there will not be an
acknowledgment forthcoming soon, or perhaps ever, a practical sender is not infinitely
persistent. The sender limits the number of retries, and if the number exceeds the limit,
the sender returns error status to the application that asked to send the message. The
application must interpret this error status with some understanding of network com
munications. The lack of an acknowledgment means that one of two—significantly
different—events has occurred:

1. The data segment was not delivered.

2. The data segment was delivered, but the acknowledgment never returned.

The good news is that the application is now aware that there is a problem. The bad news
is that there is no way to determine which of the two problems occurred. This dilemma
is intrinsic to communication systems, and the appropriate response depends on the par
ticular application. Some applications will respond to this dilemma by making a note to
later ask the other side whether or not it got the message; other applications may just
ignore the problem. Chapter 10[on-line] investigates this issue further.

In summary, just as with at-least-once RPC, the at-least-once delivery protocol does
not provide the absolute assurance that its name implies; it instead provides the assurance
that if it is possible to get through, the message will get through, and if it is not possible
to confirm delivery, the application will know about it.

The at-least-once delivery protocol provides no assurance about duplicates—it actu
ally tends to generate duplicates. Furthermore, the assurance of delivery is weaker than
appears on the surface: the data may have been corrupted along the way, or it may have
been delivered to the wrong destination—and acknowledged—by mistake. Assurances
on any of those points require additional techniques. Finally, the at-least-once delivery
protocol ensures only that the message was delivered, not that the application actually
acted on it—the receiving system may have been so overloaded that it ignored the mes
sage or it may have crashed an instant after acknowledging the message. When
examining end-to-end assurances, it is important to identify the end points. In this case,

Saltzer & Kaashoek Ch. 7, p. 68 June 25, 2009 8:22 am

7.5 The End-to-End Layer 7–69

the receiving end point is the place in the protocol code that sends the acknowledgment
of message receipt.

This protocol requires the sender to choose a value for the retry timer at the time it
sends a packet. One possibility would be to choose in advance a timer value to be used
for every packet—a fixed timer. But using a timer value fixed in advance is problematic
because there is no good way to make that choice. To detect a lost packet by noticing
that no acknowledgment has returned, the appropriate timer interval would be the
expected network round-trip time plus some allowance for unusual queuing delays. But
even the expected round-trip time between two given points can vary by quite a bit when
routes change. In fact, one can argue that since the path to be followed and the amount
of queuing to be tolerated is up to the network layer, and the individual transit times of
links are properties of the link layer, for the end-to-end layer to choose a fixed value for
the timer interval would violate the layering abstraction—it would require that the end-
to-end layer know something about the internal implementation of the link and network
layers.

Even if we are willing to ignore the abstraction concern, the end-to-end transport
protocol designer has a dilemma in choosing a fixed timer interval. If the designer
chooses too short an interval, there is a risk that the protocol will resend packets unnec
essarily, which wastes network capacity as well as resources at both the sending and
receiving ends. But if the designer sets the timer too long, then genuinely lost packets
will take a long time to discover, so recovery will be delayed and overall performance will
decline. Worse, setting a fixed value for a timer will not only force the designer to choose
between these two evils, it will also embed in the system a lurking surprise that may
emerge long in the future when someone else changes the system, for example to use a
faster network connection. Going over old code to understand the rationale for setting
the timers and choosing new values for them is a dismal activity that one would prefer
to avoid by better design.

There are two common ways to minimize the use of fixed timers, both of which are
applicable only when a transport protocol sends a stream of data segments to the same
destination: adaptive timers and negative acknowledgments.

An adaptive timer is one whose setting dynamically adjusts to currently observed con
ditions. A common implementation scheme is to observe the round-trip times for each
data segment and its corresponding response and calculate an exponentially weighted
moving average of those measurements (Sidebar 7.6 explains the method). The protocol
then sets its timers to, say, 150% of that estimate, with the intent that minor variations
in queuing delay should rarely cause the timer to expire. Keeping an estimate of the
round-trip time turns out to be useful for other purposes, too. An example appears in the
discussion of flow control in Section 7.5.6, below.

A refinement for an adaptive timer is to assume that duplicate acknowledgments
mean that the timer setting is too small, and immediately increase it. (Since a too-small
timer setting would expire before the first acknowledgment returns, causing the sender
to resend the original data segment, which would trigger the duplicate acknowledg
ment.) It is usually a good idea to make any increase a big one, for example by doubling

Saltzer & Kaashoek Ch. 7, p. 69 June 25, 2009 8:22 am

7–70
 CHAPTER 7 The Network as a System and as a System Component

Sidebar 7.6: Exponentially weighted moving averages One way of keeping a running
average, , of a series of measurements, , is to calculate an exponentially weighted moving
average, defined as

where and the subscript indicates the age of the measurement; the most recent being
. The multiplier at the end normalizes the result. This scheme has two advantages

over a simple average. First, it gives more weight to recent measurements. The multiplier, ,
is known as the decay factor. A smaller value for the decay factor means that older measurements
lose weight more rapidly as succeeding measurements are added into the average. The second
advantage is that it can be easily calculated as new measurements become available using the
recurrence relation:

where is the latest measurement. In a high-performance environment where
measurements arrive frequently and calculation time must be minimized, one can instead
calculate

which requires only one multiplication and one addition. Furthermore, if is chosen to
be a fractional power of two (e.g., 1/8) the multiplication can be done with one register shift
and one addition. Calculated this way, the result is too large by the constant factor ,
but it may be possible to take a constant factor into account at the time the average is used.
In both computer systems and networks there are many situations in which it is useful to know
the average value of an endless series of observations. Exponentially weighted moving averages
are probably the most frequently used method.

A Mi

A M0 M+
1

α× M2 α×
2

M3 α×
3

…+ + +⎝ ⎠
⎛ ⎞ 1 α–()×=

α 1<
M0 1 α–()

α

A new ← α Aold× 1 α–() M new ×+()

M new

A new
1 α–()

----------------- ← α
Aold
1 α–()

-----------------× M new +⎝ ⎠
⎛ ⎞

1 α–()

1 1 α–()⁄

the value previously used to set the timer. Repeatedly increasing a timer setting by mul
tiplying its previous value by a constant on each retry (thus succeeding timer values
might be, say, 1, 2, 4, 8, 16, … seconds) is known as exponential backoff, a technique that
we will see again in other, quite different system applications. Doubling the value, rather
than multiplying by, say, ten, is a good choice because it gets within a factor of two of
the “right” value quickly without overshooting too much.

Adaptive techniques are not a panacea: the protocol must still select a timer value for
the first data segment, and it can be a challenge to choose a value for the decay factor (in
the sidebar, the constant α) that both keeps the estimate stable and also quickly responds
to changes in network conditions. The advantage of an adaptive timer comes from being

Saltzer & Kaashoek Ch. 7, p. 70 June 25, 2009 8:22 am

7.5 The End-to-End Layer 7–71

able to amortize the cost of an uninformed choice on that first data segment over the
ensuing several segments.

A different method for minimizing use of fixed timers is for the receiving side of a
stream of data segments to infer from the arrival of later data segments the loss of earlier
ones and request their retransmission by sending a negative acknowledgment, or NAK. A
NAK is simply a message that lists missing items. Since data segments may be delivered
out of order, the recipient needs some way of knowing which segment is missing. For
example, the sender might assign sequential numbers as nonces, so arrival of segments
#13 and #14 without having previously received segment #12 might cause the recipient
to send a NAK requesting retransmission of segment #12. To distinguish transmission
delays from lost segments, the recipient must decide how long to wait before sending a
NAK, but that decision can be made by counting later-arriving segments rather than by
measuring a time interval.

Since the recipient reports lost packets, the sender does not need to be persistent, so
it does not need to use a timer at all—that is, until it sends the last segment of a stream.
Because the recipient can’t depend on later segment arrivals to discover that the last seg
ment has been lost, that discovery still requires the help of a timer. With NAKs, the
persistent-sender strategy with a timer is needed only once per stream, so the penalty for
choosing a timer setting that is too long (or too short) is just one excessive delay (or one
risk of an unnecessary duplicate transmission) on the last segment of the stream. Com
pared with using an adaptive timer on every segment of the stream, this is probably an
improvement.

The appropriate conclusion about timers is that fixed timers are a terrible mechanism
to include in an end-to-end protocol (or indeed anywhere—this conclusion applies to
many applications of timers in systems). Adaptive timers work better, but add complex
ity and require careful thought to make them stable. Avoidance and minimization of
timers are the better strategies, but it is usually impossible to completely eliminate them.
Where timers must be used they should be designed with care and the designer should
clearly document them as potential trouble spots.

7.5.3 Assurance of At-Most-Once Delivery: Duplicate Suppression

At-least-once delivery assurance was accomplished by remembering state at the sending
side of the transport protocol: a copy of the data segment, its nonce, and a flag indicating
that an acknowledgment is still needed. But a side effect of at-least-once delivery is that
it tends to generate duplicates. To ensure at-most-once delivery, it is necessary to suppress
these duplicates, as well as any other duplicates created elsewhere within the network,
perhaps by a persistent sender in some link-layer protocol.

The mechanism of suppressing duplicates is a mirror image of the mechanism of at-
least-once delivery: add state at the receiving side. We saw a preview of this mechanism
in Section 7.1 of this chapter—the receiving side maintains a table of previously-seen
nonces. Whenever a data segment arrives, the transport layer implementation checks the
nonce of the incoming segment against the list of previously-seen nonces. If this nonce

Saltzer & Kaashoek Ch. 7, p. 71 June 25, 2009 8:22 am

7–72 CHAPTER 7 The Network as a System and as a System Component

is new, it adds the nonce to the list, delivers the data segment to the application, and
sends an acknowledgment back to the sender. If the nonce is already in its list, it discards
the data segment, but it resends the acknowledgment, in case the sender did not receive
the previous one. If, in addition, the application has already sent a response to the orig
inal request, the transport protocol also resends that response.

The main problem with this technique is that the list of nonces maintained at the
receiving side of the transport protocol may grow indefinitely, taking up space and,
whenever a data segment arrives, taking time to search. Because they may have to be kept
indefinitely, these nonces are described colorfully as tombstones. A challenge in designing
a duplicate-suppression technique is to avoid accumulating an unlimited number of
tombstones.

One possibility is for the sending side to use monotonically increasing sequence num
bers for nonces, and include as an additional field in the end-to-end header of every data
segment the highest sequence number for which it has received an acknowledgment. The
receiving side can then discard that nonce and any others from that sender that are
smaller, but it must continue to hold a nonce for the most recently-received data seg
ment. This technique reduces the magnitude of the problem, but it leaves a dawning
realization that it may never be possible to discard the last nonce, which threatens to
become a genuine tombstone, one per sender. Two pragmatic responses to the tomb
stone problem are:

1. 	Move the problem somewhere else. For example, change the port number on
which the protocol accepts new requests. The protocol should never reuse the old
port number (the old port number becomes the tombstone), but if the port
number space is large then it doesn’t matter.

2. 	Accept the possibility of making a mistake, but make its probability vanishingly
small. If the sending side of the transport protocol always gives up and stops
resending requests after, say, five retries, then the receiving side can safely discard
nonces that are older than five network round-trip times plus some allowance for
unusually large delays. This approach requires keeping track of the age of each
nonce in the table, and it has some chance of failing if a packet that the network
delayed a long time finally shows up. A simple defense against this form of failure
is to wait a long time before discarding a tombstone.

Another form of the same problem concerns what to do when the computer at the
receiving side crashes and restarts, losing its volatile memory. If the receiving side stores
the list of previously handled nonces in volatile memory, following a crash it will not be
able to recognize duplicates of packets that it handled before the crash. But if it stores
that list in a non-volatile storage device such as a hard disk, it will have to do one write
to that storage device for every message received. Writes to non-volatile media tend to be
slow, so this approach may introduce a significant performance loss. To solve the prob
lem without giving up performance, techniques parallel to the last two above are typically
employed. For example, one can use a new port number each time the system restarts.

Saltzer & Kaashoek Ch. 7, p. 72	 June 25, 2009 8:22 am

7.5 The End-to-End Layer 7–73

This technique requires remembering which port number was last used, but that number
can be stored on a disk without hurting performance because it changes only once per
restart. Or, if we know that the sending side of the transport protocol always gives up
after some number of retries, whenever the receiving side restarts, it can simply ignore all
packets until that number of round-trip times has passed since restarting. Either proce
dure may force the sending side to report delivery failure to its application, but that may
be better than taking the risk of accepting duplicate data.

When techniques for at-least-once delivery (the persistent sender) and at-most-once
delivery (duplicate detection) are combined, they produce an assurance that is called
exactly-once delivery. This assurance is the one that would probably be wanted in an
implementation of the Remote Procedure Call protocol of Chapter 4. Despite its name,
and even if the sender is prepared to be infinitely persistent, exactly-once delivery is not
a guarantee that the message will eventually be delivered. Instead, it ensures that if the
message is delivered, it will be delivered only once, and if delivery fails, the sender will
learn, by lack of acknowledgment despite repeated requests, that delivery probably failed.
However, even if no acknowledgment returns, there is a still a possibility that the message
was delivered. Section 9.6.2[on-line] introduces a protocol known as two-phase commit
that can reduce the uncertainty by adding a persistent sender of the acknowledgement.
Unfortunately, there is no way to completely eliminate the uncertainty.

7.5.4 Division into Segments and Reassembly of Long Messages

Recall that the requirements of the application determine the length of a message, but
the network sets a maximum transmission unit, arising from limits on the length of a
frame at the link layer. One of the jobs of the end-to-end transport protocol is to bridge
this difference. Division of messages that are too long to fit in a single packet is relatively
straightforward. Each resulting data segment must contain, in its end-to-end header, an
identifier to show to which message this segment belongs and a segment number indi
cating where in the message the segment fits (e.g., “message 914, segment 3 of 7”). The
message identifier and segment number together can also serve as the nonce used to
ensure at-least-once and at-most-once delivery.

Reassembly is slightly more complicated because segments of the same message may
arrive at the receiving side in any order, and may be mingled with segments from other
messages. The reassembly process typically consists of allocating a buffer large enough to
hold the entire message, placing the segments in the proper position within that buffer
as they arrive, and keeping a checklist of which segments have not yet arrived. Once the
message has been completely reassembled, the receiving side of the transport protocol
can deliver the message to the application and discard the checklist.

Message division and reassembly is a special case of stream division and reassembly,
the topic of Section 7.5.7, below.

7.5.5 Assurance of Data Integrity

Data integrity is the assurance that when a message is delivered, its contents are the same
as when they left the sender. Adding data integrity to a protocol with a persistent sender

Saltzer & Kaashoek Ch. 7, p. 73 June 25, 2009 8:22 am

7–74 CHAPTER 7 The Network as a System and as a System Component

creates a reliable delivery protocol. Two additions are required, one at the sending side
and one at the receiving side. The sending side of the protocol adds a field to the end-to
end header or trailer containing a checksum of the contents of the application message.
The receiving side recalculates the checksum from the received version of the reassem
bled message and compares it with the checksum that came with the message. Only if
the two checksums match does the transport protocol deliver the reassembled message to
the application and send an acknowledgment. If the checksums do not match the
receiver discards the message and waits for the sending side to resend it. (One might sug
gest immediately sending a NAK, to alert the sending side to resend the data identified
with that nonce, rather than waiting for timers to expire. This idea has the hazard that
the source address that accompanies the data may have been corrupted along with the
data. For this reason, sending a NAK on a checksum error isn’t usually done in end-to
end protocols. However, as was described in Section 7.3.3, requesting retransmission as
soon as an error is detected is useful at the link layer, where the other end of a point-to
point link is the only possible source.)

It might seem redundant for the transport protocol to provide a checksum, given that
link layer protocols often also provide checksums. The reason the transport protocol
might do so is an end-to-end argument: the link layer checksums protect the data only
while it is in transit on the link. During the time the data is in the memory of a forward
ing node, while being divided into multiple segments, being reassembled at the receiving
end, or while being copied to the destination application buffer, it is still vulnerable to
undetected accidents. An end-to-end transport checksum can help defend against those
threats. On the other hand, reapplying the end-to-end argument suggests that an even
better place for this checksum would be in the application program. But in the real
world, many applications assume that a transport-protocol checksum covers enough of
the threats to integrity that they don’t bother to apply their own checksum. Transport
protocol checksums cater to this assumption.

As with all checksums, the assurance is not absolute. Its quality depends on the num
ber of bits in the checksum, the structure of the checksum algorithm, and the nature of
the likely errors. In addition, there remains a threat that someone has maliciously mod
ified both the data and its checksum to match while enroute; this threat is explored
briefly in Section 7.5.9, below, and in more depth in Chapter 11[on-line].

A related integrity concern is that a packet might be misdelivered, perhaps because its
address field has been corrupted. Worse, the unintended recipient may even acknowl
edge receipt of the segment in the packet, leading the sender to believe that it was
correctly delivered. The transport protocol can guard against this possibility by, on the
sending side, including a copy of the destination address in the end-to-end segment
header, and, on the receiving side, verifying that the address is the recipient’s own before
delivering the packet to the application and sending an acknowledgment back.

Saltzer & Kaashoek Ch. 7, p. 74 June 25, 2009 8:22 am

3

N

7.5 The End-to-End Layer 7–75

7.5.6 End-to-End Performance: Overlapping and Flow Control

End-to-end transport of a multisegment message raises some questions of strategy for the
transport protocol, including an interesting trade-off between complexity and perfor
mance. The simplest method of sending a multisegment message is to send one segment,
wait for the receiving side to acknowledge that segment, then send the second segment,
and so on. This protocol, known as lock-step, is illustrated in Figure 7.39. An important
virtue of the lock-step protocol is that it is easy to see how to apply each of the previous
end-to-end assurance techniques to one segment at a time. The downside is that trans
mitting a message that occupies N segments will take N network round-trip times. If the
network transit time is large, both ends may spend most of their time waiting.

7.5.6.1 Overlapping Transmissions
To avoid the wait times, we can employ a pipelining technique related to the pipelining
described in Section 6.1.5: As soon as the first segment has been sent, immediately send
the second one, then the third one, and so on, without waiting for acknowledgments.
This technique allows both close spacing of transmissions and overlapping of transmis
sions with their corresponding acknowledgments. If nothing goes wrong, the technique
leads to a timing diagram such as that of Figure 7.40. When the pipeline is completely
filled, there may be several segments “in the net” traveling in both directions down trans
mission lines or sitting in the buffers of intermediate packet forwarders.

receiversender
send first segment

segment 1
time

accept segment 1

Acknowledgment 1

segment 2

Acknowledgment 2

receive ACK,
send second segment

accept segment 2

receive ACK,
send third segment

•
•
•(repeat N times)

Acknowledgment N
accept segment N

Done.

FIGURE 7.39

Lock-step transmission of multiple segments.

Saltzer & Kaashoek Ch. 7, p. 75 June 25, 2009 8:22 am

7–76 CHAPTER 7 The Network as a System and as a System Component

This diagram shows a small time interval between the sending of segment 1 and the
sending of segment 2. This interval accounts for the time to generate and transmit the
next segment. It also shows a small time interval at the receiving side that accounts for
the time required for the recipient to accept the segment and prepare the acknowledg
ment. Depending on the details of the protocol, it may also include the time the receiver
spends acting on the segment (see Sidebar 7.7). With this approach, the total time to
send N segments has dropped to N packet transmission times plus one round-trip time
for the last segment and its acknowledgment—if nothing goes wrong. Unfortunately,
several things can go wrong, and taking care of them can add quite a bit of complexity
to the picture.

First, one or more packets or acknowledgments may be lost along the way. The first
step in coping with this problem is for the sender to maintain a list of segments sent. As
each acknowledgment comes back, the sender checks that segment off its list. Then, after
sending the last segment, the sender sets a timer to expire a little more than one network
round-trip time in the future. If, upon receiving an acknowledgment, the list of missing
acknowledgments becomes empty, the sender can turn off the timer, confident that the
entire message has been delivered. If, on the other hand, the timer expires and there is
still a list of unacknowledged segments, the sender resends each one in the list, starts
another timer, and continues checking off acknowledgments. The sender repeats this
sequence until either every segment is acknowledged or the sender exceeds its retry limit,
in which case it reports a failure to the application that initiated this message. Each timer
expiration at the sending side adds one more round-trip time of delay in completing the
transmission, but if packets get through at all, the process should eventually converge.

sender
segment 1

ack 1

2

ack N

ack 2

3

•
•

N

receiver
send segment 1 time
send segment 2
send segment 3 acknowledge segment 1

acknowledge segment 2
receive ACK 1
receive ACK 2 •

(repeat N times)
acknowledge segment N

receive ACK N, done.

FIGURE 7.40

Overlapped transmission of multiple segments.

Saltzer & Kaashoek Ch. 7, p. 76 June 25, 2009 8:22 am

7.5 The End-to-End Layer 7–77

Sidebar 7.7: What does an acknowledgment really mean? An end-to-end acknowledgment
is a widely used technique for the receiving side to tell the sending side something of
importance, but since there are usually several different things going on in the end-to-end layer,
there can also be several different purposes for acknowledgments. Some possibilities include

• it is OK to stop the timer associated with the acknowledged data segment
• it is OK to release the buffer holding a copy of the acknowledged segment
• it is OK to send another segment
• the acknowledged segment has been accepted for consideration
• the work requested in the acknowledged segment has been completed.

In some protocols, a single acknowledgment serves several of those purposes, while in other
protocols a different form of acknowledgment may be used for each one; there are endless
combinations. As a result, whenever the word acknowledgment is used in the discussion of a
protocol, it is a good idea to establish exactly what the acknowledgment really means. This
understanding is especially important if one is trying to estimate round-trip times by measuring
the time for an acknowledgment to return; in some protocols such a measurement would
include time spent doing processing in the receiving application, while in other cases it would
not.

If there really are five different kinds of acknowledgments, there is a concern that for every
outgoing packet there might be five different packets returning with acknowledgments. In
practice this is rarely the case because acknowledgments can be implemented as data items in
the end-to-end header of any packet that happens to be going in the reverse direction. A single
packet may thus carry any number of different kinds of acknowledgments and
acknowledgments for a range of received packets, in addition to application data that may be
flowing in the reverse direction. The technique of placing one or more acknowledgments in the
header of the next packet that happens to be going in the reverse direction is known as
piggybacking.

7.5.6.2 Bottlenecks, Flow Control, and Fixed Windows
A second set of issues has to do with the relative speeds of the sender in generating seg
ments, the entry point to the network in accepting them, any bottleneck inside the
network in transmitting them, and the receiver in consuming them. The timing diagram
and analysis above assumed that the bottleneck was at the sending side, either in the rate
at which the sender generates segments or the rate that at which the first network link
can transmit them.

A more interesting case is when the sender generates data, and the network transmits
it, faster than the receiver can accept it, perhaps because the receiver has a slow processor
and eventually runs out of buffer space to hold not-yet-processed data. When this is a
possibility, the transport protocol needs to include some method of controlling the rate
at which the sender generates data. This mechanism is called flow control. The basic con-

Saltzer & Kaashoek Ch. 7, p. 77 June 25, 2009 8:22 am

7–78 CHAPTER 7 The Network as a System and as a System Component

cept involved is that the sender starts by asking the receiver how much data the receiver
can handle. The response from the receiver, which may be measured in bits, bytes, or
segments, is known as a window. The sender asks permission to send, and the receiver
responds by quoting a window size, as illustrated in Figure 7.41. The sender then sends
that much data and waits until it receives permission to send more. Any intermediate
acknowledgments from the receiver allow the sender to stop the associated timer and
release the send buffer, but they cannot be used as permission to send more data because
the receiver is only acknowledging data arrival, not data consumption. Once the receiver
has actually consumed the data in its buffers, it sends permission for another window’s
worth of data. One complication is that the implementation must guard against both
missing permission messages that could leave the sender with a zero-sized window and
also duplicated permission messages that could increase the window size more than the
receiver intends: messages carrying window-granting permission require exactly-once
delivery.

The window provided by the scheme of Figure 7.41 is called a fixed window. The
lock-step protocol described earlier is a flow control scheme with a window that is one
data segment in size. With any window scheme, one network round-trip time elapses
between the receiver’s sending of a window-opening message and the arrival of the first
data that takes advantage of the new window. Unless we are careful, this time will be pure
delay experienced by both parties. A clever receiver could anticipate this delay, and send

receive permission,
send segment 1
send segment 2
send segment 3
send segment 4

receive ACK 1
receive ACK 2
receive ACK 3
receive ACK 4,

wait
…

receive permission,
send segment 5
send segment 6

sender receiver

segment #1
#2

ack # 2

#3

may I send?

yes, 4 segments

send 4 more

segment #5
#6

•
•
•

ack # 1

ack # 3

ack # 4

#4

time
receive request,
open a 4-segment
window

buffer segment 1
buffer segment 2
buffer segment 3
buffer segment 4

finished processing
segments 1–4, reopen
the window

buffer segment 5
buffer segment 6

FIGURE 7.41

Flow control with a fixed window.

Saltzer & Kaashoek Ch. 7, p. 78 June 25, 2009 8:22 am

7.5 The End-to-End Layer 7–79

the window-opening message one round-trip time before it expects to be ready for more
data. This form of prediction is still using a fixed window, but it keeps data flowing more
smoothly. Unfortunately, it requires knowing the network round-trip time which, as the
discussion of timers explained, is a hard thing to estimate. Exercises 7.13, on page 7–114,
and 7.16, on page 7–115, explore the bang-bang protocol and pacing, two more variants
on the fixed window idea.

7.5.6.3 Sliding Windows and Self-Pacing
An even more clever scheme is the following: as soon as it has freed up a segment buffer,
the receiver could immediately send permission for a window that is one segment larger
(either by sending a separate message or, if there happens to be an ACK ready to go,
piggy-backing on that ACK). The sender keeps track of how much window space is left,
and increases that number whenever additional permission arrives. When a window can
have space added to it on the fly it is called a sliding window. The advantage of a sliding
window is that it can automatically keep the pipeline filled, without need to guess when
it is safe to send permission-granting messages.

The sliding window appears to eliminate the need to know the network round-trip
time, but this appearance is an illusion. The real challenge in flow control design is to
develop a single flow control algorithm that works well under all conditions, whether the
bottleneck is the sender’s rate of generating data, the network transmission capacity, or
the rate at which the receiver can accept data. When the receiver is the bottleneck, the
goal is to ensure that the receiver never waits. Similarly, when the sender is the bottle
neck, the goal is to ensure that the sender never waits. When the network is the
bottleneck, the goal is to keep the network moving data at its maximum rate. The ques
tion is what window size will achieve these goals.

The answer, no matter where the bottleneck is located, is determined by the bottle
neck data rate and the round-trip time of the network. If we multiply these two
quantities, the product tells us the amount of buffering, and thus the minimum window
size, needed to ensure a continuous flow of data. That is,

window size ≥ round-trip time × bottleneck data rate

To see why, imagine for a moment that we are operating with a sliding window one seg
ment in size. As we saw before, this window size creates a lock-step protocol with one
segment delivered each round-trip time, so the realized data rate will be the window size
divided by the round-trip time. Now imagine operating with a window of two segments.
The network will then deliver two segments each round-trip time. The realized data rate
is still the window size divided by the round-trip time, but the window size is twice as
large. Now, continue to try larger window sizes until the realized data rate just equals the
bottleneck data rate. At that point the window size divided by the round-trip time still
tells us the realized data rate, so we have equality in the formula above. Any window size
less than this will produce a realized data rate less than the bottleneck. The window size
can be larger than this minimum, but since the realized data rate cannot exceed the bot-

Saltzer & Kaashoek Ch. 7, p. 79 June 25, 2009 8:22 am

7–80 CHAPTER 7 The Network as a System and as a System Component

tleneck, there is no advantage. There is actually a disadvantage to a larger window size:
if something goes wrong that requires draining the pipeline, it will take longer to do so.
Further, a larger window puts a larger load on the network, and thereby contributes to
congestion and discarded packets in the network routers.

The most interesting feature of a sliding window whose size satisfies the inequality is
that, although the sender does not know the bottleneck data rate, it is sending at exactly
that rate. Once the sender fills a sliding window, it cannot send the next data element
until the acknowledgment of the oldest data element in the window returns. At the same
time, the receiver cannot generate acknowledgments any faster than the network can
deliver data elements. Because of these two considerations, the rate at which the window
slides adjusts itself automatically to be equal to the bottleneck data rate, a property
known as self-pacing. Self-pacing provides the needed mechanism to adjust the sender’s
data rate to exactly equal the data rate that the connection can sustain.

Let us consider what the window-size formula means in practice. Suppose a client
computer in Boston that can absorb data at 500 kilobytes per second wants to download
a file from a service in San Francisco that can send at a rate of 1 megabyte per second,
and the network is not a bottleneck. The round-trip time for the Internet over this dis
tance is about 70 milliseconds,* so the minimum window size would be

70 milliseconds × 500 kilobytes/second = 35 kilobytes

and if each segment carries 512 bytes, there could be as many as 70 such segments
enroute at once. If, instead, the two computers were in the same building, with a 1 mil
lisecond round-trip time separating them, the minimum window size would be 500
bytes. Over this short distance a lock-step protocol would work equally well.

So, despite the effort to choose the appropriate window size, we still need an estimate
of the round-trip time of the network, with all the hazards of making an accurate esti
mate. The protocol may be able to use the same round-trip time estimate that it used in
setting its timers, but there is a catch. To keep from unnecessarily retransmitting packets
that are just delayed in transit, an estimate that is used in timer setting should err by
being too large. But if a too-large round-trip time estimate is used in window setting, the
resulting excessive window size will simply increase the length of packet forwarding
queues within the network; those longer queues will increase the transit time, in turn
leading the sender to think it needs a still larger window. To avoid this positive feedback,
a round-trip time estimator that is to be used for window size adjustment needs to err on
the side of being too small, and be designed not to react too quickly to an apparent

* Measurements of round-trip time from Boston to San Francisco over the Internet in 2005 typi
cally show a minimum of about 70 milliseconds. A typical route might take a packet via New York,
Cleveland, Indianapolis, Kansas City, Denver, and Sacramento, a distance of 11,400 kilometers, and
through 15 packet forwarders in each direction. The propagation delay over that distance, assuming
a velocity of propagation in optical fiber of 66% of the speed of light, would be about 57 millisec
onds. Thus the 30 packet forwarders apparently introduce about another 13 milliseconds of process
ing and transmission delay, roughly 430 microseconds per forwarder.

Saltzer & Kaashoek Ch. 7, p. 80 June 25, 2009 8:22 am

7.5 The End-to-End Layer 7–81

increase in round-trip time—exactly the opposite of the desiderata for an estimate used
for setting timers.

Once the window size has been established, there is still a question of how big to make
the buffer at the receiving side of the transport protocol. The simplest way to ensure that
there is always space available for arriving data is to allocate a buffer that is at least as large
as the window size.

7.5.6.4 Recovery of Lost Data Segments with Windows
While the sliding window may have addressed the performance problem, it has compli
cated the problem of recovering lost data segments. The sender can still maintain a
checklist of expected acknowledgments, but the question is when to take action on this
list. One strategy is to associate with each data segment in the list a timestamp indicating
when that segment was sent. When the clock indicates that more than one round-trip
time has passed, it is time for a resend. Or, assuming that the sender is numbering the
segments for reassembly, the receiver might send a NAK when it notices that several seg
ments with higher numbers have arrived. Either approach raises a question of how resent
segments should count against the available window. There are two cases: either the orig
inal segment never made it to the receiver, or the receiver got it but the acknowledgment
was lost. In the first case, the sender has already counted the lost segment, so there is no
reason to count its replacement again. In the second case, presumably the receiver will
immediately discard the duplicate segment. Since it will not occupy the recipient’s atten
tion or buffers for long, there is no need to include it in the window accounting. So in
both cases the answer is the same: do not count a resent segment against the available
window. (This conclusion is fortunate because the sender can’t tell the difference
between the two cases.)

We should also consider what might go wrong if a window-increase permission mes
sage is lost. The receiver will eventually notice that no data is forthcoming, and may
suspect the loss. But simply resending permission to send more data carries the risk that
the original permission message has simply been delayed and may still be delivered, in
which case the sender may conclude that it can send twice as much data as the receiver
intended. For this reason, sending a window-increasing message as an incremental value
is fragile. Even resending the current permitted window size can lead to confusion if win
dow-opening messages happen to be delivered out of order. A more robust approach is
for the receiver to always send the cumulative total of all permissions granted since trans
mission of this message or stream began. (A cumulative total may grow large, but a field
size of 64 bits can handle window sizes of 1030 transmission units, which probably is suf
ficient for most applications.) This approach makes it easy to discover and ignore an out-
of-order total because a cumulative total should never decrease. Sending a cumulative
total also simplifies the sender’s algorithm, which now merely maintains the cumulative
total of all permissions it has used since the transmission began. The difference between
the total used so far and the largest received total of permissions granted is a self-correct
ing, robust measure of the current window size. This model is familiar. A sliding window

Saltzer & Kaashoek Ch. 7, p. 81 June 25, 2009 8:22 am

7–82 CHAPTER 7 The Network as a System and as a System Component

is an example of the producer–consumer problem described in Chapter 5, and the cumu
lative total window sizes granted and used are examples of eventcounts.

Sending of a message that contains the cumulative permission count can be repeated
any number of times without affecting the correctness of the result. Thus a persistent
sender (in this case the receiver of the data is the persistent sender of the permission mes
sage) is sufficient to ensure exactly-once delivery of a permission increase. With this
design, the sender’s permission receiver is an example of an idempotent service interface,
as suggested in the last paragraph of Section 7.1.4.

There is yet one more rate-matching problem: the blizzard of packets arising from a
newly-opened flow control window may encounter or even aggravate congestion some
where within the network, resulting in packets being dropped. Avoiding this situation
requires some cooperation between the end-to-end protocol and the network forwarders,
so we defer its discussion to Section 7.6 of this chapter.

7.5.7 Assurance of Stream Order, and Closing of Connections

A stream transport protocol transports a related series of elements, which may be bits,
bytes, segments, or messages, from one point to another with the assurance that they will
be delivered to the recipient in the order in which the sender dispatched them. A stream
protocol usually—but not always—provides additional assurances, such as no missing
elements, no duplicate elements, and data integrity. Because a telephone circuit has some
of these same properties, a stream protocol is sometimes said to create a virtual circuit.

The simple-minded way to deliver things in order is to use the lock-step transmission
protocol described in Section 7.5.3, in which the sending side does not send the next ele
ment until the receiving side acknowledges that the previous one has arrived safely. But
applications often choose stream protocols to send large quantities of data, and the
round-trip delays associated with a lock-step transmission protocol are enough of a prob
lem that stream protocols nearly always employ some form of overlapped transmission.
When overlapped transmission is added, the several elements that are simultaneously
enroute can arrive at the receiving side out of order. Two quite different events can lead
to elements arriving out of order: different packets may follow different paths that have
different transit times, or a packet may be discarded if it traverses a congested part of the
network or is damaged by noise. A discarded packet will have to be retransmitted, so its
replacement will almost certainly arrive much later than its adjacent companions.

The transport protocol can ensure that the data elements are delivered in the proper
order by adding to the transport-layer header a serial number that indicates the position
in the stream where the element or elements in the current data segment belong. At the
receiving side, the protocol delivers elements to the application and sends acknowledg
ments back to the sender as long as they arrive in order. When elements arrive out of
order, the protocol can follow one of two strategies:

1. 	Acknowledge only when the element that arrives is the next element expected or
a duplicate of a previously received element. Discard any others. This strategy is

Saltzer & Kaashoek Ch. 7, p. 82	 June 25, 2009 8:22 am

7.5 The End-to-End Layer 7–83

simple, but it forces a capacity-wasting retransmission of elements that arrive
before their predecessors.

2. 	Acknowledge every element as it arrives, and hold in buffers any elements that
arrive before their predecessors. When the predecessors finally arrive, the protocol
can then deliver the elements to the application in order and release the buffers.
This technique is more efficient in its use of network resources, but it requires
some care to avoid using up a large number of buffers while waiting for an earlier
element that was in a packet that was discarded or damaged.

The two strategies can be combined by acknowledging an early-arriving element only
if there is a buffer available to hold it, and discarding any others. This approach raises the
question of how much buffer space to allocate. One simple answer is to provide at least
enough buffer space to hold all of the elements that would be expected to arrive during
the time it takes to sort out an out-of-order condition. This question is closely related to
the one explored earlier of how many buffers to provide to go with a given size of sliding
window. A requirement of delivery in order is one of the reasons why it is useful to make
a clear distinction between acknowledging receipt of data and opening a window that
allows the sending of more data.

It may be possible to speed up the resending of lost packets by taking advantage of
the additional information implied by arrival of numbered stream elements. If stream
elements have been arriving quite regularly, but one element of the stream is missing,
rather than waiting for the sender to time out and resend, the receiver can send an explicit
negative acknowledgment (NAK) for the missing element. If the usual reason for an ele
ment to appear to be missing is that it has been lost, sending NAKs can produce a useful
performance enhancement. On the other hand, if the usual reason is that the missing ele
ment has merely suffered a bit of extra delay along the way, then sending NAKs may lead
to unnecessary retransmissions, which waste network capacity and can degrade perfor
mance. The decision whether or not to use this technique depends on the specific current
conditions of the network. One might try to devise an algorithm that figures out what is
going on (e.g., if NAKs are causing duplicates, stop sending NAKs) but it may not be
worth the added complexity.

As the interface described in Section 7.5.1 above suggests, using a stream transport
protocol involves a call to open the stream, a series of calls to write to or read from the
stream, and a call to close the stream. Opening a stream involves creating a record at each
end of the connection. This record keeps track of which elements have been sent, which
have been received, and which have been acknowledged. Closing a stream involves two
additional considerations. First and simplest, after the receiving side of the transport pro
tocol delivers the last element of the stream to the receiving application, it then needs to
report an end-of-stream indication to that application. Second, both ends of the connec
tion need to agree that the network has delivered the last element and the stream should
be closed. This agreement requires some care to reach.

A simple protocol that ensures agreement is the following: Suppose that Alice has
opened a stream to Bob, and has now decided that the stream is no longer needed. She

Saltzer & Kaashoek Ch. 7, p. 83	 June 25, 2009 8:22 am

7–84 CHAPTER 7 The Network as a System and as a System Component

begins persistently sending a close request to Bob, specifying the stream identifier. Bob,
upon receiving a close request, checks to see if he agrees that the stream is no longer
needed. If he does agree, he begins persistently sending a close acknowledgment, again
specifying the stream identifier. Alice, upon receiving the close acknowledgment, can
turn off her persistent sender and discard her record of the stream, confident that Bob
has received all elements of the stream and will not be making any requests for retrans
missions. In addition, she sends Bob a single “all done” message, containing the stream
identifier. If she receives a duplicate of the close acknowledgment, her record of the
stream will already be discarded, but it doesn’t matter; she can assume that this is a dupli
cate close acknowledgment from some previously closed stream and, from the
information in the close acknowledgment, she can fabricate an “all done” message and
send it to Bob. When Bob receives the “all done” message he can turn off his persistent
sender and, confident that Alice agrees that there is no further use for the stream, discard
his copy of the record of the stream. Alice and Bob can in the future safely discard any
late duplicates that mention a stream for which they have no record. (The tombstone
problem still exists for the stream itself. It would be a good idea for Bob to delay deletion
of his record until there is no chance that a long-delayed duplicate of Alice’s original
request to open the stream will arrive.)

7.5.8 Assurance of Jitter Control

Some applications, such as delivering sound or video to a person listening or watching
on the spot, are known as real-time. For real-time applications, reliability, in the sense of
never delivering an incorrect bit of data, is often less important than timely delivery.
High reliability can actually be counter-productive if the transport protocol achieves it
by requesting retransmission of a damaged data element, and then holds up delivery of
the remainder of the stream until the corrected data arrives. What the application wants
is continuous delivery of data, even if the data is not completely perfect. For example, if
a few bits are wrong in one frame of a movie (note that this video use of the term “frame”
has a meaning similar but not identical to the “frame” used in data communications), it
probably won’t be noticed. In fact, if one video frame is completely lost in transit, the
application program can probably get away with repeating the previous video frame
while waiting for the following one to be delivered. The most important assurance that
an end-to-end stream protocol can provide to a real-time application is that delivery of
successive data elements be on a regular schedule. For example, a standard North Amer
ican television set consumes one video frame every 33.37 milliseconds and the next video
frame must be presented on that schedule.

Transmission across a forwarding network can produce varying transit times from
one data segment to the next. In real-time applications, this variability in delivery time
is known as jitter, and the requirement is to control the amount of jitter. The basic strat
egy is for the receiving side of the transport protocol to delay all arriving segments to
make it look as though they had encountered the worst allowable amount of delay. One
can in principle estimate an appropriate amount of extra buffering for the delayed seg-

Saltzer & Kaashoek Ch. 7, p. 84 June 25, 2009 8:22 am

7.5 The End-to-End Layer 7–85

ments as follows (assume for the television example that there is one video frame in each
segment):

1. 	Measure the distribution of segment delivery delays between sending and
receiving points and plot that distribution in a chart showing delay time versus
frequency of that delay.

2. 	Choose an acceptable frequency of delivery failure. For a television application
one might decide that 1 out of 100 video frames won’t be missed.

3. 	From the distribution, determine a delay time large enough to ensure that 99 out
of 100 segments will be delivered in less than that delay time. Call this delay Dlong.

4. 	From the distribution determine the shortest delay time that is observed in
practice. Call this value Dshort.

5. 	Now, provide enough buffering to delay every arriving segment so that it appears
to have arrived with delay Dlong. The largest number of segments that would need
to be buffered is

–Dlong DshortNumber of segment buffers = --------------------------------------
Dheadway

where Dheadway is the average time between arriving segments. With this much buffer
ing, we would expect that about one out of every 100 segments will arrive too late; when
that occurs, the transport protocol simply reports “missing data” to the application and
discards that segment if it finally does arrive.

In practice, there is no easy way to measure one-way segment delivery delay, so a com
mon strategy is simply to set the buffer size by trial and error.

Although the goal of this technique is to keep the rate of missing video frames below
the level of human perceptibility, you can sometimes see the technique fail when watch
ing a television program that has been transmitted by satellite or via the Internet.
Occasionally there may be a freeze-frame that persists long enough that you can see it,
but that doesn’t seem to be one that the director intended. This event probably indicates
that the transmission path was disrupted for a longer time than the available buffers were
prepared to handle.

7.5.9 Assurance of Authenticity and Privacy

Most of the assurance-providing techniques described above are intended to operate in
a benign environment, in which the designer assumes that errors can occur but that the
errors are not maliciously constructed to frustrate the intended assurances. In many real-
world environments, the situation is worse than that: one must defend against the threat
that someone hostile intercepts and maliciously modifies packets, or that some end-to
end layer participants violate a protocol with malicious intent.

To counter these threats, the end-to-end layer can apply two kinds of key-based
mathematical transformations to the data:

Saltzer & Kaashoek Ch. 7, p. 85	 June 25, 2009 8:22 am

7–86 CHAPTER 7 The Network as a System and as a System Component

1. 	sign and verify, to establish the authenticity of the source and the integrity of the
contents of a message, and

2. 	encrypt and decrypt, to maintain the privacy of the contents of a message.

These two techniques can, if applied properly, be effective, but they require great care
in design and implementation. Without such care, they may not work, but because they
were applied the user may believe that they do, and thus have a false sense of security. A
false assurance can be worse than no assurance at all. The issues involved in providing
security assurances are a whole subject in themselves, and they apply to many system
components in addition to networks, so we defer them to Chapter 11[on-line], which
provides an in-depth discussion of protecting information in computer systems.

With this examination of end-to-end topics, we have worked our way through the
highest layer that we identify as part of the network. The next section of this chapter, on
congestion control, is a step sideways, to explore a topic that requires cooperation of
more than one layer.

7.6 A Network System Design Issue: Congestion Control

7.6.1 Managing Shared Resources

Chapters 5 and 6 discussed shared resources and their management: a thread manager
creates many virtual processors from a few real, shared processors that must then be
scheduled, and a multilevel memory manager creates the illusion of large, fast virtual
memories for several clients by combining a small and fast shared memory with large and
slow storage devices. In both cases we looked at relatively simple management mecha
nisms because more complex mechanisms aren’t usually needed. In the network context,
the resource that is shared is a set of communication links and the supporting packet for
warders. The geographically and administratively distributed nature of those
components and their users adds delay and complication to resource management, so we
need to revisit the topic.

In Section 7.1.2 of this chapter we saw how queues manage the problem that packets
may arrive at a packet switch at a time when the outgoing link is already busy transmit
ting another packet, and Figure 7.6 showed the way that queues grow with increased
utilization of the link. This same phenomenon applies to processor scheduling and
supermarket checkout lines: any time there is a shared resource, and the demand for that
resource comes from several statistically independent sources, there will be fluctuations
in the arrival of load, and thus in the length of the queue and the time spent waiting for
service. Whenever the offered load (in the case of a packet switch, that is the rate at which
packets arrive and need to be forwarded) is greater than the capacity (the rate at which
the switch can forward packets) of a resource for some duration, the resource is over
loaded for that time period.

Saltzer & Kaashoek Ch. 7, p. 86	 June 25, 2009 8:22 am

7.6 A Network System Design Issue: Congestion Control 7–87

When sources are statistically independent of one another, occasional overload is
inevitable but its significance depends critically on how long it lasts. If the duration is
comparable to the service time, which is the typical time for the resource to handle one
customer (in a supermarket), one thread (in a processor manager), or one packet (in a
packet forwarder), then a queue is simply an orderly way to delay some requests for ser
vice until a later time when the offered load drops below the capacity of the resource. Put
another way, a queue handles short bursts of too much demand by time-averaging with
adjacent periods when there is excess capacity.

If, on the other hand, overload persists for a time significantly longer than the service
time, there begins to develop a risk that the system will fail to meet some specification
such as maximum delay or acceptable response time. When this occurs, the resource is
said to be congested. Congestion is not a precisely defined concept. The duration of over
load that is required to classify a resource as congested is a matter of judgement, and
different systems (and observers) will use different thresholds.

Congestion may be temporary, in which case clever resource management schemes
may be able to rescue the situation, or it may be chronic, meaning that the demand for
service continually exceeds the capacity of the resource. If the congestion is chronic, the
length of the queue will grow without bound until something breaks: the space allocated
for the queue may be exceeded, the system may fail completely, or customers may go else
where in disgust.

The stability of the offered load is another factor in the frequency and duration of
congestion. When the load on a resource is aggregated from a large number of statisti
cally independent small sources, averaging can reduce the frequency and duration of load
peaks. On the other hand, if the load comes from a small number of large sources, even
if the sources are independent, the probability that they all demand service at about the
same time can be high enough that congestion can be frequent or long-lasting.

A counter-intuitive concern of shared resource management is that competition for a
resource sometimes leads to wasting of that resource. For example, in a grocery store, cus
tomers who are tired of waiting in the checkout line may just walk out of the store,
leaving filled shopping carts behind. Someone has to put the goods from the abandoned
carts back on the shelves. Suppose that one or two of the checkout clerks leave their reg
isters to take care of the accumulating abandoned carts. The rate of sales being rung up
drops while they are away from their registers, so the queues at the remaining registers
grow longer, causing more people to abandon their carts, and more clerks will have to
turn their attention to restocking. Eventually, the clerks will be doing nothing but
restocking and the number of sales rung up will drop to zero. This regenerative overload
phenomenon is called congestion collapse. Figure 7.42 plots the useful work getting done
as the offered load increases, for three different cases of resource limitation and waste,
including one that illustrates collapse. Congestion collapse is dangerous because it can be
self-sustaining. Once temporary congestion induces a collapse, even if the offered load
drops back to a level that the resource could handle, the already-induced waste rate can
continue to exceed the capacity of the resource, causing it to continue to waste the
resource and thus remain congested indefinitely.

Saltzer & Kaashoek Ch. 7, p. 87 June 25, 2009 8:22 am

7–88 CHAPTER 7 The Network as a System and as a System Component

When developing or evaluating a resource management scheme, it is important to
keep in mind that you can’t squeeze blood out of a turnip: if a resource is congested,
either temporarily or chronically, delays in receiving service are inevitable. The best a
management scheme can do is redistribute the total amount of delay among waiting cus
tomers. The primary goal of resource management is usually quite simple: to avoid
congestion collapse. Occasionally other goals, such as enforcing a policy about who gets
delayed, are suggested, but these goals are often hard to define and harder to achieve.
(Doling out delays is a tricky business; overall satisfaction may be higher if a resource
serves a few customers well and completely discourages the remainder, rather than leav
ing all equally disappointed.)

Chapter 6 suggested two general approaches to managing congestion. Either:

• increase the capacity of the resource, or
• reduce the offered load.

In both cases the goal is to move quickly to a state in which the load is less than the capac
ity of the resource. When measures are taken to reduce offered load, it is useful to
separately identify the intended load, which would have been offered in the absence of

useful
work

offered load

unlimited resource

limited resource
with no waste

congestion
collapse

capacity
of a limited
resource

done

FIGURE 7.42

Offered load versus useful work done. The more work offered to an ideal unlimited resource,
the more work gets done, as indicated by the 45-degree unlimited resource line. Real
resources are limited, but in the case with no waste, useful work asymptotically approaches
the capacity of the resource. On the other hand, if overloading the resource also wastes it, use
ful work can decline when offered load increases, as shown by the congestion collapse line.

Saltzer & Kaashoek Ch. 7, p. 88 June 25, 2009 8:22 am

7.6 A Network System Design Issue: Congestion Control 7–89

control. Of course, in reducing offered load, the amount by which it is reduced doesn’t
really go away, it is just deferred to a later time. Reducing offered load acts by averaging
periods of overload with periods of excess capacity, just like queuing, but with involve
ment of the source of the load, and typically over a longer period of time.

To increase capacity or to reduce offered load it is necessary to provide feedback to
one or more control points. A control point is an entity that determines, in the first case,
the amount of resource that is available and, in the second, the load being offered. A con
gestion control system is thus a feedback system, and delay in the feedback path can lead
to oscillations in load and in useful work done.

For example, in a supermarket, a common strategy is for the store manager to watch
the queues at the checkout lines; whenever there are more than two or three customers
in any line the manager calls for staff elsewhere in the store to drop what they are doing
and temporarily take stations as checkout clerks, thereby increasing capacity. In contrast,
when you call a customer support telephone line you may hear an automatic response
message that says something such as, “Your call is important to us. It will be approxi
mately 21 minutes till we are able to answer it.” That message will probably lead some
callers to hang up and try again at a different time, thereby decreasing (actually deferring)
the offered load. In both the supermarket and the telephone customer service system, it
is easy to create oscillations. By the time the fourth supermarket clerk stops stacking dog
biscuits and gets to the front of the store, the lines may have vanished, and if too many
callers decide to hang up, the customer service representatives may find there is no one
left to talk to.

In the commercial world, the choice between these strategies is a complex trade-off
involving economics, physical limitations, reputation, and customer satisfaction. The
same thing is true inside a computer system or network.

7.6.2 Resource Management in Networks

In a computer network, the shared resources are the communication links and the pro
cessing and buffering capacity of the packet forwarders. There are several things that
make this resource management problem more difficult than, say, scheduling a processor
among competing threads.

1. 	There is more than one resource. Even a small number of resources can be used up
in an alarmingly large number of different ways, and the mechanisms needed to
keep track of the situation can rapidly escalate in complexity. In addition, there can
be dynamic interactions among different resources—as one nears capacity it may
push back on another, which may push back on yet another, which may push back
on the first one. These interactions can create either deadlock or livelock,
depending on the details.

2. 	It is easy to induce congestion collapse. The usually beneficial independence of the
layers of a packet forwarding network contributes to the ease of inducing
congestion collapse. As queues for a particular communication link grow, delays

Saltzer & Kaashoek Ch. 7, p. 89	 June 25, 2009 8:22 am

7–90 CHAPTER 7 The Network as a System and as a System Component

grow. When queuing delays become too long, the timers of higher layer protocols
begin to expire and trigger retransmissions of the delayed packets. The
retransmitted packets join the long queues but, since they are duplicates that will
eventually be discarded, they just waste capacity of the link.

Designers sometimes suggest that an answer to congestion is to buy more or bigger
buffers. As memory gets cheaper, this idea is tempting, but it doesn’t work. To see
why, suppose memory is so cheap that a packet forwarder can be equipped with an
infinite number of packet buffers. That many buffers can absorb an unlimited
amount of overload, but as more buffers are used, the queuing delay grows. At
some point the queuing delay exceeds the time-outs of the end-to-end protocols
and the end-to-end protocols begin retransmitting packets. The offered load is
now larger, perhaps twice as large as it would have been in the absence of conges
tion, so the queues grow even longer. After a while the retransmissions cause the
queues to become long enough that end-to-end protocols retransmit yet again, and
packets begin to appear in the queue three times, and then four times, etc. Once
this phenomenon begins, it is self-sustaining until the real traffic drops to less than
half (or 1/3 or 1/4, depending on how bad things got) of the capacity of the
resource. The conclusion is that the infinite buffers did not solve the problem, they
made it worse. Instead, it may be better to discard old packets than to let them use
up scarce transmission capacity.

3. 	There are limited options to expand capacity. In a network there may not be many
options to raise capacity to deal with temporary overload. Capacity is generally
determined by physical facilities: optical fibers, coaxial cables, wireless spectrum
availability, and transceiver technology. Each of these things can be augmented,
but not quickly enough to deal with temporary congestion. If the network is mesh-
connected, one might consider sending some of the queued packets via an
alternate path. That can be a good response, but doing it on a fast enough time-
scale to overcome temporary congestion requires knowing the instantaneous state
of queues throughout the network. Strategies to do that have been tried; they are
complex and haven’t worked well. It is usually the case that the only realistic
strategy is to reduce demand.

4. 	The options to reduce load are awkward. The alternative to increasing capacity is to
reduce the offered load. Unfortunately, the control point for the offered load is
distant and probably administered independently of the congested packet
forwarder. As a result, there are at least three problems:

• 	 The feedback path to a distant control point may be long. By the time the feedback
signal gets there the sender may have stopped sending (but all the previously sent
packets are still on their way to join the queue) or the congestion may have
disappeared and the sender no longer needs to hold back. Worse, if we use the
network to send the signal, the delay will be variable, and any congestion on the

Saltzer & Kaashoek Ch. 7, p. 90	 June 25, 2009 8:22 am

7.6 A Network System Design Issue: Congestion Control 7–91

path back may mean that the signal gets lost. The feedback system must be robust
to deal with all these eventualities.

• 	 The control point (in this case, an end-to-end protocol or application) must be
capable of reducing its offered load. Some end-to-end protocols can do this quite
easily, but others may not be able to. For example, a stream protocol that is being
used to send files can probably reduce its average data rate on short notice. On the
other hand, a real-time video transmission protocol may have a commitment to
deliver a certain number of bits every second. A single-packet request/response
protocol will have no control at all over the way it loads the network; control must
be exerted by the application, which means there must be some way of asking the
application to cooperate—if it can.

• 	 The control point must be willing to cooperate. If the congestion is discovered by
the network layer of a packet forwarder, but the control point is in the end-to-end
layer of a leaf node, there is a good chance these two entities are under the
responsibility of different administrations. In that case, obtaining cooperation can
be problematic; the administration of the control point may be more interested in
keeping its offered load equal to its intended load in the hope of capturing more
of the capacity in the face of competition.

These problems make it hard to see how to apply a central planning approach such
as the one that worked in the grocery store. Decentralized schemes seem more promising.
Many mechanisms have been devised to try to manage network congestion. Sections
7.6.3 and 7.6.4 describe the design considerations surrounding one set of decentralized
mechanisms, similar to the ones that are currently used in the public Internet. These
mechanisms are not especially well understood, but they not only seem to work, they
have allowed the Internet to operate over an astonishing range of capacity. In fact, the
Internet is probably the best existing counterexample of the incommensurate scaling rule.
Recall that the rule suggests that a system needs to be redesigned whenever any important
parameter changes by a factor of ten. The Internet has increased in scale from a few hun
dred attachment points to a few hundred million attachment points with only modest
adjustments to its underlying design.

7.6.3 Cross-layer Cooperation: Feedback

If the designer can arrange for cross-layer cooperation, then one way to attack congestion
would be for the packet forwarder that notices congestion to provide feedback to one or
more end-to-end layer sources, and for the end-to-end source to respond by reducing its
offered load.

Several mechanisms have been suggested for providing feedback. One of the first
ideas that was tried is for the congested packet forwarder to send a control message, called
a source quench, to one or more of the source addresses that seems to be filling the queue.
Unfortunately, preparing a control message distracts the packet forwarder at a time when

Saltzer & Kaashoek Ch. 7, p. 91	 June 25, 2009 8:22 am

7–92 CHAPTER 7 The Network as a System and as a System Component

it least needs extra distractions. Moreover, transmitting the control packet adds load to
an already-overloaded network. Since the control protocol is best-effort the chance that
the control message will itself be discarded increases as the network load increases, so
when the network most needs congestion control the control messages are most likely to
be lost.

A second feedback idea is for a packet forwarder that is experiencing congestion to set
a flag on each forwarded packet. When the packet arrives at its destination, the end-to
end transport protocol is expected to notice the congestion flag and in the next packet
that it sends back it should include a “slow down!” request to alert the other end about
the congestion. This technique has the advantage that no extra packets are needed.
Instead, all communication is piggybacked on packets that were going to be sent anyway.
But the feedback path is even more hazardous than with a source quench—not only does
the signal have to first reach the destination, the next response packet of the end-to-end
protocol may not go out immediately.

Both of these feedback ideas would require that the feedback originate at the packet
forwarding layer of the network. But it is also possible for congestion to be discovered in
the link layer, especially when a link is, recursively, another network. For these reasons,
Internet designers converged on a third method of communicating feedback about con
gestion: a congested packet forwarder just discards a packet. This method does not
require interpretation of packet contents and can be implemented simply in any compo
nent in any layer that notices congestion. The hope is that the source of that packet will
eventually notice a lack of response (or perhaps receive a NAK). This scheme is not a pan
acea because the end-to-end layer has to assume that every packet loss is caused by
congestion, and the speed with which the end-to-end layer responds depends on its timer
settings. But it is simple and reliable.

This scheme leaves a question about which packet to discard. The choice is not obvi
ous; one might prefer to identify the sources that are contributing most to the congestion
and signal them, but a congested packet forwarder has better things to do than extensive
analysis of its queues. The simplest method, known as tail drop, is to limit the size of the
queue; any packet that arrives when the queue is full gets discarded. A better technique
(random drop) may be to choose a victim from the queue at random. This approach has
the virtue that the sources that are contributing most to the congestion are the most
likely to be receive the feedback. One can even make a plausible argument to discard the
packet at the front of the queue, on the basis that of all the packets in the queue, the one
at the front has been in the network the longest, and thus is the one whose associated
timer is most likely to have already expired.

Another refinement (early drop) is to begin dropping packets before the queue is com
pletely full, in the hope of alerting the source sooner. The goal of early drop is to start
reducing the offered load as soon as the possibility of congestion is detected, rather than
waiting until congestion is confirmed, so it can be viewed as a strategy of avoidance rather
than of recovery. Random drop and early drop are combined in a scheme known as
RED, for random early detection.

Saltzer & Kaashoek Ch. 7, p. 92 June 25, 2009 8:22 am

7.6 A Network System Design Issue: Congestion Control 7–93

7.6.4 Cross-layer Cooperation: Control

Suppose that the end-to-end protocol
implementation learns of a lost packet. Sidebar 7.8: The tragedy of the commons

What then? One possibility is that it just “Picture a pasture open to all…As a rational

drives forward, retransmitting the lost being, each herdsman seeks to maximize his

packet and continuing to send more data gain…he asks, ‘What is the utility to me of

as rapidly as its application supplies it. The adding one more animal to my herd?’ This

end-to-end protocol implementation is in utility has one negative and one positive

control, and there is nothing compelling it component…Since the herdsman receives all

to cooperate. Indeed, it may discover that
the proceeds from the sale of the additional
animal, the positive utility is nearly +1.

by sending packets at the greatest rate it
Since, however, the effects of overgrazing are

can sustain, it will push more data through shared by all the herdsmen, the negative
the congested packet forwarder than it utility for any particular decision-making
would otherwise. The problem, of course, herdsman is only a fraction of –1.

is that if this is the standard mode of oper

ation of every client, congestion will set in “Adding together the component partial

and all clients of the network will suffer, as utilities, the rational herdsman concludes

predicted by the tragedy of the commons that the only sensible course for him to

(see Sidebar 7.8). pursue is to add another animal to his herd.

There are at least two things that the And another…. But this is the conclusion

end-to-end protocol can do to cooperate. reached by each and every rational herdsman

The first is to be careful about its use of sharing a commons. Therein is the tragedy.

timers, and the second is to pace the rate at Each man is locked into a system that

which it sends data, a technique known as compels him to increase his herd without
limit—in a world that is limited…Freedom automatic rate adaptation. Both these

things require having an estimate of the in a commons brings ruin to all.”

round-trip time between the two ends of — Garrett Hardin, Science 162, 3859

the protocol. [Suggestions for Further Reading 1.4.5]

The usual way of detecting a lost packet
in a best-effort network is to set a timer to expire after a little more than one round-trip
time, and assume that if an acknowledgment has not been received by then the packet is
lost. In Section 7.5 of this chapter we introduced timers as a way of ensuring at-least
once delivery via a best-effort network, expecting that lost packets had encountered mis
haps such as misrouting, damage in transmission, or an overflowing packet buffer. With
congestion management in operation, the dominant reason for timer expiration is prob
ably that either a queue in the network has grown too long or a packet forwarder has
intentionally discarded the packet. The designer needs to take this additional consider
ation into account when choosing a value for a retransmit timer.

As described in Section 7.5.6, a protocol can develop an estimate of the round trip
time by directly measuring it for the first packet exchange and then continuing to update
that estimate as additional packets flow back and forth. Then, if congestion develops,
queuing delays will increase the observed round-trip times for individual packets, and

Saltzer & Kaashoek Ch. 7, p. 93 June 25, 2009 8:22 am

7–94 CHAPTER 7 The Network as a System and as a System Component

those observations will increase the round-trip estimate used for setting future retransmit
timers. In addition, when a timer does expire, the algorithm for timer setting should use
exponential backoff for successive retransmissions of the same packet (exponential back-
off was described in Section 7.5.2). It does not matter whether the reason for expiration
is that the packet was delayed in a growing queue or it was discarded as part of congestion
control. Either way, exponential backoff immediately reduces the retransmission rate,
which helps ease the congestion problem. Exponential backoff has been demonstrated to
be quite effective as a way to avoid contributing to congestion collapse. Once acknowl
edgments begin to confirm that packets are actually getting through, the sender can again
allow timer settings to be controlled by the round-trip time estimate.

The second cooperation strategy involves managing the flow control window. Recall
from the discussion of flow control in Section 7.5.6 that to keep the flow of data moving
as rapidly as possible without overrunning the receiving application, the flow control
window and the receiver’s buffer should both be at least as large as the bottleneck data
rate multiplied by the round trip time. Anything larger than that will work equally well
for end-to-end flow control. Unfortunately, when the bottleneck is a congested link
inside the network, a larger than necessary window will simply result in more packets pil
ing up in the queue for that link. The additional cooperation strategy, then, is to ensure
that the flow control window is no larger than necessary. Even if the receiver has buffers
large enough to justify a larger flow control window, the sender should restrain itself and
set the flow control window to the smallest size that keeps the connection running at the
data rate that the bottleneck permits. In other words, the sender should force equality in
the expression on page 7–79.

Relatively early in the history of the Internet, it was realized (and verified in the field)
that congestion collapse was not only a possibility, but that some of the original Internet
protocols had unexpectedly strong congestion-inducing properties. Since then, almost all
implementations of TCP, the most widely used end-to-end Internet transport protocol,
have been significantly modified to reduce the risk, as described in Sidebar 7.9.

While having a widely-deployed, cooperative strategy for controlling congestion
reduces both congestion and the chance of congestion collapse, there is one unfortunate
consequence: Since every client that cooperates may be offering a load that is less than its
intended load, there is no longer any way to estimate the size of that intended load. Inter
mediate packet forwarders know that if they are regularly discarding some packets, they
need more capacity, but they have no clue how much more capacity they really need.

7.6.5 Other Ways of Controlling Congestion in Networks

Overprovisioning: Configure each link of the network to have 125% (or 150% or 200%)
as much capacity as the offered load at the busiest minute (or five minutes or hour) of
the day. This technique works best on interior links of a large network, where no indi
vidual client represents more than a tiny fraction of the load. When that is the case, the
average load offered by the large number of statistically independent sources is relatively

Saltzer & Kaashoek Ch. 7, p. 94 June 25, 2009 8:22 am

7.6 A Network System Design Issue: Congestion Control 7–95

Sidebar 7.9: Retrofitting TCP The Transmission Control Protocol (TCP), probably the
most widely used end-to-end transport protocol of the Internet, was designed in 1974, At that
time, previous experience was limited to lock-step protocols. on networks with no more than
a few hundred nodes. As a result, avoiding congestion collapse was not in its list of
requirements. About a decade later, when the Internet first began to expand rapidly, this
omission was noticed, and a particular collapse-inducing feature of its design drew attention.

The only form of acknowledgment in the original TCP was “I have received all the bytes up to
X”. There was no way for a receiver to say, for example, “I am missing bytes Y through Z”. In
consequence when a timer expired because some packet or its acknowledgment was lost, as
soon as the sender retransmitted that packet the timer of the next packet expired, causing its
retransmission. This process would repeat until the next acknowledgment finally returned, a
full round trip (and full flow control window) later. On long-haul routes, where flow control
windows might be fairly large, if an overloaded packet forwarder responded to congestion by
discarding a few packets (each perhaps from a different TCP connection), each discarded
packet would trigger retransmission of a window full of packets, and the ensuing blizzard of
retransmitted packets could immediately induce congestion collapse. In addition, an
insufficiently adaptive time-out scheme ensured that the problem would occur frequently.

By the time this effect was recognized, TCP was widely deployed, so changes to the protocol
were severely constrained. The designers found a way to change the implementation without
changing the data formats. The goal was to allow new and old implementations to interoperate,
so new implementations could gradually replace the old. The new implementation works by
having the sender tinker with the size of the flow control window (Warning: this explanation
is somewhat oversimplified!):

1. Slow start. When starting a new connection, send just one packet, and wait for its
acknowledgment. Then, for each acknowledged packet, add one to the window size and
send two packets. The result is that in each round trip time, the number of packets that the
sender dispatches doubles. This doubling procedure continues until one of three things
happens: (1) the sender reaches the window size suggested by the receiver, in which case the
network is not the bottleneck, and the sender maintains the window at that size; (2) all the
available data has been dispatched; or (3) the sender detects that a packet it sent has been
discarded, as described in step 2.

2. Duplicate acknowledgment: The receiving TCP implementation is modified very slightly:
whenever it receives an out-of-order packet, it sends back a duplicate of its latest
acknowledgment. The idea is that a duplicate acknowledgment can be interpreted by the
sender as a negative acknowledgment for the next unacknowledged packet.

3. Equilibrium: Upon duplicate acknowledgment, the sender retransmits just the first
unacknowledged packet and also drops its window size to some fixed fraction (for example,
1/2) of its previous size. From then on it operates in an equilibrium mode in which it
continues to watch for duplicate acknowledgments but it also probes gently to see if more
capacity might be available. The equilibrium mode has two components:

(Sidebar continues)

Saltzer & Kaashoek Ch. 7, p. 95 June 25, 2009 8:22 am

Saltzer & Kaashoek Ch. 7, p. 96 June 25, 2009 8:22 am

CHAPTER 7 The Network as a System and as a System Component 7–96

• Additive increase: Whenever all of the packets in a round trip time are successfully
acknowledged, the sender increases the size of the window by one.

• Multiplicative decrease: Whenever a duplicate acknowledgment arrives, the sender
decreases the size of the window by the fixed fraction.

4. Restart: If the sender’s retransmission timer expires, self-pacing based on ACKs has been
disrupted, perhaps because something in the network has radically changed. So the sender
waits a short time to allow things to settle down, and then goes back to slow start, to allow
assessment of the new condition of the network.

By interpreting a duplicate acknowledgment as a negative acknowledgment for a single packet,
TCP eliminates the massive retransmission blizzard, and by reinitiating slow start on each timer
expiration, it avoids contributing to congestion collapse.

The figure below illustrates the evolution of the TCP window size with time in the case where
the bottleneck is inside the network. TCP begins with one packet and slow start, until it detects
the first packet loss. The sender immediately reduces the window size by half and then begins
gradually increasing it by one for each round trip time until detecting another lost packet. This
sawtooth behavior may continue indefinitely, unless the retransmission timer expires. The
sender pauses and then enters another slow start phase, this time switching to additive increase
as soon as it reaches the window size it would have used previously, which is half the window
size that was in effect before it encountered the latest round of congestion.

This cooperative scheme has not been systematically analyzed, but it seems to work in practice,
even though not all of the traffic on the Internet uses TCP as its end-to-end transport protocol.
The long and variable feedback delays that inevitably accompany lost packet detection by the
use of duplicate acknowledgments induce oscillations (as evidenced by the sawteeth) but the
additive increase—multiplicative decrease algorithms strongly damp those oscillations.

Exercise 7.12 compares slow start with “fast start”, another scheme for establishing an initial
estimate of the window size. There have been dozens (perhaps hundreds) of other proposals for
fixing both real and imaginary, problems in TCP. The interested reader should consult Section
7.4 in the Suggestions for Further Reading.

Window
size

slow start

multiplicative
decrease

additive
increase

timer
expires,

slow start,

delay

again

duplicate acknowledgment

stop sending

received

Time

7.6 A Network System Design Issue: Congestion Control 7–97

stable and predictable. Internet backbone providers generally use overprovisioning to
avoid congestion. The problems with this technique are:

• 	 Odd events can disrupt statistical independence. An earthquake in California or a
hurricane in Florida typically clogs up all the telephone trunks leading to and from
the affected state, even if the trunks themselves haven’t been damaged. Everyone
tries to place a call at once.

• 	 Overprovisioning on one link typically just moves the congestion to a different
link. So every link in a network must be overprovisioned, and the amount of
overprovisioning has to be greater on links that are shared by fewer customers
because statistical averaging is not as effective in limiting the duration of load
peaks.

• 	 At the edge of the network, statistical averaging across customers stops working
completely. The link to an individual customer may become congested if the
customer’s Web service is featured in Newsweek—a phenomenon known as a “flash
crowd”. Permanently increasing the capacity of that link to handle what is
probably a temporary but large overload may not make economic sense.

• 	 Adaptive behavior of users can interfere with the plan. In Los Angeles, the opening
of a new freeway initially provides additional traffic capacity, but new traffic soon
appears and absorbs the new capacity, as people realize that they can conveniently
live in places that are farther from where they work. Because of this effect, it does
not appear to be physically possible to use overprovisioning as a strategy in the
freeway system—the load always increases to match (or exceed) the capacity.
Anecdotally, similar effects seem to occur in the Internet, although they have not
yet been documented.

Over the life of the Internet there have been major changes in both telecommunica
tions regulation and fiber optic technology that between them have transformed the
Internet’s central core from capacity-scarce to capacity-rich. As a result, the locations at
which congestion occurs have moved as rapidly as techniques to deal with it have been
invented. But so far congestion hasn’t gone away.

Pricing: Another approach to congestion control is to rearrange the rules so that the
interest of an individual client coincides with the interest of the network community and
let the invisible hand take over, as explained in Sidebar 7.10. Since network resources are
just another commodity, it should be possible to use pricing as a congestion control
mechanism. The idea is that, if demand for a resource temporarily exceeds its capacity,
clients will bid up the price. The increased price will cause some clients to defer their use
of the resource until a time when it is cheaper, thereby reducing offered load; it will also
induce additional suppliers to provide more capacity.

There is a challenge in trying to make pricing mechanisms work on the short time-
scales associated with network congestion; in addition there is a countervailing need for
predictability of costs in the short term that may make the idea unworkable. However,

Saltzer & Kaashoek Ch. 7, p. 97	 June 25, 2009 8:22 am

CHAPTER 7 The Network as a System and as a System Component 7–98

Sidebar 7.10: The invisible hand Economics 101: In a free market, buyers have the option of
buying a good or walking away, and sellers similarly have the option of offering a good or
leaving the market. The higher the price, the more sellers will be attracted to the profit
opportunity, and they will collectively thus make additional quantities of the good available.
At the same time, the higher the price, the more buyers will balk, and collectively they will
reduce their demand for the good. These two effects act to create an equilibrium in which the
supply of the good exactly matches the demand for the good. Every buyer is satisfied with the
price paid and every seller with the price received. When the market is allowed to set the price,
surpluses and shortages are systematically driven out by this equilibrium-seeking mechanism.

“Every individual necessarily labors to render the annual revenue of the society as great as he
can. He generally indeed neither intends to promote the public interest, nor knows how much
he is promoting it. He intends only his own gain, and he is in this, as in many other cases, led
by an invisible hand to promote an end which was no part of his intention. By pursuing his
own interest he frequently promotes that of the society more effectually than when he really
intends to promote it.”*

* Adam Smith (1723–1790). The Wealth of Nations 4, Chapter 2. (1776)

as a long-term strategy, pricing can be quite an effective mechanism to match the supply
of network resources with demand. Even in the long term, the invisible hand generally
requires that there be minimal barriers to entry by alternate suppliers; this is a hard con
dition to maintain when installing new communication links involves digging up streets,
erecting microwave towers or launching satellites.

Congestion control in networks is by no means a solved problem—it is an active
research area. This discussion has just touched the highlights, and there are many more
design considerations and ideas that must be assimilated before one can claim to under
stand this topic.

7.6.6 Delay Revisited

Section 7.1.2 of this chapter identified four sources of delay in networks: propagation
delay, processing delay, transmission delay, and queuing delay. Congestion control and
flow control both might seem to add a fifth source of delay, in which the sender waits
for permission from the receiver to launch a message into the network. In fact this delay
is not of a new kind, it is actually an example of a transmission delay arising in a different
protocol layer. At the time when we identified the four kinds of delay, we had not yet
discussed protocol layers, so this subtlety did not appear.

Each protocol layer of a network can impose any or all of the four kinds of delay. For
example, what Section 7.1.2 identified as processing delay is actually composed of pro
cessing delay in the link layer (e.g., time spent bit-stuffing and calculating checksums),

Saltzer & Kaashoek Ch. 7, p. 98 June 25, 2009 8:22 am

7.7 Wrapping up Networks 7–99

processing delay in the network layer (e.g., time spent looking up addresses in forwarding
tables), and processing delay in the end-to-end layer (e.g., time spent compressing data,
dividing a long message into segments and later reassembling it, and encrypting or
decrypting message contents).

Similarly, transmission delay can also arise in each layer. At the link layer, transmis
sion delay is measured from when the first bit of a frame enters a link until the last bit of
that same frame enters the link. The length of the frame and the data rate of the link
together determine its magnitude. The network layer does not usually impose any addi
tional transmission delays of its own, but in choosing a route (and thus the number of
hops) it helps determine the number of link-layer transmission delays. The end-to-end
layer imposes an additional transmission delay whenever the pacing effect of either con
gestion control or flow control causes it to wait for permission to send. The data rate of
the bottleneck in the end-to-end path, the round-trip time, and the size of the flow-con
trol window together determine the magnitude of the end-to-end transmission delay.
The end-to-end layer may also delay delivering a message to its client when waiting for
an out-of-order segment of that message to arrive, and it may delay delivery in order to
reduce jitter. These delivery delays are another component of end-to-end transmission
delay.

Any layer that imposes either processing or transmission delays can also cause queuing
delays for subsequent packets. The transmission delays of the link layer can thus create
queues, where packets wait for the link to become available. The network layer can
impose queuing delays if several packets arrive at a router during the time it spends fig
uring out how to forward a packet. Finally, the end-to-end layer can also queue up
packets waiting for flow control or congestion control permission to enter the network.

Propagation delay might seem to be unique to the link layer, but a careful accounting
will reveal small propagation delays contributed by the network and end-to-end layers as
messages are moved around inside a router or end-node computer. Because the distances
involved in a network link are usually several orders of magnitude larger than those inside
a computer, the propagation delays of the network and end-to-end layers can usually be
ignored.

7.7 Wrapping up Networks
This chapter has introduced a lot of concepts and techniques for designing and dealing
with data communication networks. A natural question arises: “Is all of this stuff really
needed?”

The answer, of course, is “It depends.” It obviously depends on the application,
which may not require all of the features that the various network layers provide. It also
depends on several lower-layer aspects.

For example, if at the link layer the entire network consists of just a single point-to
point link, there is no need for a network layer at all. There may still be a requirement
to multiplex the link, but multiplexing does not require any of the routing function of a

Saltzer & Kaashoek Ch. 7, p. 99 June 25, 2009 8:22 am

7–100 CHAPTER 7 The Network as a System and as a System Component

network layer because everything that goes in one end of the link is destined for whatever
is attached at the other end. In addition, there is probably no need for some of the trans
port services of the end-to-end layer because frames, segments, streams, or messages
come out of the link in the same order they went in. A short link is sometimes quite reli
able, in which case the end-to-end layer may not need to provide a duplicate-generating
resend mechanism and in turn can omit duplicate suppression. What remains in the end-
to-end function is session services (such as authenticating the identity of the user and
encrypting the communication for privacy) and presentation services (marshaling appli
cation data into a form that can be transmitted as a message or a stream.)

Similarly, if at the link layer the entire network consists of just a single broadcast link,
a network layer is needed, but it is vestigial: it consists of just enough intelligence at each
receiver to discard packets addressed to different targets. For example, the backplane bus
described in Chapter 3 is a reliable broadcast network with an end-to-end layer that pro
vides only presentation services. For another example, an Ethernet, which is less reliable,
needs a healthier set of end-to-end services because it exhibits greater variations in delay.
On the other hand, packet loss is still rare enough that it may be possible to ignore it,
and reordered packet delivery is not a problem.

As with all aspects of computer system design, good judgement and careful consider
ation of trade-offs are required for a design that works well and also is economical.

This summary completes our conceptual material about networks. In the remaining
sections of this chapter are a case study of a popular network design, the Ethernet, and a
collection of network-related war stories.

7.8 Case Study: Mapping the Internet to the Ethernet
This case study begins with a brief description of Ethernet using the terminology and
network model of this chapter. It then explores the issues involved in routing that are
raised when one maps a packet-forwarding network such as the Internet to an Ethernet.

7.8.1 A Brief Overview of Ethernet

Ethernet is the generic name for a family of local area networks based on broadcast over
a shared wire or fiber link on which all participants can hear one another’s transmissions.
Ethernet uses a listen-before-sending rule (known as “carrier sense”) to control access and
it uses a listen-while-sending rule to minimize wasted transmission time if two stations
happen to start transmitting at the same time, an error known as a collision. This protocol
is named Carrier Sense Multiple Access with Collision Detection, and abbreviated
CSMA/CD. Ethernet was demonstrated in 1974 and documented in a 1976 paper by
Metcalfe and Boggs [see Suggestions for Further Reading 7.1.2]. Since that time several
successively higher-speed versions have evolved. Originally designed as a half duplex sys
tem, a full duplex, point-to-point specification that relaxes length restrictions was a later

Saltzer & Kaashoek Ch. 7, p. 100 June 25, 2009 8:22 am

7.8 Case Study: Mapping the Internet to the Ethernet 7–101

development. The primary forms of Ethernet that one encounters either in the literature
or in the field are the following:

• 	 Experimental Ethernet, a long obsolete 3 megabit per second network that was

used only in laboratory settings. The 1976 paper describes this version.

• 	 Standard Ethernet, a 10 megabit per second version.
• 	 Fast Ethernet, a 100 megabit per second version.
• 	 Gigabit Ethernet, which operates at the eponymous speed.

Standard, fast, and gigabit Ethernet all share the same basic protocol design and for
mat. The format of an Ethernet frame (with some subfield details omitted) is:

leader destination source type data checksum

32 bits64 bits 48 bits 48 bits 16 bits 368 to 12,000 bits

The leader field contains a standard bit pattern that frames the payload and also provides
an opportunity for the receiver’s phase-locked loop to synchronize. The destination and
source fields identify specific stations on the Ethernet. The type field is used for protocol
multiplexing in some applications and to contain the length of the data field in others.
(The format diagram does not show that each frame is followed by 96 bit times of silence,
which allows finding the end of the frame when the length field is absent.)

The maximum extent of a half duplex Ethernet is determined by its propagation time;
the controlling requirement is that the maximum two-way propagation time between the
two most distant stations on the network be less than the 576 bit times required to trans
mit the shortest allowable packet. This restriction guarantees that if a collision occurs,
both colliding parties are certain to detect it. When a sending station does detect a colli
sion, it waits a random time before trying again; when there are repeated collisions it uses
exponential backoff to increase the interval from which it randomly chooses the time to
wait. In a full duplex, point-to-point Ethernet there are no collisions, and the maximum
length of the link is determined by the physical medium.

There are many fascinating aspects of Ethernet design and implementation ranging
from debates about its probabilistic character to issues of electrical grounding; we omit
all of them here. For more information, a good place to start is with the paper by Met
calfe and Boggs. The Ethernet is completely specified in a series of IEEE standards
numbered 802.3, and it is described in great detail in most books devoted to networking.

7.8.2 Broadcast Aspects of Ethernet

Section 7.3.5 of this chapter mentioned Ethernet as an example of a network that uses a
broadcast link. As illustrated in Figure 7.43, the Ethernet link layer is quite simple: every
frame is delivered to every station. At its network layer, each Ethernet station has a 48
bit address, which to avoid confusion with other addresses we will call a station identifier.
(To help reduce ambiguity in the examples that follow, station identifiers will be the only
two-digit numbers.)

Saltzer & Kaashoek Ch. 7, p. 101	 June 25, 2009 8:22 am

7–102 CHAPTER 7 The Network as a System and as a System Component

17 24 12 05 19

Station
Identifier
(Ethernet
Address)

FIGURE 7.43

An Ethernet.

The network layer of Ethernet is quite simple. On the sending side, ETHERNET_SEND

does nothing but pass the call along to the link layer. On the receiving side, the network
handler procedure of the Ethernet network layer is straightforward:

procedure ETHERNET_HANDLE (net_packet, length)

destination ← net_packet.target_id

if destination = my_station_id then

GIVE_TO_END_LAYER (net_packet.data,

net_packet.end_protocol,

net_packet.source_id)

else
ignore packet

There are two differences between this network layer handler and the network layer han
dler of a packet-forwarding network:

• 	 Because the underlying physical link is a broadcast link, it is up to the network
layer of the station to figure out that it should ignore packets not addressed
specifically to it.

• 	 Because every packet is delivered to every Ethernet station, there is no need to do
any forwarding.

Most Ethernet implementations actually place ETHERNET_HANDLE completely in hardware.
One consequence is that the hardware of each station must know its own station identi
fier, so it can ignore packets addressed to other stations. This identifier is wired in at
manufacturing time, but most implementations also provide a programmable identifier
register that overrides the wired-in identifier.

Since the link layer of Ethernet is a broadcast link, it offers a convenient additional
opportunity for the network layer to create a broadcast network. For this purpose, Ether
net reserves one station identifier as a broadcast address, and the network handler
procedure acquires one additional test:

procedure ETHERNET_HANDLE (net_packet, length)

destination ← net_packet.target_id

if destination = my_station_id or destination = BROADCAST_ID then

GIVE_TO_END_LAYER (net_packet.data,

net_packet.end_protocol,

net_packet.source_id)

else
ignore packet

Saltzer & Kaashoek Ch. 7, p. 102	 June 25, 2009 8:22 am

7.8 Case Study: Mapping the Internet to the Ethernet 7–103

The Ethernet broadcast feature is seductive. It has led people to propose also adding
broadcast features to packet-forwarding networks. It is possible to develop broadcast
algorithms for a forwarding network, but it is a much trickier business. Even in Ethernet
broadcast must be used judiciously. Reliable transport protocols that require that every
receiving station send back an acknowledgment lead to a problematic flood of acknowl
edgment packets. In addition, broadcast mechanisms are too easily triggered by mistake.
For example, if a request is accidentally sent with its source address set to the broadcast
address, the response will be broadcast to all network attachment points. The worst case
is a broadcast sent from the broadcast address, which can lead to a flood of broadcasts.
Such mechanisms make a good target for malicious attack on a network, so it is usually
thought to be preferable not to implement them at all.

7.8.3 Layer Mapping: Attaching Ethernet to a Forwarding Network

Suppose we have several workstations and perhaps a few servers in one building, all con
nected using an Ethernet, and we would like to attach this Ethernet to the packet-
forwarding network illustrated in Figure 7.31 on page 7–50, by making the Ethernet a
sixth link on router K in that figure. This connection produces the configuration of Fig
ure 7.44.

There are three kinds of network-related labels in the figure. First, each link is num
bered with a local single-digit link identifier (in italics), as viewed from within the station
that attaches that link. Second, as in Figure 7.43, each Ethernet attachment point has a
two-digit Ethernet station identifier. Finally, each station has a one-letter name, just as
in the packet-forwarding network in the figure on page 7–50. With this configuration,
workstation L sends a remote procedure call to server N by sending one or more packets
to station 18 of the Ethernet attached to it as link number 1.

server
routerwork

station
work

station
work

station
work

station

1 61111

1

17 18 14 22 1915

… 3
2

4
5

upper-layer network address
link identifier G

L M N P Q K

H

J

E

Ethernet F

Ethernet station identifier

FIGURE 7.44

Connecting an Ethernet to a packet forwarding network.

Saltzer & Kaashoek Ch. 7, p. 103 June 25, 2009 8:22 am

7–104 CHAPTER 7 The Network as a System and as a System Component

Workstation L might also want to send a request to the computer connected to the
destination E, which requires that L actually send the request packet to router K at Ether
net station 19 for forwarding to destination E. The complication is that E may be at
address 15 of the packet-forwarding network, while workstation M is at station 15 of the
Ethernet. Since Ethernet station identifiers may be wired into the hardware interface, we
probably can’t set them to suit our needs, and it might be a major hassle to go around
changing addresses on the original packet-forwarding network. The bottom line here is
that we can’t simply use Ethernet station identifiers as the network addresses in our
packet-forwarding network. But this conclusion seems to leave station L with no way of
expressing the idea that it wants to send a packet to address E.

We were able to express this idea in words because in the two figures we assigned a
unique letter identifier to every station. What our design needs is a more universal con
cept of network—a cloud that encompasses every station in both the Ethernet and the
packet-forwarding network and assigns each station a unique network address. Recall
that the letter identifiers originally stood for addresses in the packet-forwarding network;
they may even be hierarchical identifiers. We can simply extend that concept and assign
identifiers from that same numbering plan to each Ethernet station, in addition to the
wired-in Ethernet station identifiers.

What we are doing here is mapping the letter identifiers of the packet-forwarding net
work to the station identifiers of the Ethernet. Since the Ethernet is itself decomposable
into a network layer and a link layer, we can describe this situation, as was suggested on
page 7–34, as a mapping composition—an upper-level network layer is being mapped
to lower-level network layer. The upper network layer is a simplified version of the Inter
net, so we will label it with the name “internet,” using a lower case initial letter as a
reminder that it is simplified. Our internet provides us with a language in which work
station L can express the idea that it wants to send an RPC request to server E, which is
located somewhere beyond the router:

NETWORK_SEND (data, length, RPC, INTERNET, E)

where E is the internet address of the server, and the fourth argument selects our internet
forwarding protocol from among the various available network protocols. With this
scheme, station A also uses the same network address E to send a request to that server.
In other words, this internet provides a universal name space.

Our new, expanded, internet network layer must now map its addresses into the
Ethernet station identifiers required by the Ethernet network layer. For example, when
workstation L sends a remote procedure call to server N by

NETWORK_SEND (data, length, RPC, INTERNET, N)

the internet network layer must turn this into the Ethernet network-layer call

NETWORK_SEND (data, length, RPC, ENET, 18)

in which we have named the Ethernet network-layer protocol ENET.

Saltzer & Kaashoek Ch. 7, p. 104 June 25, 2009 8:22 am

7.8 Case Study: Mapping the Internet to the Ethernet 7–105

For this purpose, L must maintain a
table such as that of Figure 7.45, in which
each internet address maps to an Ethernet
station identifier. This table maps, for
example, address N to ENET, station 18, as
required for the NETWORK_SEND call above.
Since our internet is a forwarding network,
our table also indicates that for address E
the thing to do is send the packet on ENET

to station 19, in the hope that it (a router
in our diagram) will be well enough con
nected to pass the packet along to its
destination. This table is just another
example of a forwarding table like the ones
in Section 7.4 of this chapter.

7.8.4 The Address Resolution Protocol

internet
address

M
N
P
Q
K
E

Ethernet/
station

enet/15
enet/18
enet/14
enet/22
enet/19
enet/19

FIGURE 7.45

Forwarding table to connect upper and lowe
layer addresses

The forwarding table could simply be filled in by hand, by a network administrator who,
every time a new station is added to an Ethernet, visits every station already on that
Ethernet and adds an entry to its forwarding table. But the charm of manual network
management quickly wears thin as the network grows in number of stations, and a more
automatic procedure is usually implemented.

An elegant scheme, known as the address resolution protocol (ARP), takes advantage of
the broadcast feature of Ethernet to dynamically fill in the forwarding table as it is
needed. Suppose we start with an empty forwarding table and that an application calls
the internet NETWORK_SEND interface in L, asking that a packet be sent to internet address
M. The internet network layer in L looks in its local forwarding table, and finding nothing
there that helps, it asks the Ethernet network layer to send a query such as the following:

NETWORK_SEND (“where is M?”, 11, ARP, ENET, BROADCAST)

where 10 is the number of bytes in the query, ARP is the network-layer protocol we are
using, rather than INTERNET, and BROADCAST is the station identifier that is reserved for
broadcast on this Ethernet.

Since this query uses the broadcast address, it will be received by the Ethernet net
work layer of every station on the attached Ethernet. Each station notices the ARP

protocol type and passes it to its ARP handler in the upper network layer. Each ARP handler
checks the query, and if it discovers its own internet address in the inquiry, sends a
response:

NETWORK_SEND (“M is at station 15”, 18, ARP, ENET, BROADCAST)

Saltzer & Kaashoek Ch. 7, p. 105 June 25, 2009 8:22 am

7–106
 CHAPTER 7 The Network as a System and as a System Component

At most, one station—the one whose internet address is
named by the ARP request—will respond. All the others will internet Ethernet/

station
ignore the ARP request. When the ARP response arrives at sta- address

tion 17, that station’s Ethernet network layer will pass it up M enet/15
to the ARP handler in its upper network layer, which will
immediately add an entry relating address M to station 15 to
its forwarding table, shown at the right. The internet network handler of station 17 can
now proceed with its originally requested send operation.

Suppose now that station L tries to send a packet to server

internet Ethernet/
E, which is on the internet but not directly attached to the

station Ethernet. In that case, server E does not hear the Ethernetaddress
broadcast, but the router at station 19 does, and it sends a

M enet/15 suitable ARP response instead. The forwarding table then
E enet/19

has a second entry as shown at the left. Station L can now
send the packet to the router, which presumably knows

how to forward the packet to its intended destination.
One more step is required—the server at E will not be able to reply to station L unless

L is in its own forwarding table. This step is easy to arrange: whenever router K hears, via
ARP, of the existence of a station on its attached Ethernet, it simply adds that internet
address to the list of addresses that it advertises, and whatever routing protocol it is using
will propagate that information throughout the internet. If hierarchical addresses are in
use, the region designer might assign a region number to be used exclusively for all the
stations on one Ethernet, to simplify routing.

Mappings from Ethernet station identifiers to the addresses of the higher network
level are thus dynamically built up, and eventually station L will have the full table shown
in Figure 7.45. Typical systems deployed in the field have developed and refined this
basic set of dynamic mapping ideas in many directions: The forwarding table is usually
managed as a cache, with entries that time out or can be explicitly updated, to allow sta
tions to change their station identifiers; the ARP response may also be noted by stations
that didn’t send the original ARP request for their own future reference; a newly-attached
station may, without being asked, broadcast what appears to be an ARP response simply
to make itself known to existing stations (advertising); and there is even a reverse version
of the ARP protocol that can be used by a station to ask if anyone knows its own higher-
level network address, or to ask that a higher-level address be assigned to it. These refine
ments are not important to our case study, but many of them are essential to smooth
network management.

Saltzer & Kaashoek Ch. 7, p. 106 June 25, 2009 8:22 am

7.9 War Stories: Surprises in Protocol Design 7–107

7.9 War Stories: Surprises in Protocol Design

7.9.1 Fixed Timers Lead to Congestion Collapse in NFS

A classic example of congestion collapse appeared in early releases of the Sun Network
File System (NFS) described in the case study in Section 4.5. The NFS server imple
mented at-least-once semantics with an idempotent stateless interface. The NFS client
was programmed to be persistent. If it did not receive a response after some fixed number
of seconds, it would resend its request, repeating forever, if necessary. The server simply
ran a first-in, first-out queue, so if several NFS clients happened to make requests of the
server at about the same time, the server would handle the requests one at a time in the
order that they arrived. These apparently plausible arrangements on the parts of the cli
ent and the server, respectively, set the stage for the problem.

As the number of clients increased, the length of the queue increased accordingly.
With enough clients, the queue would grow long enough that some requests would time
out before the server got to them. Those clients, upon timing out, would repeat their
requests. In due course, the server would handle the original request of a client that had
timed out, send a response, and that client would go away happy. But that client’s dupli
cate request was still in the server’s queue. The stateless NFS server had no way to tell
that it had already handled the duplicate request, so when it got to the duplicate it would
go ahead and handle it again, taking the same time as before, and sending an unneeded
response. The client ignored this response, but the time spent by the server handling the
duplicate request was wasted, and the waste occurred at a time when the server could least
afford it—it was already so heavily loaded that at least one client had timed out.

Once the server began wasting time handling duplicate requests, the queue grew still
longer, causing more clients to time out, leading to more duplicate requests. The
observed effect was that a steady increase of load would result in a steady increase of sat
isfied requests, up to the point that the server was near full capacity. If the load ever
exceeded the capacity, even for a short time, every request from then on would time out,
and be duplicated, resulting in a doubling of the load on the server. That wasn’t the
end—with a doubled load, clients would begin to time out a second time, send their
requests yet again, thus tripling the load. From there, things would continue to deterio
rate, with no way to recover.

From the NFS server’s point of view, it was just doing what its clients were asking,
but from the point of view of the clients the useful throughput had dropped to zero. The
solution to this problem was for the clients to switch to an exponential backoff algorithm
in their choice of timer setting: each time a client timed out it would double the size of
its timer setting for the next repetition of the request.

Lesson: Fixed timers are always a source of trouble, sometimes catastrophic trouble.

Saltzer & Kaashoek Ch. 7, p. 107 June 25, 2009 8:22 am

7–108 CHAPTER 7 The Network as a System and as a System Component

7.9.2 Autonet Broadcast Storms

Autonet, an experimental local area network designed at the Digital Equipment Corpo
ration Systems Research Center, handled broadcast in an elegant way. The network was
organized as a tree. When a node sent a packet to the broadcast address, the network first
routed the packet up to the root of the tree. The root turned the packet around and sent
it down every path of the tree. Nodes accepted only packets going downward, so this pro
cedure ensured that a broadcast packet would reach every connected node, but no more
than once. But every once in a while, the network collapsed with a storm of repeated
broadcast packets. Analysis of the software revealed no possible source of the problem. It
took a hardware expert to figure it out.

The physical layer of the Autonet consisted of point-to-point coaxial cables. An inter
esting property of an unterminated coaxial cable is that it will almost perfectly reflect any
signal sent down the cable. The reflection is known as an “echo”. Echos are one of the
causes of ghosts in analog cable television systems.

In the case of the Autonet, the network card in each node properly terminated the
cable, eliminating echos. But if someone disconnected a computer from the network,
and left the cable dangling, that cable would echo everything back to its source.

Suppose someone disconnects a cable, and someone else in the network sends a
packet to the broadcast address. The network routes the packet up to the root of the tree,
the root turns the packet around and sends it down the tree. When the packet hits the
end of the unterminated cable, it reflects and returns to the other end of the cable looking
like a new upward bound packet with the broadcast address. The node at that end duti
fully forwards the packet toward the root node, which, upon receipt turns it around and
sends it again. And again, and again, as fast as the network can carry the packet.

Lesson: Emergent properties often arise from the interaction of apparently unrelated system
features operating at different system layers, in this case, link-layer reflections and network-
layer broadcasts.

7.9.3 Emergent Phase Synchronization of Periodic Protocols

Some network protocols involve periodic polling. Examples include picking up mail,
checking for chat buddies, and sending “are-you-there?” inquiries for reassurance that a
co-worker hasn’t crashed. For a specific example, a workstation might send a broadcast
packet every five minutes to announce that it is still available for conversations. If there
are dozens of such workstations on the same local area network, the designer would pre
fer that they not all broadcast simultaneously. One might assume that, even if they all
broadcast with the same period, if they start at random their broadcasts would be out of
phase and it would take a special effort to synchronize their phases and keep them that
way. Unfortunately, it is common to discover that they have somehow synchronized
themselves and are all trying to broadcast at the same time.

How can this be? Suppose, for example, that each one of a group of workstations
sends a broadcast and then sets a timer for a fixed interval. When the timer expires, it

Saltzer & Kaashoek Ch. 7, p. 108 June 25, 2009 8:22 am

7.9 War Stories: Surprises in Protocol Design 7–109

sends another broadcast and, after sending, it again sets the timer. During the time that
it is sending the broadcast message, the timer is not running. If a second workstation
happens to send a broadcast during that time, both workstations take a network inter
rupt, each accepts the other station’s broadcast, and makes a note of it, as might be
expected. But the time required to handle the incoming broadcast interrupts slightly
delays the start of the next timing cycle for both of the workstations, whereas broadcasts
that arrive while a workstation’s timer is running don’t affect the timer. Although the
delay is small, it does shift the timing of these workstation’s broadcasts relative to all of
the other workstations. The next time this workstation’s timer expires, it will again be
interrupted by the other workstation, since they are both using the same timer value, and
both of their timing cycles will again be slightly lengthened. The two workstations have
formed a phase-locked group, and will remain that way indefinitely.

More important, the two workstations that were accidentally synchronized are now
polling with a period that is slightly larger than all the other workstations. As a result,
their broadcasts now precess relative to the others, and eventually will overlap the time
of broadcast of a third workstation. That workstation will then join the phase-locked
group, increasing the rate of precession, and things continue from there. The problem is
that the system design unintentionally includes an emergent phase-locked loop, similar
to the one described on page 7–36.

The generic mechanism is that the supposed “fixed” interval does not count the run
ning time of the periodic program, and that for some reason that running time is
different when two or more participants happen to run concurrently. In a network, it is
quite common to find that unsynchronized activities with identical timing periods
become synchronized.

Lesson: Fixed timers have many evils. Don’t assume that unsynchronized periodic activi
ties will stay that way.

7.9.4 Wisconsin Time Server Meltdown

NE TGEAR®, a manufacturer of Ethernet and wireless equipment, added a feature to
four of its low-cost wireless routers intended for home use: a log of packets that traverse
the router. To be useful in debugging, the designers realized that the log needed to times
tamp each log entry, but adding timestamps required that the router know the current
date and time. Since the router would be attached to the Internet, the designers added a
few lines of code that invoked a simple network time service protocol known as SNTP.
Since SNTP requires that the client invoke a specific time service, there remained a name
discovery problem. They solved it by configuring the firmware code with the Internet
address of a network time service. Specifically, they inserted the address 128.105.39.11,
the network address of one of the time servers operated by the University of Wisconsin.
The designers surrounded this code with a persistent sender that would retry the protocol
once per second until it received a response. Upon receiving a response, it refreshed the
clock with another invocation of SNTP, using the same persistent sender, on a schedule
ranging from once per minute to once per day, depending on the firmware version.

Saltzer & Kaashoek Ch. 7, p. 109 June 25, 2009 8:22 am

7–110 CHAPTER 7 The Network as a System and as a System Component

On May 14, 2003, at about 8:00 a.m. local time, the network staff at the University
of Wisconsin noticed an abrupt increase in the rate of inbound Internet traffic at their
connection to the Internet—the rate jumped from 20,000 packets per second to 60,000
packets per second. All of the extra traffic seemed to be SNTP packets targeting one of
their time servers, and specifying the same UDP response port, port 23457. To prevent
disruption to university network access, the staff installed a temporary filter at their bor
der routers that discarded all incoming SNTP request packets that specified a response
port of 23457. They also tried invoking an SNTP protocol access control feature in
which the service can send a response saying, in effect, “go away”, but it had no effect on
the incoming packet flood.

Over the course of the next few weeks, SNTP packets continued to arrive at an
increasing rate, soon reaching around 270,000 packets per second, and consuming about
150 megabits per second of Internet connection capacity. Analysis of the traffic showed
that the source addresses seemed to be legitimate and that any single source was sending
a packet about once per second. A modest amount of sleuthing identified the NET
GEAR routers as the source of the packets and the firmware as containing the target
address and response port numbers. Deeper analysis established that the immediate dif
ficulty was congestion collapse. NETGEAR had sold over 700,000 routers containing
this code world-wide. As the number in operation increased, the load on the Wisconsin
time service grew gradually until one day the response latency of the server exceeded one
second. At that point, the NETGEAR router that made that request timed out and
retried, thereby increasing its load on the time service, which increased the time service
response latency for future requesters. After a few such events, essentially all of the NET
GEAR routers would start to time out, thereby multiplying the load they presented by a
factor of 60 or more, which ensured that the server latency would continue to exceed
their one second timer.

How Wisconsin and NETGEAR solved this problem, and at whose expense, is a
whole separate tale.*

Lesson(s): There are several. (1) Fixed timers were once again found at the scene of an acci
dent. (2) Configuring a fixed Internet address, which is overloaded with routing information,
is a bad idea. In this case, the wired-in address made it difficult to repair the problem by
rerouting requests to a different time service, such as one provided by NETGEAR. The address
should have been a variable, preferably one that could be hidden with indirection (decouple
modules with indirection). (3) There is a reason for features such as the “go away” response in
SNTP; it is risky for a client to implement only part of a protocol.

* For that story, see <http://www.cs.wisc.edu/~plonka/netgear-sntp/>. This inci
dent is also described in David Mills, Judah Levine, Richard Schmidt and David Plonka. “Coping
with overload on the Network Time Protocol public servers.” Proceedings of the Precision Time and
Time Interval (PTTI) Applications and Planning Meeting (Washington DC, December 2004), pages
5-16.

Saltzer & Kaashoek Ch. 7, p. 110 June 25, 2009 8:22 am

<http://www.cs.wisc.edu/~plonka/netgear-sntp/>

 Exercises 7–111

Exercises

7.1 	 Chapter 1 discussed four general methods for coping with complexity: modularity,
abstraction, hierarchy, and layering. Which of those four methods does a protocol
stack use as its primary organizing scheme?

1996–1–1e

7.2 	 The end-to-end argument

A. 	 is a guideline for placing functions in a computer system;
B. 	 is a rule for placing functions in a computer system;
C. 	 is a debate about where to place functions in a computer system;
D. 	 is a debate about anonymity in computer networks.

1999–2–03

7.3 	 Of the following, the best example of an end-to-end argument is:

A. 	 If you laid all the Web hackers in the world end to end, they would reach from
Cambridge to CERN.

B. 	 Every byte going into the write end of a UNIX pipe eventually emerges from the pipe’s
read end.

C. 	 Even if a chain manufacturer tests each link before assembly, he’d better test the
completed chain.

D. 	 Per-packet checksums must be augmented by a parity bit for each byte.
E. 	 All important network communication functions should be moved to the application

layer.
1998–2–01

7.4 	 Give two scenarios in the form of timing diagrams showing how a duplicate request
might end up at a service.

1995-1-5a

7.5 	 After sending a frame, a certain piece of network software waits one second for an
acknowledgment before retransmitting the frame. After each retransmission, it cuts
delay in half, so after the first retransmission the wait is 1/2 second, after the second
retransmission the wait is 1/4 second, etc. If it has reduced the delay to 1/1024

Saltzer & Kaashoek Ch. 7, p. 111	 June 25, 2009 8:22 am

7–112 CHAPTER 7 The Network as a System and as a System Component

second without receiving an acknowledgment, the software gives up and reports to
its caller that it was not able to deliver the frame.

7.5a. 	Is this a good way to manage retransmission delays for Ethernet? Why or why not?
1987–1–2a

7.5b. 	Is this a good way to manage retransmission delays for a receive-and-forward
network? Why or why not?

1987–1–2b

7.6 	 Variable delay is an intrinsic problem of isochronous networks. True or False?
1995–1–1f

7.7 	 Host A is sending frames to host B over a noisy communication link. The median
transit time over the communication link is 100 milliseconds. The probability of a
frame being damaged en route in either direction across the communication link is
α, and B can reliably detect the damage. When B gets a damaged frame it simply
discards it. To ensure that frames arrive safely, B sends an acknowledgment back to
A for every frame received intact.

7.7a. 	How long should A wait for a frame to be acknowledged before retransmitting it?
1987–1–3a

 7.7b. 	What is the average number of times that A will have to send each frame?
1987–1–3b

7.8 	 Consider the protocol reference model of this chapter with the link, network, and
end-to-end layers. Which of the following is a behavior of the reference model?

A. 	 An end-to-end layer at an end host tells its network layer which network layer
protocol to use to reach a destination.

B. 	 The network layer at a router maintains a separate queue of packets for each end-to
end protocol.

C. 	 The network layer at an end host looks at the end-to-end type field in the network
header to decide which end-to-end layer protocol handler to invoke.

D. 	 The link layer retransmits packets based on the end-to-end type of the packets: if the
end-to-end protocol is reliable, then a link-layer retransmission occurs when a loss is
detected at the link layer, otherwise not.

2000–2–02

Saltzer & Kaashoek Ch. 7, p. 112	 June 25, 2009 8:22 am

 Exercises 7–113

7.9 	 Congestion is said to occur in a receive-and-forward network when
A. 	 Communication stalls because of cycles in the flow-control dependencies.
B. 	 The throughput demanded of a network link exceeds its capacity.
C. 	 The volume of e-mail received by each user exceeds the rate at which users can read

e-mail.
D. 	 The load presented to a network link persistently exceeds its capacity.
E. 	 The amount of space required to store routing tables at each node becomes

burdensome.
1997–1–1e

7.10 Alice has arranged to send a stream of data to Bob using the following protocol:

• 	 Each message segment has a block number attached to it; block numbers are
consecutive starting with 1.

• 	 Whenever Bob receives a segment of data with the number N he sends back an
acknowledgment saying “OK to send block N + 1”.

• 	 Whenever Alice receives an “OK to send block K” she sends block K.

Alice initiates the protocol by sending a block numbered 1, she terminates the
protocol by ignoring any “OK to send block K” for which K is larger than the
number on the last block she wants to send. The network has been observed to
never lose message segments, so Bob and Alice have made no provision for timer
expirations and retries. They have also made no provision for deduplication.
Unfortunately, the network systematically delivers every segment twice. Alice starts
the protocol, planning to send a three-block stream. How many “OK to send block
4” responses does she ignore at the end?

1994–2–6

7.11 	 A and B agree to use a simple window protocol for flow control for data going
from A to B: When the connection is first established, B tells A how many message
segments B can accept, and as B consumes the segments it occasionally sends a
message to A saying “you can send M more”. In operation, B notices that
occasionally A sends more segments than it was supposed to. Explain.

1980–3–3

7.12 	 Assume a client and a service are directly connected by a private, 800,000 bytes
per second link. Also assume that the client and the service produce and consume

Saltzer & Kaashoek Ch. 7, p. 113	 June 25, 2009 8:22 am

7–114 CHAPTER 7 The Network as a System and as a System Component

message segments at the same rate. Using acknowledgments, the client measures the
round-trip between itself and the service to be 10 milliseconds.

7.12a. If the client is sending message segments that require 1000-byte frames, what is
the smallest window size that allows the client to achieve 800,000 bytes per second
throughput?

1995–2–2a

7.12b. One scheme for establishing the window size is similar to the slow start congestion
control mechanism. The idea is that the client starts with a window size of one. For
every segment received, the service responds with an acknowledgment telling the
client to double the window size. The client does so until it realizes that there is no
point in increasing it further. For the same parameters as in part 7.12a, how long
would it take for the client to realize it has reached the maximum throughput?

1995–2–2b

7.12c. Another scheme for establishing the window size is called fast start. In (an
oversimplified version of) fast start, the client simply starts sending segments as fast
as it can, and watches to see when the first acknowledgment returns. At that point,
it counts the number of outstanding segments in the pipeline, and sets the window
size to that number. Again using the same parameters as in part 7.12a, how long
will it take for the client to know it has achieved the maximum throughput?

1995–2–2c

7.13 	 A satellite in stationary orbit has a two-way data channel that can send frames
containing up to 1000 data bytes in a millisecond. Frames are received without error
after 249 milliseconds of propagation delay. A transmitter T frequently has a data
file that takes 1000 of these maximal-length frames to send to a receiver R. T and R
start using lock-step flow control. R allocates a buffer which can hold one message
segment. As soon as the buffered segment is used and the buffer is available to hold
new data, R sends an acknowledgment of the same length. T sends the next segment
as soon as it sees the acknowledgment for the last one.

7.13a. What is the minimum time required to send the file?
1988–2–2a

7.13b. T and R decide that lock-step is too slow, so they change to a bang-bang protocol.
A bang-bang protocol means that R sends explicit messages to T saying “go ahead”
or “pause”. The idea is that R will allocate a receive buffer of some size B, send a go-
ahead message when it is ready to receive data. T then sends data segments as fast
as the channel can absorb them. R sends a pause message at just the right time so
that its buffer will not overflow even if R stops consuming message segments.

Saltzer & Kaashoek Ch. 7, p. 114	 June 25, 2009 8:22 am

 Exercises 7–115

Suppose that R sends a go-ahead, and as soon as it sees the first data arrive it sends
a pause. What is the minimum buffer size Bmin that it needs?)

1988–2–2b]

 7.13c. What now is the minimum time required to send the file?
1988–2–2c

7.14 	 Some end-to-end protocols include a destination field in the end-to-end header.
Why?

A. 	 So the protocol can check that the network layer routed the packet containing the
message segment correctly.

B. 	 Because an end-to-end argument tells us that routing should be performed at the end-
to-end layer.

C. 	 Because the network layer uses the end-to-end header to route the packet.
D. 	 Because the end-to-end layer at the sender needs it to decide which network protocol

to use.
2000–2–09

7.15 One value of hierarchical naming of network attachment points is that it allows a
reduction in the size of routing tables used by packet forwarders. Do the packet
forwarders themselves have to be organized hierarchically to take advantage of this
space reduction?

1994–2–5

7.16 	 The System Network Architecture (SNA) protocol family developed by IBM uses
a flow control mechanism called pacing. With pacing, a sender may transmit a fixed
number of message segments, and then must pause. When the receiver has accepted
all of these segments, it can return a pacing response to the sender, which can then
send another burst of message segments.

Suppose that this scheme is being used over a satellite link, with a delay from earth
station to earth station of 250 milliseconds. The frame size on the link is 1000 bits,
four segments are sent before pausing for a pacing response, and the satellite
channel has a data rate of one megabit per second.

7.16a. The timing diagram below illustrates the frame carrying the first segment. Fill in
the diagram to show the next six frames exchanged in the pacing system. Assume
no frames are lost, delays are uniform, and sender and receiver have no internal

Saltzer & Kaashoek Ch. 7, p. 115	 June 25, 2009 8:22 am

7–116 CHAPTER 7 The Network as a System and as a System Component

delays (for example, the first bit of the second frame may immediately follow the
last bit of the first).

sender receiver

time, in ms	 0
1

250
251

first bit of first frame leaves sender
last bit of first frame leaves sender

first bit of first frame arrives at receiver
last bit of first frame arrives at receiver

7.16b. What is the maximum fraction of the available satellite capacity that can be used
by this pacing scheme?

7.16c. We would like to increase the utilization of the channel to 50% but we can't
increase the frame size. How many message segments would have to be sent
between pacing responses to achieve this capacity?

1982–3–4

7.17 	 Which are true statements about network address translators as described in
Section 7.4.5?

A. 	 NATs break the universal addressing scheme of the Internet.
B. 	 NATs break the layering abstraction of the network model of Chapter 7.
C. 	 NATs increase the consumption of Internet addresses.
D. 	 NATs address the problem that the Internet has a shortage of Internet addresses.
E. 	 NATs constrain the design of new end-to-end protocols.
F.	 When a NAT translates the Internet address of a packet, it must also modify the

Ethernet checksum, to ensure that the packet is not discarded by the next router that
handles it. The client application might be sending its Internet address in the TCP
payload to the server.

G. 	 When a packet from the public Internet arrives at a NAT box for delivery to a host
behind the NAT, the NAT must examine the payload and translate any Internet
addresses found therein.

H. 	 Clients behind a NAT cannot communicate with servers that are behind the same
NAT because the NAT does not know how to forward those packets.

2001–2–01, 2002–2–02, and 2004–2–2

Saltzer & Kaashoek Ch. 7, p. 116	 June 25, 2009 8:22 am

 Exercises 7–117

7.18 	 Some network protocols deal with both big-endian and little-endian clients by
providing two different network ports. Big-endian clients send requests and data to
one port, while little-endian clients send requests and data to the other. The service
may, of course, be implemented on either a big-endian or a little-endian machine.
This approach is unusual—most Internet protocols call for just one network port,
and require that all data be presented at that port in “network standard form”, which
is little- endian. Explain the advantage of the two port structure as compared with
the usual structure.

1994–1–2

7.19 	 Ethernet cannot scale to large sizes because a centralized mechanism is used to
control network contention. True or False?

1994–1–3b

7.20 Ethernet

A. 	 uses luminiferous ether to carry packets.
B. 	 uses Manchester encoding to frame bits.
C. 	 uses exponential back-off to resolve repeated conflicts between multiple senders.
D. 	 uses retransmissions to avoid congestion.
E. 	 delegates arbitration of conflicting transmissions to each station.
F. always guarantees the delivery of packets.
G. 	 can support an unbounded number of computers.
H. 	 has limited physical range.

1999–2–01, 2000–1–04

7.21 	 Ethernet cards have unique addresses built into them. What role do these unique
addresses play in the Internet?

A. 	 None. They are there for Macintosh compatibility only.
B. 	 A portion of the Ethernet address is used as the Internet address of the computer

using the card.
C. 	 They provide routing information for packets destined to non-local subnets.
D. 	 They are used as private keys in the Security Layer of the ISO protocol.
E. 	 They provide addressing within each subnet for an Internet address resolution

protocol.
F. They provide secure identification for warranty service.

1998-2-02

7.22 	 If eight stations on an Ethernet all want to transmit one packet, which of the
following statements is true?

Saltzer & Kaashoek Ch. 7, p. 117	 June 25, 2009 8:22 am

7–118 CHAPTER 7 The Network as a System and as a System Component

A. 	 It is guaranteed that all transmissions will succeed.
B. 	 With high probability all stations will eventually end up being able to transmit their

data successfully.
C. 	 Some of the transmissions may eventually succeed, but it is likely some may not.
D. 	 It is likely that none of the transmissions will eventually succeed.

2004–1–3

7.23 	 Ben Bitdiddle has been thinking about remote procedure call. He remembers that
one of the problems with RPC is the difficulty of passing pointers: since pointers are
really just addresses, if the service dereferences a client pointer, it’ll get some value
from its address space, rather than the intended value in the client’s address space.
Ben decides to redesign his RPC system to always pass, in the place of a bare pointer,
a structure consisting of the original pointer plus a context reference. Louis
Reasoner, excited by Ben’s insight, decides to change all end-to-end protocols along
the same lines. Argue for or against Louis’s decision.

1996–2–1a

7.24 	 Alyssa’s mobiles:* Alyssa P. Protocol-Hacker is designing an end-to-end protocol for
locating mobile hosts. A mobile host is a computer that plugs into the network at
different places at different times, and get assigned a new network address at each
place. The system she starts with assigns each host a home location, which can be
found simply by looking the user up in a name service. Her end-to-end protocol will
use a network that can reorder packets, but doesn’t ever lose or duplicate them. Her
first protocol is simple: every time a user moves, store a forwarding pointer at the
previous location, pointing to the new location. This creates a chain of forwarding
pointers with the permanent home location at the beginning and the mobile host
at the end. Packets meant for the mobile host are sent to the home location, which
forwards them along the chain until they reach the mobile host itself. (The chain is
truncated when a mobile host returns to a previously visited location.)
Alyssa notices that because of the long chains of forwarding pointers, performance
generally gets worse each time she moves her mobile host. Alyssa’s first try at fixing
the problem works like this: Each time a mobile host moves, it sends a message to
its home location indicating its new location. The home location maintains a
pointer to the new location. With this protocol, there are no chains at all. Places
other than the home location do not maintain forwarding information.

7.24a. When this protocol is implemented, Alyssa notices that packets regularly get lost
when she moves from one location to another. Explain why or give an example.

\

Alyssa is disappointed with her first attempt, and decides to start over. In her new
scheme, no forwarding pointers are maintained anywhere, not even at the home

* Credit for developing exercise 7.24 goes to Anant Agarwal.

Saltzer & Kaashoek Ch. 7, p. 118	 June 25, 2009 8:22 am

 Exercises 7–119

node. Say a packet destined for a mobile host A arrives at a node N. If N can directly
communicate with A, then N sends the packet to A, and we’re done. Otherwise, N
broadcasts a search request for A to all the other fixed nodes in the network. If A is
near a different fixed node N', then N' responds to the search request. On receiving
this response, N forwards the packet for A to N'.

7.24b. Will packets get lost with this protocol, even if A moves before the packet gets to
N'? Explain.

Unfortunately the network doesn’t support broadcast efficiently, so Alyssa goes back
to the keyboard and tries again. Her third protocol works like this. Each time a
mobile host moves, say from N to N', a forwarding pointer is stored at N pointing
to N'. Every so often, the mobile host sends a message to its permanent home node
with its current location. Then, the home node propagates a message down the
forwarding chain, asking the intermediate nodes to delete their forwarding state.

7.24c. Can Alyssa ever lose packets with this protocol? Explain. (Hint: think about the
properties of the underlying network.)

7.24d. What additional steps can the home node take to ensure that the scheme in
question 7.24c never loses packets?

1996–2–2

7.25 	 ByteStream Inc. sells three data-transfer products: Send-and-wait, Blast, and
Flow-control. Mike R. Kernel is deciding which product to use. The protocols work
as follows:

• 	 Send-and-wait sends one segment of a message and then waits for an
acknowledgment before sending the next segment.

• 	 Flow-control uses a sliding window of 8 segments. The sender sends until the
window closes (i.e., until there are 8 unacknowledged segments). The receiver
sends an acknowledgment as soon as it receives a segment. Each
acknowledgment opens the sender’s window with one segment.

• 	 Blast uses only one acknowledgment. The sender blasts all the segments of a
message to the receiver as fast as the network layer can accept them. The last
segment of the blast contains a bit indicating that it is the last segment of the
message. After sending all segments in a single blast, the sender waits for one
acknowledgment from the receiver. The receiver sends an acknowledgment as
soon as it receives the last segment.

Mike asks you to help him compute for each protocol its maximum throughput.
He is planning to use a 1,000,000 bytes per second network that has a packet size
of 1,000 bytes. The propagation time from the sender to the receiver is 500
microseconds. To simplify the calculation, Mike suggests making the following
approximations: (1) there is no processing time at the sender and the receiver; (2)
the time to send an acknowledgment is just the propagation time (number of data

Saltzer & Kaashoek Ch. 7, p. 119	 June 25, 2009 8:22 am

7–120 CHAPTER 7 The Network as a System and as a System Component

bytes in an ACK is zero); (3) the data segments are always 1,000 bytes; and (4) all
headers are zero-length. He also assumes that the underlying communication
medium is perfect (frames are not lost, frames are not duplicated, etc.) and that the
receiver has unlimited buffering.

 7.25a. What is the maximum throughput for the Send-and-wait?

 7.25b. What is the maximum throughput for Flow-control?

 7.25c. What is the maximum throughput for Blast?

Mike needs to choose one of the three protocols for an application which
periodically sends arbitrary-sized messages. He has a reliable network, but his
application involves unpredictable computation times at both the sender and the
receiver. And this time the receiver has a 20,000-byte receive buffer.

7.25d. Which product should he choose for maximum reliable operation?

A. Send-and-wait, the others might hang.
B. Blast, which outperforms the others.
C. 	 Flow-control, since Blast will be unreliable and Send-and-wait is slower.
D. 	 There is no way to tell from the information given.

1997–2–2

7.26 	 Suppose the longest packet you can transmit across the Internet can contain 480
bytes of useful data, you are using a lock-step end-to-end protocol, and you are
sending data from Boston to California. You have measured the round-trip time and
found that it is about 100 milliseconds.

 7.26a. If there are no lost packets, estimate the maximum data rate you can achieve.

7.26b. Unfortunately, 1% of the packets are getting lost. So you install a resend timer, set
to 1000 milliseconds. Estimate the data rate you now expect to achieve.

7.26c. On Tuesdays the phone company routes some westward-bound packets via
satellite link, and we notice that 50% of the round trips now take exactly 100 extra
milliseconds. What effect does this delay have on the overall data rate when the
resend timer is not in use. (Assume the network does not lose any packets.)

7.26d. Ben turns on the resend timer, but since he hadn’t heard about the satellite delays
he sets it to 150 milliseconds. What now is the data rate on Tuesdays? (Again,
assume the network does not lose any packets.)

7.26e. Usually, when discussing end-to-end data rate across a network, the first parameter
one hears is the data rate of the slowest link in the network. Why wasn't that
parameter needed to answer any of the previous parts of this question?

1994–1–5

Saltzer & Kaashoek Ch. 7, p. 120	 June 25, 2009 8:22 am

 Exercises 7–121

7.27 	 Ben Bitdiddle is called in to consult for Microhard. Bill Doors, the CEO, has set
up an application to control the Justice department in Washington, D.C. The client
running on the TNT operating system makes RPC calls from Seattle to the server
running in Washington, D.C. The server also runs on TNT (surprise!). Each RPC
call instructs the Justice department on how to behave; the response acknowledges
the request but contains no data (the Justice department always complies with
requests from Microhard). Bill Doors, however, is unhappy with the number of
requests that he can send to the Justice department. He therefore wants to improve
TNT’s communication facilities.

Ben observes that the Microhard application runs in a single thread and uses RPC.
He also notices that the link between Seattle and Washington, D.C. is reliable. He
then proposes that Microhard enhance TNT with a new communication primitive,
pipe calls.

Like RPCs, pipe calls initiate remote computation on the server. Unlike RPCs,
however, pipe calls return immediately to the caller and execute asynchronously on
the server. TNT packs multiple pipe calls into request messages that are 1000 bytes
long. TNT sends the request message to the server as soon as one of the following
two conditions becomes true: 1) the message is full, or 2) the message contains at
least 1 pipe call and it has been 1 second since the client last performed a pipe call.
Pipe calls have no acknowledgments. Pipe calls are not synchronized with respect
to RPC calls.

Ben quickly settles down to work and measures the network traffic between Seattle
and Washington. Here is what he observes:

Seattle to D.C. transit time: 12.5 x 10-3 seconds
D.C to Seattle transit time: 12.5 x 10-3 seconds

Channel bandwidth in each direction: 1.5 x 106 bits per second

RPC or Pipe data per call: 10 bytes

Network overhead per message: 40 bytes

Size of RPC request message (per call) 50 bytes

= 10 bytes data + 40 bytes overhead
Size of pipe request message: 1000 bytes (96 pipe calls per message)
Size of RPC reply message (no data): 50 bytes
Client computation time per request: 100 x 10-6 seconds
Server computation time per request: 50 x 10-6 seconds

Saltzer & Kaashoek Ch. 7, p. 121	 June 25, 2009 8:22 am

7–122 CHAPTER 7 The Network as a System and as a System Component

The Microhard application is the only one sending messages on the link.

7.27a. What is the transmission delay the client thread observes in sending an RPC
request message)?

7.27b. Assuming that only RPCs are used for remote requests, what is the maximum
number of RPCs per second that will be executed by this application?

7.27c. Assuming that all RPC calls are changed to pipe calls, what is the maximum
number of pipe calls per second that will be executed by this application?

7.27d. Assuming that every pipe call includes a serial number argument, and serial
numbers increase by one with every pipe call, how could you know the last pipe call
was executed?

A. 	 Ensure that serial numbers are synchronized to the time of day clock, and wait at the
client until the time of the last serial number.

B. 	 Call an RPC both before and after the pipe call, and wait for both calls to return.
C. 	 Call an RPC passing as an argument the serial number that was sent on the last pipe

call, and design the remote procedure called to not return until a pipe call with a
given serial number had been processed.

D. 	 Stop making pipe calls for twice the maximum network delay, and reset the serial
number counter to zero.

1998–1–2a…d

7.28 	 Alyssa P. Hacker is implementing a client/service spell checker in which a network
will stand between the client and the service. The client scans an ASCII file, sending
each word to the service in a separate message. The service checks each word against
its database of correctly spelled words and returns a one-bit answer. The client
displays the list of incorrectly spelled words.

7.28a. The client’s cost for preparing a message to be sent is 1 millisecond, regardless of
length. The network transit time is 10 milliseconds, and network data rate is
infinite. The service can look up a word and determine whether or not it is
misspelled in 100 microseconds. Since the service runs on a supercomputer, its cost
for preparing a message to be sent is zero milliseconds. Both the client and service
can receive messages with no overhead. How long will Alyssa’s design take to spell
check a 1,000 word file if she uses RPC for communication (ignore
acknowledgments to requests and replies, and assume that messages are not lost or
reordered)?

7.28b. Alyssa does the same computations that you did and decides that the design is too
slow. She decides to group several words into each request. If she packs 10 words in
each request, how long will it take to spell check the same file?

7.28c. Alyssa decides that grouping words still isn’t fast enough, so she wants to know
how long it would take if she used an asynchronous message protocol (with

Saltzer & Kaashoek Ch. 7, p. 122	 June 25, 2009 8:22 am

 Exercises 7–123

grouping words) instead of RPC. How long will it take to spell check the same file?
(For this calculation, assume that messages are not lost or reordered.)

7.28d. Alyssa is so pleased with the performance of this last design that she decides to use
it (without grouping) for a banking system. The service maintains a set of accounts
and processes requests to debit and credit accounts (i.e., modify account balances).
One day Alyssa deposits $10,000 and transfers it to Ben’s account immediately
afterwards. The transfer fails with a reply saying she is overdrawn. But when she
checks her balance afterwards, the $10,000 is there! Draw a time diagram
explaining these events.

1996–1–4a…d

Additional exercises relating to Chapter 7 can be found in problem sets 17
through 25.

Saltzer & Kaashoek Ch. 7, p. 123 June 25, 2009 8:22 am

7–124 CHAPTER 7 The Network as a System and as a System Component

Saltzer & Kaashoek Ch. 7, p. 124 June 25, 2009 8:22 am

CHAPTER

Fault Tolerance: Reliable

Systems from Unreliable
 8
Components

CHAPTER CONTENTS
Overview..8–2

8.1 Faults, Failures, and Fault Tolerant Design................................8–3

8.1.1 Faults, Failures, and Modules ... 8–3

8.1.2 The Fault-Tolerance Design Process .. 8–6

8.2 Measures of Reliability and Failure Tolerance............................8–8

8.2.1 Availability and Mean Time to Failure 8–8

8.2.2 Reliability Functions .. 8–13

8.2.3 Measuring Fault Tolerance ... 8–16

8.3 Tolerating Active Faults...8–16

8.3.1 Responding to Active Faults ... 8–16

8.3.2 Fault Tolerance Models .. 8–18

8.4 Systematically Applying Redundancy8–20

8.4.1 Coding: Incremental Redundancy ... 8–21

8.4.2 Replication: Massive Redundancy ... 8–25

8.4.3 Voting .. 8–26

8.4.4 Repair .. 8–31

8.5 Applying Redundancy to Software and Data............................8–36

8.5.1 Tolerating Software Faults ... 8–36

8.5.2 Tolerating Software (and other) Faults by Separating State 8–37

8.5.3 Durability and Durable Storage .. 8–39

8.5.4 Magnetic Disk Fault Tolerance .. 8–40

8.5.4.1 Magnetic Disk Fault Modes .. 8–41

8.5.4.2 System Faults ... 8–42

8.5.4.3 Raw Disk Storage .. 8–43

8.5.4.4 Fail-Fast Disk Storage... 8–43

8.5.4.5 Careful Disk Storage .. 8–45

8.5.4.6 Durable Storage: RAID 1 .. 8–46

8.5.4.7 Improving on RAID 1 ... 8–47

8.5.4.8 Detecting Errors Caused by System Crashes.................... 8–49

8.5.4.9 Still More Threats to Durability 8–49

8.6 Wrapping up Reliability ...8–51
 8–1

Saltzer & Kaashoek Ch. 8, p. 1 June 24, 2009 12:24 am

8–2 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

8.6.1 Design Strategies and Design Principles 8–51

8.6.2 How about the End-to-End Argument? 8–52

8.6.3 A Caution on the Use of Reliability Calculations 8–53

8.6.4 Where to Learn More about Reliable Systems 8–53

8.7 Application: A Fault Tolerance Model for CMOS RAM8–55

8.8 War Stories: Fault Tolerant Systems that Failed......................8–57

8.8.1 Adventures with Error Correction ... 8–57

8.8.2 Risks of Rarely-Used Procedures: The National Archives 8–59

8.8.3 Non-independent Replicas and Backhoe Fade 8–60

8.8.4 Human Error May Be the Biggest Risk 8–61

8.8.5 Introducing a Single Point of Failure 8–63

8.8.6 Multiple Failures: The SOHO Mission Interruption 8–63

Exercises..8–64
Glossary for Chapter 8 ...8–69
Index of Chapter 8 ...8–75

Last chapter page 8–77

Overview
Construction of reliable systems from unreliable components is one of the most impor
tant applications of modularity. There are, in principle, three basic steps to building
reliable systems:

1. 	Error detection: discovering that there is an error in a data value or control signal.
Error detection is accomplished with the help of redundancy, extra information
that can verify correctness.

2. 	Error containment: limiting how far the effects of an error propagate. Error
containment comes from careful application of modularity. When discussing
reliability, a module is usually taken to be the unit that fails independently of other
such units. It is also usually the unit of repair and replacement.

3. 	Error masking: ensuring correct operation despite the error. Error masking is
accomplished by providing enough additional redundancy that it is possible to
discover correct, or at least acceptably close, values of the erroneous data or control
signal. When masking involves changing incorrect values to correct ones, it is
usually called error correction.

Since these three steps can overlap in practice, one sometimes finds a single error-han
dling mechanism that merges two or even all three of the steps.

In earlier chapters each of these ideas has already appeared in specialized forms:

• 	A primary purpose of enforced modularity, as provided by client/server
architecture, virtual memory, and threads, is error containment.

Saltzer & Kaashoek Ch. 8, p. 2	 June 24, 2009 12:24 am

8.1 Faults, Failures, and Fault Tolerant Design 8–3

• 	Network links typically use error detection to identify and discard damaged
frames.

• 	Some end-to-end protocols time out and resend lost data segments, thus
masking the loss.

• 	 Routing algorithms find their way around links that fail, masking those failures.
• 	Some real-time applications fill in missing data by interpolation or repetition,

thus masking loss.

and, as we will see in Chapter 11[on-line], secure systems use a technique called defense
in depth both to contain and to mask errors in individual protection mechanisms. In this
chapter we explore systematic application of these techniques to more general problems,
as well as learn about both their power and their limitations.

8.1 Faults, Failures, and Fault Tolerant Design

8.1.1 Faults, Failures, and Modules

Before getting into the techniques of constructing reliable systems, let us distinguish
between concepts and give them separate labels. In ordinary English discourse, the three
words “fault,” “failure,” and “error” are used more or less interchangeably or at least with
strongly overlapping meanings. In discussing reliable systems, we assign these terms to
distinct formal concepts. The distinction involves modularity. Although common
English usage occasionally intrudes, the distinctions are worth maintaining in technical
settings.

A fault is an underlying defect, imperfection, or flaw that has the potential to cause
problems, whether it actually has, has not, or ever will. A weak area in the casing of a tire
is an example of a fault. Even though the casing has not actually cracked yet, the fault is
lurking. If the casing cracks, the tire blows out, and the car careens off a cliff, the resulting
crash is a failure. (That definition of the term “failure” by example is too informal; we
will give a more careful definition in a moment.) One fault that underlies the failure is
the weak spot in the tire casing. Other faults, such as an inattentive driver and lack of a
guard rail, may also contribute to the failure.

Experience suggests that faults are commonplace in computer systems. Faults come
from many different sources: software, hardware, design, implementation, operations,
and the environment of the system. Here are some typical examples:

• 	 Software fault: A programming mistake, such as placing a less-than sign where
there should be a less-than-or-equal sign. This fault may never have caused any
trouble because the combination of events that requires the equality case to be
handled correctly has not yet occurred. Or, perhaps it is the reason that the system
crashes twice a day. If so, those crashes are failures.

Saltzer & Kaashoek Ch. 8, p. 3	 June 24, 2009 12:24 am

8–4 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

• 	 Hardware fault: A gate whose output is stuck at the value ZERO. Until something
depends on the gate correctly producing the output value ONE, nothing goes wrong.
If you publish a paper with an incorrect sum that was calculated by this gate, a
failure has occurred. Furthermore, the paper now contains a fault that may lead
some reader to do something that causes a failure elsewhere.

• 	 Design fault: A miscalculation that has led to installing too little memory in a
telephone switch. It may be months or years until the first time that the presented
load is great enough that the switch actually begins failing to accept calls that its
specification says it should be able to handle.

• 	 Implementation fault: Installing less memory than the design called for. In this
case the failure may be identical to the one in the previous example of a design
fault, but the fault itself is different.

• 	 Operations fault: The operator responsible for running the weekly payroll ran the
payroll program twice last Friday. Even though the operator shredded the extra
checks, this fault has probably filled the payroll database with errors such as wrong
values for year-to-date tax payments.

• 	 Environment fault: Lightning strikes a power line, causing a voltage surge. The
computer is still running, but a register that was being updated at that instant now
has several bits in error. Environment faults come in all sizes, from bacteria
contaminating ink-jet printer cartridges to a storm surge washing an entire
building out to sea.

Some of these examples suggest that a fault may either be latent, meaning that it isn’t
affecting anything right now, or active. When a fault is active, wrong results appear in
data values or control signals. These wrong results are errors. If one has a formal specifi
cation for the design of a module, an error would show up as a violation of some assertion
or invariant of the specification. The violation means that either the formal specification
is wrong (for example, someone didn’t articulate all of the assumptions) or a module that
this component depends on did not meet its own specification. Unfortunately, formal
specifications are rare in practice, so discovery of errors is more likely to be somewhat ad
hoc.

If an error is not detected and masked, the module probably does not perform to its
specification. Not producing the intended result at an interface is the formal definition
of a failure. Thus, the distinction between fault and failure is closely tied to modularity
and the building of systems out of well-defined subsystems. In a system built of sub
systems, the failure of a subsystem is a fault from the point of view of the larger subsystem
that contains it. That fault may cause an error that leads to the failure of the larger sub
system, unless the larger subsystem anticipates the possibility of the first one failing,
detects the resulting error, and masks it. Thus, if you notice that you have a flat tire, you
have detected an error caused by failure of a subsystem you depend on. If you miss an
appointment because of the flat tire, the person you intended to meet notices a failure of

Saltzer & Kaashoek Ch. 8, p. 4	 June 24, 2009 12:24 am

8.1 Faults, Failures, and Fault Tolerant Design 8–5

a larger subsystem. If you change to a spare tire in time to get to the appointment, you
have masked the error within your subsystem. Fault tolerance thus consists of noticing
active faults and component subsystem failures and doing something helpful in response.

One such helpful response is error containment, which is another close relative of
modularity and the building of systems out of subsystems. When an active fault causes
an error in a subsystem, it may be difficult to confine the effects of that error to just a
portion of the subsystem. On the other hand, one should expect that, as seen from out
side that subsystem, the only effects will be at the specified interfaces of the subsystem.
In consequence, the boundary adopted for error containment is usually the boundary of
the smallest subsystem inside which the error occurred. From the point of view of the
next higher-level subsystem, the subsystem with the error may contain the error in one
of four ways:

1. 	Mask the error, so the higher-level subsystem does not realize that anything went
wrong. One can think of failure as falling off a cliff and masking as a way of
providing some separation from the edge.

2. 	Detect and report the error at its interface, producing what is called a fail-fast
design. Fail-fast subsystems simplify the job of detection and masking for the next
higher-level subsystem. If a fail-fast module correctly reports that its output is
questionable, it has actually met its specification, so it has not failed. (Fail-fast
modules can still fail, for example by not noticing their own errors.)

3. 	Immediately stop dead, thereby hoping to limit propagation of bad values, a
technique known as fail-stop. Fail-stop subsystems require that the higher-level
subsystem take some additional measure to discover the failure, for example by
setting a timer and responding to its expiration. A problem with fail-stop design is
that it can be difficult to distinguish a stopped subsystem from one that is merely
running more slowly than expected. This problem is particularly acute in
asynchronous systems.

4. 	Do nothing, simply failing without warning. At the interface, the error may have
contaminated any or all output values. (Informally called a “crash” or perhaps “fail
thud”.)

Another useful distinction is that of transient versus persistent faults. A transient fault,
also known as a single-event upset, is temporary, triggered by some passing external event
such as lightning striking a power line or a cosmic ray passing through a chip. It is usually
possible to mask an error caused by a transient fault by trying the operation again. An
error that is successfully masked by retry is known as a soft error. A persistent fault contin
ues to produce errors, no matter how many times one retries, and the corresponding
errors are called hard errors. An intermittent fault is a persistent fault that is active only
occasionally, for example, when the noise level is higher than usual but still within spec
ifications. Finally, it is sometimes useful to talk about latency, which in reliability
terminology is the time between when a fault causes an error and when the error is

Saltzer & Kaashoek Ch. 8, p. 5	 June 24, 2009 12:24 am

8–6 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

detected or causes the module to fail. Latency can be an important parameter because
some error-detection and error-masking mechanisms depend on there being at most a
small fixed number of errors—often just one—at a time. If the error latency is large,
there may be time for a second error to occur before the first one is detected and masked,
in which case masking of the first error may not succeed. Also, a large error latency gives
time for the error to propagate and may thus complicate containment.

Using this terminology, an improperly fabricated stuck-at-ZERO bit in a memory chip
is a persistent fault: whenever the bit should contain a ONE the fault is active and the value
of the bit is in error; at times when the bit is supposed to contain a ZERO, the fault is latent.
If the chip is a component of a fault tolerant memory module, the module design prob
ably includes an error-correction code that prevents that error from turning into a failure
of the module. If a passing cosmic ray flips another bit in the same chip, a transient fault
has caused that bit also to be in error, but the same error-correction code may still be able
to prevent this error from turning into a module failure. On the other hand, if the error-
correction code can handle only single-bit errors, the combination of the persistent and
the transient fault might lead the module to produce wrong data across its interface, a
failure of the module. If someone were then to test the module by storing new data in it
and reading it back, the test would probably not reveal a failure because the transient
fault does not affect the new data. Because simple input/output testing does not reveal
successfully masked errors, a fault tolerant module design should always include some
way to report that the module masked an error. If it does not, the user of the module may
not realize that persistent errors are accumulating but hidden.

8.1.2 The Fault-Tolerance Design Process

One way to design a reliable system would be to build it entirely of components that are
individually so reliable that their chance of failure can be neglected. This technique is
known as fault avoidance. Unfortunately, it is hard to apply this technique to every com
ponent of a large system. In addition, the sheer number of components may defeat the
strategy. If all N of the components of a system must work, the probability of any one
component failing is p, and component failures are independent of one another, then the
probability that the system works is (1 – p)N . No matter how small p may be, there is
some value of N beyond which this probability becomes too small for the system to be
useful.

The alternative is to apply various techniques that are known collectively by the name
fault tolerance. The remainder of this chapter describes several such techniques that are
the elements of an overall design process for building reliable systems from unreliable
components. Here is an overview of the fault-tolerance design process:

1. Begin to develop a fault-tolerance model, as described in Section 8.3:

• Identify every potential fault.
• Estimate the risk of each fault, as described in Section 8.2.
• Where the risk is too high, design methods to detect the resulting errors.

Saltzer & Kaashoek Ch. 8, p. 6 June 24, 2009 12:24 am

8.1 Faults, Failures, and Fault Tolerant Design 8–7

2. 	Apply modularity to contain the damage from the high-risk errors.

3. 	Design and implement procedures that can mask the detected errors, using the

techniques described in Section 8.4:

• 	 Temporal redundancy. Retry the operation, using the same components.
• 	 Spatial redundancy. Have different components do the operation.

4. 	Update the fault-tolerance model to account for those improvements.

5. 	Iterate the design and the model until the probability of untolerated faults is low

enough that it is acceptable.

6. 	Observe the system in the field:

• 	 Check logs of how many errors the system is successfully masking. (Always keep

track of the distance to the edge of the cliff.)

• 	 Perform postmortems on failures and identify all of the reasons for each failure.

7. 	Use the logs of masked faults and the postmortem reports about failures to revise

and improve the fault-tolerance model and reiterate the design.

The fault-tolerance design process includes some subjective steps, for example, decid
ing that a risk of failure is “unacceptably high” or that the “probability of an untolerated
fault is low enough that it is acceptable.” It is at these points that different application
requirements can lead to radically different approaches to achieving reliability. A per
sonal computer may be designed with no redundant components, the computer system
for a small business is likely to make periodic backup copies of most of its data and store
the backup copies at another site, and some space-flight guidance systems use five com
pletely redundant computers designed by at least two independent vendors. The
decisions required involve trade-offs between the cost of failure and the cost of imple
menting fault tolerance. These decisions can blend into decisions involving business
models and risk management. In some cases it may be appropriate to opt for a nontech
nical solution, for example, deliberately accepting an increased risk of failure and
covering that risk with insurance.

The fault-tolerance design process can be described as a safety-net approach to system
design. The safety-net approach involves application of some familiar design principles
and also some not previously encountered. It starts with a new design principle:

Be explicit

Get all of the assumptions out on the table.

The primary purpose of creating a fault-tolerance model is to expose and document the
assumptions and articulate them explicitly. The designer needs to have these assump
tions not only for the initial design, but also in order to respond to field reports of

Saltzer & Kaashoek Ch. 8, p. 7	 June 24, 2009 12:24 am

8–8 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

unexpected failures. Unexpected failures represent omissions or violations of the
assumptions.

Assuming that you won’t get it right the first time, the second design principle of the
safety-net approach is the familiar design for iteration. It is difficult or impossible to antic
ipate all of the ways that things can go wrong. Moreover, when working with a fast-
changing technology it can be hard to estimate probabilities of failure in components and
in their organization, especially when the organization is controlled by software. For
these reasons, a fault tolerant design must include feedback about actual error rates, eval
uation of that feedback, and update of the design as field experience is gained. These two
principles interact: to act on the feedback requires having a fault tolerance model that is
explicit about reliability assumptions.

The third design principle of the safety-net approach is also familiar: the safety margin
principle, described near the end of Section 1.3.2. An essential part of a fault tolerant
design is to monitor how often errors are masked. When fault tolerant systems fail, it is
usually not because they had inadequate fault tolerance, but because the number of fail
ures grew unnoticed until the fault tolerance of the design was exceeded. The key
requirement is that the system log all failures and that someone pay attention to the logs.
The biggest difficulty to overcome in applying this principle is that it is hard to motivate
people to expend effort checking something that seems to be working.

The fourth design principle of the safety-net approach came up in the introduction
to the study of systems; it shows up here in the instruction to identify all of the causes of
each failure: keep digging. Complex systems fail for complex reasons. When a failure of a
system that is supposed to be reliable does occur, always look beyond the first, obvious
cause. It is nearly always the case that there are actually several contributing causes and
that there was something about the mind set of the designer that allowed each of those
causes to creep in to the design.

Finally, complexity increases the chances of mistakes, so it is an enemy of reliability.
The fifth design principle embodied in the safety-net approach is to adopt sweeping sim
plifications. This principle does not show up explicitly in the description of the fault-
tolerance design process, but it will appear several times as we go into more detail.

The safety-net approach is applicable not just to fault tolerant design. Chapter 11[on
line] will show that the safety-net approach is used in an even more rigorous form in
designing systems that must protect information from malicious actions.

8.2 Measures of Reliability and Failure Tolerance

8.2.1 Availability and Mean Time to Failure

A useful model of a system or a system component, from a reliability point of view, is
that it operates correctly for some period of time and then it fails. The time to failure
(TTF) is thus a measure of interest, and it is something that we would like to be able to
predict. If a higher-level module does not mask the failure and the failure is persistent,

Saltzer & Kaashoek Ch. 8, p. 8 June 24, 2009 12:24 am

8.2 Measures of Reliability and Failure Tolerance 8–9

the system cannot be used until it is repaired, perhaps by replacing the failed component,
so we are equally interested in the time to repair (TTR). If we observe a system through
N run–fail–repair cycles and observe in each cycle i the values of TTFi and TTRi, we can
calculate the fraction of time it operated properly, a useful measure known as availability:

time system was runningAvailability = ---
time system should have been running

N

∑ TTFi

i = 1= -- Eq. 8–1N

∑ (TTFi + TTRi)

i = 1

By separating the denominator of the availability expression into two sums and dividing
each by N (the number of observed failures) we obtain two time averages that are fre
quently reported as operational statistics: the mean time to failure (MTTF) and the mean
time to repair (MTTR):

N N

MTTF = ---1 - ∑ TTFi MTTR = ---1 - ∑ TTRi Eq. 8–2
N Ni = 1 i = 1

The sum of these two statistics is usually called the mean time between failures (MTBF).
Thus availability can be variously described as

MTTF MTTF MTBF – MTTRAvailability = ---------------- = --------------------------------------- = --------------------------------------- Eq. 8–3MTBF MTTF + MTTR MTBF

In some situations, it is more useful to measure the fraction of time that the system is not
working, known as its down time:

MTTRDown time = (1 – Availability) = ---------------- Eq. 8–4
MTBF

One thing that the definition of down time makes clear is that MTTR and MTBF are
in some sense equally important. One can reduce down time either by reducing MTTR
or by increasing MTBF.

Components are often repaired by simply replacing them with new ones. When failed
components are discarded rather than fixed and returned to service, it is common to use
a slightly different method to measure MTTF. The method is to place a batch of N com
ponents in service in different systems (or in what is hoped to be an equivalent test
environment), run them until they have all failed, and use the set of failure times as the
TTFi in equation 8–2. This procedure substitutes an ensemble average for the time aver
age. We could use this same procedure on components that are not usually discarded
when they fail, in the hope of determining their MTTF more quickly, but we might
obtain a different value for the MTTF. Some failure processes do have the property that
the ensemble average is the same as the time average (processes with this property are

Saltzer & Kaashoek Ch. 8, p. 9 June 24, 2009 12:24 am

8–10 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

called ergodic), but other failure processes do not. For example, the repair itself may cause
wear, tear, and disruption to other parts of the system, in which case each successive sys
tem failure might on average occur sooner than did the previous one. If that is the case,
an MTTF calculated from an ensemble-average measurement might be too optimistic.

As we have defined them, availability, MTTF, MTTR, and MTBF are backward-
looking measures. They are used for two distinct purposes: (1) for evaluating how the
system is doing (compared, for example, with predictions made when the system was
designed) and (2) for predicting how the system will behave in the future. The first pur
pose is concrete and well defined. The second requires that one take on faith that samples
from the past provide an adequate predictor of the future, which can be a risky assump
tion. There are other problems associated with these measures. While MTTR can usually
be measured in the field, the more reliable a component or system the longer it takes to
evaluate its MTTF, so that measure is often not directly available. Instead, it is common
to use and measure proxies to estimate its value. The quality of the resulting estimate of
availability then depends on the quality of the proxy.

A typical 3.5-inch magnetic disk comes with a reliability specification of 300,000
hours “MTTF”, which is about 34 years. Since the company quoting this number has
probably not been in business that long, it is apparent that whatever they are calling
“MTTF” is not the same as either the time-average or the ensemble-average MTTF that
we just defined. It is actually a quite different statistic, which is why we put quotes
around its name. Sometimes this “MTTF” is a theoretical prediction obtained by mod
eling the ways that the components of the disk might be expected to fail and calculating
an expected time to failure.

A more likely possibility is that the manufacturer measured this “MTTF” by running
an array of disks simultaneously for a much shorter time and counting the number of
failures. For example, suppose the manufacturer ran 1,000 disks for 3,000 hours (about
four months) each, and during that time 10 of the disks failed. The observed failure rate
of this sample is 1 failure for every 300,000 hours of operation. The next step is to invert
the failure rate to obtain 300,000 hours of operation per failure and then quote this num
ber as the “MTTF”. But the relation between this sample observation of failure rate and
the real MTTF is problematic. If the failure process were memoryless (meaning that the
failure rate is independent of time; Section 8.2.2, below, explores this idea more thor
oughly), we would have the special case in which the MTTF really is the inverse of the
failure rate. A good clue that the disk failure process is not memoryless is that the disk
specification may also mention an “expected operational lifetime” of only 5 years. That
statistic is probably the real MTTF—though even that may be a prediction based on
modeling rather than a measured ensemble average. An appropriate re-interpretation of
the 34-year “MTTF” statistic is to invert it and identify the result as a short-term failure
rate that applies only within the expected operational lifetime. The paragraph discussing
equation 8–9 on page 8–13 describes a fallacy that sometimes leads to miscalculation of
statistics such as the MTTF.

Magnetic disks, light bulbs, and many other components exhibit a time-varying sta
tistical failure rate known as a bathtub curve, illustrated in Figure 8.1 and defined more

Saltzer & Kaashoek Ch. 8, p. 10 June 24, 2009 12:24 am

8.2 Measures of Reliability and Failure Tolerance 8–11

carefully in Section 8.2.2, below. When components come off the production line, a cer
tain fraction fail almost immediately because of gross manufacturing defects. Those
components that survive this initial period usually run for a long time with a relatively
uniform failure rate. Eventually, accumulated wear and tear cause the failure rate to
increase again, often quite rapidly, producing a failure rate plot that resembles the shape
of a bathtub.

Several other suggestive and colorful terms describe these phenomena. Components
that fail early are said to be subject to infant mortality, and those that fail near the end of
their expected lifetimes are said to burn out. Manufacturers sometimes burn in such com
ponents by running them for a while before shipping, with the intent of identifying and
discarding the ones that would otherwise fail immediately upon being placed in service.
When a vendor quotes an “expected operational lifetime,” it is probably the mean time
to failure of those components that survive burn in, while the much larger “MTTF”
number is probably the inverse of the observed failure rate at the lowest point of the bath
tub. (The published numbers also sometimes depend on the outcome of a debate
between the legal department and the marketing department, but that gets us into a dif
ferent topic.) A chip manufacturer describes the fraction of components that survive the
burn-in period as the yield of the production line. Component manufacturers usually
exhibit a phenomenon known informally as a learning curve, which simply means that
the first components coming out of a new production line tend to have more failures
than later ones. The reason is that manufacturers design for iteration: upon seeing and
analyzing failures in the early production batches, the production line designer figures
out how to refine the manufacturing process to reduce the infant mortality rate.

One job of the system designer is to exploit the nonuniform failure rates predicted by
the bathtub and learning curves. For example, a conservative designer exploits the learn
ing curve by avoiding the latest generation of hard disks in favor of slightly older designs
that have accumulated more field experience. One can usually rely on other designers
who may be concerned more about cost or performance than availability to shake out the
bugs in the newest generation of disks.

conditional
failure rate,

h(t)

time, t

FIGURE 8.1

A bathtub curve, showing how the conditional failure rate of a component changes with time.

Saltzer & Kaashoek Ch. 8, p. 11 June 24, 2009 12:24 am

8–12 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

The 34-year “MTTF” disk drive specification may seem like public relations puffery
in the face of the specification of a 5-year expected operational lifetime, but these two
numbers actually are useful as a measure of the nonuniformity of the failure rate. This
nonuniformity is also susceptible to exploitation, depending on the operation plan. If the
operation plan puts the component in a system such as a satellite, in which it will run
until it fails, the designer would base system availability and reliability estimates on the
5-year figure. On the other hand, the designer of a ground-based storage system, mindful
that the 5-year operational lifetime identifies the point where the conditional failure rate
starts to climb rapidly at the far end of the bathtub curve, might include a plan to replace
perfectly good hard disks before burn-out begins to dominate the failure rate—in this
case, perhaps every 3 years. Since one can arrange to do scheduled replacement at conve
nient times, for example, when the system is down for another reason, or perhaps even
without bringing the system down, the designer can minimize the effect on system avail
ability. The manufacturer’s 34-year “MTTF”, which is probably the inverse of the
observed failure rate at the lowest point of the bathtub curve, then can be used as an esti
mate of the expected rate of unplanned replacements, although experience suggests that
this specification may be a bit optimistic. Scheduled replacements are an example of pre
ventive maintenance, which is active intervention intended to increase the mean time to
failure of a module or system and thus improve availability.

For some components, observed failure rates are so low that MTTF is estimated by
accelerated aging. This technique involves making an educated guess about what the
dominant underlying cause of failure will be and then amplifying that cause. For exam
ple, it is conjectured that failures in recordable Compact Disks are heat-related. A typical
test scenario is to store batches of recorded CDs at various elevated temperatures for sev
eral months, periodically bringing them out to test them and count how many have
failed. One then plots these failure rates versus temperature and extrapolates to estimate
what the failure rate would have been at room temperature. Again making the assump
tion that the failure process is memoryless, that failure rate is then inverted to produce
an MTTF. Published MTTFs of 100 years or more have been obtained this way. If the
dominant fault mechanism turns out to be something else (such as bacteria munching
on the plastic coating) or if after 50 years the failure process turns out not to be memo
ryless after all, an estimate from an accelerated aging study may be far wide of the mark.
A designer must use such estimates with caution and understanding of the assumptions
that went into them.

Availability is sometimes discussed by counting the number of nines in the numerical
representation of the availability measure. Thus a system that is up and running 99.9%
of the time is said to have 3-nines availability. Measuring by nines is often used in mar
keting because it sounds impressive. A more meaningful number is usually obtained by
calculating the corresponding down time. A 3-nines system can be down nearly 1.5 min
utes per day or 8 hours per year, a 5-nines system 5 minutes per year, and a 7-nines
system only 3 seconds per year. Another problem with measuring by nines is that it tells
only about availability, without any information about MTTF. One 3-nines system may
have a brief failure every day, while a different 3-nines system may have a single eight

Saltzer & Kaashoek Ch. 8, p. 12 June 24, 2009 12:24 am

8.2 Measures of Reliability and Failure Tolerance 8–13

hour outage once a year. Depending on the application, the difference between those two
systems could be important. Any single measure should always be suspect.

Finally, availability can be a more fine-grained concept. Some systems are designed
so that when they fail, some functions (for example, the ability to read data) remain avail
able, while others (the ability to make changes to the data) are not. Systems that continue
to provide partial service in the face of failure are called fail-soft, a concept defined more
carefully in Section 8.3.

8.2.2 Reliability Functions

The bathtub curve expresses the conditional failure rate h(t) of a module, defined to be
the probability that the module fails between time t and time t + dt, given that the com
ponent is still working at time t. The conditional failure rate is only one of several closely
related ways of describing the failure characteristics of a component, module, or system.
The reliability, R, of a module is defined to be

the module has not yet failed at time t, given that ⎞R t() = Pr	⎛
⎝ the module was operating at time 0 ⎠

Eq. 8–5

and the unconditional failure rate f(t) is defined to be

f t() = Pr(module fails between t and t + dt)	 Eq. 8–6

(The bathtub curve and these two reliability functions are three ways of presenting the
same information. If you are rusty on probability, a brief reminder of how they are
related appears in Sidebar 8.1.) Once f(t) is at hand, one can directly calculate the
MTTF:

∞

MTTF =	 ∫ t ⋅ f t()dt Eq. 8–7
0

One must keep in mind that this MTTF is predicted from the failure rate function f(t),
in contrast to the MTTF of eq. 8–2, which is the result of a field measurement. The two
MTTFs will be the same only if the failure model embodied in f(t) is accurate.

Some components exhibit relatively uniform failure rates, at least for the lifetime of
the system of which they are a part. For these components the conditional failure rate,
rather than resembling a bathtub, is a straight horizontal line, and the reliability function
becomes a simple declining exponential:

⎛ t ⎞– ----------------
R t() = e ⎝MTTF⎠ Eq. 8–8

This reliability function is said to be memoryless, which simply means that the conditional
failure rate is independent of how long the component has been operating. Memoryless
failure processes have the nice property that the conditional failure rate is the inverse of
the MTTF.

Unfortunately, as we saw in the case of the disks with the 34-year “MTTF”, this prop
erty is sometimes misappropriated to quote an MTTF for a component whose

Saltzer & Kaashoek Ch. 8, p. 13	 June 24, 2009 12:24 am

CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable 8–14

Sidebar 8.1: Reliability functions The failure rate function, the reliability function, and the
bathtub curve (which in probability texts is called the conditional failure rate function, and
which in operations research texts is called the hazard function) are actually three
mathematically related ways of describing the same information. The failure rate function, f(t)
as defined in equation 8–6, is a probability density function, which is everywhere non-negative
and whose integral over all time is 1. Integrating the failure rate function from the time the
component was created (conventionally taken to be t = 0) to the present time yields

F(t) is the cumulative probability that the component has failed by time t. The cumulative
probability that the component has not failed is the probability that it is still operating at time
t given that it was operating at time 0, which is exactly the definition of the reliability function,
R(t). That is,

The bathtub curve of Figure 8.1 reports the conditional probability h(t) that a failure occurs
between t and t + dt, given that the component was operating at time t. By the definition of
conditional probability, the conditional failure rate function is thus

F t() f t() td
0

t

∫=

R t() 1 F t()–=

h t() f t()
R t()
----------=

conditional failure rate does change with time. This misappropriation starts with a fal
lacy: an assumption that the MTTF, as defined in eq. 8–7, can be calculated by inverting
the measured failure rate. The fallacy arises because in general,

E(1 ⁄ t) ≠ 1 ⁄ E t() Eq. 8–9
That is, the expected value of the inverse is not equal to the inverse of the expected value,
except in certain special cases. The important special case in which they are equal is the
memoryless distribution of eq. 8–8. When a random process is memoryless, calculations
and measurements are so much simpler that designers sometimes forget that the same
simplicity does not apply everywhere.

Just as availability is sometimes expressed in an oversimplified way by counting the
number of nines in its numerical representation, reliability in component manufacturing
is sometimes expressed in an oversimplified way by counting standard deviations in the
observed distribution of some component parameter, such as the maximum propagation
time of a gate. The usual symbol for standard deviation is the Greek letter σ (sigma), and
a normal distribution has a standard deviation of 1.0, so saying that a component has
“4.5 σ reliability” is a shorthand way of saying that the production line controls varia
tions in that parameter well enough that the specified tolerance is 4.5 standard deviations
away from the mean value, as illustrated in Figure 8.2. Suppose, for example, that a pro-

Saltzer & Kaashoek Ch. 8, p. 14 June 24, 2009 12:24 am

8.2 Measures of Reliability and Failure Tolerance 8–15

duction line is manufacturing gates that are specified to have a mean propagation time
of 10 nanoseconds and a maximum propagation time of 11.8 nanoseconds with 4.5 σ
reliability. The difference between the mean and the maximum, 1.8 nanoseconds, is the
tolerance. For that tolerance to be 4.5 σ, σ would have to be no more than 0.4 nanosec
onds. To meet the specification, the production line designer would measure the actual
propagation times of production line samples and, if the observed variance is greater than
0.4 ns, look for ways to reduce the variance to that level.

Another way of interpreting “4.5 σ reliability” is to calculate the expected fraction of
components that are outside the specified tolerance. That fraction is the integral of one
tail of the normal distribution from 4.5 to ∞, which is about 3.4 × 10–6 , so in our exam
ple no more than 3.4 out of each million gates manufactured would have delays greater
than 11.8 nanoseconds. Unfortunately, this measure describes only the failure rate of the
production line, it does not say anything about the failure rate of the component after it
is installed in a system.

A currently popular quality control method, known as “Six Sigma”, is an application
of two of our design principles to the manufacturing process. The idea is to use measure
ment, feedback, and iteration (design for iteration: “you won’t get it right the first time”)
to reduce the variance (the robustness principle: “be strict on outputs”) of production-line
manufacturing. The “Six Sigma” label is somewhat misleading because in the application
of the method, the number 6 is allocated to deal with two quite different effects. The
method sets a target of controlling the production line variance to the level of 4.5 σ, just
as in the gate example of Figure 8.2. The remaining 1.5 σ is the amount that the mean
output value is allowed to drift away from its original specification over the life of the

4.5 s

–1 1 2 3 4 5 6 7s

9.6 10.0 10.4 10.8 11.2 11.6 12.0 12.4 12.8 ns

11.8 ns

FIGURE 8.2

The normal probability density function applied to production of gates that are specified to have
mean propagation time of 10 nanoseconds and maximum propagation time of 11.8 nanosec
onds. The upper numbers on the horizontal axis measure the distance from the mean in units
of the standard deviation, σ. The lower numbers depict the corresponding propagation times.
The integral of the tail from 4.5 σ to ∞ is so small that it is not visible in this figure.

Saltzer & Kaashoek Ch. 8, p. 15 June 24, 2009 12:24 am

8–16 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

production line. So even though the production line may start 6 σ away from the toler
ance limit, after it has been operating for a while one may find that the failure rate has
drifted upward to the same 3.4 in a million calculated for the 4.5 σ case.

In manufacturing quality control literature, these applications of the two design prin
ciples are known as Taguchi methods, after their popularizer, Genichi Taguchi.

8.2.3 Measuring Fault Tolerance

It is sometimes useful to have a quantitative measure of the fault tolerance of a system.
One common measure, sometimes called the failure tolerance, is the number of failures
of its components that a system can tolerate without itself failing. Although this label
could be ambiguous, it is usually clear from context that a measure is being discussed.
Thus a memory system that includes single-error correction (Section 8.4 describes how
error correction works) has a failure tolerance of one bit.

When a failure occurs, the remaining failure tolerance of the system goes down. The
remaining failure tolerance is an important thing to monitor during operation of the sys
tem because it shows how close the system as a whole is to failure. One of the most
common system design mistakes is to add fault tolerance but not include any monitoring
to see how much of the fault tolerance has been used up, thus ignoring the safety margin
principle. When systems that are nominally fault tolerant do fail, later analysis invariably
discloses that there were several failures that the system successfully masked but that
somehow were never reported and thus were never repaired. Eventually, the total num
ber of failures exceeded the designed failure tolerance of the system.

Failure tolerance is actually a single number in only the simplest situations. Some
times it is better described as a vector, or even as a matrix showing the specific
combinations of different kinds of failures that the system is designed to tolerate. For
example, an electric power company might say that it can tolerate the failure of up to
15% of its generating capacity, at the same time as the downing of up to two of its main
transmission lines.

8.3 Tolerating Active Faults

8.3.1 Responding to Active Faults

In dealing with active faults, the designer of a module can provide one of several
responses:

• 	 Do nothing. The error becomes a failure of the module, and the larger system or
subsystem of which it is a component inherits the responsibilities both of
discovering and of handling the problem. The designer of the larger subsystem
then must choose which of these responses to provide. In a system with several
layers of modules, failures may be passed up through more than one layer before

Saltzer & Kaashoek Ch. 8, p. 16	 June 24, 2009 12:24 am

8.3 Tolerating Active Faults 8–17

being discovered and handled. As the number of do-nothing layers increases,
containment generally becomes more and more difficult.

• 	 Be fail-fast. The module reports at its interface that something has gone wrong.
This response also turns the problem over to the designer of the next higher-level
system, but in a more graceful way. Example: when an Ethernet transceiver detects
a collision on a frame it is sending, it stops sending as quickly as possible,
broadcasts a brief jamming signal to ensure that all network participants quickly
realize that there was a collision, and it reports the collision to the next higher level,
usually a hardware module of which the transceiver is a component, so that the
higher level can consider resending that frame.

• 	 Be fail-safe. The module transforms any value or values that are incorrect to values
that are known to be acceptable, even if not right or optimal. An example is a
digital traffic light controller that, when it detects a failure in its sequencer,
switches to a blinking red light in all directions. Chapter 11[on-line] discusses
systems that provide security. In the event of a failure in a secure system, the safest
thing to do is usually to block all access. A fail-safe module designed to do that is
said to be fail-secure.

• 	 Be fail-soft. The system continues to operate correctly with respect to some
predictably degraded subset of its specifications, perhaps with some features
missing or with lower performance. For example, an airplane with three engines
can continue to fly safely, albeit more slowly and with less maneuverability, if one
engine fails. A file system that is partitioned into five parts, stored on five different
small hard disks, can continue to provide access to 80% of the data when one of
the disks fails, in contrast to a file system that employs a single disk five times as
large.

• 	 Mask the error. Any value or values that are incorrect are made right and the
module meets it specification as if the error had not occurred.

We will concentrate on masking errors because the techniques used for that purpose can
be applied, often in simpler form, to achieving a fail-fast, fail-safe, or fail-soft system.

As a general rule, one can design algorithms and procedures to cope only with spe
cific, anticipated faults. Further, an algorithm or procedure can be expected to cope only
with faults that are actually detected. In most cases, the only workable way to detect a
fault is by noticing an incorrect value or control signal; that is, by detecting an error.
Thus when trying to determine if a system design has adequate fault tolerance, it is help
ful to classify errors as follows:

• 	 A detectable error is one that can be detected reliably. If a detection procedure is
in place and the error occurs, the system discovers it with near certainty and it
becomes a detected error.

Saltzer & Kaashoek Ch. 8, p. 17	 June 24, 2009 12:24 am

error

8–18 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

• 	 A maskable error is one for which it is possible to devise a procedure to recover
correctness. If a masking procedure is in place and the error occurs, is detected,
and is masked, the error is said to be tolerated.

• 	 Conversely, 	 an untolerated error is one that is undetectable, undetected,
unmaskable, or unmasked.

An untolerated error usually leads to a

failure of the system. (“Usually,” because

we could get lucky and still produce a cor-

undetectable detectablerect output, either because the error values	 errorerror
didn’t actually matter under the current

conditions, or some measure intended to

mask a different error incidentally masks undetected
 detected

errorthis one, too.) This classification of errors is error

illustrated in Figure 8.3.
A subtle consequence of the concept of unmaskable maskable

a maskable error is that there must be a error error
well-defined boundary around that part of

the system state that might be in error. The

unmasked maskedmasking procedure must restore all of that error error
erroneous state to correctness, using infor
mation that has not been corrupted by the
error. The real meaning of detectable, then, untolerated tolerated
is that the error is discovered before its con- error error

sequences have propagated beyond some FIGURE 8.3
specified boundary. The designer usually
chooses this boundary to coincide with that Classification of errors. Arrows lead from a

of some module and designs that module to category to mutually exclusive subcatego
ries. For example, unmasked errors include

be fail-fast (that is, it detects and reports its both unmaskable errors and maskable errors

own errors). The system of which the mod- that the designer decides not to mask.

ule is a component then becomes

responsible for masking the failure of the module.

8.3.2 Fault Tolerance Models

The distinctions among detectable, detected, maskable, and tolerated errors allow us to
specify for a system a fault tolerance model, one of the components of the fault tolerance
design process described in Section 8.1.2, as follows:

1. 	Analyze the system and categorize possible error events into those that can be
reliably detected and those that cannot. At this stage, detectable or not, all errors
are untolerated.

Saltzer & Kaashoek Ch. 8, p. 18	 June 24, 2009 12:24 am

8.3 Tolerating Active Faults 8–19

2. 	For each undetectable error, evaluate the probability of its occurrence. If that
probability is not negligible, modify the system design in whatever way necessary
to make the error reliably detectable.

3. 	For each detectable error, implement a detection procedure and reclassify the
module in which it is detected as fail-fast.

4. 	For each detectable error try to devise a way of masking it. If there is a way,
reclassify this error as a maskable error.

5. 	For each maskable error, evaluate its probability of occurrence, the cost of failure,
and the cost of the masking method devised in the previous step. If the evaluation
indicates it is worthwhile, implement the masking method and reclassify this error
as a tolerated error.

When finished developing such a model, the designer should have a useful fault tol
erance specification for the system. Some errors, which have negligible probability of
occurrence or for which a masking measure would be too expensive, are identified as
untolerated. When those errors occur the system fails, leaving its users to cope with the
result. Other errors have specified recovery algorithms, and when those occur the system
should continue to run correctly. A review of the system recovery strategy can now focus
separately on two distinct questions:

• 	 Is the designer’s list of potential error events complete, and is the assessment of
the probability of each error realistic?

• 	Is the designer’s set of algorithms, procedures, and implementations that are
supposed to detect and mask the anticipated errors complete and correct?

These two questions are different. The first is a question of models of the real world.
It addresses an issue of experience and judgment about real-world probabilities and
whether all real-world modes of failure have been discovered or some have gone unno
ticed. Two different engineers, with different real-world experiences, may reasonably
disagree on such judgments—they may have different models of the real world. The eval
uation of modes of failure and of probabilities is a point at which a designer may easily
go astray because such judgments must be based not on theory but on experience in the
field, either personally acquired by the designer or learned from the experience of others.
A new technology, or an old technology placed in a new environment, is likely to create
surprises. A wrong judgment can lead to wasted effort devising detection and masking
algorithms that will rarely be invoked rather than the ones that are really needed. On the
other hand, if the needed experience is not available, all is not lost: the iteration part of
the design process is explicitly intended to provide that experience.

The second question is more abstract and also more absolutely answerable, in that an
argument for correctness (unless it is hopelessly complicated) or a counterexample to that
argument should be something that everyone can agree on. In system design, it is helpful
to follow design procedures that distinctly separate these classes of questions. When
someone questions a reliability feature, the designer can first ask, “Are you questioning

Saltzer & Kaashoek Ch. 8, p. 19	 June 24, 2009 12:24 am

8–20 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

the correctness of my recovery algorithm or are you questioning my model of what may
fail?” and thereby properly focus the discussion or argument.

Creating a fault tolerance model also lays the groundwork for the iteration part of the
fault tolerance design process. If a system in the field begins to fail more often than
expected, or completely unexpected failures occur, analysis of those failures can be com
pared with the fault tolerance model to discover what has gone wrong. By again asking
the two questions marked with bullets above, the model allows the designer to distin
guish between, on the one hand, failure probability predictions being proven wrong by
field experience, and on the other, inadequate or misimplemented masking procedures.
With this information the designer can work out appropriate adjustments to the model
and the corresponding changes needed for the system.

Iteration and review of fault tolerance models is also important to keep them up to
date in the light of technology changes. For example, the Network File System described
in Section 4.4 was first deployed using a local area network, where packet loss errors are
rare and may even be masked by the link layer. When later users deployed it on larger
networks, where lost packets are more common, it became necessary to revise its fault
tolerance model and add additional error detection in the form of end-to-end check-
sums. The processor time required to calculate and check those checksums caused some
performance loss, which is why its designers did not originally include checksums. But
loss of data integrity outweighed loss of performance and the designers reversed the
trade-off.

To illustrate, an example of a fault tolerance model applied to a popular kind of mem
ory devices, RAM, appears in Section 8.7. This fault tolerance model employs error
detection and masking techniques that are described below in Section 8.4 of this chapter,
so the reader may prefer to delay detailed study of that section until completing Section
8.4.

8.4 Systematically Applying Redundancy
The designer of an analog system typically masks small errors by specifying design toler
ances known as margins, which are amounts by which the specification is better than
necessary for correct operation under normal conditions. In contrast, the designer of a
digital system both detects and masks errors of all kinds by adding redundancy, either in
time or in space. When an error is thought to be transient, as when a packet is lost in a
data communication network, one method of masking is to resend it, an example of
redundancy in time. When an error is likely to be persistent, as in a failure in reading bits
from the surface of a disk, the usual method of masking is with spatial redundancy, hav
ing another component provide another copy of the information or control signal.
Redundancy can be applied either in cleverly small quantities or by brute force, and both
techniques may be used in different parts of the same system.

Saltzer & Kaashoek Ch. 8, p. 20 June 24, 2009 12:24 am

8.4 Systematically Applying Redundancy 8–21

8.4.1 Coding: Incremental Redundancy

The most common form of incremental redundancy, known as forward error correction,
consists of clever coding of data values. With data that has not been encoded to tolerate
errors, a change in the value of one bit may transform one legitimate data value into
another legitimate data value. Encoding for errors involves choosing as the representa
tion of legitimate data values only some of the total number of possible bit patterns,
being careful that the patterns chosen for legitimate data values all have the property that
to transform any one of them to any other, more than one bit must change. The smallest
number of bits that must change to transform one legitimate pattern into another is
known as the Hamming distance between those two patterns. The Hamming distance is
named after Richard Hamming, who first investigated this class of codes. Thus the
patterns

100101

000111

have a Hamming distance of 2 because the upper pattern can be transformed into the
lower pattern by flipping the values of two bits, the first bit and the fifth bit. Data fields
that have not been coded for errors might have a Hamming distance as small as 1. Codes
that can detect or correct errors have a minimum Hamming distance between any two
legitimate data patterns of 2 or more. The Hamming distance of a code is the minimum
Hamming distance between any pair of legitimate patterns of the code. One can calcu
late the Hamming distance between two patterns, A and B, by counting the number of
ONEs in A ⊕ B , where ⊕ is the exclusive OR (XOR) operator.

Suppose we create an encoding in which the Hamming distance between every pair
of legitimate data patterns is 2. Then, if one bit changes accidentally, since no legitimate
data item can have that pattern, we can detect that something went wrong, but it is not
possible to figure out what the original data pattern was. Thus, if the two patterns above
were two members of the code and the first bit of the upper pattern were flipped from
ONE to ZERO, there is no way to tell that the result, 000101, is not the result of flipping the
fifth bit of the lower pattern.

Next, suppose that we instead create an encoding in which the Hamming distance of
the code is 3 or more. Here are two patterns from such a code; bits 1, 2, and 5 are
different:

100101

010111

Now, a one-bit change will always transform a legitimate data pattern into an incor
rect data pattern that is still at least 2 bits distant from any other legitimate pattern but
only 1 bit distant from the original pattern. A decoder that receives a pattern with a one-
bit error can inspect the Hamming distances between the received pattern and nearby
legitimate patterns and by choosing the nearest legitimate pattern correct the error. If 2
bits change, this error-correction procedure will still identify a corrected data value, but
it will choose the wrong one. If we expect 2-bit errors to happen often, we could choose
the code patterns so that the Hamming distance is 4, in which case the code can correct

Saltzer & Kaashoek Ch. 8, p. 21 June 24, 2009 12:24 am

000

011111

8–22 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

1-bit errors and detect 2-bit errors. But a 3-bit error would look just like a 1-bit error in
some other code pattern, so it would decode to a wrong value. More generally, if the
Hamming distance of a code is d, a little analysis reveals that one can detect d – 1 errors
and correct (d – 1) ⁄ 2 errors. The reason that this form of redundancy is named
“forward” error correction is that the creator of the data performs the coding before stor
ing or transmitting it, and anyone can later decode the data without appealing to the
creator. (Chapter 7[on-line] described the technique of asking the sender of a lost frame,
packet, or message to retransmit it. That technique goes by the name of backward error
correction.)

The systematic construction of forward error-detection and error-correction codes is
a large field of study, which we do not intend to explore. However, two specific examples
of commonly encountered codes are worth examining.

The first example is a simple parity
check on a 2-bit value, in which the parity
bit is the XOR of the 2 data bits. The coded 110 010

pattern is 3 bits long, so there are 23 = 8
possible patterns for this 3-bit quantity,

100only 4 of which represent legitimate data.
As illustrated in Figure 8.4, the 4 “correct”
patterns have the property that changing
any single bit transforms the word into one

101 001
of the 4 illegal patterns. To transform the

coded quantity into another legal pattern,

at least 2 bits must change (in other words, FIGURE 8.4

the Hamming distance of this code is 2). Patterns for a simple parity-check code.

The conclusion is that a simple parity Each line connects patterns that differ in

check can detect any single error, but it only one bit; bold-face patterns are the

doesn’t have enough information to cor- legitimate ones.

rect errors.

The second example, in Figure 8.5, shows a forward error-correction code that can

correct 1-bit errors in a 4-bit data value, by encoding the 4 bits into 7-bit words. In this
code, bits P7, P6, P5, and P3 carry the data, while bits P4, P2, and P1 are calculated from
the data bits. (This out-of-order numbering scheme creates a multidimensional binary
coordinate system with a use that will be evident in a moment.) We could analyze this
code to determine its Hamming distance, but we can also observe that three extra bits
can carry exactly enough information to distinguish 8 cases: no error, an error in bit 1,
an error in bit 2, … or an error in bit 7. Thus, it is not surprising that an error-correction
code can be created. This code calculates bits P1, P2, and P4 as follows:

P1 = P7 ⊕ P5 ⊕ P3

P2 = P7 ⊕ P6 ⊕ P3

P4 = P7 ⊕ P6 ⊕ P5

Saltzer & Kaashoek Ch. 8, p. 22 June 24, 2009 12:24 am

8.4 Systematically Applying Redundancy 8–23

Now, suppose that the array of bits P1 through P7 is sent across a network and noise
causes bit P5 to flip. If the recipient recalculates P1, P2, and P4, the recalculated values
of P1 and P4 will be different from the received bits P1 and P4. The recipient then writes
P4 P2 P1 in order, representing the troubled bits as ONEs and untroubled bits as ZEROs, and
notices that their binary value is 1012 = 5 , the position of the flipped bit. In this code,
whenever there is a one-bit error, the troubled parity bits directly identify the bit to cor
rect. (That was the reason for the out-of-order bit-numbering scheme, which created a
3-dimensional coordinate system for locating an erroneous bit.)

The use of 3 check bits for 4 data bits suggests that an error-correction code may not
be efficient, but in fact the apparent inefficiency of this example is only because it is so
small. Extending the same reasoning, one can, for example, provide single-error correc
tion for 56 data bits using 7 check bits in a 63-bit code word.

In both of these examples of coding, the assumed threat to integrity is that an uni
dentified bit out of a group may be in error. Forward error correction can also be effective
against other threats. A different threat, called erasure, is also common in digital systems.
An erasure occurs when the value of a particular, identified bit of a group is unintelligible
or perhaps even completely missing. Since we know which bit is in question, the simple
parity-check code, in which the parity bit is the XOR of the other bits, becomes a forward
error correction code. The unavailable bit can be reconstructed simply by calculating the
XOR of the unerased bits. Returning to the example of Figure 8.4, if we find a pattern in
which the first and last bits have values 0 and 1 respectively, but the middle bit is illegible,
the only possibilities are 001 and 011. Since 001 is not a legitimate code pattern, the
original pattern must have been 011. The simple parity check allows correction of only
a single erasure. If there is a threat of multiple erasures, a more complex coding scheme
is needed. Suppose, for example, we have 4 bits to protect, and they are coded as in Fig
ure 8.5. In that case, if as many as 3 bits are erased, the remaining 4 bits are sufficient to
reconstruct the values of the 3 that are missing.

Since erasure, in the form of lost packets, is a threat in a best-effort packet network,
this same scheme of forward error correction is applicable. One might, for example, send
four numbered, identical-length packets of data followed by a parity packet that contains

bit P7 P6 P5 P4 P3 P2 P1

Choose P1 so XOR of every other bit (P7 ⊕ P5 ⊕ P3 ⊕ P1) is 0 ⊕ ⊕ ⊕ ⊕

Choose P2 so XOR of every other pair (P7 ⊕ P6 ⊕P3 ⊕ P2) is 0 ⊕ ⊕ ⊕ ⊕

Choose P4 so XOR of every other four (P7 ⊕ P6 ⊕ P5 ⊕P4) is 0 ⊕ ⊕ ⊕ ⊕

FIGURE 8.5

A single-error-correction code. In the table, the symbol ⊕ marks the bits that participate in the
calculation of one of the redundant bits.The payload bits are P7, P6, P5, and P3, and the redun
dant bits are P4, P2, and P1. The “every other” notes describe a 3-dimensional coordinate
system that can locate an erroneous bit.

Saltzer & Kaashoek Ch. 8, p. 23 June 24, 2009 12:24 am

8–24 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

as its payload the bit-by-bit XOR of the payloads of the previous four. (That is, the first bit
of the parity packet is the XOR of the first bit of each of the other four packets; the second
bits are treated similarly, etc.) Although the parity packet adds 25% to the network load,
as long as any four of the five packets make it through, the receiving side can reconstruct
all of the payload data perfectly without having to ask for a retransmission. If the network
is so unreliable that more than one packet out of five typically gets lost, then one might
send seven packets, of which four contain useful data and the remaining three are calcu
lated using the formulas of Figure 8.5. (Using the numbering scheme of that figure, the
payload of packet 4, for example, would consist of the XOR of the payloads of packets 7,
6, and 5.) Now, if any four of the seven packets make it through, the receiving end can
reconstruct the data.

Forward error correction is especially useful in broadcast protocols, where the exist
ence of a large number of recipients, each of which may miss different frames, packets,
or stream segments, makes the alternative of backward error correction by requesting
retransmission unattractive. Forward error correction is also useful when controlling jit
ter in stream transmission because it eliminates the round-trip delay that would be
required in requesting retransmission of missing stream segments. Finally, forward error
correction is usually the only way to control errors when communication is one-way or
round-trip delays are so long that requesting retransmission is impractical, for example,
when communicating with a deep-space probe. On the other hand, using forward error
correction to replace lost packets may have the side effect of interfering with congestion
control techniques in which an overloaded packet forwarder tries to signal the sender to
slow down by discarding an occasional packet.

Another application of forward error correction to counter erasure is in storing data
on magnetic disks. The threat in this case is that an entire disk drive may fail, for example
because of a disk head crash. Assuming that the failure occurs long after the data was orig
inally written, this example illustrates one-way communication in which backward error
correction (asking the original writer to write the data again) is not usually an option.
One response is to use a RAID array (see Section 2.1.1.4) in a configuration known as
RAID 4. In this configuration, one might use an array of five disks, with four of the disks
containing application data and each sector of the fifth disk containing the bit-by-bit XOR

of the corresponding sectors of the first four. If any of the five disks fails, its identity will
quickly be discovered because disks are usually designed to be fail-fast and report failures
at their interface. After replacing the failed disk, one can restore its contents by reading
the other four disks and calculating, sector by sector, the XOR of their data (see exercise
8.9). To maintain this strategy, whenever anyone updates a data sector, the RAID 4 sys
tem must also update the corresponding sector of the parity disk, as shown in Figure 8.6.
That figure makes it apparent that, in RAID 4, forward error correction has an identifi
able read and write performance cost, in addition to the obvious increase in the amount
of disk space used. Since loss of data can be devastating, there is considerable interest in
RAID, and much ingenuity has been devoted to devising ways of minimizing the perfor
mance penalty.

Saltzer & Kaashoek Ch. 8, p. 24 June 24, 2009 12:24 am

8.4 Systematically Applying Redundancy 8–25

Although it is an important and widely used technique, successfully applying incre
mental redundancy to achieve error detection and correction is harder than one might
expect. The first case study of Section 8.8 provides several useful lessons on this point.

In addition, there are some situations where incremental redundancy does not seem
to be applicable. For example, there have been efforts to devise error-correction codes for
numerical values with the property that the coding is preserved when the values are pro
cessed by an adder or a multiplier. While it is not too hard to invent schemes that allow
a limited form of error detection (for example, one can verify that residues are consistent,
using analogues of casting out nines, which school children use to check their arith
metic), these efforts have not yet led to any generally applicable techniques. The only
scheme that has been found to systematically protect data during arithmetic processing
is massive redundancy, which is our next topic.

8.4.2 Replication: Massive Redundancy

In designing a bridge or a skyscraper, a civil engineer masks uncertainties in the strength
of materials and other parameters by specifying components that are 5 or 10 times as
strong as minimally required. The method is heavy-handed, but simple and effective.

new sector

data 1

data 2

data 3

data 4

parity

old sector

data 1

data 2

data 3

data 4

parity
parity ⊕ old ⊕ new

FIGURE 8.6

Update of a sector on disk 2 of a five-disk RAID 4 system. The old parity sector contains
parity ← data 1 ⊕ data 2 ⊕ data 3 ⊕ data 4. To construct a new parity sector that includes the
new data 2, one could read the corresponding sectors of data 1, data 3, and data 4 and per
form three more XORs. But a faster way is to read just the old parity sector and the old data 2
sector and compute the new parity sector as

new parity ← old parity ⊕ old data 2 ⊕ new data 2

Saltzer & Kaashoek Ch. 8, p. 25 June 24, 2009 12:24 am

8–26 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

The corresponding way of building a reliable system out of unreliable discrete compo
nents is to acquire multiple copies of each component. Identical multiple copies are
called replicas, and the technique is called replication. There is more to it than just making
copies: one must also devise a plan to arrange or interconnect the replicas so that a failure
in one replica is automatically masked with the help of the ones that don’t fail. For exam
ple, if one is concerned about the possibility that a diode may fail by either shorting out
or creating an open circuit, one can set up a network of four diodes as in Figure 8.7, cre
ating what we might call a “superdiode”. This interconnection scheme, known as a quad
component, was developed by Claude E. Shannon and Edward F. Moore in the 1950s as
a way of increasing the reliability of relays in telephone systems. It can also be used with
resistors and capacitors in circuits that can tolerate a modest range of component values.
This particular superdiode can tolerate a single short circuit and a single open circuit in
any two component diodes, and it can also tolerate certain other multiple failures, such
as open circuits in both upper diodes plus a short circuit in one of the lower diodes. If
the bridging connection of the figure is added, the superdiode can tolerate additional
multiple open-circuit failures (such as one upper diode and one lower diode), but it will
be less tolerant of certain short-circuit failures (such as one left diode and one right
diode).

A serious problem with this superdiode is that it masks failures silently. There is no
easy way to determine how much failure tolerance remains in the system.

8.4.3 Voting

Although there have been attempts to extend quad-component methods to digital logic,
the intricacy of the required interconnections grows much too rapidly. Fortunately, there
is a systematic alternative that takes advantage of the static discipline and level regenera
tion that are inherent properties of digital logic. In addition, it has the nice feature that
it can be applied at any level of module, from a single gate on up to an entire computer.
The technique is to substitute in place of a single module a set of replicas of that same
module, all operating in parallel with the same inputs, and compare their outputs with a
device known as a voter. This basic strategy is called N-modular redundancy, or NMR.
When N has the value 3 the strategy is called triple-modular redundancy, abbreviated
TMR. When other values are used for N the strategy is named by replacing the N of
NMR with the number, as in 5MR. The combination of N replicas of some module and

FIGURE 8.7

A quad-component superdiode.

The dotted line represents an

optional bridging connection,

which allows the superdiode to

tolerate a different set of failures,

as described in the text.

Saltzer & Kaashoek Ch. 8, p. 26 June 24, 2009 12:24 am

8.4 Systematically Applying Redundancy 8–27

the voting system is sometimes called a supermodule. Several different schemes exist for
interconnection and voting, only a few of which we explore here.

The simplest scheme, called fail-vote, consists of NMR with a majority voter. One
assembles N replicas of the module and a voter that consists of an N-way comparator and
some counting logic. If a majority of the replicas agree on the result, the voter accepts
that result and passes it along to the next system component. If any replicas disagree with
the majority, the voter may in addition raise an alert, calling for repair of the replicas that
were in the minority. If there is no majority, the voter signals that the supermodule has
failed. In failure-tolerance terms, a triply-redundant fail-vote supermodule can mask the
failure of any one replica, and it is fail-fast if any two replicas fail in different ways.

If the reliability, as was defined in Section 8.2.2, of a single replica module is R and
the underlying fault mechanisms are independent, a TMR fail-vote supermodule will
operate correctly if all 3 modules are working (with reliability R3) or if 1 module has
failed and the other 2 are working (with reliability R2(1 – R)). Since a single-module
failure can happen in 3 different ways, the reliability of the supermodule is the sum,

3 2 2 3
Rsupermodule = R + 3R – = 3R – 2R(1 R) Eq. 8–10

but the supermodule is not always fail-fast. If two replicas fail in exactly the same way,
the voter will accept the erroneous result and, unfortunately, call for repair of the one
correctly operating replica. This outcome is not as unlikely as it sounds because several
replicas that went through the same design and production process may have exactly the
same set of design or manufacturing faults. This problem can arise despite the indepen
dence assumption used in calculating the probability of correct operation. That
calculation assumes only that the probability that different replicas produce correct
answers be independent; it assumes nothing about the probability of producing specific
wrong answers. Without more information about the probability of specific errors and
their correlations the only thing we can say about the probability that an incorrect result
will be accepted by the voter is that it is not more than

(1–Rsupermodule) = (1 3– R2 + 2R3)

These calculations assume that the voter is perfectly reliable. Rather than trying to
create perfect voters, the obvious thing to do is replicate them, too. In fact, everything—
modules, inputs, outputs, sensors, actuators, etc.—should be replicated, and the final
vote should be taken by the client of the system. Thus, three-engine airplanes vote with
their propellers: when one engine fails, the two that continue to operate overpower the
inoperative one. On the input side, the pilot’s hand presses forward on three separate
throttle levers. A fully replicated TMR supermodule is shown in Figure 8.8. With this
interconnection arrangement, any measurement or estimate of the reliability, R, of a
component module should include the corresponding voter. It is actually customary
(and more logical) to consider a voter to be a component of the next module in the chain
rather than, as the diagram suggests, the previous module. This fully replicated design is
sometimes described as recursive.

Saltzer & Kaashoek Ch. 8, p. 27 June 24, 2009 12:24 am

8–28 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

The numerical effect of fail-vote TMR is impressive. If the reliability of a single mod
ule at time T is 0.999, equation 8–10 says that the reliability of a fail-vote TMR
supermodule at that same time is 0.999997. TMR has reduced the probability of failure
from one in a thousand to three in a million. This analysis explains why airplanes
intended to fly across the ocean have more than one engine. Suppose that the rate of
engine failures is such that a single-engine plane would fail to complete one out of a thou
sand trans-Atlantic flights. Suppose also that a 3-engine plane can continue flying as long
as any 2 engines are operating, but it is too heavy to fly with only 1 engine. In 3 flights
out of a thousand, one of the three engines will fail, but if engine failures are indepen
dent, in 999 out of each thousand first-engine failures, the remaining 2 engines allow the
plane to limp home successfully.

Although TMR has greatly improved reliability, it has not made a comparable impact
on MTTF. In fact, the MTTF of a fail-vote TMR supermodule can be smaller than the
MTTF of the original, single-replica module. The exact effect depends on the failure
process of the replicas, so for illustration consider a memoryless failure process, not
because it is realistic but because it is mathematically tractable. Suppose that airplane
engines have an MTTF of 6,000 hours, they fail independently, the mechanism of
engine failure is memoryless, and (since this is a fail-vote design) we need at least 2 oper
ating engines to get home. When flying with three engines, the plane accumulates 6,000
hours of engine running time in only 2,000 hours of flying time, so from the point of
view of the airplane as a whole, 2,000 hours is the expected time to the first engine fail
ure. While flying with the remaining two engines, it will take another 3,000 flying hours
to accumulate 6,000 more engine hours. Because the failure process is memoryless we
can calculate the MTTF of the 3-engine plane by adding:

Mean time to first failure 2000 hours (three engines)
Mean time from first to second failure 3000 hours (two engines)
Total mean time to system failure 5000 hours

Thus the mean time to system failure is less than the 6,000 hour MTTF of a single
engine. What is going on here is that we have actually sacrificed long-term reliability in
order to enhance short-term reliability. Figure 8.9 illustrates the reliability of our hypo-

FIGURE 8.8

Triple-modular
redundant super-
module, with three
inputs, three voters,
and three outputs.

M1

M2

M3

V1

V2

V3

Saltzer & Kaashoek Ch. 8, p. 28 June 24, 2009 12:24 am

8.4 Systematically Applying Redundancy 8–29

thetical airplane during its 6 hours of flight, which amounts to only 0.001 of the single-
engine MTTF—the mission time is very short compared with the MTTF and the reli
ability is far higher. Figure 8.10 shows the same curve, but for flight times that are
comparable with the MTTF. In this region, if the plane tried to keep flying for 8000
hours (about 1.4 times the single-engine MTTF), a single-engine plane would fail to
complete the flight in 3 out of 4 tries, but the 3-engine plane would fail to complete the
flight in 5 out of 6 tries. (One should be wary of these calculations because the assump
tions of independence and memoryless operation may not be met in practice. Sidebar 8.2
elaborates.)

R
el

ia
bi

lit
y

0.9993

0.9990 0.999 one engine

0.9987

0.9983

.999997 three engines1.0000

0.9997

0 .00025 .0005 .00075 .001
Mission time, in units of MTTF

FIGURE 8.9

Reliability with triple modular redundancy, for mission times much less than the MTTF of 6,000
hours. The vertical dotted line represents a six-hour flight.

1.0

0.8

0.2 0.4 0.6 0.8 1.0 1.2 1.4

previous
figureR

el
ia

bi
lit

y

0.6

0.4

0.25 single engine0.2 0.15 three engines

0.0

Mission time, in units of MTTF

FIGURE 8.10

Reliability with triple modular redundancy, for mission times comparable to the MTTF of 6,000
hours. The two vertical dotted lines represent mission times of 6,000 hours (left) and 8,400
hours (right).

Saltzer & Kaashoek Ch. 8, p. 29 June 24, 2009 12:24 am

8–30 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

Sidebar 8.2: Risks of manipulating MTTFs The apparently casual manipulation of MTTFs
in Sections 8.4.3 and 8.4.4 is justified by assumptions of independence of failures and
memoryless processes. But one can trip up by blindly applying this approach without
understanding its limitations. To see how, consider a computer system that has been observed
for several years to have a hardware crash an average of every 2 weeks and a software crash an
average of every 6 weeks. The operator does not repair the system, but simply restarts it and
hopes for the best. The composite MTTF is 1.5 weeks, determined most easily by considering
what happens if we run the system for, say, 60 weeks. During that time we expect to see

10 software failures
30 hardware failures

40 system failures in 60 weeks —> 1.5 weeks between failure

New hardware is installed, identical to the old except that it never fails. The MTTF should
jump to 6 weeks because the only remaining failures are software, right?

Perhaps—but only if the software failure process is independent of the hardware failure process.

Suppose the software failure occurs because there is a bug (fault) in a clock-updating procedure:
The bug always crashes the system exactly 420 hours (2 1/2 weeks) after it is started—if it gets
a chance to run that long. The old hardware was causing crashes so often that the software bug
only occasionally had a chance to do its thing—only about once every 6 weeks. Most of the
time, the recovery from a hardware failure, which requires restarting the system, had the side
effect of resetting the process that triggered the software bug. So, when the new hardware is
installed, the system has an MTTF of only 2.5 weeks, much less than hoped.

MTTF's are useful, but one must be careful to understand what assumptions go into their
measurement and use.

If we had assumed that the plane could limp home with just one engine, the MTTF
would have increased, rather than decreased, but only modestly. Replication provides a
dramatic improvement in reliability for missions of duration short compared with the
MTTF, but the MTTF itself changes much less. We can verify this claim with a little
more analysis, again assuming memoryless failure processes to make the mathematics
tractable. Suppose we have an NMR system with the property that it somehow continues
to be useful as long as at least one replica is still working. (This system requires using fail-
fast replicas and a cleverer voter, as described in Section 8.4.4 below.) If a single replica
has an MTTFreplica = 1, there are N independent replicas, and the failure process is mem
oryless, the expected time until the first failure is MTTFreplica/N, the expected time from
then until the second failure is MTTFreplica/(N – 1), etc., and the expected time until the
system of N replicas fails is the sum of these times,

MTTFsystem = + ⁄ + 1 3 ⁄ N) Eq. 8–111 1 2 ⁄ + …(1

Saltzer & Kaashoek Ch. 8, p. 30 June 24, 2009 12:24 am

8.4 Systematically Applying Redundancy 8–31

which for large N is approximately ln(N). As we add to the cost by adding more replicas,
MTTFsystem grows disappointingly slowly—proportional to the logarithm of the cost. To
multiply the MTTFsystem by K, the number of replicas required is eK —the cost grows
exponentially. The significant conclusion is that in systems for which the mission time is
long compared with MTTFreplica, simple replication escalates the cost while providing little
benefit. On the other hand, there is a way of making replication effective for long mis
sions, too. The method is to enhance replication by adding repair.

8.4.4 Repair

Let us return now to a fail-vote TMR supermodule (that is, it requires that at least two
replicas be working) in which the voter has just noticed that one of the three replicas is
producing results that disagree with the other two. Since the voter is in a position to
report which replica has failed, suppose that it passes such a report along to a repair per
son who immediately examines the failing replica and either fixes or replaces it. For this
approach, the mean time to repair (MTTR) measure becomes of interest. The super-
module fails if either the second or third replica fails before the repair to the first one can
be completed. Our intuition is that if the MTTR is small compared with the combined
MTTF of the other two replicas, the chance that the supermodule fails will be similarly
small.

The exact effect on chances of supermodule failure depends on the shape of the reli
ability function of the replicas. In the case where the failure and repair processes are both
memoryless, the effect is easy to calculate. Since the rate of failure of 1 replica is 1/MTTF,
the rate of failure of 2 replicas is 2/MTTF. If the repair time is short compared with
MTTF the probability of a failure of 1 of the 2 remaining replicas while waiting a time
T for repair of the one that failed is approximately 2T/MTTF. Since the mean time to
repair is MTTR, we have

2 × MTTRPr(supermodule fails while waiting for repair) = ------------------------- Eq. 8–12
MTTF

Continuing our airplane example and temporarily suspending disbelief, suppose that
during a long flight we send a mechanic out on the airplane’s wing to replace a failed
engine. If the replacement takes 1 hour, the chance that one of the other two engines fails
during that hour is approximately 1/3000. Moreover, once the replacement is complete,
we expect to fly another 2000 hours until the next engine failure. Assuming further that
the mechanic is carrying an unlimited supply of replacement engines, completing a
10,000 hour flight—or even a longer one—becomes plausible. The general formula for
the MTTF of a fail-vote TMR supermodule with memoryless failure and repair processes
is (this formula comes out of the analysis of continuous-transition birth-and-death
Markov processes, an advanced probability technique that is beyond our scope):

2
MTTFreplica MTTFreplica (MTTFreplica)

MTTFsupermodule = -------------------------------- × --- = --- Eq. 8–13
3 2 × MTTRreplica 6 × MTTRreplica

Saltzer & Kaashoek Ch. 8, p. 31 June 24, 2009 12:24 am

8–32 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

Thus, our 3-engine plane with hypothetical in-flight repair has an MTTF of 6 million
hours, an enormous improvement over the 6000 hours of a single-engine plane. This
equation can be interpreted as saying that, compared with an unreplicated module, the
MTTF has been reduced by the usual factor of 3 because there are 3 replicas, but at the
same time the availability of repair has increased the MTTF by a factor equal to the ratio
of the MTTF of the remaining 2 engines to the MTTR.

Replacing an airplane engine in flight may be a fanciful idea, but replacing a magnetic
disk in a computer system on the ground is quite reasonable. Suppose that we store 3
replicas of a set of data on 3 independent hard disks, each of which has an MTTF of 5
years (using as the MTTF the expected operational lifetime, not the “MTTF” derived
from the short-term failure rate). Suppose also, that if a disk fails, we can locate, install,
and copy the data to a replacement disk in an average of 10 hours. In that case, by eq.
8–13, the MTTF of the data is

(MTTFreplica)
2

(5 years)
2

--- = --- = 3650 years Eq. 8–14
6 × MTTRreplica 6 ⋅ (10 hours) ⁄ (8760 hours/year)

In effect, redundancy plus repair has reduced the probability of failure of this supermod
ule to such a small value that for all practical purposes, failure can be neglected and the
supermodule can operate indefinitely.

Before running out to start a company that sells superbly reliable disk-storage sys
tems, it would be wise to review some of the overly optimistic assumptions we made in
getting that estimate of the MTTF, most of which are not likely to be true in the real
world:

• 	 Disks fail independently. A batch of real world disks may all come from the same
vendor, where they acquired the same set of design and manufacturing faults. Or,
they may all be in the same machine room, where a single earthquake—which
probably has an MTTF of less than 3,650 years—may damage all three.

• 	 Disk failures are memoryless. Real-world disks follow a bathtub curve. If, when disk
#1 fails, disk #2 has already been in service for three years, disk #2 no longer has
an expected operational lifetime of 5 years, so the chance of a second failure while
waiting for repair is higher than the formula assumes. Furthermore, when disk #1
is replaced, its chances of failing are probably higher than usual for the first few
weeks.

• 	 Repair is also a memoryless process. In the real world, if we stock enough spares that
we run out only once every 10 years and have to wait for a shipment from the
factory, but doing a replacement happens to run us out of stock today, we will
probably still be out of stock tomorrow and the next day.

• 	 Repair is done flawlessly. A repair person may replace the wrong disk, forget to copy
the data to the new disk, or install a disk that hasn’t passed burn-in and fails in the
first hour.

Saltzer & Kaashoek Ch. 8, p. 32	 June 24, 2009 12:24 am

8.4 Systematically Applying Redundancy 8–33

Each of these concerns acts to reduce the reliability below what might be expected from
our overly simple analysis. Nevertheless, NMR with repair remains a useful technique,
and in Chapter 10[on-line] we will see ways in which it can be applied to disk storage.

One of the most powerful applications of NMR is in the masking of transient errors.
When a transient error occurs in one replica, the NMR voter immediately masks it.
Because the error is transient, the subsequent behavior of the supermodule is as if repair
happened by the next operation cycle. The numerical result is little short of extraordi
nary. For example, consider a processor arithmetic logic unit (ALU) with a 1 gigahertz
clock and which is triply replicated with voters checking its output at the end of each
clock cycle. In equation 8–13 we have MTTRreplica = 1 (in this application, equation
8–13 is only an approximation because the time to repair is a constant rather than the
result of a memoryless process), and MTTFsupermodule = (MTTFreplica)2 ⁄ 6
cycles. If MTTFreplica is 1010 cycles (1 error in 10 billion cycles, which at this clock speed
means one error every 10 seconds), MTTFsupermodule is 1020 ⁄ 6 cycles, about 500 years.
TMR has taken three ALUs that were for practical use nearly worthless and created a
super-ALU that is almost infallible.

The reason things seem so good is that we are evaluating the chance that two transient
errors occur in the same operation cycle. If transient errors really are independent, that
chance is small. This effect is powerful, but the leverage works in both directions, thereby
creating a potential hazard: it is especially important to keep track of the rate at which
transient errors actually occur. If they are happening, say, 20 times as often as hoped,
MTTFsupermodule will be 1/400 of the original prediction—the super-ALU is likely to fail
once per year. That may still be acceptable for some applications, but it is a big change.
Also, as usual, the assumption of independence is absolutely critical. If all the ALUs came
from the same production line, it seems likely that they will have at least some faults in
common, in which case the super-ALU may be just as worthless as the individual ALUs.

Several variations on the simple fail-vote structure appear in practice:

• 	 Purging. In an NMR design with a voter, whenever the voter detects that one
replica disagrees with the majority, the voter calls for its repair and in addition
marks that replica DOWN and ignores its output until hearing that it has been
repaired. This technique doesn’t add anything to a TMR design, but with higher
levels of replication, as long as replicas fail one at a time and any two replicas
continue to operate correctly, the supermodule works.

• 	 Pair-and-compare. Create a fail-fast module by taking two replicas, giving them the
same inputs, and connecting a simple comparator to their outputs. As long as the
comparator reports that the two replicas of a pair agree, the next stage of the system
accepts the output. If the comparator detects a disagreement, it reports that the
module has failed. The major attraction of pair-and-compare is that it can be used
to create fail-fast modules starting with easily available commercial, off-the-shelf
components, rather than commissioning specialized fail-fast versions. Special
high-reliability components typically have a cost that is much higher than off-the
shelf designs, for two reasons. First, since they take more time to design and test,

Saltzer & Kaashoek Ch. 8, p. 33	 June 24, 2009 12:24 am

8–34 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

the ones that are available are typically of an older, more expensive technology.
Second, they are usually low-volume products that cannot take advantage of
economies of large-scale production. These considerations also conspire to
produce long delivery cycles, making it harder to keep spares in stock. An
important aspect of using standard, high-volume, low-cost components is that one
can afford to keep a stock of spares, which in turn means that MTTR can be made
small: just replace a failing replica with a spare (the popular term for this approach
is pair-and-spare) and do the actual diagnosis and repair at leisure.

• 	 NMR with fail-fast replicas. If each of the replicas is itself a fail-fast design (perhaps
using pair-and-compare internally), then a voter can restrict its attention to the
outputs of only those replicas that claim to be producing good results and ignore
those that are reporting that their outputs are questionable. With this organization,
a TMR system can continue to operate even if 2 of its 3 replicas have failed, since
the 1 remaining replica is presumably checking its own results. An NMR system
with repair and constructed of fail-fast replicas is so robust that it is unusual to find
examples for which N is greater than 2.

Figure 8.11 compares the ability to continue operating until repair arrives of 5MR
designs that use fail-vote, purging, and fail-fast replicas. The observant reader will note
that this chart can be deemed guilty of a misleading comparison, since it claims that the
5MR system continues working when only one fail-fast replica is still running. But if that
fail-fast replica is actually a pair-and-compare module, it might be more accurate to say
that there are two still-working replicas at that point.

Another technique that takes advantage of repair, can improve availability, and can
degrade gracefully (in other words, it can be fail-soft) is called partition. If there is a
choice of purchasing a system that has either one fast processor or two slower processors,
the two-processor system has the virtue that when one of its processors fails, the system

5

4

3

2

1

0

Number
of

still
working

replicas

time

5MR with fail-fast
replicas fails

5MR with
purging fails

5MR with
fail-vote fails

correctly

FIGURE 8.11

Failure points of three different 5MR supermodule designs, if repair does not happen in time.

Saltzer & Kaashoek Ch. 8, p. 34	 June 24, 2009 12:24 am

8.4 Systematically Applying Redundancy 8–35

can continue to operate with half of its usual capacity until someone can repair the failed
processor. An electric power company, rather than installing a single generator of capac
ity K megawatts, may install N generators of capacity K/N megawatts each.

When equivalent modules can easily share a load, partition can extend to what is
called N + 1 redundancy. Suppose a system has a load that would require the capacity of
N equivalent modules. The designer partitions the load across N + 1 or more modules.
Then, if any one of the modules fails, the system can carry on at full capacity until the
failed module can be repaired.

N + 1 redundancy is most applicable to modules that are completely interchangeable,
can be dynamically allocated, and are not used as storage devices. Examples are proces
sors, dial-up modems, airplanes, and electric generators. Thus, one extra airplane located
at a busy hub can mask the failure of any single plane in an airline’s fleet. When modules
are not completely equivalent (for example, electric generators come in a range of capac
ities, but can still be interconnected to share load), the design must ensure that the spare
capacity is greater than the capacity of the largest individual module. For devices that
provide storage, such as a hard disk, it is also possible to apply partition and N + 1 redun
dancy with the same goals, but it requires a greater level of organization to preserve the
stored contents when a failure occurs, for example by using RAID, as was described in
Section 8.4.1, or some more general replica management system such as those discussed
in Section 10.3.7.

For some applications an occasional interruption of availability is acceptable, while in
others every interruption causes a major problem. When repair is part of the fault toler
ance plan, it is sometimes possible, with extra care and added complexity, to design a
system to provide continuous operation. Adding this feature requires that when failures
occur, one can quickly identify the failing component, remove it from the system, repair
it, and reinstall it (or a replacement part) all without halting operation of the system. The
design required for continuous operation of computer hardware involves connecting and
disconnecting cables and turning off power to some components but not others, without
damaging anything. When hardware is designed to allow connection and disconnection
from a system that continues to operate, it is said to allow hot swap.

In a computer system, continuous operation also has significant implications for the
software. Configuration management software must anticipate hot swap so that it can
stop using hardware components that are about to be disconnected, as well as discover
newly attached components and put them to work. In addition, maintaining state is a
challenge. If there are periodic consistency checks on data, those checks (and repairs to
data when the checks reveal inconsistencies) must be designed to work correctly even
though the system is in operation and the data is perhaps being read and updated by
other users at the same time.

Overall, continuous operation is not a feature that should be casually added to a list
of system requirements. When someone suggests it, it may be helpful to point out that
it is much like trying to keep an airplane flying indefinitely. Many large systems that
appear to provide continuous operation are actually designed to stop occasionally for
maintenance.

Saltzer & Kaashoek Ch. 8, p. 35 June 24, 2009 12:24 am

8–36 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

8.5 Applying Redundancy to Software and Data
The examples of redundancy and replication in the previous sections all involve hard
ware. A seemingly obvious next step is to apply the same techniques to software and to
data. In the case of software the goal is to reduce the impact of programming errors, while
in the case of data the goal is to reduce the impact of any kind of hardware, software, or
operational error that might affect its integrity. This section begins the exploration of
several applicable techniques: N-version programming, valid construction, and building
a firewall to separate stored state into two categories: state whose integrity must be pre
served and state that can casually be abandoned because it is easy to reconstruct.

8.5.1 Tolerating Software Faults

Simply running three copies of the same buggy program is likely to produce three iden
tical incorrect results. NMR requires independence among the replicas, so the designer
needs a way of introducing that independence. An example of a way of introducing inde
pendence is found in the replication strategy for the root name servers of the Internet
Domain Name System (DNS, described in Section 4.4). Over the years, slightly differ
ent implementations of the DNS software have evolved for different operating systems,
so the root name server replicas intentionally employ these different implementations to
reduce the risk of replicated errors.

To try to harness this idea more systematically, one can commission several teams of
programmers and ask each team to write a complete version of an application according
to a single set of specifications. Then, run these several versions in parallel and compare
their outputs. The hope is that the inevitable programming errors in the different ver
sions will be independent and voting will produce a reliable system. Experiments with
this technique, known as N-version programming, suggest that the necessary indepen
dence is hard to achieve. Different programmers may be trained in similar enough ways
that they make the same mistakes. Use of the same implementation language may
encourage the same errors. Ambiguities in the specification may be misinterpreted in the
same way by more than one team and the specification itself may contain errors. Finally,
it is hard to write a specification in enough detail that the outputs of different implemen
tations can be expected to be bit-for-bit identical. The result is that after much effort, the
technique may still mask only a certain class of bugs and leave others unmasked. Never
theless, there are reports that N-version programming has been used, apparently with
success, in at least two safety-critical aerospace systems, the flight control system of the
Boeing 777 aircraft (with N = 3) and the on-board control system for the Space Shuttle
(with N = 2).

Incidentally, the strategy of employing multiple design teams can also be applied to
hardware replicas, with a goal of increasing the independence of the replicas by reducing
the chance of replicated design errors and systematic manufacturing defects.

Much of software engineering is devoted to a different approach: devising specifica
tion and programming techniques that avoid faults in the first place and test techniques

Saltzer & Kaashoek Ch. 8, p. 36 June 24, 2009 12:24 am

8.5 Applying Redundancy to Software and Data 8–37

that systematically root out faults so that they can be repaired once and for all before
deploying the software. This approach, sometimes called valid construction, can dramat
ically reduce the number of software faults in a delivered system, but because it is difficult
both to completely specify and to completely test a system, some faults inevitably remain.
Valid construction is based on the observation that software, unlike hardware, is not sub
ject to wear and tear, so if it is once made correct, it should stay that way. Unfortunately,
this observation can turn out to be wishful thinking, first because it is hard to make soft
ware correct, and second because it is nearly always necessary to make changes after
installing a program because the requirements, the environment surrounding the pro
gram, or both, have changed. There is thus a potential for tension between valid
construction and the principle that one should design for iteration.

Worse, later maintainers and reworkers often do not have a complete understanding
of the ground rules that went into the original design, so their work is likely to introduce
new faults for which the original designers did not anticipate providing tests. Even if the
original design is completely understood, when a system is modified to add features that
were not originally planned, the original ground rules may be subjected to some violence.
Software faults more easily creep into areas that lack systematic design.

8.5.2 Tolerating Software (and other) Faults by Separating State

Designers of reliable systems usually assume that, despite the best efforts of programmers
there will always be a residue of software faults, just as there is also always a residue of
hardware, operation, and environment faults. The response is to develop a strategy for
tolerating all of them. Software adds the complication that the current state of a running
program tends to be widely distributed. Parts of that state may be in non-volatile storage,
while other parts are in temporary variables held in volatile memory locations, processor
registers, and kernel tables. This wide distribution of state makes containment of errors
problematic. As a result, when an error occurs, any strategy that involves stopping some
collection of running threads, tinkering to repair the current state (perhaps at the same
time replacing a buggy program module), and then resuming the stopped threads is usu
ally unrealistic.

In the face of these observations, a programming discipline has proven to be effective:
systematically divide the current state of a running program into two mutually exclusive
categories and separate the two categories with a firewall. The two categories are:

• State that the system can safely abandon in the event of a failure.
• State whose integrity the system should preserve despite failure.

Upon detecting a failure, the plan becomes to abandon all state in the first category
and instead concentrate just on maintaining the integrity of the data in the second cate
gory. An important part of the strategy is an important sweeping simplification: classify
the state of running threads (that is, the thread table, stacks, and registers) as abandon-
able. When a failure occurs, the system abandons the thread or threads that were running
at the time and instead expects a restart procedure, the system operator, or the individual

Saltzer & Kaashoek Ch. 8, p. 37 June 24, 2009 12:24 am

8–38 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

user to start a new set of threads with a clean slate. The new thread or threads can then,
working with only the data found in the second category, verify the integrity of that data
and return to normal operation. The primary challenge then becomes to build a firewall
that can protect the integrity of the second category of data despite the failure.

The designer can base a natural firewall on the common implementations of volatile
(e.g., CMOS memory) and non-volatile (e.g., magnetic disk) storage. As it happens,
writing to non-volatile storage usually involves mechanical movement such as rotation
of a disk platter, so most transfers move large blocks of data to a limited region of
addresses, using a GET/PUT interface. On the other hand, volatile storage technologies typ
ically provide a READ/WRITE interface that allows rapid-fire writes to memory addresses
chosen at random, so failures that originate in or propagate to software tend to quickly
and untraceably corrupt random-access data. By the time an error is detected the soft
ware may thus have already damaged a large and unidentifiable part of the data in volatile
memory. The GET/PUT interface instead acts as a bottleneck on the rate of spread of data
corruption. The goal can be succinctly stated: to detect failures and stop the system
before it reaches the next PUT operation, thus making the volatile storage medium the
error containment boundary. It is only incidental that volatile storage usually has a
READ/WRITE interface, while non-volatile storage usually has a GET/PUT interface, but
because that is usually true it becomes a convenient way to implement and describe the
firewall.

This technique is widely used in systems whose primary purpose is to manage long-
lived data. In those systems, two aspects are involved:

• 	 Prepare for failure by recognizing that all state in volatile memory devices can
vanish at any instant, without warning. When it does vanish, automatically launch
new threads that start by restoring the data in non-volatile storage to a consistent,
easily described state. The techniques to do this restoration are called recovery.
Doing recovery systematically involves atomicity, which is explored in Chapter
9[on-line].

• 	 Protect the data in non-volatile storage using replication, thus creating the class of
storage known as durable storage. Replicating data can be a straightforward
application of redundancy, so we will begin the topic in this chapter. However,
there are more effective designs that make use of atomicity and geographical
separation of replicas, so we will revisit durability in Chapter 10[on-line].

When the volatile storage medium is CMOS RAM and the non-volatile storage
medium is magnetic disk, following this programming discipline is relatively straightfor
ward because the distinctively different interfaces make it easy to remember where to
place data. But when a one-level store is in use, giving the appearance of random access
to all storage, or the non-volatile medium is flash memory, which allows fast random
access, it may be necessary for the designer to explicitly specify both the firewall mecha
nism and which data items are to reside on each side of the firewall.

Saltzer & Kaashoek Ch. 8, p. 38	 June 24, 2009 12:24 am

8.5 Applying Redundancy to Software and Data 8–39

A good example of the firewall strategy can be found in most implementations of
Internet Domain Name System servers. In a typical implementation the server stores the
authoritative name records for its domain on magnetic disk, and copies those records
into volatile CMOS memory either at system startup or the first time it needs a particular
record. If the server fails for any reason, it simply abandons the volatile memory and
restarts. In some implementations, the firewall is reinforced by not having any PUT oper
ations in the running name server. Instead, the service updates the authoritative name
records using a separate program that runs when the name server is off-line.

In addition to employing independent software implementations and a firewall
between categories of data, DNS also protects against environmental faults by employing
geographical separation of its replicas, a topic that is explored more deeply in Section
10.3[on-line]. The three techniques taken together make DNS quite fault tolerant.

8.5.3 Durability and Durable Storage

For the discipline just described to work, we need to make the result of a PUT operation
durable. But first we must understand just what “durable” means. Durability is a speci
fication of how long the result of an action must be preserved after the action completes.
One must be realistic in specifying durability because there is no such thing as perfectly
durable storage in which the data will be remembered forever. However, by choosing
enough genuinely independent replicas, and with enough care in management, one can
meet any reasonable requirement.

Durability specifications can be roughly divided into four categories, according to the
length of time that the application requires that data survive. Although there are no
bright dividing lines, as one moves from one category to the next the techniques used to
achieve durability tend to change.

• 	 Durability no longer than the lifetime of the thread that created the data. For this case,
it is usually adequate to place the data in volatile memory.

For example, an action such as moving the gearshift may require changing the oper
ating parameters of an automobile engine. The result must be reliably remembered, but
only until the next shift of gears or the driver switches the engine off.

The operations performed by calls to the kernel of an operating system provide
another example. The CHDIR procedure of the UNIX kernel (see Table 2.1 in Section 2.5.1)
changes the working directory of the currently running process. The kernel state variable
that holds the name of the current working directory is a value in volatile RAM that does
not need to survive longer than this process.

For a third example, the registers and cache of a hardware processor usually provide
just the first category of durability. If there is a failure, the plan is to abandon those values
along with the contents of volatile memory, so there is no need for a higher level of
durability.

• 	 Durability for times short compared with the expected operational lifetime of non
volatile storage media such as magnetic disk or flash memory. A designer typically

Saltzer & Kaashoek Ch. 8, p. 39	 June 24, 2009 12:24 am

8–40 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

implements this category of durability by writing one copy of the data in the non
volatile storage medium.

Returning to the automotive example, there may be operating parameters such as
engine timing that, once calibrated, should be durable at least until the next tune-up, not
just for the life of one engine use session. Data stored in a cache that writes through to a
non-volatile medium has about this level of durability. As a third example, a remote pro
cedure call protocol that identifies duplicate messages by recording nonces might write
old nonce values (see Section 7.5.3) to a non-volatile storage medium, knowing that the
real goal is not to remember the nonces forever, but rather to make sure that the nonce
record outlasts the longest retry timer of any client. Finally, text editors and word-pro
cessing systems typically write temporary copies on magnetic disk of the material
currently being edited so that if there is a system crash or power failure the user does not
have to repeat the entire editing session. These temporary copies need to survive only
until the end of the current editing session.

• 	 Durability for times comparable to the expected operational lifetime of non-volatile
storage media. Because actual non-volatile media lifetimes vary quite a bit around
the expected lifetime, implementation generally involves placing replicas of the
data on independent instances of the non-volatile media.

This category of durability is the one that is usually called durable storage and it is the
category for which the next section of this chapter develops techniques for implementa
tion. Users typically expect files stored in their file systems and data managed by a
database management system to have this level of durability. Section 10.3[on-line] revis
its the problem of creating durable storage when replicas are geographically separated.

• 	 Durability for many multiples of the expected operational lifetime of non-volatile
storage media.

This highest level of durability is known as preservation, and is the specialty of archi
vists. In addition to making replicas and keeping careful records, it involves copying data
from one non-volatile medium to another before the first one deteriorates or becomes
obsolete. Preservation also involves (sometimes heroic) measures to preserve the ability
to correctly interpret idiosyncratic formats created by software that has long since
become obsolete. Although important, it is a separate topic, so preservation is not dis
cussed any further here.

8.5.4 Magnetic Disk Fault Tolerance

In principle, durable storage can be constructed starting with almost any storage
medium, but it is most straightforward to use non-volatile devices. Magnetic disks (see
Sidebar 2.8) are widely used as the basis for durable storage because of their low cost,
large capacity and non-volatility—they retain their memory when power is turned off or
is accidentally disconnected. Even if power is lost during a write operation, at most a
small block of data surrounding the physical location that was being written is lost, and

Saltzer & Kaashoek Ch. 8, p. 40	 June 24, 2009 12:24 am

8.5 Applying Redundancy to Software and Data 8–41

disks can be designed with enough internal power storage and data buffering to avoid
even that loss. In its raw form, a magnetic disk is remarkably reliable, but it can still fail
in various ways and much of the complexity in the design of disk systems consists of
masking these failures.

Conventionally, magnetic disk systems are designed in three nested layers. The inner
most layer is the spinning disk itself, which provides what we will call raw storage. The
next layer is a combination of hardware and firmware of the disk controller that provides
for detecting the failures in the raw storage layer; it creates fail-fast storage. Finally, the
hard disk firmware adds a third layer that takes advantage of the detection features of the
second layer to create a substantially more reliable storage system, known as careful stor
age. Most disk systems stop there, but high-availability systems add a fourth layer to
create durable storage. This section develops a disk failure model and explores error mask
ing techniques for all four layers.

In early disk designs, the disk controller presented more or less the raw disk interface,
and the fail-fast and careful layers were implemented in a software component of the
operating system called the disk driver. Over the decades, first the fail-fast layer and more
recently part or all of the careful layer of disk storage have migrated into the firmware of
the disk controller to create what is known in the trade as a “hard drive”. A hard drive
usually includes a RAM buffer to hold a copy of the data going to and from the disk,
both to avoid the need to match the data rate to and from the disk head with the data
rate to and from the system memory and also to simplify retries when errors occur. RAID
systems, which provide a form of durable storage, generally are implemented as an addi
tional hardware layer that incorporates mass-market hard drives. One reason for this
move of error masking from the operating system into the disk controller is that as com
putational power has gotten cheaper, the incremental cost of a more elaborate firmware
design has dropped. A second reason may explain the obvious contrast with the lack of
enthusiasm for memory parity checking hardware that is mentioned in Section 8.8.1. A
transient memory error is all but indistinguishable from a program error, so the hardware
vendor is not likely to be blamed for it. On the other hand, most disk errors have an obvi
ous source, and hard errors are not transient. Because blame is easy to place, disk vendors
have a strong motivation to include error masking in their designs.

8.5.4.1 Magnetic Disk Fault Modes
Sidebar 2.8 described the physical design of the magnetic disk, including platters, mag
netic material, read/write heads, seek arms, tracks, cylinders, and sectors, but it did not
make any mention of disk reliability. There are several considerations:

• 	Disks are high precision devices made to close tolerances. Defects in
manufacturing a recording surface typically show up in the field as a sector that
does not reliably record data. Such defects are a source of hard errors. Deterioration
of the surface of a platter with age can cause a previously good sector to fail. Such
loss is known as decay and, since any data previously recorded there is lost forever,
decay is another example of hard error.

Saltzer & Kaashoek Ch. 8, p. 41	 June 24, 2009 12:24 am

8–42 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

• 	 Since a disk is mechanical, it is subject to wear and tear. Although a modern disk
is a sealed unit, deterioration of its component materials as they age can create
dust. The dust particles can settle on a magnetic surface, where they may interfere
either with reading or writing. If interference is detected, then re-reading or re
writing that area of the surface, perhaps after jiggling the seek arm back and forth,
may succeed in getting past the interference, so the fault may be transient. Another
source of transient faults is electrical noise spikes. Because disk errors caused by
transient faults can be masked by retry, they fall in the category of soft errors.

• 	 If a running disk is bumped, the shock may cause a head to hit the surface of a
spinning platter, causing what is known as a head crash. A head crash not only may
damage the head and destroy the data at the location of impact, it also creates a
cloud of dust that interferes with the operation of heads on other platters. A head
crash generally results in several sectors decaying simultaneously. A set of sectors
that tend to all fail together is known as a decay set. A decay set may be quite large,
for example all the sectors on one drive or on one disk platter.

• 	As electronic components in the disk controller age, clock timing and signal
detection circuits can go out of tolerance, causing previously good data to become
unreadable, or bad data to be written, either intermittently or permanently. In
consequence, electronic component tolerance problems can appear either as soft or
hard errors.

• 	 The mechanical positioning systems that move the seek arm and that keep track
of the rotational position of the disk platter can fail in such a way that the heads
read or write the wrong track or sector within a track. This kind of fault is known
as a seek error.

8.5.4.2 System Faults
In addition to failures within the disk subsystem, there are at least two threats to the
integrity of the data on a disk that arise from outside the disk subsystem:

• 	 If the power fails in the middle of a disk write, the sector being written may end
up being only partly updated. After the power is restored and the system restarts,
the next reader of that sector may find that the sector begins with the new data,
but ends with the previous data.

• 	 If the operating system fails during the time that the disk is writing, the data being
written could be affected, even if the disk is perfect and the rest of the system is
fail-fast. The reason is that all the contents of volatile memory, including the disk
buffer, are inside the fail-fast error containment boundary and thus at risk of
damage when the system fails. As a result, the disk channel may correctly write on
the disk what it reads out of the disk buffer in memory, but the faltering operating
system may have accidentally corrupted the contents of that buffer after the

Saltzer & Kaashoek Ch. 8, p. 42	 June 24, 2009 12:24 am

8.5 Applying Redundancy to Software and Data 8–43

application called PUT. In such cases, the data that ends up on the disk will be
corrupted, but there is no sure way in which the disk subsystem can detect the
problem.

8.5.4.3 Raw Disk Storage
Our goal is to devise systematic procedures to mask as many of these different faults as
possible. We start with a model of disk operation from a programmer’s point of view.
The raw disk has, at least conceptually, a relatively simple interface: There is an operation
to seek to a (numbered) track, an operation that writes data on the track and an operation
that reads data from the track. The failure model is simple: all errors arising from the fail
ures just described are untolerated. (In the procedure descriptions, arguments are call-by
reference, and GET operations read from the disk into the argument named data.)
The raw disk layer implements these storage access procedures and failure tolerance
model:

RAW_SEEK (track) // Move read/write head into position.

RAW_PUT (data) // Write entire track.

RAW_GET (data) // Read entire track.

• 	 error-free operation: RAW_SEEK moves the seek arm to position track. RAW_GET

returns whatever was most recently written by RAW_PUT at position track.
• 	 untolerated error: On any given attempt to read from or write to a disk, dust

particles on the surface of the disk or a temporarily high noise level may cause
data to be read or written incorrectly. (soft error)

• 	 untolerated error: A spot on the disk may be defective, so all attempts to write to
any track that crosses that spot will be written incorrectly. (hard error)

• 	untolerated error: Information previously written correctly may decay, so
RAW_GET returns incorrect data. (hard error)

• 	untolerated error: When asked to read data from or write data to a specified
track, a disk may correctly read or write the data, but on the wrong track. (seek
error)

• 	 untolerated error: The power fails during a RAW_PUT with the result that only the
first part of data ends up being written on track. The remainder of track may
contain older data.

• 	 untolerated error: The operating system crashes during a RAW_PUT and scribbles
over the disk buffer in volatile storage, so RAW_PUT writes corrupted data on one
track of the disk.

8.5.4.4 Fail-Fast Disk Storage
The fail-fast layer is the place where the electronics and microcode of the disk controller
divide the raw disk track into sectors. Each sector is relatively small, individually pro
tected with an error-detection code, and includes in addition to a fixed-sized space for
data a sector and track number. The error-detection code enables the disk controller to

Saltzer & Kaashoek Ch. 8, p. 43	 June 24, 2009 12:24 am

8–44 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

return a status code on FAIL_FAST_GET that tells whether a sector read correctly or incor
rectly, and the sector and track numbers enable the disk controller to verify that the seek
ended up on the correct track. The FAIL_FAST_PUT procedure not only writes the data, but
it verifies that the write was successful by reading the newly written sector on the next
rotation and comparing it with the data still in the write buffer. The sector thus becomes
the minimum unit of reading and writing, and the disk address becomes the pair {track,
sector_number}. For performance enhancement, some systems allow the caller to bypass
the verification step of FAIL_FAST_PUT. When the client chooses this bypass, write failures
become indistinguishable from decay events.

There is always a possibility that the data on a sector is corrupted in such a way that
the error-detection code accidentally verifies. For completeness, we will identify that case
as an untolerated error, but point out that the error-detection code should be powerful
enough that the probability of this outcome is negligible.
The fail-fast layer implements these storage access procedures and failure tolerance
model:

status ← FAIL_FAST_SEEK (track)

status ← FAIL_FAST_PUT (data, sector_number)

status ← FAIL_FAST_GET (data, sector_number)

• 	 error-free operation: FAIL_FAST_SEEK moves the seek arm to track. FAIL_FAST_GET

returns whatever was most recently written by FAIL_FAST_PUT at sector_number on
track and returns status = OK.

• 	 detected error: FAIL_FAST_GET reads the data, checks the error-detection code and
finds that it does not verify. The cause may a soft error, a hard error due to
decay, or a hard error because there is a bad spot on the disk and the invoker of a
previous FAIL_FAST_PUT chose to bypass verification. FAIL_FAST_GET does not
attempt to distinguish these cases; it simply reports the error by returning
status = BAD.

• 	 detected error: FAIL_FAST_PUT writes the data, on the next rotation reads it back,
checks the error-detection code, finds that it does not verify, and reports the
error by returning status = BAD.

• 	 detected error: FAIL_FAST_SEEK moves the seek arm, reads the permanent track
number in the first sector that comes by, discovers that it does not match the
requested track number (or that the sector checksum does not verify), and
reports the error by returning status = BAD.

• 	 detected error: The caller of FAIL_FAST_PUT tells it to bypass the verification step,
so FAIL_FAST_PUT always reports status = OK even if the sector was not written
correctly. But a later caller of FAIL_FAST_GET that requests that sector should detect
any such error.

• 	 detected error: The power fails during a FAIL_FAST_PUT with the result that only
the first part of data ends up being written on sector. The remainder of sector

may contain older data. Any later call of FAIL_FAST_GET for that sector should
discover that the sector checksum fails to verify and will thus return status = BAD.

Saltzer & Kaashoek Ch. 8, p. 44	 June 24, 2009 12:24 am

8.5 Applying Redundancy to Software and Data 8–45

Many (but not all) disks are designed to mask this class of failure by maintaining
a reserve of power that is sufficient to complete any current sector write, in
which case loss of power would be a tolerated failure.

• 	untolerated error: The operating system crashes during a FAIL_FAST_PUT and
scribbles over the disk buffer in volatile storage, so FAIL_FAST_PUT writes corrupted
data on one sector of the disk.

• 	 untolerated error: The data of some sector decays in a way that is undetectable—
the checksum accidentally verifies. (Probability should be negligible.)

8.5.4.5 Careful Disk Storage
The fail-fast disk layer detects but does not mask errors. It leaves masking to the careful
disk layer, which is also usually implemented in the firmware of the disk controller. The
careful layer checks the value of status following each disk SEEK, GET and PUT operation,
retrying the operation several times if necessary, a procedure that usually recovers from
seek errors and soft errors caused by dust particles or a temporarily elevated noise level.
Some disk controllers seek to a different track and back in an effort to dislodge the dust.
The careful storage layer implements these storage procedures and failure tolerance
model:

status ← CAREFUL_SEEK (track)

status ← CAREFUL_PUT (data, sector_number)

status ← CAREFUL_GET (data, sector_number)

• 	 error-free operation: CAREFUL_SEEK moves the seek arm to track. CAREFUL_GET

returns whatever was most recently written by CAREFUL_PUT at sector_number on
track. All three return status = OK.

• 	 tolerated error: Soft read, write, or seek error. CAREFUL_SEEK, CAREFUL_GET and
CAREFUL_PUT mask these errors by repeatedly retrying the operation until the fail-
fast layer stops detecting an error, returning with status = OK. The careful storage
layer counts the retries, and if the retry count exceeds some limit, it gives up and
declares the problem to be a hard error.

• 	 detected error: Hard error. The careful storage layer distinguishes hard from soft
errors by their persistence through several attempts to read, write, or seek, and
reports them to the caller by setting status = BAD. (But also see the note on
revectoring below.)

• 	 detected error: The power fails during a CAREFUL_PUT with the result that only the
first part of data ends up being written on sector. The remainder of sector may
contain older data. Any later call of CAREFUL_GET for that sector should discover
that the sector checksum fails to verify and will thus return status = BAD.
(Assuming that the fail-fast layer does not tolerate power failures.)

• 	 untolerated error: Crash corrupts data. The system crashes during CAREFUL_PUT and
corrupts the disk buffer in volatile memory, so CAREFUL_PUT correctly writes to the

Saltzer & Kaashoek Ch. 8, p. 45	 June 24, 2009 12:24 am

8–46 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

disk sector the corrupted data in that buffer. The sector checksum of the fail-fast
layer cannot detect this case.

• 	 untolerated error: The data of some sector decays in a way that is undetectable—
the checksum accidentally verifies. (Probability should be negligible)

Figure 8.12 exhibits algorithms for CAREFUL_GET and CAREFUL_PUT. The procedure
CAREFUL_GET, by repeatedly reading any data with status = BAD, masks soft read errors.
Similarly, CAREFUL_PUT retries repeatedly if the verification done by FAIL_FAST_PUT fails,
thereby masking soft write errors, whatever their source.

The careful layer of most disk controller designs includes one more feature: if
CAREFUL_PUT detects a hard error while writing a sector, it may instead write the data on a
spare sector elsewhere on the same disk and add an entry to an internal disk mapping
table so that future GETs and PUTs that specify that sector instead use the spare. This mech
anism is called revectoring, and most disk designs allocate a batch of spare sectors for this
purpose. The spares are not usually counted in the advertised disk capacity, but the man
ufacturer’s advertising department does not usually ignore the resulting increase in the
expected operational lifetime of the disk. For clarity of the discussion we omit that
feature.

As indicated in the failure tolerance analysis, there are still two modes of failure that
remain unmasked: a crash during CAREFUL_PUT may undetectably corrupt one disk sector,
and a hard error arising from a bad spot on the disk or a decay event may detectably cor
rupt any number of disk sectors.

8.5.4.6 Durable Storage: RAID 1
For durability, the additional requirement is to mask decay events, which the careful
storage layer only detects. The primary technique is that the PUT procedure should write
several replicas of the data, taking care to place the replicas on different physical devices
with the hope that the probability of disk decay in one replica is independent of the prob

1 procedure CAREFUL_GET (data, sector_number)
2 for i from 1 to NTRIES do
3 if FAIL_FAST_GET (data, sector_number) = OK then
4 return OK

5 return BAD

6 procedure CAREFUL_PUT (data, sector_number)
7 for i from 1 to NTRIES do
8 if FAIL_FAST_PUT (data, sector_number) = OK then
9 return OK

10 return BAD

FIGURE 8.12

Procedures that implement careful disk storage.

Saltzer & Kaashoek Ch. 8, p. 46	 June 24, 2009 12:24 am

8.5 Applying Redundancy to Software and Data 8–47

ability of disk decay in the next one, and the number of replicas is large enough that when
a disk fails there is enough time to replace it before all the other replicas fail. Disk system
designers call these replicas mirrors. A carefully designed replica strategy can create stor
age that guards against premature disk failure and that is durable enough to substantially
exceed the expected operational lifetime of any single physical disk. Errors on reading are
detected by the fail-fast layer, so it is not usually necessary to read more than one copy
unless that copy turns out to be bad. Since disk operations may involve more than one
replica, the track and sector numbers are sometimes encoded into a virtual sector number
and the durable storage layer automatically performs any needed seeks.
The durable storage layer implements these storage access procedures and failure toler
ance model:

status ← DURABLE_PUT (data, virtual_sector_number)

status ← DURABLE_GET (data, virtual_sector_number)

• 	 error-free operation: DURABLE_GET returns whatever was most recently written by
DURABLE_PUT at virtual_sector_number with status = OK.

• 	 tolerated error: Hard errors reported by the careful storage layer are masked by
reading from one of the other replicas. The result is that the operation completes
with status = OK.

• 	 untolerated error: A decay event occurs on the same sector of all the replicas, and
the operation completes with status = BAD.

• 	untolerated error: The operating system crashes during a DURABLE_PUT and
scribbles over the disk buffer in volatile storage, so DURABLE_PUT writes corrupted
data on all mirror copies of that sector.

• 	 untolerated error: The data of some sector decays in a way that is undetectable—
the checksum accidentally verifies. (Probability should be negligible)

In this accounting there is no mention of soft errors or of positioning errors because they
were all masked by a lower layer.

One configuration of RAID (see Section 2.1.1.4), known as “RAID 1”, implements
exactly this form of durable storage. RAID 1 consists of a tightly-managed array of iden
tical replica disks in which DURABLE_PUT (data, sector_number) writes data at the same
sector_number of each disk and DURABLE_GET reads from whichever replica copy has the
smallest expected latency, which includes queuing time, seek time, and rotation time.
With RAID, the decay set is usually taken to be an entire hard disk. If one of the disks
fails, the next DURABLE_GET that tries to read from that disk will detect the failure, mask it
by reading from another replica, and put out a call for repair. Repair consists of first
replacing the disk that failed and then copying all of the disk sectors from one of the
other replica disks.

8.5.4.7 Improving on RAID 1
Even with RAID 1, an untolerated error can occur if a rarely-used sector decays, and
before that decay is noticed all other copies of that same sector also decay. When there is

Saltzer & Kaashoek Ch. 8, p. 47	 June 24, 2009 12:24 am

8–48 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

finally a call for that sector, all fail to read and the data is lost. A closely related scenario
is that a sector decays and is eventually noticed, but the other copies of that same sector
decay before repair of the first one is completed. One way to reduce the chances of these
outcomes is to implement a clerk that periodically reads all replicas of every sector, to
check for decay. If CAREFUL_GET reports that a replica of a sector is unreadable at one of
these periodic checks, the clerk immediately rewrites that replica from a good one. If the
rewrite fails, the clerk calls for immediate revectoring of that sector or, if the number of
revectorings is rapidly growing, replacement of the decay set to which the sector belongs.
The period between these checks should be short enough that the probability that all rep
licas have decayed since the previous check is negligible. By analyzing the statistics of
experience for similar disk systems, the designer chooses such a period, Td. This
approach leads to the following failure tolerance model:

status ← MORE_DURABLE_PUT (data, virtual_sector_number)
status ← MORE_DURABLE_GET (data, virtual_sector_number)

• 	 error-free operation: MORE_DURABLE_GET returns whatever was most recently
written by MORE_DURABLE_PUT at virtual_sector_number with status = OK

• 	 tolerated error: Hard errors reported by the careful storage layer are masked by
reading from one of the other replicas. The result is that the operation completes
with status = OK.

• 	 tolerated error: data of a single decay set decays, is discovered by the clerk, and is
repaired, all within Td seconds of the decay event.

• 	untolerated error: The operating system crashes during a DURABLE_PUT and
scribbles over the disk buffer in volatile storage, so DURABLE_PUT writes corrupted
data on all mirror copies of that sector.

• 	untolerated error: all decay sets fail within 	Td seconds. (With a conservative
choice of Td, the probability of this event should be negligible.)

• 	 untolerated error: The data of some sector decays in a way that is undetectable—
the checksum accidentally verifies. (With a good quality checksum, the
probability of this event should be negligible.)

A somewhat less effective alternative to running a clerk that periodically verifies integ
rity of the data is to notice that the bathtub curve of Figure 8.1 applies to magnetic disks,
and simply adopt a policy of systematically replacing the individual disks of the RAID
array well before they reach the point where their conditional failure rate is predicted to
start climbing. This alternative is not as effective for two reasons: First, it does not catch
and repair random decay events, which instead accumulate. Second, it provides no warn
ing if the actual operational lifetime is shorter than predicted (for example, if one
happens to have acquired a bad batch of disks).

Saltzer & Kaashoek Ch. 8, p. 48	 June 24, 2009 12:24 am

8.5 Applying Redundancy to Software and Data 8–49

8.5.4.8 Detecting Errors Caused by System Crashes
With the addition of a clerk to watch for
decay, there is now just one remaining Sidebar 8.3: Are disk system checksums a

untolerated error that has a significant wasted effort? From the adjacent

probability: the hard error created by an paragraph, an end-to-end argument suggests

operating system crash during CAREFUL_PUT. that an end-to-end checksum is always

Since that scenario corrupts the data needed to protect data on its way to and

before the disk subsystem sees it, the disk from the disk subsystem, and that the fail-

subsystem has no way of either detecting fast checksum performed inside the disk

or masking this error. Help is needed from
system thus may not be essential.

outside the disk subsystem—either the However, the disk system checksum cleanly

operating system or the application. The subcontracts one rather specialized job:

usual approach is that either the system or, correcting burst errors of the storage

even better, the application program, cal- medium. In addition, the disk system

culates and includes an end-to-end checksum provides a handle for disk-layer

checksum with the data before initiating erasure code implementations such as RAID,

the disk write. Any program that later as was described in Section 8.4.1. Thus the

reads the data verifies that the stored disk system checksum, though superficially

checksum matches the recalculated check- redundant, actually turns out to be quite

sum of the data. The end-to-end useful.

checksum thus monitors the integrity of

the data as it passes through the operating system buffers and also while it resides in the

disk subsystem.

The end-to-end checksum allows only detecting this class of error. Masking is another
matter—it involves a technique called recovery, which is one of the topics of the next
chapter.

Table 8.1 summarizes where failure tolerance is implemented in the several disk lay
ers. The hope is that the remaining untolerated failures are so rare that they can be
neglected. If they are not, the number of replicas could be increased until the probability
of untolerated failures is negligible.

8.5.4.9 Still More Threats to Durability
The various procedures described above create storage that is durable in the face of indi
vidual disk decay but not in the face of other threats to data integrity. For example, if the
power fails in the middle of a MORE_DURABLE_PUT, some replicas may contain old versions
of the data, some may contain new versions, and some may contain corrupted data, so it
is not at all obvious how MORE_DURABLE_GET should go about meeting its specification.
The solution is to make MORE_DURABLE_PUT atomic, which is one of the topics of Chapter
9[on-line].

RAID systems usually specify that a successful return from a PUT confirms that writing
of all of the mirror replicas was successful. That specification in turn usually requires that
the multiple disks be physically co-located, which in turn creates a threat that a single

Saltzer & Kaashoek Ch. 8, p. 49 June 24, 2009 12:24 am

8–50 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

physical disaster—fire, earthquake, flood, civil disturbance, etc.—might damage or
destroy all of the replicas.

Since magnetic disks are quite reliable in the short term, a different strategy is to write
only one replica at the time that MORE_DURABLE_PUT is invoked and write the remaining
replicas at a later time. Assuming there are no inopportune failures in the short run, the
results gradually become more durable as more replicas are written. Replica writes that
are separated in time are less likely to have replicated failures because they can be sepa
rated in physical location, use different disk driver software, or be written to completely
different media such as magnetic tape. On the other hand, separating replica writes in
time increases the risk of inconsistency among the replicas. Implementing storage that
has durability that is substantially beyond that of RAID 1 and MORE_DURABLE_PUT/GET

generally involves use of geographically separated replicas and systematic mechanisms to
keep those replicas coordinated, a challenge that Chapter 10[on-line] discusses in depth.

Perhaps the most serious threat to durability is that although different storage systems
have employed each of the failure detection and masking techniques discussed in this sec
tion, it is all too common to discover that a typical off-the-shelf personal computer file

raw layer
fail-fast
layer

careful
layer

durable
layer

more durable
layer

soft read, write, or seek
error

failure detected masked

hard read, write error failure detected detected masked

power failure interrupts
a write

failure detected detected masked

single data decay failure detected detected masked

multiple data decay
spaced in time

failure detected detected detected masked

multiple data decay
within Td

failure detected detected detected failure*

undetectable decay failure failure failure failure failure*

system crash corrupts
write buffer

failure failure failure failure detected

Table 8.1: Summary of disk failure tolerance models. Each entry shows the effect of this error at the
interface between the named layer and the next higher layer. With careful design, the probability of
the two failures marked with an asterisk should be negligible. Masking of corruption caused by system
crashes is discussed in Chapter 9[on-line]

Saltzer & Kaashoek Ch. 8, p. 50 June 24, 2009 12:24 am

8.6 Wrapping up Reliability 8–51

system has been designed using an overly simple disk failure model and thus misses
some—or even many—straightforward failure masking opportunities.

8.6 Wrapping up Reliability

8.6.1 Design Strategies and Design Principles

Standing back from the maze of detail about redundancy, we can identify and abstract
three particularly effective design strategies:

• 	 N-modular redundancy is a simple but powerful tool for masking failures and
increasing availability, and it can be used at any convenient level of granularity.

• 	 Fail-fast modules provide a sweeping simplification of the problem of containing
errors. When containment can be described simply, reasoning about fault
tolerance becomes easier.

• 	 Pair-and-compare allows fail-fast modules to be constructed from commercial,
off-the-shelf components.

Standing back still further, it is apparent that several general design principles are
directly applicable to fault tolerance. In the formulation of the fault-tolerance design pro
cess in Section 8.1.2, we invoked be explicit, design for iteration. keep digging, and the
safety margin principle, and in exploring different fault tolerance techniques we have seen
several examples of adopt sweeping simplifications. One additional design principle that
applies to fault tolerance (and also, as we will see in Chapter 11[on-line], to security)
comes from experience, as documented in the case studies of Section 8.8:

Avoid rarely used components

Deterioration and corruption accumulate unnoticed—until the next use.

Whereas redundancy can provide masking of errors, redundant components that are
used only when failures occur are much more likely to cause trouble than redundant
components that are regularly exercised in normal operation. The reason is that failures
in regularly exercised components are likely to be immediately noticed and fixed. Fail
ures in unused components may not be noticed until a failure somewhere else happens.
But then there are two failures, which may violate the design assumptions of the masking
plan. This observation is especially true for software, where rarely-used recovery proce
dures often accumulate unnoticed bugs and incompatibilities as other parts of the system
evolve. The alternative of periodic testing of rarely-used components to lower their fail
ure latency is a band-aid that rarely works well.

In applying these design principles, it is important to consider the threats, the conse
quences, the environment, and the application. Some faults are more likely than others,

Saltzer & Kaashoek Ch. 8, p. 51	 June 24, 2009 12:24 am

8–52 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

some failures are more disruptive than others, and different techniques may be appropri
ate in different environments. A computer-controlled radiation therapy machine, a deep-
space probe, a telephone switch, and an airline reservation system all need fault tolerance,
but in quite different forms. The radiation therapy machine should emphasize fault
detection and fail-fast design, to avoid injuring patients. Masking faults may actually be
a mistake. It is likely to be safer to stop, find their cause, and fix them before continuing
operation. The deep-space probe, once the mission begins, needs to concentrate on fail
ure masking to ensure mission success. The telephone switch needs many nines of
availability because customers expect to always receive a dial tone, but if it occasionally
disconnects one ongoing call, that customer will simply redial without thinking much
about it. Users of the airline reservation system might tolerate short gaps in availability,
but the durability of its storage system is vital. At the other extreme, most people find
that a digital watch has an MTTF that is long compared with the time until the watch
is misplaced, becomes obsolete, goes out of style, or is discarded. Consequently, no pro
vision for either error masking or repair is really needed. Some applications have built-in
redundancy that a designer can exploit. In a video stream, it is usually possible to mask
the loss of a single video frame by just repeating the previous frame.

8.6.2 How about the End-to-End Argument?

There is a potential tension between error masking and an end-to-end argument. An end-
to-end argument suggests that a subsystem need not do anything about errors and should
not do anything that might compromise other goals such as low latency, high through
put, or low cost. The subsystem should instead let the higher layer system of which it is
a component take care of the problem because only the higher layer knows whether or
not the error matters and what is the best course of action to take.

There are two counter arguments to that line of reasoning:

• 	 Ignoring an error allows it to propagate, thus contradicting the modularity goal of
error containment. This observation points out an important distinction between
error detection and error masking. Error detection and containment must be
performed where the error happens, so that the error does not propagate wildly.
Error masking, in contrast, presents a design choice: masking can be done locally
or the error can be handled by reporting it at the interface (that is, by making the
module design fail-fast) and allowing the next higher layer to decide what masking
action—if any—to take.

• 	 The lower layer may know the nature of the error well enough that it can mask it
far more efficiently than the upper layer. The specialized burst error correction
codes used on DVDs come to mind. They are designed specifically to mask errors
caused by scratches and dust particles, rather than random bit-flips. So we have a
trade-off between the cost of masking the fault locally and the cost of letting the
error propagate and handling it in a higher layer.

Saltzer & Kaashoek Ch. 8, p. 52	 June 24, 2009 12:24 am

8.6 Wrapping up Reliability 8–53

These two points interact: When an error propagates it can contaminate otherwise
correct data, which can increase the cost of masking and perhaps even render masking
impossible. The result is that when the cost is small, error masking is usually done locally.
(That is assuming that masking is done at all. Many personal computer designs omit
memory error masking. Section 8.8.1 discusses some of the reasons for this design
decision.)

A closely related observation is that when a lower layer masks a fault it is important
that it also report the event to a higher layer, so that the higher layer can keep track of
how much masking is going on and thus how much failure tolerance there remains.
Reporting to a higher layer is a key aspect of the safety margin principle.

8.6.3 A Caution on the Use of Reliability Calculations

Reliability calculations seem to be exceptionally vulnerable to the garbage-in, garbage-
out syndrome. It is all too common that calculations of mean time to failure are under
mined because the probabilistic models are not supported by good statistics on the failure
rate of the components, by measures of the actual load on the system or its components,
or by accurate assessment of independence between components.

For computer systems, back-of-the-envelope calculations are often more than suffi
cient because they are usually at least as accurate as the available input data, which tends
to be rendered obsolete by rapid technology change. Numbers predicted by formula can
generate a false sense of confidence. This argument is much weaker for technologies that
tend to be stable (for example, production lines that manufacture glass bottles). So reli
ability analysis is not a waste of time, but one must be cautious in applying its methods
to computer systems.

8.6.4 Where to Learn More about Reliable Systems

Our treatment of fault tolerance has explored only the first layer of fundamental con
cepts. There is much more to the subject. For example, we have not considered another
class of fault that combines the considerations of fault tolerance with those of security:
faults caused by inconsistent, perhaps even malevolent, behavior. These faults have the
characteristic they generate inconsistent error values, possibly error values that are specif
ically designed by an attacker to confuse or confound fault tolerance measures. These
faults are called Byzantine faults, recalling the reputation of ancient Byzantium for mali
cious politics. Here is a typical Byzantine fault: suppose that an evil spirit occupies one
of the three replicas of a TMR system, waits for one of the other replicas to fail, and then
adjusts its own output to be identical to the incorrect output of the failed replica. A voter
accepts this incorrect result and the error propagates beyond the intended containment
boundary. In another kind of Byzantine fault, a faulty replica in an NMR system sends
different result values to each of the voters that are monitoring its output. Malevolence
is not required—any fault that is not anticipated by a fault detection mechanism can pro
duce Byzantine behavior. There has recently been considerable attention to techniques

Saltzer & Kaashoek Ch. 8, p. 53 June 24, 2009 12:24 am

8–54 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

that can tolerate Byzantine faults. Because the tolerance algorithms can be quite com
plex, we defer the topic to advanced study.

We also have not explored the full range of reliability techniques that one might
encounter in practice. For an example that has not yet been mentioned, Sidebar 8.4
describes the heartbeat, a popular technique for detecting failures of active processes.

This chapter has oversimplified some ideas. For example, the definition of availability
proposed in Section 8.2 of this chapter is too simple to adequately characterize many
large systems. If a bank has hundreds of automatic teller machines, there will probably
always be a few teller machines that are not working at any instant. For this case, an avail
ability measure based on the percentage of transactions completed within a specified
response time would probably be more appropriate.

A rapidly moving but in-depth discussion of fault tolerance can be found in Chapter
3 of the book Transaction Processing: Concepts and Techniques, by Jim Gray and Andreas
Reuter. A broader treatment, with case studies, can be found in the book Reliable Com
puter Systems: Design and Evaluation, by Daniel P. Siewiorek and Robert S. Swarz.
Byzantine faults are an area of ongoing research and development, and the best source is
current professional literature.

This chapter has concentrated on general techniques for achieving reliability that are
applicable to hardware, software, and complete systems. Looking ahead, Chapters 9[on
line] and 10[on-line] revisit reliability in the context of specific software techniques that
permit reconstruction of stored state following a failure when there are several concur
rent activities. Chapter 11[on-line], on securing systems against malicious attack,
introduces a redundancy scheme known as defense in depth that can help both to contain
and to mask errors in the design or implementation of individual security mechanisms.

Sidebar 8.4: Detecting failures with heartbeats. An activity such as a Web server is usually
intended to keep running indefinitely. If it fails (perhaps by crashing) its clients may notice that
it has stopped responding, but clients are not typically in a position to restart the server.
Something more systematic is needed to detect the failure and initiate recovery. One helpful
technique is to program the thread that should be performing the activity to send a periodic
signal to another thread (or a message to a monitoring service) that says, in effect, “I'm still
OK”. The periodic signal is known as a heartbeat and the observing thread or service is known
as a watchdog.

The watchdog service sets a timer, and on receipt of a heartbeat message it restarts the timer. If
the timer ever expires, the watchdog assumes that the monitored service has gotten into trouble
and it initiates recovery. One limitation of this technique is that if the monitored service fails
in such a way that the only thing it does is send heartbeat signals, the failure will go undetected.

As with all fixed timers, choosing a good heartbeat interval is an engineering challenge. Setting
the interval too short wastes resources sending and responding to heartbeat signals. Setting the
interval too long delays detection of failures. Since detection is a prerequisite to repair, a long
heartbeat interval increases MTTR and thus reduces availability.

Saltzer & Kaashoek Ch. 8, p. 54 June 24, 2009 12:24 am

8.7 Application: A Fault Tolerance Model for CMOS RAM 8–55

8.7 Application: A Fault Tolerance Model for CMOS RAM
This section develops a fault tolerance model for words of CMOS random access mem
ory, first without and then with a simple error-correction code, comparing the
probability of error in the two cases.

CMOS RAM is both low in cost and extraordinarily reliable, so much so that error
masking is often not implemented in mass production systems such as television sets and
personal computers. But some systems, for example life-support, air traffic control, or
banking systems, cannot afford to take unnecessary risks. Such systems usually employ
the same low-cost memory technology but add incremental redundancy.

A common failure of CMOS RAM is that noise intermittently causes a single bit to
read or write incorrectly. If intermittent noise affected only reads, then it might be suf
ficient to detect the error and retry the read. But the possibility of errors on writes
suggests using a forward error-correction code.

We start with a fault tolerance model that applies when reading a word from memory
without error correction. The model assumes that errors in different bits are independent
and it assigns p as the (presumably small) probability that any individual bit is in error.
The notation O(pn) means terms involving pn and higher, presumably negligible, pow
ers. Here are the possibilities and their associated probabilities:

Fault tolerance model for raw CMOS random access memory

probability

error-free case: all 32 bits are correct 1 – p()32 = 1 O p()–

errors:

untolerated: one bit is in error: 32p 1(– p)31 = O p()

untolerated: two bits are in error: (31 ⋅ 32 ⁄ 30 O p22)p2(1 – p) = ()

untolerated: three or more bits are in error:

(30 ⋅ 31 ⋅ 32 ⁄ ⋅ p3(1 – p) + p = ()3 2) 29 + … 32 O p3

The coefficients 32 , (31 ⋅ 32) ⁄ 2 , etc., arise by counting the number of ways that one,
two, etc., bits could be in error.

Suppose now that the 32-bit block of memory is encoded using a code of Hamming
distance 3, as described in Section 8.4.1. Such a code allows any single-bit error to be

Saltzer & Kaashoek Ch. 8, p. 55 June 24, 2009 12:24 am

8–56 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

corrected and any double-bit error to be detected. After applying the decoding algo
rithm, the fault tolerance model changes to:

Fault tolerance model for CMOS memory with error correction

probability

error-free case: all 32 bits are correct 1 – p)32 = 1 O()p(–

errors:

tolerated: one bit corrected: 32p(1 – p)31 = O()p

detected: two bits are in error: 31 ⋅ 32 ⁄ 2)p2(1 – p)30 = O p2(()

untolerated: three or more bits are in error:

(30 ⋅ 31 ⋅ 32 ⁄ ⋅ p 1 – p) + p = ()3 2) 3(29 + … 32 O p3

The interesting change is in the probability that the decoded value is correct. That prob
ability is the sum of the probabilities that there were no errors and that there was one,
tolerated error:

Prob(decoded value is correct) = (1 – p)32 + 32p(1 – p)31

= (– 31 ⋅ 32 ⁄ 2) + … + (32p + 31 ⋅1 32p + (p2)

= (– ())1 O p2

The decoding algorithm has thus eliminated the errors that have probability of order p.
It has not eliminated the two-bit errors, which have probability of order p2, but for two-
bit errors the algorithm is fail-fast, so a higher-level procedure has an opportunity to
recover, perhaps by requesting retransmission of the data. The code is not helpful if there
are errors in three or more bits, which situation has probability of order p3, but presum
ably the designer has determined that probabilities of that order are negligible. If they are
not, the designer should adopt a more powerful error-correction code.

With this model in mind, one can review the two design questions suggested on page
8–19. The first question is whether the estimate of bit error probability is realistic and if
it is realistic to suppose that multiple bit errors are statistically independent of one
another. (Error independence appeared in the analysis in the claim that the probability
of an n-bit error has the order of the nth power of the probability of a one-bit error.)
Those questions concern the real world and the accuracy of the designer’s model of it.
For example, this failure model doesn’t consider power failures, which might take all the
bits out at once, or a driver logic error that might take out all of the even-numbered bits.

Saltzer & Kaashoek Ch. 8, p. 56 June 24, 2009 12:24 am

8.8 War Stories: Fault Tolerant Systems that Failed 8–57

It also ignores the possibility of faults that lead to errors in the logic of the error-correc
tion circuitry itself.

The second question is whether the coding algorithm actually corrects all one-bit
errors and detects all two-bit errors. That question is explored by examining the mathe
matical structure of the error-correction code and is quite independent of anybody’s
estimate or measurement of real-world failure types and rates. There are many off-the
shelf coding algorithms that have been thoroughly analyzed and for which the answer is
yes.

8.8 War Stories: Fault Tolerant Systems that Failed

8.8.1 Adventures with Error Correction*

The designers of the computer systems at the Xerox Palo Alto Research Center in the
early 1970s encountered a series of experiences with error-detecting and error-correcting
memory systems. From these experiences follow several lessons, some of which are far
from intuitive, and all of which still apply several decades later.

MAXC. One of the first projects undertaken in the newly-created Computer Systems
Laboratory was to build a time-sharing computer system, named MAXC. A brand new
1024-bit memory chip, the Intel 1103, had just appeared on the market, and it promised
to be a compact and economical choice for the main memory of the computer. But since
the new chip had unknown reliability characteristics, the MAXC designers implemented
the memory system using a few extra bits for each 36-bit word, in the form of a single-
error-correction, double-error-detection code.

Experience with the memory in MAXC was favorable. The memory was solidly reli
able—so solid that no errors in the memory system were ever reported.

The Alto. When the time came to design the Alto personal workstation, the same Intel
memory chips still appeared to be the preferred component. Because these chips had per
formed so reliably in MAXC, the designers of the Alto memory decided to relax a little,
omitting error correction. But, they were still conservative enough to provide error detec
tion, in the form of one parity bit for each 16-bit word of memory.

This design choice seemed to be a winner because the Alto memory systems also per
formed flawlessly, at least for the first several months. Then, mysteriously, the operating
system began to report frequent memory-parity failures.

Some background: the Alto started life with an operating system and applications that
used a simple typewriter-style interface. The display was managed with a character-by
character teletype emulator. But the purpose of the Alto was to experiment with better

* These experiences were reported by Butler Lampson, one of the designers of the MAXC computer
and the Alto personal workstations at Xerox Palo Alto Research Center.

Saltzer & Kaashoek Ch. 8, p. 57 June 24, 2009 12:24 am

8–58 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

things. One of the first steps in that direction was to implement the first what-you-see
is-what-you-get editor, named Bravo. Bravo took full advantage of the bit-map display,
filling it not only with text, but also with lines, buttons, and icons. About half the mem
ory system was devoted to display memory. Curiously, the installation of Bravo
coincided with the onset of memory parity errors.

It turned out that the Intel 1103 chips were pattern-sensitive—certain read/write
sequences of particular bit patterns could cause trouble, probably because those pattern
sequences created noise levels somewhere on the chip that systematically exceeded some
critical threshold. The Bravo editor's display management was the first application that
generated enough different patterns to have an appreciable probability of causing a parity
error. It did so, frequently.

Lesson 8.8.1a: There is no such thing as a small change in a large system. A new piece of soft
ware can bring down a piece of hardware that is thought to be working perfectly. You are
never quite sure just how close to the edge of the cliff you are standing.

Lesson 8.8.1b: Experience is a primary source of information about failures. It is nearly impos
sible, without specific prior experience, to predict what kinds of failures you will encounter in
the field.

Back to MAXC. This circumstance led to a more careful review of the situation on
MAXC. MAXC, being a heavily used server, would be expected to encounter at least
some of this pattern sensitivity. It was discovered that although the error-correction cir
cuits had been designed to report both corrected errors and uncorrectable errors, the
software logged only uncorrectable errors and corrected errors were being ignored. When
logging of corrected errors was implemented, it turned out that the MAXC's Intel 1103's
were actually failing occasionally, and the error-correction circuitry was busily setting
things right.

Lesson 8.8.1c: Whenever systems implement automatic error masking, it is important to fol
low the safety margin principle, by tracking how often errors are successfully masked. Without
this information, one has no way of knowing whether the system is operating with a large or
small safety margin for additional errors. Otherwise, despite the attempt to put some guaran
teed space between yourself and the edge of the cliff, you may be standing on the edge again.

The Alto 2. In 1975, it was time to design a follow-on workstation, the Alto 2. A new
generation of memory chips, this time with 4096 bits, was now available. Since it took
up much less space and promised to be cheaper, this new chip looked attractive, but
again there was no experience with its reliability. The Alto 2 designers, having been made
wary by the pattern sensitivity of the previous generation chips, again resorted to a single-
error-correction, double-error-detection code in the memory system.

Once again, the memory system performed flawlessly. The cards passed their accep
tance tests and went into service. In service, not only were no double-bit errors detected,
only rarely were single-bit errors being corrected. The initial conclusion was that the chip
vendors had worked the bugs out and these chips were really good.

Saltzer & Kaashoek Ch. 8, p. 58 June 24, 2009 12:24 am

8.8 War Stories: Fault Tolerant Systems that Failed 8–59

About two years later, someone discovered an implementation mistake. In one quad
rant of each memory card, neither error correction nor error detection was actually
working. All computations done using memory in the misimplemented quadrant were
completely unprotected from memory errors.

Lesson 8.8.1d: Never assume that the hardware actually does what it says in the specifications.
Lesson 8.8.1e: It is harder than it looks to test the fault tolerance features of a fault tolerant
system.

One might conclude that the intrinsic memory chip reliability had improved substan
tially—so much that it was no longer necessary to take heroic measures to achieve system
reliability. Certainly the chips were better, but they weren't perfect. The other effect here
is that errors often don't lead to failures. In particular, a wrong bit retrieved from mem
ory does not necessarily lead to an observed failure. In many cases a wrong bit doesn't
matter; in other cases it does but no one notices; in still other cases, the failure is blamed
on something else.

Lesson 8.8.1f: Just because it seems to be working doesn't mean that it actually is.

The bottom line. One of the designers of MAXC and the Altos, Butler Lampson, sug
gests that the possibility that a failure is blamed on something else can be viewed as an
opportunity, and it may be one of the reasons that PC manufacturers often do not pro
vide memory parity checking hardware. First, the chips are good enough that errors are
rare. Second, if you provide parity checks, consider who will be blamed when the parity
circuits report trouble: the hardware vendor. Omitting the parity checks probably leads
to occasional random behavior, but occasional random behavior is indistinguishable
from software error and is usually blamed on the software.

Lesson 8.8.1g (in Lampson's words): “Beauty is in the eye of the beholder. The various parties
involved in the decisions about how much failure detection and recovery to implement do not
always have the same interests.”

8.8.2 Risks of Rarely-Used Procedures: The National Archives

The National Archives and Record Administration of the United States government has
the responsibility, among other things, of advising the rest of the government how to
preserve electronic records such as e-mail messages for posterity. Quite separate from that
responsibility, the organization also operates an e-mail system at its Washington, D.C.
headquarters for a staff of about 125 people and about 10,000 messages a month pass
through this system. To ensure that no messages are lost, it arranged with an outside con
tractor to perform daily incremental backups and to make periodic complete backups of
its e-mail files. On the chance that something may go wrong, the system has audit logs
that track actions regarding incoming and outgoing mail as well as maintenance on files.

Over the weekend of June 18–21, 1999, the e-mail records for the previous four
months (an estimated 43,000 messages) disappeared. No one has any idea what went
wrong—the files may have been deleted by a disgruntled employee or a runaway house-

Saltzer & Kaashoek Ch. 8, p. 59 June 24, 2009 12:24 am

8–60 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

cleaning program, or the loss may have been caused by a wayward system bug. In any
case, on Monday morning when people came to work, they found that the files were
missing.

On investigation, the system managers reported that the audit logs had been turned
off because they were reducing system performance, so there were no clues available to
diagnose what went wrong. Moreover, since the contractor’s employees had never gotten
around to actually performing the backup part of the contract, there were no backup
copies. It had not occurred to the staff of the Archives to verify the existence of the
backup copies, much less to test them to see if they could actually be restored. They
assumed that since the contract required it, the work was being done.

The contractor’s project manager and the employee responsible for making backups
were immediately replaced. The Assistant Archivist reports that backup systems have
now been beefed up to guard against another mishap, but he added that the safest way
to save important messages is to print them out.*

Lesson 8.8.2: Avoid rarely used components. Rarely used failure-tolerance mechanisms,
such as restoration from backup copies, must be tested periodically. If they are not, there is not
much chance that they will work when an emergency arises. Fire drills (in this case performing
a restoration of all files from a backup copy) seem disruptive and expensive, but they are not
nearly as disruptive and expensive as the discovery, too late, that the backup system isn’t really
operating. Even better, design the system so that all the components are exposed to day-to-day
use, so that failures can be noticed before they cause real trouble.

8.8.3 Non-independent Replicas and Backhoe Fade

In Eagan, Minnesota, Northwest airlines operated a computer system, named World-
Flight, that managed the Northwest flight dispatching database, provided weight-and
balance calculations for pilots, and managed e-mail communications between the dis
patch center and all Northwest airplanes. It also provided data to other systems that
managed passenger check-in and the airline’s Web site. Since many of these functions
involved communications, Northwest contracted with U.S. West, the local telephone
company at that time, to provide these communications in the form of fiber-optic links
to airports that Northwest serves, to government agencies such as the Weather Bureau
and the Federal Aviation Administration, and to the Internet. Because these links were
vital, Northwest paid U.S. West extra to provide each primary link with a backup sec
ondary link. If a primary link to a site failed, the network control computers
automatically switched over to the secondary link to that site.

At 2:05 p.m. on March 23, 2000, all communications to and from WorldFlight
dropped out simultaneously. A contractor who was boring a tunnel (for fiber optic lines
for a different telephone company) at the nearby intersection of Lone Oak and Pilot
Knob roads accidentally bored through a conduit containing six cables carrying the U.S.

* George Lardner Jr. “Archives Loses 43,000 E-Mails; officials can't explain summer erasure;
backup system failed.” The Washington Post, Thursday, January 6, 2000, page A17.

Saltzer & Kaashoek Ch. 8, p. 60 June 24, 2009 12:24 am

8.8 War Stories: Fault Tolerant Systems that Failed 8–61

West fiber-optic and copper lines. In a tongue-in-cheek analogy to the fading in and out
of long-distance radio signals, this kind of communications disruption is known in the
trade as “backhoe fade.” WorldFlight immediately switched from the primary links to
the secondary links, only to find that they were not working, either. It seems that the pri
mary and secondary links were routed through the same conduit, and both were severed.

Pilots resorted to manual procedures for calculating weight and balance, and radio
links were used by flight dispatchers in place of the electronic message system, but about
125 of Northwest’s 1700 flights had to be cancelled because of the disruption, about the
same number that are cancelled when a major snowstorm hits one of Northwest’s hubs.
Much of the ensuing media coverage concentrated on whether or not the contractor had
followed “dig-safe” procedures that are intended to prevent such mistakes. But a news
release from Northwest at 5:15 p.m. blamed the problem entirely on U.S. West. “For
such contingencies, U.S. West provides to Northwest a complete redundancy plan. The
U.S. West redundancy plan also failed.”*

In a similar incident, the ARPAnet, a predecessor to the Internet, had seven separate
trunk lines connecting routers in New England to routers elsewhere in the United States.
All the trunk lines were purchased from a single long-distance carrier, AT&T. On
December 12, 1986, all seven trunk lines went down simultaneously when a contractor
accidentally severed a single fiber-optic cable running from White Plains, New York to
Newark, New Jersey.†

A complication for communications customers who recognize this problem and
request information about the physical location of their communication links is that, in
the name of security, communications companies sometimes refuse to reveal it.

Lesson 8.8.3: The calculation of mean time to failure of a redundant system depends critically
on the assumption that failures of the replicas are independent. If they aren’t independent,
then the replication may be a waste of effort and money, while producing a false complacency.
This incident also illustrates why it can be difficult to test fault tolerance measures properly.
What appears to be redundancy at one level of abstraction turns out not to be redundant at a
lower level of abstraction.

8.8.4 Human Error May Be the Biggest Risk

Telehouse was an East London “telecommunications hotel”, a seven story building hous
ing communications equipment for about 100 customers, including most British
Internet companies, many British and international telephone companies, and dozens of
financial institutions. It was designed to be one of the most secure buildings in Europe,
safe against “fire, flooding, bombs, and sabotage”. Accordingly, Telehouse had extensive
protection against power failure, including two independent connections to the national

* Tony Kennedy. “Cut cable causes cancellations, delays for Northwest Airlines.” Minneapolis Star
Tribune, March 22, 2000.

† Peter G. Neumann. Computer Related Risks (Addison-Wesley, New York, 1995), page 14.

Saltzer & Kaashoek Ch. 8, p. 61 June 24, 2009 12:24 am

8–62 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

electric power grid, a room full of batteries, and two diesel generators, along with systems
to detect failures in supply and automatically cut over from one backup system to the
next, as needed.

On May 8, 1997, all the computer systems went off line for lack of power. According
to Robert Bannington, financial director of Telehouse, “It was due to human error.”
That is, someone pulled the wrong switch. The automatic power supply cutover proce
dures did not trigger because they were designed to deploy on failure of the outside
power supply, and the sensors correctly observed that the outside power supply was
intact.*

Lesson 8.8.4a: The first step in designing a fault tolerant system is to identify each potential
fault and evaluate the risk that it will happen. People are part of the system, and mistakes
made by authorized operators are typically a bigger threat to reliability than trees falling on
power lines.

Anecdotes concerning failures of backup power supply systems seem to be common.
Here is a typical report of an experience in a Newark, New Jersey, hospital operating
room that was equipped with three backup generators: “On August 14, 2003, at 4:10pm
EST, a widespread power grid failure caused our hospital to suffer a total OR power loss,
regaining partial power in 4 hours and total restoration 12 hours later... When the
backup generators initially came on-line, all ORs were running as usual. Within 20 min
utes, one parallel-linked generator caught fire from an oil leak. After being subjected to
twice its rated load, the second in-line generator quickly shut down... Hospital engineer
ing, attempting load-reduction to the single surviving generator, switched many hospital
circuit breakers off. Main power was interrupted to the OR.”†

Lesson 8.8.4b: A backup generator is another example of a rarely used component that may
not have been maintained properly. The last two sentences of that report reemphasize Lesson
8.8.4a.

For yet another example, the M.I.T. Information Services and Technology staff
posted the following system services notice on April 2, 2004: “We suffered a power fail
ure in W92 shortly before 11AM this morning. Most services should be restored now,
but some are still being recovered. Please check back here for more information as it
becomes available.” A later posting reported: “Shortly after 10AM Friday morning the
routine test of the W92 backup generator was started. Unknown to us was that the tran
sition of the computer room load from commercial power to the backup generator
resulted in a power surge within the computer room's Uninterruptable [sic] Power Sup
ply (UPS). This destroyed an internal surge protector, which started to smolder. Shortly
before 11AM the smoldering protector triggered the VESDA® smoke sensing system

* Robert Uhlig. “Engineer pulls plug on secure bunker.” Electronic Telegraph, (9 May 1997).

† Ian E. Kirk, M.D. and Peter L. Fine, M.D. “Operating by Flashlight: Power Failure and Safety
Lessons from the August, 2003 Blackout.” Abstracts of the Annual Meeting of the American Society of
Anesthesiologists, October 2005.

Saltzer & Kaashoek Ch. 8, p. 62 June 24, 2009 12:24 am

8.8 War Stories: Fault Tolerant Systems that Failed 8–63

within the computer room. This sensor triggered the fire alarm, and as a safety precau
tion forced an emergency power down of the entire computer room.”*

Lesson 8.8.4c: A failure masking system not only can fail, it can cause a bigger failure than
the one it is intended to mask.

8.8.5 Introducing a Single Point of Failure

“[Rabbi Israel Meir HaCohen Kagan described] a real-life situation in his town of Radin,
Poland. He lived at the time when the town first purchased an electrical generator and
wired all the houses and courtyards with electric lighting. One evening something broke
within the machine, and darkness descended upon all of the houses and streets, and even
in the synagogue.

“So he pointed out that before they had electricity, every house had a kerosene light—
and if in one particular house the kerosene ran out, or the wick burnt away, or the glass
broke, that only that one house would be dark. But when everyone is dependent upon
one machine, darkness spreads over the entire city if it breaks for any reason.”†

Lesson 8.8.5: Centralization may provide economies of scale, but it can also reduce robust
ness—a single failure can interfere with many unrelated activities. This phenomenon is
commonly known as introducing a single point of failure. By carefully adding redundancy to
a centralized design one may be able to restore some of the lost robustness but it takes planning
and adds to the cost.

8.8.6 Multiple Failures: The SOHO Mission Interruption

“Contact with the SOlar Heliospheric Observatory (SOHO) spacecraft was lost in the
early morning hours of June 25, 1998, Eastern Daylight Time (EDT), during a planned
period of calibrations, maneuvers, and spacecraft reconfigurations. Prior to this the
SOHO operations team had concluded two years of extremely successful science
operations.

“…The Board finds that the loss of the SOHO spacecraft was a direct result of oper
ational errors, a failure to adequately monitor spacecraft status, and an erroneous
decision which disabled part of the on-board autonomous failure detection. Further, fol
lowing the occurrence of the emergency situation, the Board finds that insufficient time
was taken by the operations team to fully assess the spacecraft status prior to initiating
recovery operations. The Board discovered that a number of factors contributed to the
circumstances that allowed the direct causes to occur.”‡

* Private internal communication.

† Chofetz Chaim (the Rabbi Israel Meir HaCohen Kagan of Radin), paraphrased by Rabbi Yaakov
Menken, in a discussion of lessons from the Torah in Project Genesis Lifeline.
<http://www.torah.org/learning/lifeline/5758/reeh.html>. Suggested by David
Karger.

Saltzer & Kaashoek Ch. 8, p. 63 June 24, 2009 12:24 am

<http://www.torah.org/learning/lifeline/5758/reeh.html>

8–64 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

In a tour-de-force of the keep digging principle, the report of the investigating board
quoted above identified five distinct direct causes of the loss: two software errors, a design
feature that unintentionally amplified the effect of one of the software errors, an incor
rect diagnosis by the ground staff, and a violated design assumption. It then goes on to
identify three indirect causes in the spacecraft design process: lack of change control,
missing risk analysis for changes, and insufficient communication of changes, and then
three indirect causes in operations procedures: failure to follow planned procedures, to
evaluate secondary telemetry data, and to question telemetry discrepancies.

Lesson 8.8.6: Complex systems fail for complex reasons. In systems engineered for reliability,
it usually takes several component failures to cause a system failure. Unfortunately, when some
of the components are people, multiple failures are all too common.

Exercises

8.1 	 Failures are

A. Faults that are latent.
B. Errors that are contained within a module.
C. 	 Errors that propagate out of a module.
D. 	 Faults that turn into errors.

1999–3–01

8.2 	 Ben Bitdiddle has been asked to perform a deterministic computation to calculate
the orbit of a near-Earth asteroid for the next 500 years, to find out whether or not
the asteroid will hit the Earth. The calculation will take roughly two years to
complete, and Ben wants be be sure that the result will be correct. He buys 30
identical computers and runs the same program with the same inputs on all of them.
Once each hour the software pauses long enough to write all intermediate results to
a hard disk on that computer. When the computers return their results at the end

‡ Massimo Trella and Michael Greenfield. Final Report of the SOHO Mission Interruption Joint
NASA/ESA Investigation Board (August 31, 1998). National Aeronautics and Space Administration
and European Space Agency.
<http://sohowww.nascom.nasa.gov/whatsnew/SOHO_final_report.html>

Saltzer & Kaashoek Ch. 8, p. 64	 June 24, 2009 12:24 am

<http://sohowww.nascom.nasa.gov/whatsnew/SOHO_final_report.html>

 Exercises 8–65

of the two years, a voter selects the majority answer. Which of the following failures
can this scheme tolerate, assuming the voter works correctly?

A. 	 The software carrying out the deterministic computation has a bug in it, causing the
program to compute the wrong answer for certain inputs.

B. 	 Over the course of the two years, cosmic rays corrupt data stored in memory at twelve
of the computers, causing them to return incorrect results.

C. 	 Over the course of the two years, on 24 different days the power fails in the computer
room. When the power comes back on, each computer reboots and then continues
its computation, starting with the state it finds on its hard disk.

2006–2–3

8.3 	 Ben Bitdiddle has seven smoke detectors installed in various places in his house.
Since the fire department charges $100 for responding to a false alarm, Ben has
connected the outputs of the smoke detectors to a simple majority voter, which in
turn can activate an automatic dialer that calls the fire department. Ben returns
home one day to find his house on fire, and the fire department has not been called.
There is smoke at every smoke detector. What did Ben do wrong?

A. 	 He should have used fail-fast smoke detectors.
B. 	 He should have used a voter that ignores failed inputs from fail-fast sources.
C. 	 He should have used a voter that ignores non-active inputs.
D. 	 He should have done both A and B.
E. 	 He should have done both Aand C.

1997–0–01

8.4 	 You will be flying home from a job interview in Silicon Valley. Your travel agent
gives you the following choice of flights:

A. 	 Flight A uses a plane whose mean time to failure (MTTF) is believed to be 6,000
hours. With this plane, the flight is scheduled to take 6 hours.

B. 	 Flight B uses a plane whose MTTF is believed to be 5,000 hours. With this plane,
the flight takes 5 hours.

The agent assures you that both planes’ failures occur according to memoryless
random processes (not a “bathtub” curve). Assuming that model, which flight
should you choose to minimize the chance of your plane failing during the flight?

2005–2–5

8.5 	 (Note: solving this problem is best done with use of probability through the level
of Markov chains.) You are designing a computer system to control the power grid
for the Northeastern United States. If your system goes down, the lights go out and
civil disorder—riots, looting, fires, etc.—will ensue. Thus, you have set a goal of
having a system MTTF of at least 100 years (about 106 hours). For hardware you
are constrained to use a building block computer that has a MTTF of 1000 hours

Saltzer & Kaashoek Ch. 8, p. 65	 June 24, 2009 12:24 am

8–66 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

and a MTTR of 1 hour. Assuming that the building blocks are fail-fast, memoryless,
and fail independently of one another, how can you arrange to meet your goal?

1995–3–1a

8.6 	 The town council wants to implement a municipal network to connect the local
area networks in the library, the town hall, and the school. They want to minimize
the chance that any building is completely disconnected from the others. They are
considering two network topologies:

1. “Daisy Chain”	 2. “Fully connected”

Each link in the network has a failure probability of p.

8.6a. What is the probability that the daisy chain network is connecting all the buildings?

8.6b. 	What is the probability that the fully connected network is connecting all the
buildings?

8.6c. The town council has a limited budget, with which it can buy either a daisy chain
network with two high reliability links (p = .000001), or a fully connected network
with three low-reliability links (p = .0001). Which should they purchase?

1985–0–1

8.7 Figure 8.11 shows the failure points of three different 5MR supermodule designs,
if repair does not happen in time. Draw the corresponding figure for the same three
different TMR supermodule designs.

2001–3–05

8.8 	 An astronomer calculating the trajectory of Pluto has a program that requires the
execution of 1013 machine operations. The fastest processor available in the lab
runs only 109 operations per second and, unfortunately, has a probability of failing
on any one operation of 10–12 . (The failure process is memoryless.) The good
news is that the processor is fail-fast, so when a failure occurs it stops dead in its
tracks and starts ringing a bell. The bad news is that when it fails, it loses all state,
so whatever it was doing is lost, and has to be started over from the beginning.

Seeing that in practical terms, the program needs to run for about 3 hours, and the
machine has an MTTF of only 1/10 of that time, Louis Reasoner and Ben Bitdiddle
have proposed two ways to organize the computation:

Saltzer & Kaashoek Ch. 8, p. 66	 June 24, 2009 12:24 am

 Exercises 8–67

• 	 Louis says run it from the beginning and hope for the best. If the machine fails,
just try again; keep trying till the calculation successfully completes.

• 	Ben suggests dividing the calculation into ten equal-length segments; if the
calculation gets to the end of a segment, it writes its state out to the disk. When
a failure occurs, restart from the last state saved on the disk.

Saving state and restart both take zero time. What is the ratio of the expected time
to complete the calculation under the two strategies?

Warning: A straightforward solution to this problem involves advanced probability
techniques.

1976–0–3

8.9 	 Draw a figure, similar to that of Figure 8.6, that shows the recovery procedure for
one sector of a 5-disk RAID 4 system when disk 2 fails and is replaced.

2005–0–1

8.10 	 Louis Reasoner has just read an advertisement for a RAID controller that provides
a choice of two configurations. According to the advertisement, the first
configuration is exactly the RAID 4 system described in Section 8.4.1. The
advertisement goes on to say that the configuration called RAID 5 has just one
difference: in an N-disk configuration, the parity block, rather than being written
on disk N, is written on the disk number (1 + sector_address modulo N). Thus, for
example, in a five-disk system, the parity block for sector 18 would be on disk 4
(because 1 + (18 modulo 5) = 4), while the parity block for sector 19 would be on

Saltzer & Kaashoek Ch. 8, p. 67	 June 24, 2009 12:24 am

8–68 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable

disk 5 (because 1 + (19 modulo 5) = 5). Louis is hoping you can help him
understand why this idea might be a good one.

 8.10a. RAID 5 has the advantage over RAID 4 that

A. It tolerates single-drive failures.
B. Read performance in the absence of errors is enhanced.
C. 	 Write performance in the absence of errors is enhanced.
D. 	 Locating data on the drives is easier.
E. Allocating space on the drives is easier.
F. It requires less disk space.
G. 	 There’s no real advantage, its just another advertising gimmick.

1997–3–01

8.10b. Is there any workload for which RAID 4 has better write performance than RAID
5?

2000–3–01

8.10c. Louis is also wondering about whether he might be better off using a RAID 1
system (see Section 8.5.4.6). How does the number of disks required compare
between RAID 1 and RAID 5?

1998–3–01

 8.10d. Which of RAID 1 and RAID 5 has better performance for a workload consisting
of small reads and small writes?

2000–3–01

8.11 	 A system administrator notices that a file service disk is failing for two unrelated
reasons. Once every 30 days, on average, vibration due to nearby construction
breaks the disk’s arm. Once every 60 days, on average, a power surge destroys the
disk’s electronics. The system administrator fixes the disk instantly each time it fails.
The two failure modes are independent of each other, and independent of the age
of the disk. What is the mean time to failure of the disk?

2002–3–01

Additional exercises relating to Chapter 8 can be found in problem sets 26 through 28.

Saltzer & Kaashoek Ch. 8, p. 68	 June 24, 2009 12:24 am

CHAPTER

Atomicity: All-or-Nothing
and Before-or-After 9
CHAPTER CONTENTS
Overview..9–2

9.1 Atomicity...9–4

9.1.1 All-or-Nothing Atomicity in a Database 9–5

9.1.2 All-or-Nothing Atomicity in the Interrupt Interface 9–6

9.1.3 All-or-Nothing Atomicity in a Layered Application 9–8

9.1.4 Some Actions With and Without the All-or-Nothing Property 9–10

9.1.5 Before-or-After Atomicity: Coordinating Concurrent Threads 9–13

9.1.6 Correctness and Serialization ... 9–16

9.1.7 All-or-Nothing and Before-or-After Atomicity 9–19

9.2 All-or-Nothing Atomicity I: Concepts.......................................9–21

9.2.1 Achieving All-or-Nothing Atomicity: ALL_OR_NOTHING_PUT 9–21

9.2.2 Systematic Atomicity: Commit and the Golden Rule 9–27

9.2.3 Systematic All-or-Nothing Atomicity: Version Histories 9–30

9.2.4 How Version Histories are Used .. 9–37

9.3 All-or-Nothing Atomicity II: Pragmatics9–38

9.3.1 Atomicity Logs ... 9–39

9.3.2 Logging Protocols ... 9–42

9.3.3 Recovery Procedures .. 9–45

9.3.4 Other Logging Configurations: Non-Volatile Cell Storage 9–47

9.3.5 Checkpoints .. 9–51

9.3.6 What if the Cache is not Write-Through? (Advanced Topic) 9–53

9.4 Before-or-After Atomicity I: Concepts9–54

9.4.1 	Achieving Before-or-After Atomicity: Simple Serialization 9–54

9.4.2 	The Mark-Point Discipline .. 9–58

9.4.3 	Optimistic Atomicity: Read-Capture (Advanced Topic) 9–63

9.4.4 	Does Anyone Actually Use Version Histories for Before-or-After

Atomicity? .. 9–67

9.5 Before-or-After Atomicity II: Pragmatics9–69

9.5.1 Locks ... 9–70

9.5.2 Simple Locking .. 9–72

9.5.3 Two-Phase Locking ... 9–73
 9–1

Saltzer & Kaashoek Ch. 9, p. 1	 June 25, 2009 8:22 am

9–2 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

9.5.4 	Performance Optimizations .. 9–75

9.5.5 	Deadlock; Making Progress .. 9–76

9.6 Atomicity across Layers and Multiple Sites..............................9–79

9.6.1 	Hierarchical Composition of Transactions 9–80

9.6.2 	Two-Phase Commit ... 9–84

9.6.3 	Multiple-Site Atomicity: Distributed Two-Phase Commit 9–85

9.6.4 	The Dilemma of the Two Generals .. 9–90

9.7 A More Complete Model of Disk Failure (Advanced Topic)9–92

9.7.1 	Storage that is Both All-or-Nothing and Durable 9–92

9.8 Case Studies: Machine Language Atomicity.............................9–95

9.8.1 	Complex Instruction Sets: The General Electric 600 Line 9–95

9.8.2 	More Elaborate Instruction Sets: The IBM System/370 9–96

9.8.3 	The Apollo Desktop Computer and the Motorola M68000

Microprocessor .. 9–97
Exercises..9–98
Glossary for Chapter 9 ...9–107
Index of Chapter 9 ...9–113

Last chapter page 9–115

Overview
This chapter explores two closely related system engineering design strategies. The first
is all-or-nothing atomicity, a design strategy for masking failures that occur while inter
preting programs. The second is before-or-after atomicity, a design strategy for
coordinating concurrent activities. Chapter 8[on-line] introduced failure masking, but
did not show how to mask failures of running programs. Chapter 5 introduced coordi
nation of concurrent activities, and presented solutions to several specific problems, but
it did not explain any systematic way to ensure that actions have the before-or-after prop
erty. This chapter explores ways to systematically synthesize a design that provides both
the all-or-nothing property needed for failure masking and the before-or-after property
needed for coordination.

Many useful applications can benefit from atomicity. For example, suppose that you
are trying to buy a toaster from an Internet store. You click on the button that says “pur
chase”, but before you receive a response the power fails. You would like to have some
assurance that, despite the power failure, either the purchase went through properly or
that nothing happen at all. You don’t want to find out later that your credit card was
charged but the Internet store didn’t receive word that it was supposed to ship the
toaster. In other words, you would like to see that the action initiated by the “purchase”
button be all-or-nothing despite the possibility of failure. And if the store has only one
toaster in stock and two customers both click on the “purchase” button for a toaster at
about the same time, one of the customers should receive a confirmation of the purchase,
and the other should receive a “sorry, out of stock” notice. It would be problematic if

Saltzer & Kaashoek Ch. 9, p. 2	 June 25, 2009 8:22 am

 Overview 9–3

both customers received confirmations of purchase. In other words, both customers
would like to see that the activity initiated by their own click of the “purchase” button
occur either completely before or completely after any other, concurrent click of a “pur
chase” button.

The single conceptual framework of atomicity provides a powerful way of thinking
about both all-or-nothing failure masking and before-or-after sequencing of concurrent
activities. Atomicity is the performing of a sequence of steps, called actions, so that they
appear to be done as a single, indivisible step, known in operating system and architec
ture literature as an atomic action and in database management literature as a transaction.
When a fault causes a failure in the middle of a correctly designed atomic action, it will
appear to the invoker of the atomic action that the atomic action either completed suc
cessfully or did nothing at all—thus an atomic action provides all-or-nothing atomicity.
Similarly, when several atomic actions are going on concurrently, each atomic action will
appear to take place either completely before or completely after every other atomic
action—thus an atomic action provides before-or-after atomicity. Together, all-or-noth
ing atomicity and before-or-after atomicity provide a particularly strong form of
modularity: they hide the fact that the atomic action is actually composed of multiple
steps.

The result is a sweeping simplification in the description of the possible states of a sys
tem. This simplification provides the basis for a methodical approach to recovery from
failures and coordination of concurrent activities that simplifies design, simplifies under
standing for later maintainers, and simplifies verification of correctness. These desiderata
are particularly important because errors caused by mistakes in coordination usually
depend on the relative timing of external events and among different threads. When a
timing-dependent error occurs, the difficulty of discovering and diagnosing it can be
orders of magnitude greater than that of finding a mistake in a purely sequential activity.
The reason is that even a small number of concurrent activities can have a very large
number of potential real time sequences. It is usually impossible to determine which of
those many potential sequences of steps preceded the error, so it is effectively impossible
to reproduce the error under more carefully controlled circumstances. Since debugging
this class of error is so hard, techniques that ensure correct coordination a priori are par
ticularly valuable.

The remarkable thing is that the same systematic approach—atomicity—to failure
recovery also applies to coordination of concurrent activities. In fact, since one must be
able to deal with failures while at the same time coordinating concurrent activities, any
attempt to use different strategies for these two problems requires that the strategies be
compatible. Being able to use the same strategy for both is another sweeping
simplification.

Atomic actions are a fundamental building block that is widely applicable in com
puter system design. Atomic actions are found in database management systems, in
register management for pipelined processors, in file systems, in change-control systems
used for program development, and in many everyday applications such as word proces
sors and calendar managers.

Saltzer & Kaashoek Ch. 9, p. 3 June 25, 2009 8:22 am

9–4 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

Sidebar 9.1: Actions and transactions The terminology used by system designers to discuss
atomicity can be confusing because the concept was identified and developed independently
by database designers and by hardware architects.
An action that changes several data values can have any or all of at least four independent
properties: it can be all-or-nothing (either all or none of the changes happen), it can be before-
or-after (the changes all happen either before or after every concurrent action), it can be
constraint-maintaining (the changes maintain some specified invariant), and it can be durable
(the changes last as long as they are needed).
Designers of database management systems customarily are concerned only with actions that
are both all-or-nothing and before-or-after, and they describe such actions as transactions. In
addition, they use the term atomic primarily in reference to all-or-nothing atomicity. On the
other hand, hardware processor architects customarily use the term atomic to describe an action
that exhibits before-or-after atomicity.
This book does not attempt to change these common usages. Instead, it uses the qualified terms
“all-or-nothing atomicity” and “before-or-after atomicity.” The unqualified term “atomic” may
imply all-or-nothing, or before-or-after, or both, depending on the context. The text uses the
term “transaction” to mean an action that is both all-or-nothing and before-or-after.
All-or-nothing atomicity and before-or-after atomicity are universally defined properties of
actions, while constraints are properties that different applications define in different ways.
Durability lies somewhere in between because different applications have different durability
requirements. At the same time, implementations of constraints and durability usually have a
prerequisite of atomicity. Since the atomicity properties are modularly separable from the other
two, this chapter focuses just on atomicity. Chapter 10[on-line] then explores how a designer
can use transactions to implement constraints and enhance durability.

The sections of this chapter define atomicity, examine some examples of atomic
actions, and explore systematic ways of achieving atomicity: version histories, logging, and
locking protocols. Chapter 10[on-line] then explores some applications of atomicity. Case
studies at the end of both chapters provide real-world examples of atomicity as a tool for
creating useful systems.

9.1 Atomicity
Atomicity is a property required in several different areas of computer system design.
These areas include managing a database, developing a hardware architecture, specifying
the interface to an operating system, and more generally in software engineering. The
table below suggests some of the kinds of problems to which atomicity is applicable. In

Saltzer & Kaashoek Ch. 9, p. 4 June 25, 2009 8:22 am

9.1 Atomicity 9–5

this chapter we will encounter examples of both kinds of atomicity in each of these dif
ferent areas.

Area All-or-nothing atomicity Before-or-after atomicity

database management updating more than one record records shared between threads

hardware architecture handling interrupts and exceptions register renaming

operating systems supervisor call interface printer queue

software engineering handling faults in layers bounded buffer

9.1.1 All-or-Nothing Atomicity in a Database

As a first example, consider a database of bank accounts. We define a procedure named
TRANSFER that debits one account and credits a second account, both of which are stored
on disk, as follows:

1 procedure TRANSFER (debit_account, credit_account, amount)
2 GET (dbdata, debit_account)
3 dbdata ← dbdata - amount
4 PUT (dbdata, debit_account)
5 GET (crdata, credit_account)
6 crdata ← crdata + amount
7 PUT (crdata, credit_account)

where debit_account and credit_account identify the records for the accounts to be deb
ited and credited, respectively.

Suppose that the system crashes while executing the PUT instruction on line 4. Even if
we use the MORE_DURABLE_PUT described in Section 8.5.4, a system crash at just the wrong
time may cause the data written to the disk to be scrambled, and the value of
debit_account lost. We would prefer that either the data be completely written to the disk
or nothing be written at all. That is, we want the PUT instruction to have the all-or-noth
ing atomicity property. Section 9.2.1 will describe a way to do that.

There is a further all-or-nothing atomicity requirement in the TRANSFER procedure.
Suppose that the PUT on line 4 is successful but that while executing line 5 or line 6 the
power fails, stopping the computer in its tracks. When power is restored, the computer
restarts, but volatile memory, including the state of the thread that was running the
TRANSFER procedure, has been lost. If someone now inquires about the balances in
debit_account and in credit_account things will not add up properly because
debit_account has a new value but credit_account has an old value. One might suggest
postponing the first PUT to be just before the second one, but that just reduces the win
dow of vulnerability, it does not eliminate it—the power could still fail in between the
two PUTs. To eliminate the window, we must somehow arrange that the two PUT instruc
tions, or perhaps even the entire TRANSFER procedure, be done as an all-or-nothing atomic

Saltzer & Kaashoek Ch. 9, p. 5 June 25, 2009 8:22 am

9–6 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

action. In Section 9.2.3 we will devise a TRANSFER procedure that has the all-or-nothing
property, and in Section 9.3 we will see some additional ways of providing the property.

9.1.2 All-or-Nothing Atomicity in the Interrupt Interface

A second application for all-or-nothing atomicity is in the processor instruction set inter
face as seen by a thread. Recall from Chapters 2 and 5 that a thread normally performs
actions one after another, as directed by the instructions of the current program, but that
certain events may catch the attention of the thread’s interpreter, causing the interpreter,
rather than the program, to supply the next instruction. When such an event happens, a
different program, running in an interrupt thread, takes control.

If the event is a signal arriving from outside the interpreter, the interrupt thread may
simply invoke a thread management primitive such as ADVANCE, as described in Section
5.6.4, to alert some other thread about the event. For example, an I/O operation that the
other thread was waiting for may now have completed. The interrupt handler then
returns control to the interrupted thread. This example requires before-or-after atomicity
between the interrupt thread and the interrupted thread. If the interrupted thread was in
the midst of a call to the thread manager, the invocation of ADVANCE by the interrupt
thread should occur either before or after that call.

Another possibility is that the interpreter has detected that something is going wrong
in the interrupted thread. In that case, the interrupt event invokes an exception handler,
which runs in the environment of the original thread. (Sidebar 9.2 offers some exam
ples.) The exception handler either adjusts the environment to eliminate some problem
(such as a missing page) so that the original thread can continue, or it declares that the
original thread has failed and terminates it. In either case, the exception handler will need
to examine the state of the action that the original thread was performing at the instant
of the interruption—was that action finished, or is it in a partially done state?

Ideally, the handler would like to see an all-or-nothing report of the state: either the
instruction that caused the exception completed or it didn’t do anything. An all-or-noth
ing report means that the state of the original thread is described entirely with values
belonging to the layer in which the exception handler runs. An example of such a value
is the program counter, which identifies the next instruction that the thread is to execute.
An in-the-middle report would mean that the state description involves values of a lower
layer, probably the operating system or the hardware processor itself. In that case, know
ing the next instruction is only part of the story; the handler would also need to know
which parts of the current instruction were executed and which were not. An example
might be an instruction that increments an address register, retrieves the data at that new
address, and adds that data value to the value in another register. If retrieving the data
causes a missing-page exception, the description of the current state is that the address
register has been incremented but the retrieval and addition have not yet been per
formed. Such an in-the-middle report is problematic because after the handler retrieves
the missing page it cannot simply tell the processor to jump to the instruction that
failed—that would increment the address register again, which is not what the program-

Saltzer & Kaashoek Ch. 9, p. 6 June 25, 2009 8:22 am

9.1 Atomicity 9–7

Sidebar 9.2: Events that might lead to invoking an exception handler

1. 	A hardware fault occurs:

• 	 The processor detects a memory parity fault.
• 	 A sensor reports that the electric power has failed; the energy left in the power supply

may be just enough to perform a graceful shutdown.

2. 	A hardware or software interpreter encounters something in the program that is clearly
wrong:

• 	 The program tried to divide by zero.
• 	 The program supplied a negative argument to a square root function.

3. 	Continuing requires some resource allocation or deferred initialization:

• 	 The running thread encountered a missing-page exception in a virtual memory system.
• 	The running thread encountered an indirection exception, indicating that it

encountered an unresolved procedure linkage in the current program.

4. 	More urgent work needs to take priority, so the user wishes to terminate the thread:

• 	 This program is running much longer than expected.
• 	The program is running normally, but the user suddenly realizes that it is time to

catch the last train home.

5. The user realizes that something is wrong and decides to terminate the thread:

• 	 Calculating e, the program starts to display 3.1415…
• 	 The user asked the program to copy the wrong set of files.

6. 	Deadlock:

• 	 Thread A has acquired the scanner, and is waiting for memory to become free; thread
B has acquired all available memory, and is waiting for the scanner to be released.
Either the system notices that this set of waits cannot be resolved or, more likely, a
timer that should never expire eventually expires. The system or the timer signals an
exception to one or both of the deadlocked threads.

mer expected. Jumping to the next instruction isn’t right, either, because that would
omit the addition step. An all-or-nothing report is preferable because it avoids the need
for the handler to peer into the details of the next lower layer. Modern processor design
ers are generally careful to avoid designing instructions that don’t have the all-or-nothing
property. As will be seen shortly, designers of higher-layer interpreters must be similarly
careful.

Sections 9.1.3 and 9.1.4 explore the case in which the exception terminates the run
ning thread, thus creating a fault. Section 9.1.5 examines the case in which the
interrupted thread continues, oblivious (one hopes) to the interruption.

Saltzer & Kaashoek Ch. 9, p. 7	 June 25, 2009 8:22 am

9–8 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

9.1.3 All-or-Nothing Atomicity in a Layered Application

A third example of all-or-nothing atomicity lies in the challenge presented by a fault in
a running program: at the instant of the fault, the program is typically in the middle of
doing something, and it is usually not acceptable to leave things half-done. Our goal is
to obtain a more graceful response, and the method will be to require that some sequence
of actions behave as an atomic action with the all-or-nothing property. Atomic actions
are closely related to the modularity that arises when things are organized in layers. Lay
ered components have the feature that a higher layer can completely hide the existence
of a lower layer. This hiding feature makes layers exceptionally effective at error contain
ment and for systematically responding to faults.

To see why, recall the layered structure of the calendar management program of
Chapter 2, reproduced in Figure 9.19.1 (that figure may seem familiar—it is a copy of
Figure 2.10). The calendar program implements each request of the user by executing a
sequence of Java language statements. Ideally, the user will never notice any evidence of
the composite nature of the actions implemented by the calendar manager. Similarly,
each statement of the Java language is implemented by several actions at the hardware
layer. Again, if the Java interpreter is carefully implemented, the composite nature of the
implementation in terms of machine language will be completely hidden from the Java
programmer.

Human user
generating
requests

Calendar
Program

Java
Interpreter

Interface

Calendar manager
layer interface

Java language
layer interface

Machine language
layer interface

hardware

Typical instruction
across this interface

Add new event on
February 27

nextch = instring[j];

add R1,R2

FIGURE 9.1

An application system with three layers of interpretation.The user has requested an action that
will fail, but the failure will be discovered at the lowest layer. A graceful response involves ato
micity at each interface.

Saltzer & Kaashoek Ch. 9, p. 8 June 25, 2009 8:22 am

9.1 Atomicity 9–9

Now consider what happens if the hardware processor detects a condition that should
be handled as an exception—for example, a register overflow. The machine is in the mid
dle of interpreting an action at the machine language layer interface—an ADD instruction
somewhere in the middle of the Java interpreter program. That ADD instruction is itself
in the middle of interpreting an action at the Java language interface—a Java expression
to scan an array. That Java expression in turn is in the middle of interpreting an action
at the user interface—a request from the user to add a new event to the calendar. The
report “Overflow exception caused by the ADD instruction at location 41574” is not intel
ligible to the user at the user interface; that description is meaningful only at the machine
language interface. Unfortunately, the implication of being “in the middle” of higher-
layer actions is that the only accurate description of the current state of affairs is in terms
of the progress of the machine language program.

The actual state of affairs in our example as understood by an all-seeing observer
might be the following: the register overflow was caused by adding one to a register that
contained a two’s complement negative one at the machine language layer. That
machine language add instruction was part of an action to scan an array of characters at
the Java layer and a zero means that the scan has reached the end of the array. The array
scan was embarked upon by the Java layer in response to the user’s request to add an
event on February 31. The highest-level interpretation of the overflow exception is “You
tried to add an event on a non-existent date”. We want to make sure that this report goes
to the end user, rather than the one about register overflow. In addition, we want to be
able to assure the user that this mistake has not caused an empty event to be added some
where else in the calendar or otherwise led to any other changes to the calendar. Since
the system couldn’t do the requested change it should do nothing but report the error.
Either a low-level error report or muddled data would reveal to the user that the action
was composite.

With the insight that in a layered application, we want a fault detected by a lower
layer to be contained in a particular way we can now propose a more formal definition
of all-or-nothing atomicity:

All-or-nothing atomicity

A sequence of steps is an all-or-nothing action if, from the point of view of its
invoker, the sequence always either

• completes,
or

• 	 aborts in such a way that it appears that the sequence had never been
undertaken in the first place. That is, it backs out.

In a layered application, the idea is to design each of the actions of each layer to be
all-or-nothing. That is, whenever an action of a layer is carried out by a sequence of

Saltzer & Kaashoek Ch. 9, p. 9	 June 25, 2009 8:22 am

9–10 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

actions of the next lower layer, the action either completes what it was asked to do or else
it backs out, acting as though it had not been invoked at all. When control returns to a
higher layer after a lower layer detects a fault, the problem of being “in the middle” of an
action thus disappears.

In our calendar management example, we might expect that the machine language
layer would complete the add instruction but signal an overflow exception; the Java
interpreter layer would, upon receiving the overflow exception might then decide that its
array scan has ended, and return a report of “scan complete, value not found” to the cal
endar management layer; the calendar manager would take this not-found report as an
indication that it should back up, completely undo any tentative changes, and tell the
user that the request to add an event on that date could not be accomplished because the
date does not exist.

Thus some layers run to completion, while others back out and act as though they
had never been invoked, but either way the actions are all-or-nothing. In this example,
the failure would probably propagate all the way back to the human user to decide what
to do next. A different failure (e.g. “there is no room in the calendar for another event”)
might be intercepted by some intermediate layer that knows of a way to mask it (e.g., by
allocating more storage space). In that case, the all-or-nothing requirement is that the
layer that masks the failure find that the layer below has either never started what was to
be the current action or else it has completed the current action but has not yet under
taken the next one.

All-or-nothing atomicity is not usually achieved casually, but rather by careful design
and specification. Designers often get it wrong. An unintelligible error message is the
typical symptom that a designer got it wrong. To gain some insight into what is involved,
let us examine some examples.

9.1.4 Some Actions With and Without the All-or-Nothing Property

Actions that lack the all-or-nothing property have frequently been discovered upon add
ing multilevel memory management to a computer architecture, especially to a processor
that is highly pipelined. In this case, the interface that needs to be all-or-nothing lies
between the processor and the operating system. Unless the original machine architect
designed the instruction set with missing-page exceptions in mind, there may be cases in
which a missing-page exception can occur “in the middle” of an instruction, after the
processor has overwritten some register or after later instructions have entered the pipe
line. When such a situation arises, the later designer who is trying to add the multilevel
memory feature is trapped. The instruction cannot run to the end because one of the
operands it needs is not in real memory. While the missing page is being retrieved from
secondary storage, the designer would like to allow the operating system to use the pro
cessor for something else (perhaps even to run the program that fetches the missing
page), but reusing the processor requires saving the state of the currently executing pro
gram, so that it can be restarted later when the missing page is available. The problem is
how to save the next-instruction pointer.

Saltzer & Kaashoek Ch. 9, p. 10 June 25, 2009 8:22 am

9.1 Atomicity 9–11

If every instruction is an all-or-nothing action, the operating system can simply save
as the value of the next-instruction pointer the address of the instruction that encoun
tered the missing page. The resulting saved state description shows that the program is
between two instructions, one of which has been completely executed, and the next one
of which has not yet begun. Later, when the page is available, the operating system can
restart the program by reloading all of the registers and setting the program counter to
the place indicated by the next-instruction pointer. The processor will continue, starting
with the instruction that previously encountered the missing page exception; this time it
should succeed. On the other hand, if even one instruction of the instruction set lacks
the all-or-nothing property, when an interrupt happens to occur during the execution of
that instruction it is not at all obvious how the operating system can save the processor
state for a future restart. Designers have come up with several techniques to retrofit the
all-or-nothing property at the machine language interface. Section 9.8 describes some
examples of machine architectures that had this problem and the techniques that were
used to add virtual memory to them.

A second example is the supervisor call (SVC). Section 5.3.4 pointed out that the
SVC instruction, which changes both the program counter and the processor mode bit
(and in systems with virtual memory, other registers such as the page map address regis
ter), needs to be all-or-nothing, to ensure that all (or none) of the intended registers
change. Beyond that, the SVC invokes some complete kernel procedure. The designer
would like to arrange that the entire call, (the combination of the SVC instruction and
the operation of the kernel procedure itself) be an all-or-thing action. An all-or-nothing
design allows the application programmer to view the kernel procedure as if it is an exten
sion of the hardware. That goal is easier said than done, since the kernel procedure may
detect some condition that prevents it from carrying out the intended action. Careful
design of the kernel procedure is thus required.

Consider an SVC to a kernel READ procedure that delivers the next typed keystroke to
the caller. The user may not have typed anything yet when the application program calls
READ, so the the designer of READ must arrange to wait for the user to type something. By
itself, this situation is not especially problematic, but it becomes more so when there is
also a user-provided exception handler. Suppose, for example, a thread timer can expire
during the call to READ and the user-provided exception handler is to decide whether or
not the thread should continue to run a while longer. The scenario, then, is the user pro
gram calls READ, it is necessary to wait, and while waiting, the timer expires and control
passes to the exception handler. Different systems choose one of three possibilities for the
design of the READ procedure, the last one of which is not an all-or-nothing design:

1. 	An all-or-nothing design that implements the “nothing” option (blocking read): Seeing
no available input, the kernel procedure first adjusts return pointers (“push the PC
back”) to make it appear that the application program called AWAIT just ahead of its
call to the kernel READ procedure and then it transfers control to the kernel AWAIT

entry point. When the user finally types something, causing AWAIT to return, the
user’s thread re-executes the original kernel call to READ, this time finding the typed

Saltzer & Kaashoek Ch. 9, p. 11	 June 25, 2009 8:22 am

9–12 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

input. With this design, if a timer exception occurs while waiting, when the
exception handler investigates the current state of the thread it finds the answer
“the application program is between instructions; its next instruction is a call to
READ.” This description is intelligible to a user-provided exception handler, and it
allows that handler several options. One option is to continue the thread, meaning
go ahead and execute the call to READ. If there is still no input, READ will again push
the PC back and transfer control to AWAIT. Another option is for the handler to save
this state description with a plan of restoring a future thread to this state at some
later time.

2. 	An all-or-nothing design that implements the “all” option (non-blocking read): Seeing
no available input, the kernel immediately returns to the application program with
a zero-length result, expecting that the program will look for and properly handle
this case. The program would probably test the length of the result and if zero, call
AWAIT itself or it might find something else to do instead. As with the previous
design, this design ensures that at all times the user-provided timer exception
handler will see a simple description of the current state of the thread—it is
between two user program instructions. However, some care is needed to avoid a
race between the call to AWAIT and the arrival of the next typed character.

3. 	A blocking read design that is neither “all” nor “nothing” and therefore not atomic: The
kernel READ procedure itself calls AWAIT, blocking the thread until the user types a
character. Although this design seems conceptually simple, the description of the
state of the thread from the point of view of the timer exception handler is not
simple. Rather than “between two user instructions”, it is “waiting for something
to happen in the middle of a user call to kernel procedure READ”. The option of
saving this state description for future use has been foreclosed. To start another
thread with this state description, the exception handler would need to be able to
request “start this thread just after the call to AWAIT in the middle of the kernel READ

entry.” But allowing that kind of request would compromise the modularity of the
user-kernel interface. The user-provided exception handler could equally well
make a request to restart the thread anywhere in the kernel, thus bypassing its gates
and compromising its security.

The first and second designs correspond directly to the two options in the definition
of an all-or-nothing action, and indeed some operating systems offer both options. In the
first design the kernel program acts in a way that appears that the call had never taken
place, while in the second design the kernel program runs to completion every time it is
called. Both designs make the kernel procedure an all-or-nothing action, and both lead
to a user-intelligible state description—the program is between two of its instructions—
if an exception should happen while waiting.

One of the appeals of the client/server model introduced in Chapter 4 is that it tends
to force the all-or-nothing property out onto the design table. Because servers can fail
independently of clients, it is necessary for the client to think through a plan for recovery

Saltzer & Kaashoek Ch. 9, p. 12	 June 25, 2009 8:22 am

9.1 Atomicity 9–13

from server failure, and a natural model to use is to make every action offered by a server
all-or-nothing.

9.1.5 Before-or-After Atomicity: Coordinating Concurrent Threads

In Chapter 5 we learned how to express opportunities for concurrency by creating
threads, the goal of concurrency being to improve performance by running several things
at the same time. Moreover, Section 9.1.2 above pointed out that interrupts can also cre
ate concurrency. Concurrent threads do not represent any special problem until their
paths cross. The way that paths cross can always be described in terms of shared, writable
data: concurrent threads happen to take an interest in the same piece of writable data at
about the same time. It is not even necessary that the concurrent threads be running
simultaneously; if one is stalled (perhaps because of an interrupt) in the middle of an
action, a different, running thread can take an interest in the data that the stalled thread
was, and will sometime again be, working with.

From the point of view of the programmer of an application, Chapter 5 introduced
two quite different kinds of concurrency coordination requirements: sequence coordina
tion and before-or-after atomicity. Sequence coordination is a constraint of the type
“Action W must happen before action X”. For correctness, the first action must complete
before the second action begins. For example, reading of typed characters from a key
board must happen before running the program that presents those characters on a
display. As a general rule, when writing a program one can anticipate the sequence coor
dination constraints, and the programmer knows the identity of the concurrent actions.
Sequence coordination thus is usually explicitly programmed, using either special lan
guage constructs or shared variables such as the eventcounts of Chapter 5.

In contrast, before-or-after atomicity is a more general constraint that several actions
that concurrently operate on the same data should not interfere with one another. We
define before-or-after atomicity as follows:

Before-or-after atomicity

Concurrent actions have the before-or-after property if their effect from the point of
view of their invokers is the same as if the actions occurred either completely before
or completely after one another.

In Chapter 5 we saw how before-or-after actions can be created with explicit locks and
a thread manager that implements the procedures ACQUIRE and RELEASE. Chapter 5 showed
some examples of before-or-after actions using locks, and emphasized that programming
correct before-or-after actions, for example coordinating a bounded buffer with several
producers or several consumers, can be a tricky proposition. To be confident of correct
ness, one needs to establish a compelling argument that every action that touches a
shared variable follows the locking protocol.

Saltzer & Kaashoek Ch. 9, p. 13 June 25, 2009 8:22 am

9–14 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

One thing that makes before-or-after atomicity different from sequence coordination
is that the programmer of an action that must have the before-or-after property does not
necessarily know the identities of all the other actions that might touch the shared vari
able. This lack of knowledge can make it problematic to coordinate actions by explicit
program steps. Instead, what the programmer needs is an automatic, implicit mechanism
that ensures proper handling of every shared variable. This chapter will describe several
such mechanisms. Put another way, correct coordination requires discipline in the way
concurrent threads read and write shared data.

Applications for before-or-after atomicity in a computer system abound. In an oper
ating system, several concurrent threads may decide to use a shared printer at about the
same time. It would not be useful for printed lines of different threads to be interleaved
in the printed output. Moreover, it doesn’t really matter which thread gets to use the
printer first; the primary consideration is that one use of the printer be complete before
the next begins, so the requirement is to give each print job the before-or-after atomicity
property.

For a more detailed example, let us return to the banking application and the TRANSFER

procedure. This time the account balances are held in shared memory variables (recall
that the declaration keyword reference means that the argument is call-by-reference, so
that TRANSFER can change the values of those arguments):

procedure TRANSFER (reference debit_account, reference credit_account, amount)
debit_account ← debit_account - amount
credit_account ← credit_account + amount

Despite their unitary appearance, a program statement such as “X ← X + Y” is actu
ally composite: it involves reading the values of X and Y, performing an addition, and
then writing the result back into X. If a concurrent thread reads and changes the value of
X between the read and the write done by this statement, that other thread may be sur
prised when this statement overwrites its change.

Suppose this procedure is applied to accounts A (initially containing $300) and B (ini
tially containing $100) as in

TRANSFER (A, B, $10)

We expect account A, the debit account, to end up with $290, and account B, the
credit account, to end up with $110. Suppose, however, a second, concurrent thread is
executing the statement

TRANSFER (B, C, $25)

where account C starts with $175. When both threads complete their transfers, we expect
B to end up with $85 and C with $200. Further, this expectation should be fulfilled no
matter which of the two transfers happens first. But the variable credit_account in the
first thread is bound to the same object (account B) as the variable debit_account in the
second thread. The risk to correctness occurs if the two transfers happen at about the
same time. To understand this risk, consider Figure 9.2, which illustrates several possible
time sequences of the READ and WRITE steps of the two threads with respect to variable B.

Saltzer & Kaashoek Ch. 9, p. 14 June 25, 2009 8:22 am

9.1 Atomicity 9–15

With each time sequence the figure shows the history of values of the cell containing the
balance of account B. If both steps 1–1 and 1–2 precede both steps 2–1 and 2–2, (or vice-
versa) the two transfers will work as anticipated, and B ends up with $85. If, however,
step 2–1 occurs after step 1–1, but before step 1–2, a mistake will occur: one of the two
transfers will not affect account B, even though it should have. The first two cases illus
trate histories of shared variable B in which the answers are the correct result; the
remaining four cases illustrate four different sequences that lead to two incorrect values
for B.

Thread #1 (credit_account is B)

.

.

1–1

1–2 WRITE B

READ B
.

Thread #2 (debit_account is B)

.

.

2–1

2–2 WRITE B

READ B
.

correct result: 	 time

case 1: 	 Thread #1: READ B WRITE B
Thread #2: READ B WRITE B
Value of B: 100 110 85

case 2: 	 Thread #1: READ B WRITE B
Thread #2: READ B WRITE B
Value of B: 100 75 85

wrong results:

case 3: 	Thread #1: READ B WRITE B
Thread #2: READ B WRITE B
Value of B: 100 110 75

case 4: 	Thread #1: READ B WRITE B
Thread #2: READ B WRITE B
Value of B: 100 75 110

case 5: 	Thread #1: READ B WRITE B
Thread #2: READ B WRITE B
Value of B: 100 110 75

case 6: 	Thread #1: READ B WRITE B
Thread #2: READ B WRITE B
Value of B: 100 75 110

FIGURE 9.2

Six possible histories of variable B if two threads that share B do not coordinate their concur
rent activities.

Saltzer & Kaashoek Ch. 9, p. 15 	 June 25, 2009 8:22 am

9–16 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

Thus our goal is to ensure that one of the first two time sequences actually occurs.
One way to achieve this goal is that the two steps 1–1 and 1–2 should be atomic, and the
two steps 2–1 and 2–2 should similarly be atomic. In the original program, the steps

debit_account ← debit_account - amount
and

credit_account ← credit_account + amount

should each be atomic. There should be no possibility that a concurrent thread that
intends to change the value of the shared variable debit_account read its value between
the READ and WRITE steps of this statement.

9.1.6 Correctness and Serialization

The notion that the first two sequences of Figure 9.2 are correct and the other four are
wrong is based on our understanding of the banking application. It would be better to
have a more general concept of correctness that is independent of the application. Appli
cation independence is a modularity goal: we want to be able to make an argument for
correctness of the mechanism that provides before-or-after atomicity without getting
into the question of whether or not the application using the mechanism is correct.

There is such a correctness concept: coordination among concurrent actions can be
considered to be correct if every result is guaranteed to be one that could have been obtained
by some purely serial application of those same actions.

The reasoning behind this concept of cor
rectness involves several steps. Consider
Figure 9.3,which shows, abstractly, the effect old system

state new system
state

 action
of applying some action, whether atomic or
not, to a system: the action changes the state
of the system. Now, if we are sure that:

1. 	the old state of the system was correct FIGURE 9.3
from the point of view of the
application, and	 A single action takes a system from one

state to another state.
2. 	the action, performing all by itself,

correctly transforms any correct old state to a correct new state,

then we can reason that the new state must also be correct. This line of reasoning holds
for any application-dependent definition of “correct” and “correctly transform”, so our
reasoning method is independent of those definitions and thus of the application.
The corresponding requirement when several actions act concurrently, as in Figure 9.4,
is that the resulting new state ought to be one of those that would have resulted from
some serialization of the several actions, as in Figure 9.5. This correctness criterion means
that concurrent actions are correctly coordinated if their result is guaranteed to be one
that would have been obtained by some purely serial application of those same actions.

Saltzer & Kaashoek Ch. 9, p. 16	 June 25, 2009 8:22 am

9.1 Atomicity 9–17

FIGURE 9.4

action #3

action #1

old system
state

new system
state

action #2

When several actions act con
currently, they together
produce a new state. If the
actions are before-or-after and
the old state was correct, the
new state will be correct.

So long as the only coordination requirement is before-or-after atomicity, any serializa
tion will do.

Moreover, we do not even need to insist that the system actually traverse the interme
diate states along any particular path of Figure 9.5—it may instead follow the dotted
trajectory through intermediate states that are not by themselves correct, according to the
application’s definition. As long as the intermediate states are not visible above the
implementing layer, and the system is guaranteed to end up in one of the acceptable final
states, we can declare the coordination to be correct because there exists a trajectory that
leads to that state for which a correctness argument could have been applied to every step.

Since our definition of before-or-after atomicity is that each before-or-after action act
as though it ran either completely before or completely after each other before-or-after
action, before-or-after atomicity leads directly to this concept of correctness. Put another
way, before-or-after atomicity has the effect of serializing the actions, so it follows that
before-or-after atomicity guarantees correctness of coordination. A different way of

old system
state

final
state

C

final
state

B

final
state

AAA
#1

AA #2 AA#3

AA#3

AA
#2

AA #2 AA#3 AA#1

FIGURE 9.5

We insist that the final state be one that could have been reached by some serialization of the
atomic actions, but we don't care which serialization. In addition, we do not need to insist that
the intermediate states ever actually exist. The actual state trajectory could be that shown by
the dotted lines, but only if there is no way of observing the intermediate states from the
outside.

Saltzer & Kaashoek Ch. 9, p. 17 June 25, 2009 8:22 am

9–18 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

expressing this idea is to say that when concurrent actions have the before-or-after prop
erty, they are serializable: there exists some serial order of those concurrent transactions that
would, if followed, lead to the same ending state.* Thus in Figure 9.2, the sequences of case
1 and case 2 could result from a serialized order, but the actions of cases 3 through 6
could not.

In the example of Figure 9.2, there were only two concurrent actions and each of the
concurrent actions had only two steps. As the number of concurrent actions and the
number of steps in each action grows there will be a rapidly growing number of possible
orders in which the individual steps can occur, but only some of those orders will ensure
a correct result. Since the purpose of concurrency is to gain performance, one would like
to have a way of choosing from the set of correct orders the one correct order that has
the highest performance. As one might guess, making that choice can in general be quite
difficult. In Sections 9.4 and 9.5 of this chapter we will encounter several programming
disciplines that ensure choice from a subset of the possible orders, all members of which
are guaranteed to be correct but, unfortunately, may not include the correct order that
has the highest performance.

In some applications it is appropriate to use a correctness requirement that is stronger
than serializability. For example, the designer of a banking system may want to avoid
anachronisms by requiring what might be called external time consistency: if there is any
external evidence (such as a printed receipt) that before-or-after action T1 ended before
before-or-after action T2 began, the serialization order of T1 and T2 inside the system
should be that T1 precedes T2. For another example of a stronger correctness require
ment, a processor architect may require sequential consistency: when the processor
concurrently performs multiple instructions from the same instruction stream, the result
should be as if the instructions were executed in the original order specified by the
programmer.

Returning to our example, a real funds-transfer application typically has several dis
tinct before-or-after atomicity requirements. Consider the following auditing procedure;
its purpose is to verify that the sum of the balances of all accounts is zero (in double-entry
bookkeeping, accounts belonging to the bank, such as the amount of cash in the vault,
have negative balances):

procedure AUDIT()

sum ← 0

for each W ← in bank.accounts

sum ← sum + W.balance

if (sum ≠ 0) call for investigation

Suppose that AUDIT is running in one thread at the same time that another thread is
transferring money from account A to account B. If AUDIT examines account A before the
transfer and account B after the transfer, it will count the transferred amount twice and

* The general question of whether or not a collection of existing transactions is serializable is an
advanced topic that is addressed in database management. Problem set 36 explores one method of
answering this question.

Saltzer & Kaashoek Ch. 9, p. 18 June 25, 2009 8:22 am

9.1 Atomicity 9–19

thus will compute an incorrect answer. So the entire auditing procedure should occur
either before or after any individual transfer: we want it to be a before-or-after action.

There is yet another before-or-after atomicity requirement: if AUDIT should run after
the statement in TRANSFER

debit_account ← debit_account - amount

but before the statement

credit_account ← credit_account + amount

it will calculate a sum that does not include amount; we therefore conclude that the two
balance updates should occur either completely before or completely after any AUDIT

action; put another way, TRANSFER should be a before-or-after action.

9.1.7 All-or-Nothing and Before-or-After Atomicity

We now have seen examples of two forms of atomicity: all-or-nothing and before-or
after. These two forms have a common underlying goal: to hide the internal structure of
an action. With that insight, it becomes apparent that atomicity is really a unifying
concept:

Atomicity

An action is atomic if there is no way for a higher layer to discover the internal structure
of its implementation.

This description is really the fundamental definition of atomicity. From it, one can
immediately draw two important consequences, corresponding to all-or-nothing atom
icity and to before-or-after atomicity:

1. 	From the point of view of a procedure that invokes an atomic action, the atomic
action always appears either to complete as anticipated, or to do nothing. This
consequence is the one that makes atomic actions useful in recovering from
failures.

2. 	From the point of view of a concurrent thread, an atomic action acts as though it
occurs either completely before or completely after every other concurrent atomic
action. This consequence is the one that makes atomic actions useful for
coordinating concurrent threads.

These two consequences are not fundamentally different. They are simply two per
spectives, the first from other modules within the thread that invokes the action, the
second from other threads. Both points of view follow from the single idea that the inter
nal structure of the action is not visible outside of the module that implements the
action. Such hiding of internal structure is the essence of modularity, but atomicity is an
exceptionally strong form of modularity. Atomicity hides not just the details of which

Saltzer & Kaashoek Ch. 9, p. 19	 June 25, 2009 8:22 am

9–20 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

steps form the atomic action, but the very fact that it has structure. There is a kinship
between atomicity and other system-building techniques such as data abstraction and cli
ent/server organization. Data abstraction has the goal of hiding the internal structure of
data; client/server organization has the goal of hiding the internal structure of major sub
systems. Similarly, atomicity has the goal of hiding the internal structure of an action.
All three are methods of enforcing industrial-strength modularity, and thereby of guar
anteeing absence of unanticipated interactions among components of a complex system.

We have used phrases such as “from the point of view of the invoker” several times,
suggesting that there may be another point of view from which internal structure is
apparent. That other point of view is seen by the implementer of an atomic action, who
is often painfully aware that an action is actually composite, and who must do extra work
to hide this reality from the higher layer and from concurrent threads. Thus the inter
faces between layers are an essential part of the definition of an atomic action, and they
provide an opportunity for the implementation of an action to operate in any way that
ends up providing atomicity.

There is one more aspect of hiding the internal structure of atomic actions: atomic
actions can have benevolent side effects. A common example is an audit log, where
atomic actions that run into trouble record the nature of the detected failure and the
recovery sequence for later analysis. One might think that when a failure leads to backing
out, the audit log should be rolled back, too; but rolling it back would defeat its pur
pose—the whole point of an audit log is to record details about the failure. The
important point is that the audit log is normally a private record of the layer that imple
mented the atomic action; in the normal course of operation it is not visible above that
layer, so there is no requirement to roll it back. (A separate atomicity requirement is to
ensure that the log entry that describes a failure is complete and not lost in the ensuing
recovery.)

Another example of a benevolent side effect is performance optimization. For exam
ple, in a high-performance data management system, when an upper layer atomic action
asks the data management system to insert a new record into a file, the data management
system may decide as a performance optimization that now is the time to rearrange the
file into a better physical order. If the atomic action fails and aborts, it need ensure only
that the newly-inserted record be removed; the file does not need to be restored to its
older, less efficient, storage arrangement. Similarly, a lower-layer cache that now contains
a variable touched by the atomic action does not need to be cleared and a garbage collec
tion of heap storage does not need to be undone. Such side effects are not a problem, as
long as they are hidden from the higher-layer client of the atomic action except perhaps
in the speed with which later actions are carried out, or across an interface that is
intended to report performance measures or failures.

Saltzer & Kaashoek Ch. 9, p. 20 June 25, 2009 8:22 am

9.2 All-or-Nothing Atomicity I: Concepts 9–21

9.2 All-or-Nothing Atomicity I: Concepts
Section 9.1 of this chapter defined the goals of all-or-nothing atomicity and before-or
after atomicity, and provided a conceptual framework that at least in principle allows a
designer to decide whether or not some proposed algorithm correctly coordinates con
current activities. However, it did not provide any examples of actual implementations
of either goal. This section of the chapter, together with the next one, describe some
widely applicable techniques of systematically implementing all-or-nothing atomicity.
Later sections of the chapter will do the same for before-or-after atomicity.

Many of the examples employ the technique introduced in Chapter 5 called boot
strapping, a method that resembles inductive proof. To review, bootstrapping means to
first look for a systematic way to reduce a general problem to some much-narrowed par
ticular version of that same problem. Then, solve the narrow problem using some
specialized method that might work only for that case because it takes advantage of the
specific situation. The general solution then consists of two parts: a special-case tech
nique plus a method that systematically reduces the general problem to the special case.
Recall that Chapter 5 tackled the general problem of creating before-or-after actions
from arbitrary sequences of code by implementing a procedure named ACQUIRE that itself
required before-or-after atomicity of two or three lines of code where it reads and then
sets a lock value. It then implemented that before-or-after action with the help of a spe
cial hardware feature that directly makes a before-or-after action of the read and set
sequence, and it also exhibited a software implementation (in Sidebar 5.2) that relies only
on the hardware performing ordinary LOADs and STOREs as before-or-after actions. This
chapter uses bootstrapping several times. The first example starts with the special case
and then introduces a way to reduce the general problem to that special case. The reduc
tion method, called the version history, is used only occasionally in practice, but once
understood it becomes easy to see why the more widely used reduction methods that will
be described in Section 9.3 work.

9.2.1 Achieving All-or-Nothing Atomicity: ALL_OR_NOTHING_PUT

The first example is of a scheme that does an all-or-nothing update of a single disk sector.
The problem to be solved is that if a system crashes in the middle of a disk write (for
example, the operating system encounters a bug or the power fails), the sector that was
being written at the instant of the failure may contain an unusable muddle of old and
new data. The goal is to create an all-or-nothing PUT with the property that when GET later
reads the sector, it always returns either the old or the new data, but never a muddled
mixture.

To make the implementation precise, we develop a disk fault tolerance model that is
a slight variation of the one introduced in Chapter 8[on-line], taking as an example
application a calendar management program for a personal computer. The user is hoping
that, if the system fails while adding a new event to the calendar, when the system later
restarts the calendar will be safely intact. Whether or not the new event ended up in the

Saltzer & Kaashoek Ch. 9, p. 21 June 25, 2009 8:22 am

9–22 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

calendar is less important than that the calendar not be damaged by inopportune timing
of the system failure. This system comprises a human user, a display, a processor, some
volatile memory, a magnetic disk, an operating system, and the calendar manager pro
gram. We model this system in several parts:

Overall system fault tolerance model.

• 	 error-free operation: All work goes according to expectations. The user initiates
actions such as adding events to the calendar and the system confirms the actions
by displaying messages to the user.

• 	tolerated error: The user who has initiated an action notices that the system
failed before it confirmed completion of the action and, when the system is
operating again, checks to see whether or not it actually performed that action.

• 	 untolerated error: The system fails without the user noticing, so the user does
not realize that he or she should check or retry an action that the system may not
have completed.

The tolerated error specification means that, to the extent possible, the entire system
is fail-fast: if something goes wrong during an update, the system stops before taking any
more requests, and the user realizes that the system has stopped. One would ordinarily
design a system such as this one to minimize the chance of the untolerated error, for
example by requiring supervision by a human user. The human user then is in a position
to realize (perhaps from lack of response) that something has gone wrong. After the sys
tem restarts, the user knows to inquire whether or not the action completed. This design
strategy should be familiar from our study of best effort networks in Chapter 7[on-line].
The lower layer (the computer system) is providing a best effort implementation. A
higher layer (the human user) supervises and, when necessary, retries. For example, sup
pose that the human user adds an appointment to the calendar but just as he or she clicks
“save” the system crashes. The user doesn’t know whether or not the addition actually
succeeded, so when the system comes up again the first thing to do is open up the calen
dar to find out what happened.

Processor, memory, and operating system fault tolerance model.

This part of the model just specifies more precisely the intended fail-fast properties of
the hardware and operating system:

• 	error-free operation: The processor, memory, and operating system all follow
their specifications.

• 	 detected error: Something fails in the hardware or operating system. The system
is fail-fast: the hardware or operating system detects the failure and restarts from
a clean slate before initiating any further PUTs to the disk.

• 	untolerated error: Something fails in the hardware or operating system. The
processor muddles along and PUTs corrupted data to the disk before detecting the
failure.

Saltzer & Kaashoek Ch. 9, p. 22	 June 25, 2009 8:22 am

9.2 All-or-Nothing Atomicity I: Concepts 9–23

The primary goal of the processor/memory/operating-system part of the model is to
detect failures and stop running before any corrupted data is written to the disk storage
system. The importance of detecting failure before the next disk write lies in error con
tainment: if the goal is met, the designer can assume that the only values potentially in
error must be in processor registers and volatile memory, and the data on the disk should
be safe, with the exception described in Section 8.5.4.2: if there was a PUT to the disk in
progress at the time of the crash, the failing system may have corrupted the disk buffer
in volatile memory, and consequently corrupted the disk sector that was being written.

The recovery procedure can thus depend on the disk storage system to contain only
uncorrupted information, or at most one corrupted disk sector. In fact, after restart the
disk will contain the only information. “Restarts from a clean slate” means that the sys
tem discards all state held in volatile memory. This step brings the system to the same
state as if a power failure had occurred, so a single recovery procedure will be able to han
dle both system crashes and power failures. Discarding volatile memory also means that
all currently active threads vanish, so everything that was going on comes to an abrupt
halt and will have to be restarted.

Disk storage system fault tolerance model.

Implementing all-or-nothing atomicity involves some steps that resemble the decay
masking of MORE_DURABLE_PUT/GET in Chapter 8[on-line]—in particular, the algorithm
will write multiple copies of data. To clarify how the all-or-nothing mechanism works,
we temporarily back up to CAREFUL_PUT/GET (see Section 8.5.4.5), which masks soft disk
errors but not hard disk errors or disk decay. To simplify further, we pretend for the
moment that a disk never decays and that it has no hard errors. (Since this perfect-disk
assumption is obviously unrealistic, we will reverse it in Section 9.7, which describes an
algorithm for all-or-nothing atomicity despite disk decay and hard errors.)

With the perfect-disk assumption, only one thing can go wrong: a system crash at
just the wrong time. The fault tolerance model for this simplified careful disk system
then becomes:

• 	 error-free operation: CAREFUL_GET returns the result of the most recent call to
CAREFUL_PUT at sector_number on track, with status = OK.

• 	 detectable error: The operating system crashes during a CAREFUL_PUT and corrupts
the disk buffer in volatile storage, and CAREFUL_PUT writes corrupted data on one
sector of the disk.

We can classify the error as “detectable” if we assume that the application has
included with the data an end-to-end checksum, calculated before calling CAREFUL_PUT

and thus before the system crash could have corrupted the data.
The change in this revision of the careful storage layer is that when a system crash

occurs, one sector on the disk may be corrupted, but the client of the interface is confi
dent that (1) that sector is the only one that may be corrupted and (2) if it has been
corrupted, any later reader of that sector will detect the problem. Between the processor
model and the storage system model, all anticipated failures now lead to the same situa-

Saltzer & Kaashoek Ch. 9, p. 23	 June 25, 2009 8:22 am

9–24 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.6

1 procedure ALMOST_ALL_OR_NOTHING_PUT (data, all_or_nothing_sector)
2 CAREFUL_PUT (data, all_or_nothing_sector.S1)
3 CAREFUL_PUT (data, all_or_nothing_sector.S2) // Commit point.
4 CAREFUL_PUT (data, all_or_nothing_sector.S3)

5 procedure ALL_OR_NOTHING_GET (reference data, all_or_nothing_sector)
6 CAREFUL_GET (data1, all_or_nothing_sector.S1)
7 CAREFUL_GET (data2, all_or_nothing_sector.S2)
8 CAREFUL_GET (data3, all_or_nothing_sector.S3)
9 if data1 = data2 then data ← data1 // Return new value.
10 else data ← data3 // Return old value.

Algorithms for ALMOST_ALL_OR_NOTHING_PUT and ALL_OR_NOTHING_GET.

tion: the system detects the failure, resets all processor registers and volatile memory,
forgets all active threads, and restarts. No more than one disk sector is corrupted.

Our problem is now reduced to providing the all-or-nothing property: the goal is to
create all-or-nothing disk storage, which guarantees either to change the data on a sector
completely and correctly or else appear to future readers not to have touched it at all.
Here is one simple, but somewhat inefficient, scheme that makes use of virtualization:
assign, for each data sector that is to have the all-or-nothing property, three physical disk
sectors, identified as S1, S2, and S3. The three physical sectors taken together are a vir
tual “all-or-nothing sector”. At each place in the system where this disk sector was
previously used, replace it with the all-or-nothing sector, identified by the triple {S1, S2,
S3}. We start with an almost correct all-or-nothing implementation named
ALMOST_ALL_OR_NOTHING_PUT, find a bug in it, and then fix the bug, finally creating a cor
rect ALL_OR_NOTHING_PUT.

When asked to write data, ALMOST_ALL_OR_NOTHING_PUT writes it three times, on S1, S2,
and S3, in that order, each time waiting until the previous write finishes, so that if the
system crashes only one of the three sectors will be affected. To read data,
ALL_OR_NOTHING_GET reads all three sectors and compares their contents. If the contents of
S1 and S2 are identical, ALL_OR_NOTHING_GET returns that value as the value of the all-or
nothing sector. If S1 and S2 differ, ALL_OR_NOTHING_GET returns the contents of S3 as the
value of the all-or-nothing sector. Figure 9.6 shows this almost correct pseudocode.

Let’s explore how this implementation behaves on a system crash. Suppose that at
some previous time a record has been correctly stored in an all-or-nothing sector (in
other words, all three copies are identical), and someone now updates it by calling
ALL_OR_NOTHING_PUT. The goal is that even if a failure occurs in the middle of the update,
a later reader can always be ensured of getting some complete, consistent version of the
record by invoking ALL_OR_NOTHING_GET.

Suppose that ALMOST_ALL_OR_NOTHING_PUT were interrupted by a system crash some
time before it finishes writing sector S2, and thus corrupts either S1 or S2. In that case,

Saltzer & Kaashoek Ch. 9, p. 24 June 25, 2009 8:22 am

9.2 All-or-Nothing Atomicity I: Concepts 9–25

FIGURE 9.7

1 procedure ALL_OR_NOTHING_PUT (data, all_or_nothing_sector)
2 CHECK_AND_REPAIR (all_or_nothing_sector)
3 ALMOST_ALL_OR_NOTHING_PUT (data, all_or_nothing_sector)

4 procedure CHECK_AND_REPAIR (all_or_nothing_sector) // Ensure copies match.
5 CAREFUL_GET (data1, all_or_nothing_sector.S1)
6 CAREFUL_GET (data2, all_or_nothing_sector.S2)
7 CAREFUL_GET (data3, all_or_nothing_sector.S3)
8 if (data1 = data2) and (data2 = data3) return // State 1 or 7, no repair
9 if (data1 = data2)
10 CAREFUL_PUT (data1, all_or_nothing_sector.S3) return // State 5 or 6.
11 if (data2 = data3)
12 CAREFUL_PUT (data2, all_or_nothing_sector.S1) return // State 2 or 3.
13 CAREFUL_PUT (data1, all_or_nothing_sector.S2) // State 4, go to state 5
14 CAREFUL_PUT (data1, all_or_nothing_sector.S3) // State 5, go to state 7

Algorithms for ALL_OR_NOTHING_PUT and CHECK_AND_REPAIR.

when ALL_OR_NOTHING_GET reads sectors S1 and S2, they will have different values, and it
is not clear which one to trust. Because the system is fail-fast, sector S3 would not yet
have been touched by ALMOST_ALL_OR_NOTHING_PUT, so it still contains the previous value.
Returning the value found in S3 thus has the desired effect of ALMOST_ALL_OR_NOTHING_PUT

having done nothing.
Now, suppose that ALMOST_ALL_OR_NOTHING_PUT were interrupted by a system crash

some time after successfully writing sector S2. In that case, the crash may have corrupted
S3, but S1 and S2 both contain the newly updated value. ALL_OR_NOTHING_GET returns the
value of S1, thus providing the desired effect of ALMOST_ALL_OR_NOTHING_PUT having com
pleted its job.

So what’s wrong with this design? ALMOST_ALL_OR_NOTHING_PUT assumes that all three
copies are identical when it starts. But a previous failure can violate that assumption.
Suppose that ALMOST_ALL_OR_NOTHING_PUT is interrupted while writing S3. The next
thread to call ALL_OR_NOTHING_GET finds data1 = data2, so it uses data1, as expected. The
new thread then calls ALMOST_ALL_OR_NOTHING_PUT, but is interrupted while writing S2.
Now, S1 doesn't equal S2, so the next call to ALMOST_ALL_OR_NOTHING_PUT returns the
damaged S3.
The fix for this bug is for ALL_OR_NOTHING_PUT to guarantee that the three sectors be iden
tical before updating. It can provide this guarantee by invoking a procedure named
CHECK_AND_REPAIR as in Figure 9.7. CHECK_AND_REPAIR simply compares the three copies
and, if they are not identical, it forces them to be identical. To see how this works, assume
that someone calls ALL_OR_NOTHING_PUT at a time when all three of the copies do contain
identical values, which we designate as “old”. Because ALL_OR_NOTHING_PUT writes “new”

Saltzer & Kaashoek Ch. 9, p. 25 June 25, 2009 8:22 am

9–26 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

values into S1, S2, and S3 one at a time and in order, even if there is a crash, at the next
call to ALL_OR_NOTHING_PUT there are only seven possible data states for CHECK_AND_REPAIR

to consider:

data state: 1 2 3 4 5 6 7

sector S1 old bad new new new new new
sector S2 old old old bad new new new
sector S3 old old old old old bad new

The way to read this table is as follows: if all three sectors S1, S2, and S3 contain the
“old” value, the data is in state 1. Now, if CHECK_AND_REPAIR discovers that all three copies
are identical (line 8 in Figure 9.7), the data is in state 1 or state 7 so CHECK_AND_REPAIR

simply returns. Failing that test, if the copies in sectors S1 and S2 are identical (line 9),
the data must be in state 5 or state 6, so CHECK_AND_REPAIR forces sector S3 to match and
returns (line 10). If the copies in sectors S2 and S3 are identical the data must be in state
2 or state 3 (line 11), so CHECK_AND_REPAIR forces sector S1 to match and returns (line 12).
The only remaining possibility is that the data is in state 4, in which case sector S2 is
surely bad, but sector S1 contains a new value and sector S3 contains an old one. The
choice of which to use is arbitrary; as shown the procedure copies the new value in sector
S1 to both sectors S2 and S3.

What if a failure occurs while running CHECK_AND_REPAIR? That procedure systemati
cally drives the state either forward from state 4 toward state 7, or backward from state
3 toward state 1. If CHECK_AND_REPAIR is itself interrupted by another system crash, rerun
ning it will continue from the point at which the previous attempt left off.

We can make several observations about the algorithm implemented by
ALL_OR_NOTHING_GET and ALL_OR_NOTHING_PUT:

1. 	This all-or-nothing atomicity algorithm assumes that only one thread at a time
tries to execute either ALL_OR_NOTHING_GET or ALL_OR_NOTHING_PUT. This algorithm
implements all-or-nothing atomicity but not before-or-after atomicity.

2. 	CHECK_AND_REPAIR is idempotent. That means that a thread can start the procedure,
execute any number of its steps, be interrupted by a crash, and go back to the
beginning again any number of times with the same ultimate result, as far as a later
call to ALL_OR_NOTHING_GET is concerned.

3. 	The completion of the CAREFUL_PUT on line 3 of ALMOST_ALL_OR_NOTHING_PUT,
marked “commit point,” exposes the new data to future ALL_OR_NOTHING_GET

actions. Until that step begins execution, a call to ALL_OR_NOTHING_GET sees the old
data. After line 3 completes, a call to ALL_OR_NOTHING_GET sees the new data.

4. 	Although the algorithm writes three replicas of the data, the primary reason for
the replicas is not to provide durability as described in Section 8.5. Instead, the
reason for writing three replicas, one at a time and in a particular order, is to ensure
observance at all times and under all failure scenarios of the golden rule of atomicity,
which is the subject of the next section.

Saltzer & Kaashoek Ch. 9, p. 26	 June 25, 2009 8:22 am

9.2 All-or-Nothing Atomicity I: Concepts 9–27

There are several ways of implementing all-or-nothing disk sectors. Near the end of
Chapter 8[on-line] we introduced a fault tolerance model for decay events that did not
mask system crashes, and applied the technique known as RAID to mask decay to pro
duce durable storage. Here we started with a slightly different fault tolerance model that
omits decay, and we devised techniques to mask system crashes and produce all-or-noth
ing storage. What we really should do is start with a fault tolerance model that considers
both system crashes and decay, and devise storage that is both all-or-nothing and dura
ble. Such a model, devised by Xerox Corporation researchers Butler Lampson and
Howard Sturgis, is the subject of Section 9.7, together with the more elaborate recovery
algorithms it requires. That model has the additional feature that it needs only two phys
ical sectors for each all-or-nothing sector.

9.2.2 Systematic Atomicity: Commit and the Golden Rule

The example of ALL_OR_NOTHING_PUT and ALL_OR_NOTHING_GET demonstrates an interesting
special case of all-or-nothing atomicity, but it offers little guidance on how to systemat
ically create a more general all-or-nothing action. From the example, our calendar
program now has a tool that allows writing individual sectors with the all-or-nothing
property, but that is not the same as safely adding an event to a calendar, since adding
an event probably requires rearranging a data structure, which in turn may involve writ
ing more than one disk sector. We could do a series of ALL_OR_NOTHING_PUTs to the several
sectors, to ensure that each sector is itself written in an all-or-nothing fashion, but a crash
that occurs after writing one and before writing the next would leave the overall calendar
addition in a partly-done state. To make the entire calendar addition action all-or-noth
ing we need a generalization.

Ideally, one might like to be able to take any arbitrary sequence of instructions in a
program, surround that sequence with some sort of begin and end statements as in Fig
ure 9.8, and expect that the language compilers and operating system will perform some
magic that makes the surrounded sequence into an all-or-nothing action. Unfortunately,
no one knows how to do that. But we can come close, if the programmer is willing to
make a modest concession to the requirements of all-or-nothing atomicity. This conces
sion is expressed in the form of a discipline on the constituent steps of the all-or-nothing
action.

The discipline starts by identifying some single step of the sequence as the commit
point. The all-or-nothing action is thus divided into two phases, a pre-commit phase and
a post-commit phase, as suggested by Figure 9.9. During the pre-commit phase, the disci
plining rule of design is that no matter what happens, it must be possible to back out of
this all-or-nothing action in a way that leaves no trace. During the post-commit phase
the disciplining rule of design is that no matter what happens, the action must run to the
end successfully. Thus an all-or-nothing action can have only two outcomes. If the all-
or-nothing action starts and then, without reaching the commit point, backs out, we say
that it aborts. If the all-or-nothing action passes the commit point, we say that it commits.

Saltzer & Kaashoek Ch. 9, p. 27 June 25, 2009 8:22 am

9–28 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.8

begin all-or-nothing action

___ arbitrary sequence of
___ lower-layer actions

end all-or-nothing action

}

Imaginary semantics for painless programming of all-or-nothing actions.

We can make several observations about the restrictions of the pre-commit phase.
The pre-commit phase must identify all the resources needed to complete the all-or
nothing action, and establish their availability. The names of data should be bound, per
missions should be checked, the pages to be read or written should be in memory,
removable media should be mounted, stack space must be allocated, etc. In other words,
all the steps needed to anticipate the severe run-to-the-end-without-faltering require
ment of the post-commit phase should be completed during the pre-commit phase. In
addition, the pre-commit phase must maintain the ability to abort at any instant. Any
changes that the pre-commit phase makes to the state of the system must be undoable in
case this all-or-nothing action aborts. Usually, this requirement means that shared

___ first step of all-or-nothing action

___ Pre-commit discipline: can back out,
___ leaving no trace

___ Commit point

___ Post-commit discipline: completion is inevitable

___ last step of all-or-nothing action

}
}

FIGURE 9.9

The commit point of an all-or-nothing action.

Saltzer & Kaashoek Ch. 9, p. 28 June 25, 2009 8:22 am

9.2 All-or-Nothing Atomicity I: Concepts 9–29

resources, once reserved, cannot be released until the commit point is passed. The reason
is that if an all-or-nothing action releases a shared resource, some other, concurrent
thread may capture that resource. If the resource is needed in order to undo some effect
of the all-or-nothing action, releasing the resource is tantamount to abandoning the abil
ity to abort. Finally, the reversibility requirement means that the all-or-nothing action
should not do anything externally visible, for example printing a check or firing a missile,
prior to the commit point. (It is possible, though more complicated, to be slightly less
restrictive. Sidebar 9.3 explores that possibility.)

In contrast, the post-commit phase can expose results, it can release reserved resources
that are no longer needed, and it can perform externally visible actions such as printing
a check, opening a cash drawer, or drilling a hole. But it cannot try to acquire additional
resources because an attempt to acquire might fail, and the post-commit phase is not per
mitted the luxury of failure. The post-commit phase must confine itself to finishing just
the activities that were planned during the pre-commit phase.

It might appear that if a system fails before the post-commit phase completes, all hope
is lost, so the only way to ensure all-or-nothing atomicity is to always make the commit
step the last step of the all-or-nothing action. Often, that is the simplest way to ensure
all-or-nothing atomicity, but the requirement is not actually that stringent. An impor
tant feature of the post-commit phase is that it is hidden inside the layer that implements
the all-or-nothing action, so a scheme that ensures that the post-commit phase completes
after a system failure is acceptable, so long as this delay is hidden from the invoking layer.
Some all-or-nothing atomicity schemes thus involve a guarantee that a cleanup proce
dure will be invoked following every system failure, or as a prelude to the next use of the
data, before anyone in a higher layer gets a chance to discover that anything went wrong.
This idea should sound familiar: the implementation of ALL_OR_NOTHING_PUT in Figure
9.7 used this approach, by always running the cleanup procedure named
CHECK_AND_REPAIR before updating the data.

A popular technique for achieving all-or-nothing atomicity is called the shadow copy.
It is used by text editors, compilers, calendar management programs, and other programs
that modify existing files, to ensure that following a system failure the user does not end
up with data that is damaged or that contains only some of the intended changes:

• 	 Pre-commit: Create a complete duplicate working copy of the file that is to be
modified. Then, make all changes to the working copy.

Sidebar 9.3: Cascaded aborts (Temporary) sweeping simplification. In this initial discussioin of
commit points, we are intentionally avoiding a more complex and harder-to-design possibility.
Some systems allow other, concurrent activities to see pending results, and they may even allow
externally visible actions before commit. Those systems must therefore be prepared to track
down and abort those concurrent activities (this tracking down is called cascaded abort) or
perform compensating external actions (e.g., send a letter requesting return of the check or
apologizing for the missile firing). The discussion of layers and multiple sites in Chapter 10[on
line] introduces a simple version of cascaded abort.

Saltzer & Kaashoek Ch. 9, p. 29	 June 25, 2009 8:22 am

9–30 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

• 	 Commit point: Carefully exchange the working copy with the original. Typically
this step is bootstrapped, using a lower-layer RENAME entry point of the file system
that provides certain atomic-like guarantees such as the ones described for the
UNIX version of RENAME in Section 2.5.8.

• 	 Post-commit: Release the space that was occupied by the original.

The ALL_OR_NOTHING_PUT algorithm of Figure 9.7 can be seen as a particular example
of the shadow copy strategy, which itself is a particular example of the general pre-com
mit/post-commit discipline. The commit point occurs at the instant when the new value
of S2 is successfully written to the disk. During the pre-commit phase, while
ALL_OR_NOTHING_PUT is checking over the three sectors and writing the shadow copy S1, a
crash will leave no trace of that activity (that is, no trace that can be discovered by a later
caller of ALL_OR_NOTHING_GET). The post-commit phase of ALL_OR_NOTHING_PUT consists of
writing S3.

From these examples we can extract an important design principle:

The golden rule of atomicity

Never modify the only copy!

In order for a composite action to be all-or-nothing, there must be some way of reversing
the effect of each of its pre-commit phase component actions, so that if the action does
not commit it is possible to back out. As we continue to explore implementations of all-
or-nothing atomicity, we will notice that correct implementations always reduce at the
end to making a shadow copy. The reason is that structure ensures that the implemen
tation follows the golden rule.

9.2.3 Systematic All-or-Nothing Atomicity: Version Histories

This section develops a scheme to provide all-or-nothing atomicity in the general case of
a program that modifies arbitrary data structures. It will be easy to see why the scheme
is correct, but the mechanics can interfere with performance. Section 9.3 of this chapter
then introduces a variation on the scheme that requires more thought to see why it is cor
rect, but that allows higher-performance implementations. As before, we concentrate for
the moment on all-or-nothing atomicity. While some aspects of before-or-after atomic
ity will also emerge, we leave a systematic treatment of that topic for discussion in
Sections 9.4 and 9.5 of this chapter. Thus the model to keep in mind in this section is
that only a single thread is running. If the system crashes, after a restart the original
thread is gone—recall from Chapter 8[on-line] the sweeping simplification that threads
are included in the volatile state that is lost on a crash and only durable state survives.
After the crash, a new, different thread comes along and attempts to look at the data. The
goal is that the new thread should always find that the all-or-nothing action that was in
progress at the time of the crash either never started or completed successfully.

Saltzer & Kaashoek Ch. 9, p. 30	 June 25, 2009 8:22 am

9.2 All-or-Nothing Atomicity I: Concepts 9–31

In looking at the general case, a fundamental difficulty emerges: random-access mem
ory and disk usually appear to the programmer as a set of named, shared, and rewritable
storage cells, called cell storage. Cell storage has semantics that are actually quite hard to
make all-or-nothing because the act of storing destroys old data, thus potentially violat
ing the golden rule of atomicity. If the all-or-nothing action later aborts, the old value is
irretrievably gone; at best it can only be reconstructed from information kept elsewhere.
In addition, storing data reveals it to the view of later threads, whether or not the all-or
nothing action that stored the value reached its commit point. If the all-or-nothing
action happens to have exactly one output value, then writing that value into cell storage
can be the mechanism of committing, and there is no problem. But if the result is sup
posed to consist of several output values, all of which should be exposed simultaneously,
it is harder to see how to construct the all-or-nothing action. Once the first output value
is stored, the computation of the remaining outputs has to be successful; there is no going
back. If the system fails and we have not been careful, a later thread may see some old
and some new values.

These limitations of cell storage did not plague the shopkeepers of Padua, who in the
14th century invented double-entry bookkeeping. Their storage medium was leaves of
paper in bound books and they made new entries with quill pens. They never erased or
even crossed out entries that were in error; when they made a mistake they made another
entry that reversed the mistake, thus leaving a complete history of their actions, errors,
and corrections in the book. It wasn’t until the 1950’s, when programmers began to
automate bookkeeping systems, that the notion of overwriting data emerged. Up until
that time, if a bookkeeper collapsed and died while making an entry, it was always pos
sible for someone else to seamlessly take over the books. This observation about the
robustness of paper systems suggests that there is a form of the golden rule of atomicity
that might allow one to be systematic: never erase anything.

Examining the shadow copy technique used by the text editor provides a second use
ful idea. The essence of the mechanism that allows a text editor to make several changes
to a file, yet not reveal any of the changes until it is ready, is this: the only way another
prospective reader of a file can reach it is by name. Until commit time the editor works
on a copy of the file that is either not yet named or has a unique name not known outside
the thread, so the modified copy is effectively invisible. Renaming the new version is the
step that makes the entire set of updates simultaneously visible to later readers.

These two observations suggest that all-or-nothing actions would be better served by
a model of storage that behaves differently from cell storage: instead of a model in which
a store operation overwrites old data, we instead create a new, tentative version of the
data, such that the tentative version remains invisible to any reader outside this all-or
nothing action until the action commits. We can provide such semantics, even though
we start with traditional cell memory, by interposing a layer between the cell storage and
the program that reads and writes data. This layer implements what is known as journal
storage. The basic idea of journal storage is straightforward: we associate with every
named variable not a single cell, but a list of cells in non-volatile storage; the values in
the list represent the history of the variable. Figure 9.10 illustrates. Whenever any action

Saltzer & Kaashoek Ch. 9, p. 31 June 25, 2009 8:22 am

9–32 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

History of earlier versions
Tentative
next version

1614112295207Variable A:

Current version

FIGURE 9.10

Version history of a variable in journal storage.

proposes to write a new value into the variable, the journal storage manager appends the
prospective new value to the end of the list. Clearly this approach, being history-preserv
ing, offers some hope of being helpful because if an all-or-nothing action aborts, one can
imagine a systematic way to locate and discard all of the new versions it wrote. Moreover,
we can tell the journal storage manager to expect to receive tentative values, but to ignore
them unless the all-or-nothing action that created them commits. The basic mechanism
to accomplish such an expectation is quite simple; the journal storage manager should
make a note, next to each new version, of the identity of the all-or-nothing action that
created it. Then, at any later time, it can discover the status of the tentative version by
inquiring whether or not the all-or-nothing action ever committed.

Figure 9.11 illustrates the overall structure of such a journal storage system, imple
mented as a layer that hides a cell storage system. (To reduce clutter, this journal storage
system omits calls to create new and delete old variables.) In this particular model, we
assign to the journal storage manager most of the job of providing tools for programming
all-or-nothing actions. Thus the implementer of a prospective all-or-nothing action
should begin that action by invoking the journal storage manager entry NEW_ACTION, and
later complete the action by invoking either COMMIT or ABORT. If, in addition, actions per
form all reads and writes of data by invoking the journal storage manager’s
READ_CURRENT_VALUE and WRITE_NEW_VALUE entries, our hope is that the result will auto
matically be all-or-nothing with no further concern of the implementer.

How could this automatic all-or-nothing atomicity work? The first step is that the
journal storage manager, when called at NEW_ACTION, should assign a nonce identifier to
the prospective all-or-nothing action, and create, in non-volatile cell storage, a record of
this new identifier and the state of the new all-or-nothing action. This record is called an
outcome record; it begins its existence in the state PENDING; depending on the outcome it
should eventually move to one of the states COMMITTED or ABORTED, as suggested by Figure
9.12. No other state transitions are possible, except to discard the outcome record once

Saltzer & Kaashoek Ch. 9, p. 32 June 25, 2009 8:22 am

9.2 All-or-Nothing Atomicity I: Concepts 9–33

NEW_ACTION

READ_CURRENT_VALUE

WRITE_NEW_VALUE

COMMIT

ABORT

All-or-nothing Journal Storage System

Cell Storage
System

– catalogs

– versions

– outcome
records

Journal

READ

WRITE

ALLOCATE

DEALLOCATE

Storage
Manager

FIGURE 9.11

Interface to and internal organization of an all-or-nothing storage system based on version his
tories and journal storage.

new all-or-nothing
action is
created

aborted

all-or-nothing

all-or-nothing
action
commits committed

pending
non-existent

discarded

action outcome record
aborts state no longer

of any interest

FIGURE 9.12

The allowed state transitions of an outcome record.

Saltzer & Kaashoek Ch. 9, p. 33 June 25, 2009 8:22 am

9–34 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.13

1 procedure NEW_ACTION ()
2 id ← NEW_OUTCOME_RECORD ()
3 id.outcome_record.state ← PENDING

4 return id

5 procedure COMMIT (reference id)
6 id.outcome_record.state ← COMMITTED

7 procedure ABORT (reference id)
8 id.outcome_record.state ← ABORTED

The procedures NEW_ACTION, COMMIT, and ABORT.

there is no further interest in its state. Figure 9.13 illustrates implementations of the three
procedures NEW_ACTION, COMMIT, and ABORT.

When an all-or-nothing action calls the journal storage manager to write a new ver
sion of some data object, that action supplies the identifier of the data object, a tentative
new value for the new version, and the identifier of the all-or-nothing action. The journal
storage manager calls on the lower-level storage management system to allocate in non
volatile cell storage enough space to contain the new version; it places in the newly allo
cated cell storage the new data value and the identifier of the all-or-nothing action. Thus
the journal storage manager creates a version history as illustrated in Figure 9.14. Now,

7

03

outcome
records

Object A

pending1794:aborted1423:1101: committed

1101 1423 1794all-or-nothing
action id:

751524value:

FIGURE 9.14

Portion of a version history, with outcome records. Some thread has recently called
WRITE_NEW_VALUE specifying data_id = A, new_value = 75, and client_id = 1794. A caller to
READ_CURRENT_VALUE will read the value 24 for A.

Saltzer & Kaashoek Ch. 9, p. 34 June 25, 2009 8:22 am

9.2 All-or-Nothing Atomicity I: Concepts 9–35

FIGURE 9.15

1 procedure READ_CURRENT_VALUE (data_id, caller_id)
2 starting at end of data_id repeat until beginning
3 v ← previous version of data_id // Get next older version
4 a ← v.action_id // Identify the action a that created it
5 s ← a.outcome_record.state // Check action a’s outcome record
6 if s = COMMITTED then
7 return v.value
8 else skip v // Continue backward search
9 signal (“Tried to read an uninitialized variable!”)

10 procedure WRITE_NEW_VALUE (reference data_id, new_value, caller_id)
11 if caller_id.outcome_record.state = PENDING

12 append new version v to data_id
13 v.value ← new_value
14 v.action_id ← caller_id

else signal (“Tried to write outside of an all-or-nothing action!”)

Algorithms followed by READ_CURRENT_VALUE and WRITE_NEW_VALUE. The parameter caller_id is
the action identifier returned by NEW_ACTION. In this version, only WRITE_NEW_VALUE uses
caller_id. Later, READ_CURRENT_VALUE will also use it.

when someone proposes to read a data value by calling READ_CURRENT_VALUE, the journal
storage manager can review the version history, starting with the latest version and return
the value in the most recent committed version. By inspecting the outcome records, the
journal storage manager can ignore those versions that were written by all-or-nothing
actions that aborted or that never committed.

The procedures READ_CURRENT_VALUE and WRITE_NEW_VALUE thus follow the algorithms
of Figure 9.15. The important property of this pair of algorithms is that if the current
all-or-nothing action is somehow derailed before it reaches its call to COMMIT, the new ver
sion it has created is invisible to invokers of READ_CURRENT_VALUE. (They are also invisible
to the all-or-nothing action that wrote them. Since it is sometimes convenient for an all-
or-nothing action to read something that it has tentatively written, a different procedure,
named READ_MY_PENDING_VALUE, identical to READ_CURRENT_VALUE except for a different test
on line 6, could do that.) Moreover if, for example, all-or-nothing action 99 crashes
while partway through changing the values of nineteen different data objects, all nine
teen changes would be invisible to later invokers of READ_CURRENT_VALUE. If all-or-nothing
action 99 does reach its call to COMMIT, that call commits the entire set of changes simul
taneously and atomically, at the instant that it changes the outcome record from PENDING

to COMMITTED. Pending versions would also be invisible to any concurrent action that
reads data with READ_CURRENT_VALUE, a feature that will prove useful when we introduce
concurrent threads and discuss before-or-after atomicity, but for the moment our only

Saltzer & Kaashoek Ch. 9, p. 35 June 25, 2009 8:22 am

9–36 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.16

1 procedure TRANSFER (reference debit_account, reference credit_account,
amount)

2 my_id ← NEW_ACTION ()
3 xvalue ← READ_CURRENT_VALUE (debit_account, my_id)
4 xvalue ← xvalue - amount
5 WRITE_NEW_VALUE (debit_account, xvalue, my_id)
6 yvalue ← READ_CURRENT_VALUE (credit_account, my_id)
7 yvalue ← yvalue + amount
8 WRITE_NEW_VALUE (credit_account, yvalue, my_id)
9 if xvalue > 0 then
10 COMMIT (my_id)
11 else
12 ABORT (my_id)
13 signal(“Negative transfers are not allowed.”)

An all-or-nothing TRANSFER procedure, based on journal storage. (This program assumes that
it is the only running thread. Making the transfer procedure a before-or-after action because
other threads might be updating the same accounts concurrently requires additional mecha
nism that is discussed later in this chapter.)

concern is that a system crash may prevent the current thread from committing or abort
ing, and we want to make sure that a later thread doesn’t encounter partial results. As in
the case of the calendar manager of Section 9.2.1, we assume that when a crash occurs,
any all-or-nothing action that was in progress at the time was being supervised by some
outside agent who realizes that a crash has occurred, uses READ_CURRENT_VALUE to find out
what happened and if necessary initiates a replacement all-or-nothing action.

Figure 9.16 shows the TRANSFER procedure of Section 9.1.5 reprogrammed as an all-
or-nothing (but not, for the moment, before-or-after) action using the version history
mechanism. This implementation of TRANSFER is more elaborate than the earlier one—it
tests to see whether or not the account to be debited has enough funds to cover the trans
fer and if not it aborts the action. The order of steps in the transfer procedure is
remarkably unconstrained by any consideration other than calculating the correct
answer. The reading of credit_account, for example, could casually be moved to any
point between NEW_ACTION and the place where yvalue is recalculated. We conclude that
the journal storage system has made the pre-commit discipline much less onerous than
we might have expected.

There is still one loose end: it is essential that updates to a version history and changes
to an outcome record be all-or-nothing. That is, if the system fails while the thread is
inside WRITE_NEW_VALUE, adjusting structures to append a new version, or inside COMMIT

while updating the outcome record, the cell being written must not be muddled; it must
either stay as it was before the crash or change to the intended new value. The solution
is to design all modifications to the internal structures of journal storage so that they can

Saltzer & Kaashoek Ch. 9, p. 36 June 25, 2009 8:22 am

9.2 All-or-Nothing Atomicity I: Concepts 9–37

be done by overwriting a single cell. For example, suppose that the name of a variable
that has a version history refers to a cell that contains the address of the newest version,
and that versions are linked from the newest version backwards, by address references.
Adding a version consists of allocating space for a new version, reading the current
address of the prior version, writing that address in the backward link field of the new
version, and then updating the descriptor with the address of the new version. That last
update can be done by overwriting a single cell. Similarly, updating an outcome record
to change it from PENDING to COMMITTED can be done by overwriting a single cell.

As a first bootstrapping step, we have reduced the general problem of creating all-or
nothing actions to the specific problem of doing an all-or-nothing overwrite of one cell.
As the remaining bootstrapping step, recall that we already know two ways to do a single-
cell all-or-nothing overwrite: apply the ALL_OR_NOTHING_PUT procedure of Figure 9.7. (If
there is concurrency, updates to the internal structures of the version history also need
before-or-after atomicity. Section 9.4 will explore methods of providing it.)

9.2.4 How Version Histories are Used

The careful reader will note two possibly puzzling things about the version history
scheme just described. Both will become less puzzling when we discuss concurrency and
before-or-after atomicity in Section 9.4 of this chapter:

1. 	Because READ_CURRENT_VALUE skips over any version belonging to another all-or
nothing action whose OUTCOME record is not COMMITTED, it isn’t really necessary to
change the OUTCOME record when an all-or-nothing action aborts; the record could
just remain in the PENDING state indefinitely. However, when we introduce
concurrency, we will find that a pending action may prevent other threads from
reading variables for which the pending action created a new version, so it will
become important to distinguish aborted actions from those that really are still
pending.

2. 	As we have defined READ_CURRENT_VALUE, versions older than the most recent
committed version are inaccessible and they might just as well be discarded.
Discarding could be accomplished either as an additional step in the journal
storage manager, or as part of a separate garbage collection activity. Alternatively,
those older versions may be useful as an historical record, known as an archive,
with the addition of timestamps on commit records and procedures that can locate
and return old values created at specified times in the past. For this reason, a
version history system is sometimes called a temporal database or is said to provide
time domain addressing. The banking industry abounds in requirements that make
use of history information, such as reporting a consistent sum of balances in all
bank accounts, paying interest on the fifteenth on balances as of the first of the
month, or calculating the average balance last month. Another reason for not
discarding old versions immediately will emerge when we discuss concurrency and

Saltzer & Kaashoek Ch. 9, p. 37	 June 25, 2009 8:22 am

9–38 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

before-or-after atomicity: concurrent threads may, for correctness, need to read old
versions even after new versions have been created and committed.

Direct implementation of a version history raises concerns about performance: rather
than simply reading a named storage cell, one must instead make at least one indirect
reference through a descriptor that locates the storage cell containing the current version.
If the cell storage device is on a magnetic disk, this extra reference is a potential bottle
neck, though it can be alleviated with a cache. A bottleneck that is harder to alleviate
occurs on updates. Whenever an application writes a new value, the journal storage layer
must allocate space in unused cell storage, write the new version, and update the version
history descriptor so that future readers can find the new version. Several disk writes are
likely to be required. These extra disk writes may be hidden inside the journal storage
layer and with added cleverness may be delayed until commit and batched, but they still
have a cost. When storage access delays are the performance bottleneck, extra accesses
slow things down.

In consequence, version histories are used primarily in low-performance applications.
One common example is found in revision management systems used to coordinate
teams doing program development. A programmer “checks out” a group of files, makes
changes, and then “checks in” the result. The check-out and check-in operations are all-
or-nothing and check-in makes each changed file the latest version in a complete history
of that file, in case a problem is discovered later. (The check-in operation also verifies that
no one else changed the files while they were checked out, which catches some, but not
all, coordination errors.) A second example is that some interactive applications such as
word processors or image editing systems provide a “deep undo” feature, which allows a
user who decides that his or her recent editing is misguided to step backwards to reach
an earlier, satisfactory state. A third example appears in file systems that automatically
create a new version every time any application opens an existing file for writing; when
the application closes the file, the file system tags a number suffix to the name of the pre
vious version of the file and moves the original name to the new version. These interfaces
employ version histories because users find them easy to understand and they provide all-
or-nothing atomicity in the face of both system failures and user mistakes. Most such
applications also provide an archive that is useful for reference and that allows going back
to a known good version.

Applications requiring high performance are a different story. They, too, require all-
or-nothing atomicity, but they usually achieve it by applying a specialized technique
called a log. Logs are our next topic.

9.3 All-or-Nothing Atomicity II: Pragmatics
Database management applications such as airline reservation systems or banking sys
tems usually require high performance as well as all-or-nothing atomicity, so their
designers use streamlined atomicity techniques. The foremost of these techniques
sharply separates the reading and writing of data from the failure recovery mechanism.

Saltzer & Kaashoek Ch. 9, p. 38 June 25, 2009 8:22 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–39

The idea is to minimize the number of storage accesses required for the most common
activities (application reads and updates). The trade-off is that the number of storage
accesses for rarely-performed activities (failure recovery, which one hopes is actually exer
cised only occasionally, if at all) may not be minimal. The technique is called logging.
Logging is also used for purposes other than atomicity, several of which Sidebar 9.4
describes.

9.3.1 Atomicity Logs

The basic idea behind atomicity logging is to combine the all-or-nothing atomicity of
journal storage with the speed of cell storage, by having the application twice record every
change to data. The application first logs the change in journal storage, and then it installs
the change in cell storage*. One might think that writing data twice must be more expen
sive than writing it just once into a version history, but the separation permits specialized
optimizations that can make the overall system faster.

The first recording, to journal storage, is optimized for fast writing by creating a sin
gle, interleaved version history of all variables, known as a log. The information
describing each data update forms a record that the application appends to the end of the
log. Since there is only one log, a single pointer to the end of the log is all that is needed
to find the place to append the record of a change of any variable in the system. If the
log medium is magnetic disk, and the disk is used only for logging, and the disk storage
management system allocates sectors contiguously, the disk seek arm will need to move
only when a disk cylinder is full, thus eliminating most seek delays. As we will see, recov
ery does involve scanning the log, which is expensive, but recovery should be a rare event.
Using a log is thus an example of following the hint to optimize for the common case.

The second recording, to cell storage, is optimized to make reading fast: the applica
tion installs by simply overwriting the previous cell storage record of that variable. The
record kept in cell storage can be thought of as a cache that, for reading, bypasses the
effort that would be otherwise be required to locate the latest version in the log. In addi
tion, by not reading from the log the logging disk’s seek arm can remain in position,
ready for the next update. The two steps, LOG and INSTALL, become a different implemen
tation of the WRITE_NEW_VALUE interface of Figure 9.11. Figure 9.17 illustrates this two-
step implementation.

The underlying idea is that the log is the authoritative record of the outcome of the
action. Cell storage is merely a reference copy; if it is lost, it can be reconstructed from
the log. The purpose of installing a copy in cell storage is to make both logging and read
ing faster. By recording data twice, we obtain high performance in writing, high
performance in reading, and all-or-nothing atomicity, all at the same time.

There are three common logging configurations, shown in Figure 9.18. In each of
these three configurations, the log resides in non-volatile storage. For the in-memory

* A hardware architect would say “…it graduates the change to cell storage”. This text, somewhat
arbitrarily, chooses to use the database management term “install” .

Saltzer & Kaashoek Ch. 9, p. 39 June 25, 2009 8:22 am

CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After 9–40

Sidebar 9.4: The many uses of logs A log is an object whose primary usage method is to
append a new record. Log implementations normally provide procedures to read entries from
oldest to newest or in reverse order, but there is usually not any procedure for modifying
previous entries. Logs are used for several quite distinct purposes, and this range of purposes
sometimes gets confused in real-world designs and implementations. Here are some of the most
common uses for logs:

1. Atomicity log. If one logs the component actions of an all-or-nothing action, together with
sufficient before and after information, then a crash recovery procedure can undo (and thus
roll back the effects of) all-or-nothing actions that didn’t get a chance to complete, or finish
all-or-nothing actions that committed but that didn’t get a chance to record all of their
effects.

2. Archive log. If the log is kept indefinitely, it becomes a place where old values of data and the
sequence of actions taken by the system or its applications can be kept for review. There are
many uses for archive information: watching for failure patterns, reviewing the actions of
the system preceding and during a security breach, recovery from application-layer mistakes
(e.g., a clerk incorrectly deleted an account), historical study, fraud control, and compliance
with record-keeping requirements.

3. Performance log. Most mechanical storage media have much higher performance for
sequential access than for random access. Since logs are written sequentially, they are ideally
suited to such storage media. It is possible to take advantage of this match to the physical
properties of the media by structuring data to be written in the form of a log. When
combined with a cache that eliminates most disk reads, a performance log can provide a
significant speed-up. As will be seen in the accompanying text, an atomicity log is usually
also a performance log.

4. Durability log. If the log is stored on a non-volatile medium—say magnetic tape—that fails
in ways and at times that are independent from the failures of the cell storage medium—
which might be magnetic disk—then the copies of data in the log are replicas that can be
used as backup in case of damage to the copies of the data in cell storage. This kind of log
helps implement durable storage. Any log that uses a non-volatile medium, whether
intended for atomicity, archiving or performance, typically also helps support durability.

It is essential to have these various purposes—all-or-nothing atomicity, archive, performance,
and durable storage—distinct in one’s mind when examining or designing a log
implementation because they lead to different priorities among design trade-offs. When
archive is the goal, low cost of the storage medium is usually more important than quick access
because archive logs are large but, in practice, infrequently read. When durable storage is the
goal, it may be important to use storage media with different physical properties, so that failure
modes will be as independent as possible. When all-or-nothing atomicity or performance is the
purpose, minimizing mechanical movement of the storage device becomes a high priority.
Because of the competing objectives of different kinds of logs, as a general rule, it is usually a
wise move to implement separate, dedicated logs for different functions.

Saltzer & Kaashoek Ch. 9, p. 40 June 25, 2009 8:22 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–41

Journal Storage

WRITE_NEW_VALUE

Log

Cell

log

install

Storage

READ_CURRENT_VALUE

current
end of log

FIGURE 9.17

Logging for all-or-nothing atomicity. The application performs WRITE_NEW_VALUE by first
appending a record of the new value to the log in journal storage, and then installing the new
value in cell storage by overwriting. The application performs READ_CURRENT_VALUE by reading
just from cell storage.

Volatile storage Non-volatile storage

log
Application
program cell

storage
In-memory database:

log
Application
program cell

storage
Ordinary database:

Application
program

log
cell

storage
cacheHigh-performance

database:

FIGURE 9.18

Three common logging configurations. Arrows show data flow as the application reads, logs,
and installs data.

Saltzer & Kaashoek Ch. 9, p. 41 June 25, 2009 8:22 am

9–42 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

database, cell storage resides entirely in some volatile storage medium. In the second
common configuration, cell storage resides in non-volatile storage along with the log.
Finally, high-performance database management systems usually blend the two preced
ing configurations by implementing a cache for cell storage in a volatile medium, and a
potentially independent multilevel memory management algorithm moves data between
the cache and non-volatile cell storage.

Recording everything twice adds one significant complication to all-or-nothing ato
micity because the system can crash between the time a change is logged and the time it
is installed. To maintain all-or-nothing atomicity, logging systems follow a protocol that
has two fundamental requirements. The first requirement is a constraint on the order of
logging and installing. The second requirement is to run an explicit recovery procedure
after every crash. (We saw a preview of the strategy of using a recovery procedure in Fig
ure 9.7, which used a recovery procedure named CHECK_AND_REPAIR.)

9.3.2 Logging Protocols

There are several kinds of atomicity logs that vary in the order in which things are done
and in the details of information logged. However, all of them involve the ordering con
straint implied by the numbering of the arrows in Figure 9.17. The constraint is a version
of the golden rule of atomicity (never modify the only copy), known as the write-ahead
log (WAL) protocol:

Write-ahead-log protocol

Log the update before installing it.

The reason is that logging appends but installing overwrites. If an application violates
this protocol by installing an update before logging it and then for some reason must
abort, or the system crashes, there is no systematic way to discover the installed update
and, if necessary, reverse it. The write-ahead-log protocol ensures that if a crash occurs,
a recovery procedure can, by consulting the log, systematically find all completed and
intended changes to cell storage and either restore those records to old values or set them
to new values, as appropriate to the circumstance.

The basic element of an atomicity log is the log record. Before an action that is to be
all-or-nothing installs a data value, it appends to the end of the log a new record of type
CHANGE containing, in the general case, three pieces of information (we will later see spe
cial cases that allow omitting item 2 or item 3):

1. 	The identity of the all-or-nothing action that is performing the update.

2. 	A component action that, if performed, installs the intended value in cell storage.
This component action is a kind of an insurance policy in case the system crashes.
If the all-or-nothing action commits, but then the system crashes before the action
has a chance to perform the install, the recovery procedure can perform the install

Saltzer & Kaashoek Ch. 9, p. 42	 June 25, 2009 8:22 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–43

on behalf of the action. Some systems call this component action the do action,
others the redo action. For mnemonic compatibility with item 3, this text calls it
the redo action.

3. 	A second component action that, if performed, reverses the effect on cell storage
of the planned install. This component action is known as the undo action because
if, after doing the install, the all-or-nothing action aborts or the system crashes, it
may be necessary for the recovery procedure to reverse the effect of (undo) the
install.

An application appends a log record by invoking the lower-layer procedure LOG, which
itself must be atomic. The LOG procedure is another example of bootstrapping: Starting
with, for example, the ALL_OR_NOTHING_PUT described earlier in this chapter, a log designer
creates a generic LOG procedure, and using the LOG procedure an application programmer
then can implement all-or-nothing atomicity for any properly designed composite
action.

As we saw in Figure 9.17, LOG and INSTALL are the logging implementation of the
WRITE_NEW_VALUE part of the interface of Figure 9.11, and READ_CURRENT_VALUE is simply a
READ from cell storage. We also need a logging implementation of the remaining parts of
the Figure 9.11 interface. The way to implement NEW_ACTION is to log a BEGIN record that
contains just the new all-or-nothing action’s identity. As the all-or-nothing action pro
ceeds through its pre-commit phase, it logs CHANGE records. To implement COMMIT or
ABORT, the all-or-nothing action logs an OUTCOME record that becomes the authoritative
indication of the outcome of the all-or-nothing action. The instant that the all-or-noth
ing action logs the OUTCOME record is its commit point. As an example, Figure 9.19 shows
our by now familiar TRANSFER action implemented with logging.

Because the log is the authoritative record of the action, the all-or-nothing action can
perform installs to cell storage at any convenient time that is consistent with the write-
ahead-log protocol, either before or after logging the OUTCOME record. The final step of an
action is to log an END record, again containing just the action’s identity, to show that the
action has completed all of its installs. (Logging all four kinds of activity—BEGIN, CHANGE,
OUTCOME, and END—is more general than sometimes necessary. As we will see, some log
ging systems can combine, e.g., OUTCOME and END, or BEGIN with the first CHANGE.) Figure
9.20 shows examples of three log records, two typical CHANGE records of an all-or-nothing
TRANSFER action, interleaved with the OUTCOME record of some other, perhaps completely
unrelated, all-or-nothing action.

One consequence of installing results in cell storage is that for an all-or-nothing
action to abort it may have to do some clean-up work. Moreover, if the system involun
tarily terminates a thread that is in the middle of an all-or-nothing action (because, for
example, the thread has gotten into a deadlock or an endless loop) some entity other than
the hapless thread must clean things up. If this clean-up step were omitted, the all-or
nothing action could remain pending indefinitely. The system cannot simply ignore
indefinitely pending actions because all-or-nothing actions initiated by other threads are
likely to want to use the data that the terminated action changed. (This is actually a

Saltzer & Kaashoek Ch. 9, p. 43	 June 25, 2009 8:22 am

9–44 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.19

1 procedure TRANSFER (debit_account, credit_account, amount)
2 my_id ← LOG (BEGIN_TRANSACTION)
3 dbvalue.old ← GET (debit_account)
4 dbvalue.new ← dbvalue.old - amount
5 crvalue.old ← GET (credit_account, my_id)
6 crvalue.new ← crvalue.old + amount
7 LOG (CHANGE, my_id,
8 “PUT (debit_account, dbvalue.new)”, //redo action
9 “PUT (debit_account, dbvalue.old)”) //undo action
10 LOG (CHANGE, my_id,
11 “PUT (credit_account, crvalue.new)” //redo action
12 “PUT (credit_account, crvalue.old)”) //undo action
13 PUT (debit_account, dbvalue.new) // install
14 PUT (credit_account, crvalue.new) // install
15 if dbvalue.new > 0 then
16 LOG (OUTCOME, COMMIT, my_id)
17 else
18 LOG (OUTCOME, ABORT, my_id)
19 signal(“Action not allowed. Would make debit account negative.”)
20 LOG (END_TRANSACTION, my_id)

An all-or-nothing TRANSFER procedure, implemented with logging.

before-or-after atomicity concern, one of the places where all-or-nothing atomicity and
before-or-after atomicity intersect.)

If the action being aborted did any installs, those installs are still in cell storage, so
simply appending to the log an OUTCOME record saying that the action aborted is not
enough to make it appear to later observers that the all-or-nothing action did nothing.
The solution to this problem is to execute a generic ABORT procedure. The ABORT proce

…

9979

PUT(debit_account, $120)

action_id:

redo_action:

undo_action:

CHANGEtype:

PUT(debit_account, $90)

9974
COMMITTED

action_id:
status:

OUTCOMEtype:
9979

PUT(credit_account, $40)

PUT(credit_account, $10)

action_id:

redo_action:

undo_action:

CHANGEtype:

older log records newer log records

FIGURE 9.20

An example of a section of an atomicity log, showing two CHANGE records for a TRANSFER action
that has action_id 9979 and the OUTCOME record of a different all-or-nothing action.

Saltzer & Kaashoek Ch. 9, p. 44 June 25, 2009 8:22 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–45

dure restores to their old values all cell storage variables that the all-or-nothing action
installed. The ABORT procedure simply scans the log backwards looking for log entries cre
ated by this all-or-nothing action; for each CHANGE record it finds, it performs the logged
undo_action, thus restoring the old values in cell storage. The backward search terminates
when the ABORT procedure finds that all-or-nothing action’s BEGIN record. Figure 9.21
illustrates.

The extra work required to undo cell storage installs when an all-or-nothing action
aborts is another example of optimizing for the common case: one expects that most all-or
nothing actions will commit, and that aborted actions should be relatively rare. The extra
effort of an occasional roll back of cell storage values will (one hopes) be more than repaid
by the more frequent gains in performance on updates, reads, and commits.

9.3.3 Recovery Procedures

The write-ahead log protocol is the first of the two required protocol elements of a log
ging system. The second required protocol element is that, following every system crash,
the system must run a recovery procedure before it allows ordinary applications to use
the data. The details of the recovery procedure depend on the particular configuration
of the journal and cell storage with respect to volatile and non-volatile memory.

Consider first recovery for the in-memory database of Figure 9.18. Since a system
crash may corrupt anything that is in volatile memory, including both the state of cell
storage and the state of any currently running threads, restarting a crashed system usually
begins by resetting all volatile memory. The effect of this reset is to abandon both the cell

1 procedure ABORT (action_id)

2 starting at end of log repeat until beginning

3 log_record ← previous record of log

4 if log_record.id = action_id then

5 if (log_record.type = OUTCOME)

6 then signal (“Can’t abort an already completed action.”)

7 if (log_record.type = CHANGE)

8 then perform undo_action of log_record

9 if (log_record.type = BEGIN)

10 then break repeat

11 LOG (action_id, OUTCOME, ABORTED) // Block future undos.

12 LOG (action_id, END)

FIGURE 9.21

Generic ABORT procedure for a logging system.The argument action_id identifies the action to
be aborted. An atomic action calls this procedure if it decides to abort. In addition, the operating
system may call this procedure if it decides to terminate the action, for example to break a
deadlock or because the action is running too long. The LOG procedure must itself be atomic.

Saltzer & Kaashoek Ch. 9, p. 45 June 25, 2009 8:22 am

9–46 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.22

1 procedure RECOVER () // Recovery procedure for a volatile, in-memory database.
2 winners ← NULL

3 starting at end of log repeat until beginning
4 log_record ← previous record of log
5 if (log_record.type = OUTCOME)
6 then winners ← winners + log_record // Set addition.

7 starting at beginning of log repeat until end
8 log_record ← next record of log
9 if (log_record.type= CHANGE)
10 and (outcome_record ← find (log_record.action_id) in winners)
11 and (outcome_record.status = COMMITTED) then
12 perform log_record.redo_action

An idempotent redo-only recovery procedure for an in-memory database. Because RECOVER

writes only to volatile storage, if a crash occurs while it is running it is safe to run it again.

storage version of the database and any all-or-nothing actions that were in progress at the
time of the crash. On the other hand, the log, since it resides on non-volatile journal stor
age, is unaffected by the crash and should still be intact.

The simplest recovery procedure performs two passes through the log. On the first
pass, it scans the log backward from the last record, so the first evidence it will encounter
of each all-or-nothing action is the last record that the all-or-nothing action logged. A
backward log scan is sometimes called a LIFO (for last-in, first-out) log review. As the
recovery procedure scans backward, it collects in a set the identity and completion status
of every all-or-nothing action that logged an OUTCOME record before the crash. These
actions, whether committed or aborted, are known as winners.

When the backward scan is complete the set of winners is also complete, and the
recovery procedure begins a forward scan of the log. The reason the forward scan is
needed is that restarting after the crash completely reset the cell storage. During the for
ward scan the recovery procedure performs, in the order found in the log, all of the REDO

actions of every winner whose OUTCOME record says that it COMMITTED. Those REDOs reinstall
all committed values in cell storage, so at the end of this scan, the recovery procedure has
restored cell storage to a desirable state. This state is as if every all-or-nothing action that
committed before the crash had run to completion, while every all-or-nothing action
that aborted or that was still pending at crash time had never existed. The database sys
tem can now open for regular business. Figure 9.22 illustrates.

This recovery procedure emphasizes the point that a log can be viewed as an author
itative version of the entire database, sufficient to completely reconstruct the reference
copy in cell storage.

There exist cases for which this recovery procedure may be overkill, when the dura
bility requirement of the data is minimal. For example, the all-or-nothing action may

Saltzer & Kaashoek Ch. 9, p. 46 June 25, 2009 8:22 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–47

have been to make a group of changes to soft state in volatile storage. If the soft state is
completely lost in a crash, there would be no need to redo installs because the definition
of soft state is that the application is prepared to construct new soft state following a
crash. Put another way, given the options of “all” or “nothing,” when the data is all soft
state “nothing” is always an appropriate outcome after a crash.

A critical design property of the recovery procedure is that, if there should be another
system crash during recovery, it must still be possible to recover. Moreover, it must be
possible for any number of crash-restart cycles to occur without compromising the cor
rectness of the ultimate result. The method is to design the recovery procedure to be
idempotent. That is, design it so that if it is interrupted and restarted from the beginning
it will produce exactly the same result as if it had run to completion to begin with. With
the in-memory database configuration, this goal is an easy one: just make sure that the
recovery procedure modifies only volatile storage. Then, if a crash occurs during recov
ery, the loss of volatile storage automatically restores the state of the system to the way it
was when the recovery started, and it is safe to run it again from the beginning. If the
recovery procedure ever finishes, the state of the cell storage copy of the database will be
correct, no matter how many interruptions and restarts intervened.

The ABORT procedure similarly needs to be idempotent because if an all-or-nothing
action decides to abort and, while running ABORT, some timer expires, the system may
decide to terminate and call ABORT for that same all-or-nothing action. The version of
abort in Figure 9.21 will satisfy this requirement if the individual undo actions are them
selves idempotent.

9.3.4 Other Logging Configurations: Non-Volatile Cell Storage

Placing cell storage in volatile memory is a sweeping simplification that works well for
small and medium-sized databases, but some databases are too large for that to be prac
tical, so the designer finds it necessary to place cell storage on some cheaper, non-volatile
storage medium such as magnetic disk, as in the second configuration of Figure 9.18. But
with a non-volatile storage medium, installs survive system crashes, so the simple recov
ery procedure used with the in-memory database would have two shortcomings:

1. 	If, at the time of the crash, there were some pending all-or-nothing actions that
had installed changes, those changes will survive the system crash. The recovery
procedure must reverse the effects of those changes, just as if those actions had
aborted.

2. 	That recovery procedure reinstalls the entire database, even though in this case
much of it is probably intact in non-volatile storage. If the database is large enough
that it requires non-volatile storage to contain it, the cost of unnecessarily
reinstalling it in its entirety at every recovery is likely to be unacceptable.

In addition, reads and writes to non-volatile cell storage are likely to be slow, so it is
nearly always the case that the designer installs a cache in volatile memory, along with a

Saltzer & Kaashoek Ch. 9, p. 47	 June 25, 2009 8:22 am

9–48 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

multilevel memory manager, thus moving to the third configuration of Figure 9.18. But
that addition introduces yet another shortcoming:

3. 	In a multilevel memory system, the order in which data is written from volatile
levels to non-volatile levels is generally under control of a multilevel memory
manager, which may, for example, be running a least-recently-used algorithm. As
a result, at the instant of the crash some things that were thought to have been
installed may not yet have migrated to the non-volatile memory.

To postpone consideration of this shortcoming, let us for the moment assume that
the multilevel memory manager implements a write-through cache. (Section 9.3.6,
below, will return to the case where the cache is not write-through.) With a write-
through cache, we can be certain that everything that the application program has
installed has been written to non-volatile storage. This assumption temporarily drops the
third shortcoming out of our list of concerns and the situation is the same as if we were
using the “Ordinary Database” configuration of Figure 9.18 with no cache. But we still
have to do something about the first two shortcomings, and we also must make sure that
the modified recovery procedure is still idempotent.

To address the first shortcoming, that the database may contain installs from actions
that should be undone, we need to modify the recovery procedure of Figure 9.22. As the
recovery procedure performs its initial backward scan, rather than looking for winners,
it instead collects in a set the identity of those all-or-nothing actions that were still in
progress at the time of the crash. The actions in this set are known as losers, and they can
include both actions that committed and actions that did not. Losers are easy to identify
because the first log record that contains their identity that is encountered in a backward
scan will be something other than an END record. To identify the losers, the pseudocode
keeps track of which actions logged an END record in an auxiliary list named completeds.
When RECOVER comes across a log record belong to an action that is not in completed, it
adds that action to the set named losers. In addition, as it scans backwards, whenever the
recovery procedure encounters a CHANGE record belonging to a loser, it performs the UNDO

action listed in the record. In the course of the LIFO log review, all of the installs per
formed by losers will thus be rolled back and the state of the cell storage will be as if the
all-or-nothing actions of losers had never started. Next, RECOVER performs the forward log
scan of the log, performing the redo actions of the all-or-nothing actions that committed,
as shown in Figure 9.23. Finally, the recovery procedure logs an END record for every all-
or-nothing action in the list of losers. This END record transforms the loser into a com
pleted action, thus ensuring that future recoveries will ignore it and not perform its
undos again. For future recoveries to ignore aborted losers is not just a performance
enhancement, it is essential, to avoid incorrectly undoing updates to those same variables
made by future all-or-nothing actions.

As before, the recovery procedure must be idempotent, so that if a crash occurs during
recovery the system can just run the recovery procedure again. In addition to the tech
nique used earlier of placing the temporary variables of the recovery procedure in volatile
storage, each individual undo action must also be idempotent. For this reason, both redo

Saltzer & Kaashoek Ch. 9, p. 48	 June 25, 2009 8:22 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–49

1 procedure RECOVER ()// Recovery procedure for non-volatile cell memory
2 completeds ← NULL

3 losers ← NULL

4 starting at end of log repeat until beginning
5 log_record ← previous record of log
6 if (log_record.type = END)
7 then completeds ← completeds + log_record // Set addition.
8 if (log_record.action_id is not in completeds) then
9 losers ← losers + log_record // Add if not already in set.
10 if (log_record.type = CHANGE) then
11 perform log_record.undo_action

12 starting at beginning of log repeat until end
13 log_record ← next record of log
14 if (log_record.type = CHANGE)
15 and (log_record.action_id.status = COMMITTED) then
16 perform log_record.redo_action

17 for each log_record in losers do
18 log (log_record.action_id, END) // Show action completed.

FIGURE 9.23

An idempotent undo/redo recovery procedure for a system that performs installs to non-volatile
cell memory. In this recovery procedure, losers are all-or-nothing actions that were in progress
at the time of the crash.

and undo actions are usually expressed as blind writes. A blind write is a simple overwrit
ing of a data value without reference to its previous value. Because a blind write is
inherently idempotent, no matter how many times one repeats it, the result is always the
same. Thus, if a crash occurs part way through the logging of END records of losers, imme
diately rerunning the recovery procedure will still leave the database correct. Any losers
that now have END records will be treated as completed on the rerun, but that is OK
because the previous attempt of the recovery procedure has already undone their installs.

As for the second shortcoming, that the recovery procedure unnecessarily redoes
every install, even installs not belong to losers, we can significantly simplify (and speed
up) recovery by analyzing why we have to redo any installs at all. The reason is that,
although the WAL protocol requires logging of changes to occur before install, there is
no necessary ordering between commit and install. Until a committed action logs its END

record, there is no assurance that any particular install of that action has actually hap
pened yet. On the other hand, any committed action that has logged an END record has
completed its installs. The conclusion is that the recovery procedure does not need to

Saltzer & Kaashoek Ch. 9, p. 49 June 25, 2009 8:22 am

9–50 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.24

1 procedure RECOVER () // Recovery procedure for rollback recovery.
2 completeds ← NULL

3 losers ← NULL

4 starting at end of log repeat until beginning // Perform undo scan.
5 log_record ← previous record of log
6 if (log_record.type = OUTCOME)
7 then completeds ← completeds + log_record // Set addition.
8 if (log_record.action_id is not in completeds) then
9 losers ← losers + log_record // New loser.
10 if (log_record.type = CHANGE) then
11 perform log_record.undo_action

12 for each log_record in losers do
13 log (log_record.action_id, OUTCOME, ABORT) // Block future undos.

An idempotent undo-only recovery procedure for rollback logging.

redo installs for any committed action that has logged its END record. A useful exercise is
to modify the procedure of Figure 9.23 to take advantage of that observation.

It would be even better if the recovery procedure never had to redo any installs. We
can arrange for that by placing another requirement on the application: it must perform
all of its installs before it logs its OUTCOME record. That requirement, together with the
write-through cache, ensures that the installs of every completed all-or-nothing action
are safely in non-volatile cell storage and there is thus never a need to perform any redo
actions. (It also means that there is no need to log an END record.) The result is that the
recovery procedure needs only to undo the installs of losers, and it can skip the entire
forward scan, leading to the simpler recovery procedure of Figure 9.24. This scheme,
because it requires only undos, is sometimes called undo logging or rollback recovery. A
property of rollback recovery is that for completed actions, cell storage is just as author
itative as the log. As a result, one can garbage collect the log, discarding the log records
of completed actions. The now much smaller log may then be able to fit in a faster stor
age medium for which the durability requirement is only that it outlast pending actions.

There is an alternative, symmetric constraint used by some logging systems. Rather
than requiring that all installs be done before logging the OUTCOME record, one can instead
require that all installs be done after recording the OUTCOME record. With this constraint,
the set of CHANGE records in the log that belong to that all-or-nothing action become a
description of its intentions. If there is a crash before logging an OUTCOME record, we know
that no installs have happened, so the recovery never needs to perform any undos. On
the other hand, it may have to perform installs for all-or-nothing actions that committed.
This scheme is called redo logging or roll-forward recovery. Furthermore, because we are
uncertain about which installs actually have taken place, the recovery procedure must

Saltzer & Kaashoek Ch. 9, p. 50 June 25, 2009 8:22 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–51

perform all logged installs for all-or-nothing actions that did not log an END record. Any
all-or-nothing action that logged an END record must have completed all of its installs, so
there is no need for the recovery procedure to perform them. The recovery procedure
thus reduces to doing installs just for all-or-nothing actions that were interrupted
between the logging of their OUTCOME and END records. Recovery with redo logging can
thus be quite swift, though it does require both a backward and forward scan of the entire
log.

We can summarize the procedures for atomicity logging as follows:

• 	 Log to journal storage before installing in cell storage (WAL protocol)
• 	If all-or-nothing actions perform 	all installs to non-volatile storage before

logging their OUTCOME record, then recovery needs only to undo the installs of
incomplete uncommitted actions. (rollback/undo recovery)

• 	 If all-or-nothing actions perform no installs to non-volatile storage before logging
their OUTCOME record, then recovery needs only to redo the installs of incomplete
committed actions. (roll-forward/redo recovery)

• 	 If all-or-nothing actions are not disciplined about when they do installs to non
volatile storage, then recovery needs to both redo the installs of incomplete
committed actions and undo the installs of incomplete uncommitted ones.

In addition to reading and updating memory, an all-or-nothing action may also need
to send messages, for example, to report its success to the outside world. The action of
sending a message is just like any other component action of the all-or-nothing action.
To provide all-or-nothing atomicity, message sending can be handled in a way analogous
to memory update. That is, log a CHANGE record with a redo action that sends the message.
If a crash occurs after the all-or-nothing action commits, the recovery procedure will per
form this redo action along with other redo actions that perform installs. In principle,
one could also log an undo_action that sends a compensating message (“Please ignore my
previous communication!”). However, an all-or-nothing action will usually be careful
not to actually send any messages until after the action commits, so roll-forward recovery
applies. For this reason, a designer would not normally specify an undo action for a mes
sage or for any other action that has outside-world visibility such as printing a receipt,
opening a cash drawer, drilling a hole, or firing a missile.

Incidentally, although much of the professional literature about database atomicity
and recovery uses the terms “winner” and “loser” to describe the recovery procedure, dif
ferent recovery systems use subtly different definitions for the two sets, depending on the
exact logging scheme, so it is a good idea to review those definitions carefully.

9.3.5 Checkpoints

Constraining the order of installs to be all before or all after the logging of the OUTCOME

record is not the only thing we could do to speed up recovery. Another technique that
can shorten the log scan is to occasionally write some additional information, known as
a checkpoint, to non-volatile storage. Although the principle is always the same, the exact

Saltzer & Kaashoek Ch. 9, p. 51	 June 25, 2009 8:22 am

9–52 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

information that is placed in a checkpoint varies from one system to another. A check
point can include information written either to cell storage or to the log (where it is
known as a checkpoint record) or both.

Suppose, for example, that the logging system maintains in volatile memory a list of
identifiers of all-or-nothing actions that have started but have not yet recorded an END

record, together with their pending/committed/aborted status, keeping it up to date by
observing logging calls. The logging system then occasionally logs this list as a CHECKPOINT

record. When a crash occurs sometime later, the recovery procedure begins a LIFO log
scan as usual, collecting the sets of completed actions and losers. When it comes to a
CHECKPOINT record it can immediately fill out the set of losers by adding those all-or-noth
ing actions that were listed in the checkpoint that did not later log an END record. This
list may include some all-or-nothing actions listed in the CHECKPOINT record as COMMITTED,
but that did not log an END record by the time of the crash. Their installs still need to be
performed, so they need to be added to the set of losers. The LIFO scan continues, but
only until it has found the BEGIN record of every loser.

With the addition of CHECKPOINT records, the recovery procedure becomes more com
plex, but is potentially shorter in time and effort:

1. 	Do a LIFO scan of the log back to the last CHECKPOINT record, collecting identifiers
of losers and undoing all actions they logged.

2. 	Complete the list of losers from information in the checkpoint.

3. 	Continue the LIFO scan, undoing the actions of losers, until every BEGIN record
belonging to every loser has been found.

4. 	Perform a forward scan from that point to the end of the log, performing any
committed actions belonging to all-or-nothing actions in the list of losers that
logged an OUTCOME record with status COMMITTED.

In systems in which long-running all-or-nothing actions are uncommon, step 3 will typ
ically be quite brief or even empty, greatly shortening recovery. A good exercise is to
modify the recovery program of Figure 9.23 to accommodate checkpoints.

Checkpoints are also used with in-memory databases, to provide durability without
the need to reprocess the entire log after every system crash. A useful checkpoint proce
dure for an in-memory database is to make a snapshot of the complete database, writing
it to one of two alternating (for all-or-nothing atomicity) dedicated non-volatile storage
regions, and then logging a CHECKPOINT record that contains the address of the latest snap
shot. Recovery then involves scanning the log back to the most recent CHECKPOINT record,
collecting a list of committed all-or-nothing actions, restoring the snapshot described
there, and then performing redo actions of those committed actions from the CHECKPOINT

record to the end of the log. The main challenge in this scenario is dealing with update
activity that is concurrent with the writing of the snapshot. That challenge can be met
either by preventing all updates for the duration of the snapshot or by applying more
complex before-or-after atomicity techniques such as those described in later sections of
this chapter.

Saltzer & Kaashoek Ch. 9, p. 52	 June 25, 2009 8:22 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–53

9.3.6 What if the Cache is not Write-Through? (Advanced Topic)

Between the log and the write-through cache, the logging configurations just described
require, for every data update, two synchronous writes to non-volatile storage, with
attendant delays waiting for the writes to complete. Since the original reason for intro
ducing a log was to increase performance, these two synchronous write delays usually
become the system performance bottleneck. Designers who are interested in maximizing
performance would prefer to use a cache that is not write-through, so that writes can be
deferred until a convenient time when they can be done in batches. Unfortunately, the
application then loses control of the order in which things are actually written to non
volatile storage. Loss of control of order has a significant impact on our all-or-nothing
atomicity algorithms, since they require, for correctness, constraints on the order of
writes and certainty about which writes have been done.

The first concern is for the log itself because the write-ahead log protocol requires that
appending a CHANGE record to the log precede the corresponding install in cell storage.
One simple way to enforce the WAL protocol is to make just log writes write-through,
but allow cell storage writes to occur whenever the cache manager finds it convenient.
However, this relaxation means that if the system crashes there is no assurance that any
particular install has actually migrated to non-volatile storage. The recovery procedure,
assuming the worst, cannot take advantage of checkpoints and must again perform
installs starting from the beginning of the log. To avoid that possibility, the usual design
response is to flush the cache as part of logging each checkpoint record. Unfortunately,
flushing the cache and logging the checkpoint must be done as a before-or-after action
to avoid getting tangled with concurrent updates, which creates another design chal
lenge. This challenge is surmountable, but the complexity is increasing.

Some systems pursue performance even farther. A popular technique is to write the
log to a volatile buffer, and force that entire buffer to non-volatile storage only when an
all-or-nothing action commits. This strategy allows batching several CHANGE records with
the next OUTCOME record in a single synchronous write. Although this step would appear
to violate the write-ahead log protocol, that protocol can be restored by making the cache
used for cell storage a bit more elaborate; its management algorithm must avoid writing
back any install for which the corresponding log record is still in the volatile buffer. The
trick is to number each log record in sequence, and tag each record in the cell storage
cache with the sequence number of its log record. Whenever the system forces the log, it
tells the cache manager the sequence number of the last log record that it wrote, and the
cache manager is careful never to write back any cache record that is tagged with a higher
log sequence number.

We have in this section seen some good examples of the law of diminishing returns at
work: schemes that improve performance sometimes require significantly increased com
plexity. Before undertaking any such scheme, it is essential to evaluate carefully how
much extra performance one stands to gain.

Saltzer & Kaashoek Ch. 9, p. 53 June 25, 2009 8:22 am

9–54 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

9.4 Before-or-After Atomicity I: Concepts
The mechanisms developed in the previous sections of this chapter provide atomicity in
the face of failure, so that other atomic actions that take place after the failure and sub
sequent recovery find that an interrupted atomic action apparently either executed all of
its steps or none of them. This and the next section investigate how to also provide ato
micity of concurrent actions, known as before-or-after atomicity. In this development we
will provide both all-or-nothing atomicity and before-or-after atomicity, so we will now
be able to call the resulting atomic actions transactions.

Concurrency atomicity requires additional mechanism because when an atomic
action installs data in cell storage, that data is immediately visible to all concurrent
actions. Even though the version history mechanism can hide pending changes from
concurrent atomic actions, they can read other variables that the first atomic action plans
to change. Thus, the composite nature of a multiple-step atomic action may still be dis
covered by a concurrent atomic action that happens to look at the value of a variable in
the midst of execution of the first atomic action. Thus, making a composite action
atomic with respect to concurrent threads—that is, making it a before-or-after action—
requires further effort.

Recall that Section 9.1.5 defined the operation of concurrent actions to be correct if
every result is guaranteed to be one that could have been obtained by some purely serial appli
cation of those same actions. So we are looking for techniques that guarantee to produce
the same result as if concurrent actions had been applied serially, yet maximize the per
formance that can be achieved by allowing concurrency.

In this Section 9.4 we explore three successively better before-or-after atomicity
schemes, where “better” means that the scheme allows more concurrency. To illustrate
the concepts we return to version histories, which allow a straightforward and compel
ling correctness argument for each scheme. Because version histories are rarely used in
practice, in the following Section 9.5 we examine a somewhat different approach, locks,
which are widely used because they can provide higher performance, but for which cor
rectness arguments are more difficult.

9.4.1 Achieving Before-or-After Atomicity: Simple Serialization

A version history assigns a unique identifier to each atomic action so that it can link ten
tative versions of variables to the action’s outcome record. Suppose that we require that
the unique identifiers be consecutive integers, which we interpret as serial numbers, and
we modify the procedure BEGIN_TRANSACTION by adding enforcement of the following sim
ple serialization rule: each newly created transaction n must, before reading or writing any
data, wait until the preceding transaction n – 1 has either committed or aborted. (To
ensure that there is always a transaction n – 1, assume that the system was initialized by
creating a transaction number zero with an OUTCOME record in the committed state.) Fig
ure 9.25 shows this version of BEGIN_TRANSACTION. The scheme forces all transactions to
execute in the serial order that threads happen to invoke BEGIN_TRANSACTION. Since that

Saltzer & Kaashoek Ch. 9, p. 54 June 25, 2009 8:22 am

9.4 Before-or-After Atomicity I: Concepts 9–55

1 procedure BEGIN_TRANSACTION ()
2 id ← NEW_OUTCOME_RECORD (PENDING) // Create, initialize, assign id.
3 previous_id ← id – 1
4 wait until previous_id.outcome_record.state ≠ PENDING

5 return id

FIGURE 9.25

BEGIN_TRANSACTION with the simple serialization discipline to achieve before-or-after atomicity.
In order that there be an id – 1 for every value of id, startup of the system must include creating
a dummy transaction with id = 0 and id.outcome_record.state set to COMMITTED. Pseudocode
for the procedure NEW_OUTCOME_RECORD appears in Figure 9.30.

order is a possible serial order of the various transactions, by definition simple serializa
tion will produce transactions that are serialized and thus are correct before-or-after
actions. Simple serialization trivially provides before-or-after atomicity, and the transac
tion is still all-or-nothing, so the transaction is now atomic both in the case of failure and
in the presence of concurrency.

Simple serialization provides before-or-after atomicity by being too conservative: it
prevents all concurrency among transactions, even if they would not interfere with one
another. Nevertheless, this approach actually has some practical value—in some applica
tions it may be just the right thing to do, on the basis of simplicity. Concurrent threads
can do much of their work in parallel because simple serialization comes into play only
during those times that threads are executing transactions, which they generally would
be only at the moments they are working with shared variables. If such moments are
infrequent or if the actions that need before-or-after atomicity all modify the same small
set of shared variables, simple serialization is likely to be just about as effective as any
other scheme. In addition, by looking carefully at why it works, we can discover less con
servative approaches that allow more concurrency, yet still have compelling arguments
that they preserve correctness. Put another way, the remainder of study of before-or-after
atomicity techniques is fundamentally nothing but invention and analysis of increasingly
effective—and increasingly complex—performance improvement measures.

The version history provides a useful representation for this analysis. Figure 9.26
illustrates in a single figure the version histories of a banking system consisting of four
accounts named A, B, C, and D, during the execution of six transactions, with serial num
bers 1 through 6. The first transaction initializes all the objects to contain the value 0 and
the following transactions transfer various amounts back and forth between pairs of
accounts.

This figure provides a straightforward interpretation of why simple serialization
works correctly. Consider transaction 3, which must read and write objects B and C in
order to transfer funds from one to the other. The way for transaction 3 to produce
results as if it ran after transaction 2 is for all of 3’s input objects to have values that
include all the effects of transaction 2—if transaction 2 commits, then any objects it

Saltzer & Kaashoek Ch. 9, p. 55 June 25, 2009 8:22 am

9–56 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

Object value of object at end of transaction

A

1

0

2

+10

3 4

+12

5 6

0

B 0 -10 -6 -12 -2

C 0 -4 +2

D 0 -2

outcome
record
state

Committed Committed Committed Aborted Committed Pending

transaction 1: initialize all accounts to 0
2: transfer 10 from B to A
3: transfer 4 from C to B
4: transfer 2 from D to A (aborts)
5: transfer 6 from B to C
6: transfer 10 from A to B

FIGURE 9.26

Version history of a banking system.

changed and that 3 uses should have new values; if transaction 2 aborts, then any objects
it tentatively changed and 3 uses should contain the values that they had when transac
tion 2 started. Since in this example transaction 3 reads B and transaction 2 creates a new
version of B, it is clear that for transaction 3 to produce a correct result it must wait until
transaction 2 either commits or aborts. Simple serialization requires that wait, and thus
ensures correctness.

Figure 9.26 also provides some clues about how to increase concurrency. Looking at
transaction 4 (the example shows that transaction 4 will ultimately abort for some reason,
but suppose we are just starting transaction 4 and don’t know that yet), it is apparent that
simple serialization is too strict. Transaction 4 reads values only from A and D, yet trans
action 3 has no interest in either object. Thus the values of A and D will be the same
whether or not transaction 3 commits, and a discipline that forces 4 to wait for 3’s com
pletion delays 4 unnecessarily. On the other hand, transaction 4 does use an object that
transaction 2 modifies, so transaction 4 must wait for transaction 2 to complete. Of
course, simple serialization guarantees that, since transaction 4 can’t begin till transaction
3 completes and transaction 3 couldn’t have started until transaction 2 completed.

Saltzer & Kaashoek Ch. 9, p. 56 June 25, 2009 8:22 am

9.4 Before-or-After Atomicity I: Concepts 9–57

Object Value of object at end of transaction
1 2 3 4 5 6 7

A

B

C

D

0

0

0

0

+10

-10 -6

-4

+12

-2

-12

+2

0

-2

+10 +12 0

-6 -2

0 -4 +2 +2

0 0 -2 -2 -2

OUTCOME

record Committed Committed Committed Aborted Committed Pending Pending

state

Unchanged value

Changed value

FIGURE 9.27

System state history with unchanged values shown.

These observations suggest that there may be other, more relaxed, disciplines that can
still guarantee correct results. They also suggest that any such discipline will probably
involve detailed examination of exactly which objects each transaction reads and writes.

Figure 9.26 represents the state history of the entire system in serialization order, but
the slightly different representation of Figure 9.27 makes that state history more explicit.
In Figure 9.27 it appears that each transaction has perversely created a new version of
every object, with unchanged values in dotted boxes for those objects it did not actually
change. This representation emphasizes that the vertical slot for, say, transaction 3 is in
effect a reservation in the state history for every object in the system; transaction 3 has an
opportunity to propose a new value for any object, if it so wishes.

The reason that the system state history is helpful to the discussion is that as long as
we eventually end up with a state history that has the values in the boxes as shown, the
actual order in real time in which individual object values are placed in those boxes is
unimportant. For example, in Figure 9.27, transaction 3 could create its new version of
object C before transaction 2 creates its new version of B. We don’t care when things hap
pen, as long as the result is to fill in the history with the same set of values that would
result from strictly following this serial ordering. Making the actual time sequence unim-

Saltzer & Kaashoek Ch. 9, p. 57 June 25, 2009 8:22 am

9–58 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

portant is exactly our goal, since that allows us to put concurrent threads to work on the
various transactions. There are, of course, constraints on time ordering, but they become
evident by examining the state history.

Figure 9.27 allows us to see just what time constraints must be observed in order for
the system state history to record this particular sequence of transactions. In order for a
transaction to generate results appropriate for its position in the sequence, it should use
as its input values the latest versions of all of its inputs. If Figure 9.27 were available,
transaction 4 could scan back along the histories of its inputs A and D, to the most recent
solid boxes (the ones created by transactions 2 and 1, respectively) and correctly conclude
that if transactions 2 and 1 have committed then transaction 4 can proceed—even if
transaction 3 hasn’t gotten around to filling in values for B and C and hasn’t decided
whether or not it should commit.

This observation suggests that any transaction has enough information to ensure
before-or-after atomicity with respect to other transactions if it can discover the dotted-
versus-solid status of those version history boxes to its left. The observation also leads to
a specific before-or-after atomicity discipline that will ensure correctness. We call this
discipline mark-point.

9.4.2 The Mark-Point Discipline

Concurrent threads that invoke READ_CURRENT_VALUE as implemented in Figure 9.15 can
not see a pending version of any variable. That observation is useful in designing a
before-or-after atomicity discipline because it allows a transaction to reveal all of its
results at once simply by changing the value of its OUTCOME record to COMMITTED. But in
addition to that we need a way for later transactions that need to read a pending version
to wait for it to become committed. The way to do that is to modify READ_CURRENT_VALUE

to wait for, rather than skip over, pending versions created by transactions that are earlier
in the sequential ordering (that is, they have a smaller caller_id), as implemented in lines
4–9 of Figure 9.28. Because, with concurrency, a transaction later in the ordering may
create a new version of the same variable before this transaction reads it,
READ_CURRENT_VALUE still skips over any versions created by transactions that have a larger
caller_id. Also, as before, it may be convenient to have a READ_MY_VALUE procedure (not
shown) that returns pending values previously written by the running transaction.

Adding the ability to wait for pending versions in READ_CURRENT_VALUE is the first step;
to ensure correct before-or-after atomicity we also need to arrange that all variables that
a transaction needs as inputs, but that earlier, not-yet-committed transactions plan to
modify, have pending versions. To do that we call on the application programmer (for
example, the programmer of the TRANSFER transaction) do a bit of extra work: each trans
action should create new, pending versions of every variable it intends to modify, and
announce when it is finished doing so. Creating a pending version has the effect of mark
ing those variables that are not ready for reading by later transactions, so we will call the
point at which a transaction has created them all the mark point of the transaction. The

Saltzer & Kaashoek Ch. 9, p. 58 June 25, 2009 8:22 am

9.4 Before-or-After Atomicity I: Concepts 9–59

transaction announces that it has passed its mark point by calling a procedure named
MARK_POINT_ANNOUNCE, which simply sets a flag in the outcome record for that transaction.

The mark-point discipline then is that no transaction can begin reading its inputs
until the preceding transaction has reached its mark point or is no longer pending. This
discipline requires that each transaction identify which data it will update. If the trans
action has to modify some data objects before it can discover the identity of others that
require update, it could either delay setting its mark point until it does know all of the
objects it will write (which would, of course, also delay all succeeding transactions) or use
the more complex discipline described in the next section.

For example, in Figure 9.27, the boxes under newly arrived transaction 7 are all dot
ted; transaction 7 should begin by marking the ones that it plans to make solid. For
convenience in marking, we split the WRITE_NEW_VALUE procedure of Figure 9.15 into two
parts, named NEW_VERSION and WRITE_VALUE, as in Figure 9.29. Marking then consists sim
ply of a series of calls to NEW_VERSION. When finished marking, the transaction calls
MARK_POINT_ANNOUNCE. It may then go about its business, reading and writing values as
appropriate to its purpose.

Finally, we enforce the mark point discipline by putting a test and, depending on its
outcome, a wait in BEGIN_TRANSACTION, as in Figure 9.30, so that no transaction may begin
execution until the preceding transaction either reports that it has reached its mark point
or is no longer PENDING. Figure 9.30 also illustrates an implementation of
MARK_POINT_ANNOUNCE. No changes are needed in procedures ABORT and COMMIT as shown
in Figure 9.13, so they are not repeated here.

Because no transaction can start until the previous transaction reaches its mark point,
all transactions earlier in the serial ordering must also have passed their mark points, so
every transaction earlier in the serial ordering has already created all of the versions that
it ever will. Since READ_CURRENT_VALUE now waits for earlier, pending values to become

1 procedure READ_CURRENT_VALUE (data_id, this_transaction_id)
2 starting at end of data_id repeat until beginning
3 v ← previous version of data_id
4 last_modifier ← v.action_id
5 if last_modifier ≥ this_transaction_id then skip v // Keep searching
6 wait until (last_modifier.outcome_record.state ≠ PENDING)
7 if (last_modifier.outcome_record.state = COMMITTED)
8 then return v.state
9 else skip v // Resume search
10 signal (“Tried to read an uninitialized variable”)

FIGURE 9.28

READ_CURRENT_VALUE for the mark-point discipline.This form of the procedure skips all versions
created by transactions later than the calling transaction, and it waits for a pending version cre
ated by an earlier transaction until that earlier transaction commits or aborts.

Saltzer & Kaashoek Ch. 9, p. 59 June 25, 2009 8:22 am

9–60 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.29

1 procedure NEW_VERSION (reference data_id, this_transaction_id)
2 if this_transaction_id.outcome_record.mark_state = MARKED then
3 signal (“Tried to create new version after announcing mark point!”)
4 append new version v to data_id
5 v.value ← NULL

6 v.action_id ← transaction_id

7 procedure WRITE_VALUE (reference data_id, new_value, this_transaction_id)
8 starting at end of data_id repeat until beginning
9 v ← previous version of data_id
10 if v.action_id = this_transaction_id
11 v.value ← new_value
12 return
13 signal (“Tried to write without creating new version!”))

Mark-point discipline versions of NEW_VERSION and WRITE_VALUE.

FIGURE 9.30

1 procedure BEGIN_TRANSACTION ()
2 id ← NEW_OUTCOME_RECORD (PENDING)
3 previous_id ← id - 1
4 wait until (previous_id.outcome_record.mark_state = MARKED)
5 or (previous_id.outcome_record.state ≠ PENDING)
6 return id

7 procedure NEW_OUTCOME_RECORD (starting_state)
8 ACQUIRE (outcome_record_lock) // Make this a before-or-after action.
9 id ← TICKET (outcome_record_sequencer)
10 allocate id.outcome_record
11 id.outcome_record.state ← starting_state
12 id.outcome_record.mark_state ← NULL

13 RELEASE (outcome_record_lock)
14 return id

15 procedure MARK_POINT_ANNOUNCE (reference this_transaction_id)
16 this_transaction_id.outcome_record.mark_state ← MARKED

The procedures BEGIN_TRANSACTION, NEW_OUTCOME_RECORD, and MARK_POINT_ANNOUNCE for the
mark-point discipline. BEGIN_TRANSACTION presumes that there is always a preceding transac
tion. so the system should be initialized by calling NEW_OUTCOME_RECORD to create an empty
initial transaction in the starting_state COMMITTED and immediately calling
MARK_POINT_ANNOUNCE for the empty transaction.

Saltzer & Kaashoek Ch. 9, p. 60 June 25, 2009 8:22 am

9.4 Before-or-After Atomicity I: Concepts 9–61

committed or aborted, it will always return to its client a value that represents the final
outcome of all preceding transactions. All input values to a transaction thus contain the
committed result of all transactions that appear earlier in the serial ordering, just as if it
had followed the simple serialization discipline. The result is thus guaranteed to be
exactly the same as one produced by a serial ordering, no matter in what real time order
the various transactions actually write data values into their version slots. The particular
serial ordering that results from this discipline is, as in the case of the simple serialization
discipline, the ordering in which the transactions were assigned serial numbers by
NEW_OUTCOME_RECORD.

There is one potential interaction between all-or-nothing atomicity and before-or
after atomicity. If pending versions survive system crashes, at restart the system must
track down all PENDING transaction records and mark them ABORTED to ensure that future
invokers of READ_CURRENT_VALUE do not wait for the completion of transactions that have
forever disappeared.

The mark-point discipline provides before-or-after atomicity by bootstrapping from
a more primitive before-or-after atomicity mechanism. As usual in bootstrapping, the
idea is to reduce some general problem—here, that problem is to provide before-or-after
atomicitiy for arbitrary application programs—to a special case that is amenable to a spe
cial-case solution—here, the special case is construction and initialization of a new
outcome record. The procedure NEW_OUTCOME_RECORD in Figure 9.30 must itself be a
before-or-after action because it may be invoked concurrently by several different threads
and it must be careful to give out different serial numbers to each of them. It must also
create completely initialized outcome records, with value and mark_state set to PENDING

and NULL, respectively, because a concurrent thread may immediately need to look at one
of those fields. To achieve before-or-after atomicity, NEW_OUTCOME_RECORD bootstraps
from the TICKET procedure of Section 5.6.3 to obtain the next sequential serial number,
and it uses ACQUIRE and RELEASE to make its initialization steps a before-or-after action.
Those procedures in turn bootstrap from still lower-level before-or-after atomicity mech
anisms, so we have three layers of bootstrapping.

We can now reprogram the funds TRANSFER procedure of Figure 9.15 to be atomic
under both failure and concurrent activity, as in Figure 9.31. The major change from the
earlier version is addition of lines 4 through 6, in which TRANSFER calls NEW_VERSION to
mark the two variables that it intends to modify and then calls MARK_POINT_ANNOUNCE. The
interesting observation about this program is that most of the work of making actions
before-or-after is actually carried out in the called procedures. The only effort or thought
required of the application programmer is to identify and mark, by creating new ver
sions, the variables that the transaction will modify.

The delays (which under the simple serialization discipline would all be concentrated
in BEGIN_TRANSACTION) are distributed under the mark-point discipline. Some delays may
still occur in BEGIN_TRANSACTION, waiting for the preceding transaction to reach its mark
point. But if marking is done before any other calculations, transactions are likely to
reach their mark points promptly, and thus this delay should be not as great as waiting
for them to commit or abort. Delays can also occur at any invocation of

Saltzer & Kaashoek Ch. 9, p. 61 June 25, 2009 8:22 am

9–62 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.31

1 procedure TRANSFER (reference debit_account, reference credit_account,
2 amount)
3 my_id ← BEGIN_TRANSACTION ()
4 NEW_VERSION (debit_account, my_id)
5 NEW_VERSION (credit_account, my_id)
6 MARK_POINT_ANNOUNCE (my_id);
7 xvalue ← READ_CURRENT_VALUE (debit_account, my_id)
8 xvalue ← xvalue - amount
9 WRITE_VALUE (debit_account, xvalue, my_id)
10 yvalue ← READ_CURRENT_VALUE (credit_account, my_id)
11 yvalue ← yvalue + amount
12 WRITE_VALUE (credit_account, yvalue, my_id)
13 if xvalue > 0 then
14 COMMIT (my_id)
15 else
16 ABORT (my_id)
17 signal(“Negative transfers are not allowed.”)

An implementation of the funds transfer procedure that uses the mark point discipline to ensure
that it is atomic both with respect to failure and with respect to concurrent activity.

READ_CURRENT_VALUE, but only if there is really something that the transaction must wait
for, such as committing a pending version of a necessary input variable. Thus the overall
delay for any given transaction should never be more than that imposed by the simple
serialization discipline, and one might anticipate that it will often be less.

A useful property of the mark-point discipline is that it never creates deadlocks.
Whenever a wait occurs it is a wait for some transaction earlier in the serialization. That
transaction may in turn be waiting for a still earlier transaction, but since no one ever
waits for a transaction later in the ordering, progress is guaranteed. The reason is that at
all times there must be some earliest pending transaction. The ordering property guar
antees that this earliest pending transaction will encounter no waits for other transactions
to complete, so it, at least, can make progress. When it completes, some other transaction
in the ordering becomes earliest, and it now can make progress. Eventually, by this argu
ment, every transaction will be able to make progress. This kind of reasoning about
progress is a helpful element of a before-or-after atomicity discipline. In Section 9.5 of
this chapter we will encounter before-or-after atomicity disciplines that are correct in the
sense that they guarantee the same result as a serial ordering, but they do not guarantee
progress. Such disciplines require additional mechanisms to ensure that threads do not
end up deadlocked, waiting for one another forever.

Two other minor points are worth noting. First, if transactions wait to announce
their mark point until they are ready to commit or abort, the mark-point discipline
reduces to the simple serialization discipline. That observation confirms that one disci-

Saltzer & Kaashoek Ch. 9, p. 62 June 25, 2009 8:22 am

9.4 Before-or-After Atomicity I: Concepts 9–63

pline is a relaxed version of the other. Second, there are at least two opportunities in the
mark-point discipline to discover and report protocol errors to clients. A transaction
should never call NEW_VERSION after announcing its mark point. Similarly, WRITE_VALUE

can report an error if the client tries to write a value for which a new version was never
created. Both of these error-reporting opportunities are implemented in the pseudocode
of Figure 9.29.

9.4.3 Optimistic Atomicity: Read-Capture (Advanced Topic)

Both the simple serialization and mark-point disciplines are concurrency control meth
ods that may be described as pessimistic. That means that they presume that interference
between concurrent transactions is likely and they actively prevent any possibility of
interference by imposing waits at any point where interference might occur. In doing so,
they also may prevent some concurrency that would have been harmless to correctness.
An alternative scheme, called optimistic concurrency control, is to presume that interfer
ence between concurrent transactions is unlikely, and allow them to proceed without
waiting. Then, watch for actual interference, and if it happens take some recovery action,
for example aborting an interfering transaction and makaing it restart. (There is a popu
lar tongue-in-cheek characterization of the difference: pessimistic = “ask first”, optimistic
= “apologize later”.) The goal of optimistic concurrency control is to increase concur
rency in situations where actual interference is rare.

The system state history of Figure 9.27 suggests an opportunity to be optimistic. We
could allow transactions to write values into the system state history in any order and at
any time, but with the risk that some attempts to write may be met with the response
“Sorry, that write would interfere with another transaction. You must abort, abandon
this serialization position in the system state history, obtain a later serialization, and
rerun your transaction from the beginning.”

A specific example of this approach is the read-capture discipline. Under the read-cap
ture discipline, there is an option, but not a requirement, of advance marking.
Eliminating the requirement of advance marking has the advantage that a transaction
does not need to predict the identity of every object it will update—it can discover the
identity of those objects as it works. Instead of advance marking, whenever a transaction
calls READ_CURRENT_VALUE, that procedure makes a mark at this thread’s position in the
version history of the object it read. This mark tells potential version-inserters earlier in
the serial ordering but arriving later in real time that they are no longer allowed to
insert—they must abort and try again, using a later serial position in the version history.
Had the prospective version inserter gotten there sooner, before the reader had left its
mark, the new version would have been acceptable, and the reader would have instead
waited for the version inserter to commit, and taken that new value instead of the earlier
one. Read-capture gives the reader the power of extending validity of a version through
intervening transactions, up to the reader’s own serialization position. This view of the
situation is illustrated in Figure 9.32, which has the same version history as did Figure
9.27.

Saltzer & Kaashoek Ch. 9, p. 63 June 25, 2009 8:22 am

9–64 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

Value of object at end of transaction

1 2 3 4 5 6 7

A

B 0 -10 -6 -12 -2
HWM=2 HWM=5 HWM=6HWM=3

C 0 -4 +2
HWM=5HWM=3

D 0 -2

Committed Committed Committed Aborted Committed Pending

0 +10 +12 0

Outcome recordstate

Pending

Conflict

Changed value

HWM=2 HWM=6

Conflict: Must abort!

High-water markHWM=

HWM=7

HWM=7HWM=4
-4

+2

FIGURE 9.32

Version history with high-water marks and the read-capture discipline. First, transaction 6,
which is running concurrently with transaction 4, reads variable A, thus extending the high-
water mark of A to 6. Then, transaction 4 (which intends to transfer 2 from D to A) encounters
a conflict when it tries to create a new version of A and discovers that the high-water mark of
A has already been set by transaction 6, so 4 aborts and returns as transaction 7. Transaction
7 retries transaction 4, extending the high-water marks of A and D to 7.

The key property of read-capture is illustrated by an example in Figure 9.32. Trans
action 4 was late in creating a new version of object A; by the time it tried to do the
insertion, transaction 6 had already read the old value (+10) and thereby extended the
validity of that old value to the beginning of transaction 6. Therefore, transaction 4 had
to be aborted; it has been reincarnated to try again as transaction 7. In its new position
as transaction 7, its first act is to read object D, extending the validity of its most recent
committed value (zero) to the beginning of transaction 7. When it tries to read object A,
it discovers that the most recent version is still uncommitted, so it must wait for transac
tion 6 to either commit or abort. Note that if transaction 6 should now decide to create
a new version of object C, it can do so without any problem, but if it should try to create
a new version of object D, it would run into a conflict with the old, now extended version
of D, and it would have to abort.

Saltzer & Kaashoek Ch. 9, p. 64 June 25, 2009 8:22 am

9.4 Before-or-After Atomicity I: Concepts 9–65

FIGURE 9.33

1 procedure READ_CURRENT_VALUE (reference data_id, value, caller_id)
2 starting at end of data_id repeat until beginning
3 v ← previous version of data_id
4 if v.action_id ≥ caller_id then skip v
5 examine v.action_id.outcome_record
6 if PENDING then
7 WAIT for v.action_id to COMMIT or ABORT

8 if COMMITTED then
9 v.high_water_mark ← max(v.high_water_mark, caller_id)
10 return v.value
11 else skip v // Continue backward search
12 signal (“Tried to read an uninitialized variable!”)

13 procedure NEW_VERSION (reference data_id, caller_id)
14 if (caller_id < data_id.high_water_mark) // Conflict with later reader.
15 or (caller_id < (LATEST_VERSION[data_id].action_id)) // Blind write conflict.
16 then ABORT this transaction and terminate this thread
17 add new version v at end of data_id
18 v.value ← 0
19 v.action_id ← caller_id

20 procedure WRITE_VALUE (reference data_id, new_value, caller_id)
21 locate version v of data_id.history such that v.action_id = caller_id
22 (if not found, signal (“Tried to write without creating new version!”))
23 v.value ← new_value

Read-capture forms of READ_CURRENT_VALUE, NEW_VERSION, and WRITE_VALUE.

Read-capture is relatively easy to implement in a version history system. We start, as
shown in Figure 9.33, by adding a new step (at line 9) to READ_CURRENT_VALUE. This new
step records with each data object a high-water mark—the serial number of the highest-
numbered transaction that has ever read a value from this object’s version history. The
high-water mark serves as a warning to other transactions that have earlier serial numbers
but are late in creating new versions. The warning is that someone later in the serial
ordering has already read a version of this object from earlier in the ordering, so it is too
late to create a new version now. We guarantee that the warning is heeded by adding a
step to NEW_VERSION (at line 14), which checks the high-water mark for the object to be
written, to see if any transaction with a higher serial number has already read the current
version of the object. If not, we can create a new version without concern. But if the
transaction serial number in the high-water mark is greater than this transaction’s own
serial number, this transaction must abort, obtain a new, higher serial number, and start
over again.

Saltzer & Kaashoek Ch. 9, p. 65 June 25, 2009 8:22 am

9–66 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

We have removed all constraints on the real-time sequence of the constituent steps of
the concurrent transaction, so there is a possibility that a high-numbered transaction will
create a new version of some object, and then later a low-numbered transaction will try
to create a new version of the same object. Since our NEW_VERSION procedure simply tacks
new versions on the end of the object history, we could end up with a history in the
wrong order. The simplest way to avoid that mistake is to put an additional test in
NEW_VERSION (at line 15), to ensure that every new version has a client serial number that
is larger than the serial number of the next previous version. If not, NEW_VERSION aborts
the transaction, just as if a read-capture conflict had occurred. (This test aborts only
those transactions that perform conflicting blind writes, which are uncommon. If either
of the conflicting transactions reads the value before writing it, the setting and testing of
high_water_mark will catch and prevent the conflict.)

The first question one must raise about this kind of algorithm is whether or not it
actually works: is the result always the same as some serial ordering of the concurrent
transactions? Because the read-capture discipline permits greater concurrency than does
mark-point, the correctness argument is a bit more involved. The induction part of the
argument goes as follows:

1. 	The WAIT for PENDING values in READ_CURRENT_VALUE ensures that if any pending
transaction k < n has modified any value that is later read by transaction n,
transaction n will wait for transaction k to commit or abort.

2. 	The setting of the high-water mark when transaction n calls READ_CURRENT_VALUE,
together with the test of the high-water mark in NEW_VERSION ensures that if any
transaction j < n tries to modify any value after transaction n has read that value,
transaction j will abort and not modify that value.

3. 	Therefore, every value that READ_CURRENT_VALUE returns to transaction n will
include the final effect of all preceding transactions 1...n – 1.

4. 	Therefore, every transaction n will act as if it serially follows transaction n – 1.

Optimistic coordination disciplines such as read-capture have the possibly surprising
effect that something done by a transaction later in the serial ordering can cause a trans
action earlier in the ordering to abort. This effect is the price of optimism; to be a good
candidate for an optimistic discipline, an application probably should not have a lot of
data interference.

A subtlety of read-capture is that it is necessary to implement bootstrapping before-
or-after atomicity in the procedure NEW_VERSION, by adding a lock and calls to ACQUIRE and
RELEASE because NEW_VERSION can now be called by two concurrent threads that happen
to add new versions to the same variable at about the same time. In addition, NEW_VERSION

must be careful to keep versions of the same variable in transaction order, so that the
backward search performed by READ_CURRENT_VALUE works correctly.

There is one final detail, an interaction with all-or-nothing recovery. High water
marks should be stored in volatile memory, so that following a crash (which has the effect

Saltzer & Kaashoek Ch. 9, p. 66	 June 25, 2009 8:22 am

9.4 Before-or-After Atomicity I: Concepts 9–67

of aborting all pending transactions) the high water marks automatically disappear and
thus don’t cause unnecessary aborts.

9.4.4 	Does Anyone Actually Use Version Histories for Before-or-After
Atomicity?

The answer is yes, but the most common use is in an application not likely to be encoun
tered by a software specialist. Legacy processor architectures typically provide a limited
number of registers (the “architectural registers”) in which the programmer can hold
temporary results, but modern large scale integration technology allows space on a phys
ical chip for many more physical registers than the architecture calls for. More registers
generally allow better performance, especially in multiple-issue processor designs, which
execute several sequential instructions concurrently whenever possible. To allow use of
the many physical registers, a register mapping scheme known as register renaming imple
ments a version history for the architectural registers. This version history allows
instructions that would interfere with each other only because of a shortage of registers
to execute concurrently.

For example, Intel Pentium processors, which are based on the x86 instruction set
architecture described in Section 5.7, have only eight architectural registers. The Pen
tium 4 has 128 physical registers, and a register renaming scheme based on a circular
reorder buffer. A reorder buffer resembles a direct hardware implementation of the pro
cedures NEW_VERSION and WRITE_VALUE of Figure 9.29. As each instruction issues (which
corresponds to BEGIN_TRANSACTION), it is assigned the next sequential slot in the reorder
buffer. The slot is a map that maintains a correspondence between two numbers: the
number of the architectural register that the programmer specified to hold the output
value of the instruction, and the number of one of the 128 physical registers, the one that
will actually hold that output value. Since machine instructions have just one output
value, assigning a slot in the reorder buffer implements in a single step the effect of both
NEW_OUTCOME_RECORD and NEW_VERSION. Similarly, when the instruction commits, it
places its output in that physical register, thereby implementing WRITE_VALUE and COMMIT

as a single step.
Figure 9.34 illustrates register renaming with a reorder buffer. In the program

sequence of that example, instruction n uses architectural register five to hold an output
value that instruction n + 1 will use as an input. Instruction n + 2 loads architectural reg
ister five from memory. Register renaming allows there to be two (or more) versions of
register five simultaneously, one version (in physical register 42) containing a value for
use by instructions n and n + 1 and the second version (in physical register 29) to be used
by instruction n + 2. The performance benefit is that instruction n + 2 (and any later
instructions that write into architectural register 5) can proceed concurrently with
instructions n and n + 1. An instruction following instruction n + 2 that requires the new
value in architectural register five as an input uses a hardware implementation of
READ_CURRENT_VALUE to locate the most recent preceding mapping of architectural register
five in the reorder buffer. In this case that most recent mapping is to physical register 29.

Saltzer & Kaashoek Ch. 9, p. 67	 June 25, 2009 8:22 am

9–68 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

The later instruction then stalls, waiting for instruction n + 2 to write a value into phys
ical register 29. Later instructions that reuse architectural register five for some purpose
that does not require that version can proceed concurrently.

Although register renaming is conceptually straightforward, the mechanisms that pre
vent interference when there are dependencies between instructions tend to be more
intricate than either of the mark-point or read-capture disciplines, so this description has
been oversimplified. For more detail, the reader should consult a textbook on processor
architecture, for example Computer Architecture, a Quantitative Approach, by Hennessy
and Patterson [Suggestions for Further Reading 1.1.1].

The Oracle database management system offers several before-or-after atomicity
methods, one of which it calls “serializable”, though the label may be a bit misleading.
This method uses a before-or-after atomicity scheme that the database literature calls
snapshot isolation. The idea is that when a transaction begins the system conceptually
takes a snapshot of every committed value and the transaction reads all of its inputs from
that snapshot. If two concurrent transactions (which might start with the same snapshot)
modify the same variable, the first one to commit wins; the system aborts the other one
with a “serialization error”. This scheme effectively creates a limited variant of a version

architectural physical

physical register file
with 128 registers

FIGURE 9.34

n

n + 1

n + 2

R5

R4

R5

42

61

29

three entries in the reorder buffer

register registerinstruction 0

127

Example showing how a reorder buffer maps architectural register numbers to physical register
numbers. The program sequence corresponding to the three entries is:

n R5 ← R4 × R2 // Write a result in register five.
n + 1 R4 ← R5 + R1 // Use result in register five.
n + 2 R5 ← READ (117492) // Write content of a memory cell in register five.

Instructions n and n + 2 both write into register R5, so R5 has two versions, with mappings to
physical registers 42 and 29, respectively. Instruction n + 2 can thus execute concurrently with
instructions n and n + 1.

Saltzer & Kaashoek Ch. 9, p. 68 June 25, 2009 8:22 am

9.5 Before-or-After Atomicity II: Pragmatics 9–69

history that, in certain situations, does not always ensure that concurrent transactions are
correctly coordinated.

Another specialized variant implementation of version histories, known as transac
tional memory, is a discipline for creating atomic actions from arbitrary instruction
sequences that make multiple references to primary memory. Transactional memory was
first suggested in 1993 and with widespread availability of multicore processors, has
become the subject of quite a bit of recent research interest because it allows the applica
tion programmer to use concurrent threads without having to deal with locks. The
discipline is to mark the beginning of an instruction sequence that is to be atomic with
a “begin transaction” instruction, direct all ensuing STORE instructions to a hidden copy
of the data that concurrent threads cannot read, and at end of the sequence check to see
that nothing read or written during the sequence was modified by some other transaction
that committed first. If the check finds no such earlier modifications, the system com
mits the transaction by exposing the hidden copies to concurrent threads; otherwise it
discards the hidden copies and the transaction aborts. Because it defers all discovery of
interference to the commit point this discipline is even more optimistic than the read-
capture discipline described in Section 9.4.3 above, so it is most useful in situations
where interference between concurrent threads is possible but unlikely. Transactional
memory has been experimentally implemented in both hardware and software. Hard
ware implementations typically involve tinkering with either a cache or a reorder buffer
to make it defer writing hidden copies back to primary memory until commit time, while
software implementations create hidden copies of changed variables somewhere else in
primary memory. As with instruction renaming, this description of transactional mem
ory is somewhat oversimplified, and the interested reader should consult the literature
for fuller explanations.

Other software implementations of version histories for before-or-after atomicity
have been explored primarily in research environments. Designers of database systems
usually use locks rather than version histories because there is more experience in achiev
ing high performance with locks. Before-or-after atomicity by using locks systematically
is the subject of the next section of this chapter.

9.5 Before-or-After Atomicity II: Pragmatics
The previous section showed that a version history system that provides all-or-nothing
atomicity can be extended to also provide before-or-after atomicity. When the all-or
nothing atomicity design uses a log and installs data updates in cell storage, other, con
current actions can again immediately see those updates, so we again need a scheme to
provide before-or-after atomicity. When a system uses logs for all-or-nothing atomicity,
it usually adopts the mechanism introduced in Chapter 5—locks—for before-or-after
atomicity. However, as Chapter 5 pointed out, programming with locks is hazardous,
and the traditional programming technique of debugging until the answers seem to be
correct is unlikely to catch all locking errors. We now revisit locks, this time with the goal

Saltzer & Kaashoek Ch. 9, p. 69 June 25, 2009 8:22 am

9–70 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

of using them in stylized ways that allow us to develop arguments that the locks correctly
implement before-or-after atomicity.

9.5.1 Locks

To review, a lock is a flag associated with a data object and set by an action to warn other,
concurrent, actions not to read or write the object. Conventionally, a locking scheme
involves two procedures:

ACQUIRE (A.lock)

marks a lock variable associated with object A as having been acquired. If the object is
already acquired, ACQUIRE waits until the previous acquirer releases it.

RELEASE (A.lock)

unmarks the lock variable associated with A, perhaps ending some other action’s wait for
that lock. For the moment, we assume that the semantics of a lock follow the single-
acquire protocol of Chapter 5: if two or more actions attempt to acquire a lock at about
the same time, only one will succeed; the others must find the lock already acquired. In
Section 9.5.4 we will consider some alternative protocols, for example one that permits
several readers of a variable as long as there is no one writing it.

The biggest problem with locks is that programming errors can create actions that do
not have the intended before-or-after property. Such errors can open the door to races
that, because the interfering actions are timing dependent, can make it extremely diffi
cult to figure out what went wrong. Thus a primary goal is that coordination of
concurrent transactions should be arguably correct. For locks, the way to achieve this
goal is to follow three steps systematically:

• 	Develop a locking discipline that specifies which locks must be acquired and
when.

• 	 Establish a compelling line of reasoning that concurrent transactions that follow
the discipline will have the before-or-after property.

• 	 Interpose a 	lock manager, a program that enforces the discipline, between the
programmer and the ACQUIRE and RELEASE procedures.

Many locking disciplines have been designed and deployed, including some that fail to
correctly coordinate transactions (for an example, see exercise 9.5). We examine three
disciplines that succeed. Each allows more concurrency than its predecessor, though even
the best one is not capable of guaranteeing that concurrency is maximized.

The first, and simplest, discipline that coordinates transactions correctly is the system-
wide lock. When the system first starts operation, it creates a single lockable variable
named, for example, System, in volatile memory. The discipline is that every transaction
must start with

Saltzer & Kaashoek Ch. 9, p. 70	 June 25, 2009 8:22 am

9.5 Before-or-After Atomicity II: Pragmatics 9–71

begin_transaction
ACQUIRE (System.lock)

…

and every transaction must end with
…

RELEASE (System.lock)

end_transaction

A system can even enforce this discipline by including the ACQUIRE and RELEASE steps in
the code sequence generated for begin_transaction and end_transaction, indepen
dent of whether the result was COMMIT or ABORT. Any programmer who creates a new
transaction then has a guarantee that it will run either before or after any other
transactions.

The systemwide lock discipline allows only one transaction to execute at a time. It
serializes potentially concurrent transactions in the order that they call ACQUIRE. The sys
temwide lock discipline is in all respects identical to the simple serialization discipline of
Section 9.4. In fact, the simple serialization pseudocode

id ← NEW_OUTCOME_RECORD ()

preceding_id ← id - 1

wait until preceding_id.outcome_record.value ≠ PENDING

…

COMMIT (id) [or ABORT (id)]

and the systemwide lock invocation

ACQUIRE (System.lock)

…

RELEASE (System.lock)

are actually just two implementations of the same idea.
As with simple serialization, systemwide locking restricts concurrency in cases where

it doesn’t need to because it locks all data touched by every transaction. For example, if
systemwide locking were applied to the funds TRANSFER program of Figure 9.16, only one
transfer could occur at a time, even though any individual transfer involves only two out
of perhaps several million accounts, so there would be many opportunities for concur
rent, non-interfering transfers. Thus there is an interest in developing less restrictive
locking disciplines. The starting point is usually to employ a finer lock granularity: lock
smaller objects, such as individual data records, individual pages of data records, or even
fields within records. The trade-offs in gaining concurrency are first, that when there is
more than one lock, more time is spent acquiring and releasing locks and second, cor
rectness arguments become more complex. One hopes that the performance gain from
concurrency exceeds the cost of acquiring and releasing the multiple locks. Fortunately,
there are at least two other disciplines for which correctness arguments are feasible, simple
locking and two-phase locking.

Saltzer & Kaashoek Ch. 9, p. 71 June 25, 2009 8:22 am

9–72 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

9.5.2 Simple Locking

The second locking discipline, known as simple locking, is similar in spirit to, though not
quite identical with, the mark-point discipline. The simple locking discipline has two
rules. First, each transaction must acquire a lock for every shared data object it intends
to read or write before doing any actual reading and writing. Second, it may release its
locks only after the transaction installs its last update and commits or completely restores
the data and aborts. Analogous to the mark point, the transaction has what is called a lock
point: the first instant at which it has acquired all of its locks. The collection of locks it
has acquired when it reaches its lock point is called its lock set. A lock manager can enforce
simple locking by requiring that each transaction supply its intended lock set as an argu
ment to the begin_transaction operation, which acquires all of the locks of the lock set,
if necessary waiting for them to become available. The lock manager can also interpose
itself on all calls to read data and to log changes, to verify that they refer to variables that
are in the lock set. The lock manager also intercepts the call to commit or abort (or, if
the application uses roll-forward recovery, to log an END record) at which time it auto
matically releases all of the locks of the lock set.

The simple locking discipline correctly coordinates concurrent transactions. We can
make that claim using a line of argument analogous to the one used for correctness of the
mark-point discipline. Imagine that an all-seeing outside observer maintains an ordered
list to which it adds each transaction identifier as soon as the transaction reaches its lock
point and removes it from the list when it begins to release its locks. Under the simple
locking discipline each transaction has agreed not to read or write anything until that
transaction has been added to the observer’s list. We also know that all transactions that
precede this one in the list must have already passed their lock point. Since no data object
can appear in the lock sets of two transactions, no data object in any transaction’s lock
set appears in the lock set of the transaction preceding it in the list, and by induction to
any transaction earlier in the list. Thus all of this transaction’s input values are the same
as they will be when the preceding transaction in the list commits or aborts. The same
argument applies to the transaction before the preceding one, so all inputs to any trans
action are identical to the inputs that would be available if all the transactions ahead of
it in the list ran serially, in the order of the list. Thus the simple locking discipline ensures
that this transaction runs completely after the preceding one and completely before the
next one. Concurrent transactions will produce results as if they had been serialized in
the order that they reached their lock points.

As with the mark-point discipline, simple locking can miss some opportunities for
concurrency. In addition, the simple locking discipline creates a problem that can be sig
nificant in some applications. Because it requires the transaction to acquire a lock on
every shared object that it will either read or write (recall that the mark-point discipline
requires marking only of shared objects that the transaction will write), applications that
discover which objects need to be read by reading other shared data objects have no alter
native but to lock every object that they might need to read. To the extent that the set of
objects that an application might need to read is larger than the set for which it eventually

Saltzer & Kaashoek Ch. 9, p. 72 June 25, 2009 8:22 am

9.5 Before-or-After Atomicity II: Pragmatics 9–73

does read, the simple locking discipline can interfere with opportunities for concurrency.
On the other hand, when the transaction is straightforward (such as the TRANSFER trans
action of Figure 9.16, which needs to lock only two records, both of which are known at
the outset) simple locking can be effective.

9.5.3 Two-Phase Locking

The third locking discipline, called two-phase locking, like the read-capture discipline,
avoids the requirement that a transaction must know in advance which locks to acquire.
Two-phase locking is widely used, but it is harder to argue that it is correct. The two-
phase locking discipline allows a transaction to acquire locks as it proceeds, and the trans
action may read or write a data object as soon as it acquires a lock on that object. The
primary constraint is that the transaction may not release any locks until it passes its lock
point. Further, the transaction can release a lock on an object that it only reads any time
after it reaches its lock point if it will never need to read that object again, even to abort.
The name of the discipline comes about because the number of locks acquired by a trans
action monotonically increases up to the lock point (the first phase), after which it
monotonically decreases (the second phase). Just as with simple locking, two-phase lock
ing orders concurrent transactions so that they produce results as if they had been
serialized in the order they reach their lock points. A lock manager can implement two-
phase locking by intercepting all calls to read and write data; it acquires a lock (perhaps
having to wait) on the first use of each shared variable. As with simple locking, it then
holds the locks until it intercepts the call to commit, abort, or log the END record of the
transaction, at which time it releases them all at once.

The extra flexibility of two-phase locking makes it harder to argue that it guarantees
before-or-after atomicity. Informally, once a transaction has acquired a lock on a data
object, the value of that object is the same as it will be when the transaction reaches its
lock point, so reading that value now must yield the same result as waiting till then to
read it. Furthermore, releasing a lock on an object that it hasn’t modified must be harm
less if this transaction will never look at the object again, even to abort. A formal
argument that two-phase locking leads to correct before-or-after atomicity can be found
in most advanced texts on concurrency control and transactions. See, for example, Trans
action Processing, by Gray and Reuter [Suggestions for Further Reading 1.1.5].

The two-phase locking discipline can potentially allow more concurrency than the
simple locking discipline, but it still unnecessarily blocks certain serializable, and there
fore correct, action orderings. For example, suppose transaction T1 reads X and writes Y,
while transaction T2 just does a (blind) write to Y. Because the lock sets of T1 and T2
intersect at variable Y, the two-phase locking discipline will force transaction T2 to run
either completely before or completely after T1. But the sequence

T1: READ X

T2: WRITE Y

T1: WRITE Y

Saltzer & Kaashoek Ch. 9, p. 73 June 25, 2009 8:22 am

9–74 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

in which the write of T2 occurs between the two steps of T1, yields the same result as
running T2 completely before T1, so the result is always correct, even though this
sequence would be prevented by two-phase locking. Disciplines that allow all possible
concurrency while at the same time ensuring before-or-after atomicity are quite difficult
to devise. (Theorists identify the problem as NP-complete.)

There are two interactions between locks and logs that require some thought: (1)
individual transactions that abort, and (2) system recovery. Aborts are the easiest to deal
with. Since we require that an aborting transaction restore its changed data objects to
their original values before releasing any locks, no special account need be taken of
aborted transactions. For purposes of before-or-after atomicity they look just like com
mitted transactions that didn’t change anything. The rule about not releasing any locks
on modified data before the end of the transaction is essential to accomplishing an abort.
If a lock on some modified object were released, and then the transaction decided to
abort, it might find that some other transaction has now acquired that lock and changed
the object again. Backing out an aborted change is likely to be impossible unless the locks
on modified objects have been held.

The interaction between log-based recovery and locks is less obvious. The question is
whether locks themselves are data objects for which changes should be logged. To ana
lyze this question, suppose there is a system crash. At the completion of crash recovery
there should be no pending transactions because any transactions that were pending at
the time of the crash should have been rolled back by the recovery procedure, and recov
ery does not allow any new transactions to begin until it completes. Since locks exist only
to coordinate pending transactions, it would clearly be an error if there were locks still
set when crash recovery is complete. That observation suggests that locks belong in vol
atile storage, where they will automatically disappear on a crash, rather than in non
volatile storage, where the recovery procedure would have to hunt them down to release
them. The bigger question, however, is whether or not the log-based recovery algorithm
will construct a correct system state—correct in the sense that it could have arisen from
some serial ordering of those transactions that committed before the crash.

Continue to assume that the locks are in volatile memory, and at the instant of a crash
all record of the locks is lost. Some set of transactions—the ones that logged a BEGIN

record but have not yet logged an END record—may not have been completed. But we
know that the transactions that were not complete at the instant of the crash had non-
overlapping lock sets at the moment that the lock values vanished. The recovery algo
rithm of Figure 9.23 will systematically UNDO or REDO installs for the incomplete
transactions, but every such UNDO or REDO must modify a variable whose lock was in some
transaction’s lock set at the time of the crash. Because those lock sets must have been
non-overlapping, those particular actions can safely be redone or undone without con
cern for before-or-after atomicity during recovery. Put another way, the locks created a
particular serialization of the transactions and the log has captured that serialization.
Since RECOVER performs UNDO actions in reverse order as specified in the log, and it per
forms REDO actions in forward order, again as specified in the log, RECOVER reconstructs
exactly that same serialization. Thus even a recovery algorithm that reconstructs the

Saltzer & Kaashoek Ch. 9, p. 74 June 25, 2009 8:22 am

9.5 Before-or-After Atomicity II: Pragmatics 9–75

entire database from the log is guaranteed to produce the same serialization as when the
transactions were originally performed. So long as no new transactions begin until recov
ery is complete, there is no danger of miscoordination, despite the absence of locks
during recovery.

9.5.4 Performance Optimizations

Most logging-locking systems are substantially more complex than the description so far
might lead one to expect. The complications primarily arise from attempts to gain per
formance. In Section 9.3.6 we saw how buffering of disk I/O in a volatile memory cache,
to allow reading, writing, and computation to go on concurrently, can complicate a log
ging system. Designers sometimes apply two performance-enhancing complexities to
locking systems: physical locking and adding lock compatibility modes.

A performance-enhancing technique driven by buffering of disk I/O and physical
media considerations is to choose a particular lock granularity known as physical locking.
If a transaction makes a change to a six-byte object in the middle of a 1000-byte disk
sector, or to a 1500-byte object that occupies parts of two disk sectors, there is a question
about which “variable” should be locked: the object, or the disk sector(s)? If two concur
rent threads make updates to unrelated data objects that happen to be stored in the same
disk sector, then the two disk writes must be coordinated. Choosing the right locking
granularity can make a big performance difference.

Locking application-defined objects without consideration of their mapping to phys
ical disk sectors is appealing because it is understandable to the application writer. For
that reason, it is usually called logical locking. In addition, if the objects are small, it appar
ently allows more concurrency: if another transaction is interested in a different object
that is in the same disk sector, it could proceed in parallel. However, a consequence of
logical locking is that logging must also be done on the same logical objects. Different
parts of the same disk sector may be modified by different transactions that are running
concurrently, and if one transaction commits but the other aborts neither the old nor the
new disk sector is the correct one to restore following a crash; the log entries must record
the old and new values of the individual data objects that are stored in the sector. Finally,
recall that a high-performance logging system with a cache must, at commit time, force
the log to disk and keep track of which objects in the cache it is safe to write to disk with
out violating the write-ahead log protocol. So logical locking with small objects can
escalate cache record-keeping.

Backing away from the details, high-performance disk management systems typically
require that the argument of a PUT call be a block whose size is commensurate with the
size of a disk sector. Thus the real impact of logical locking is to create a layer between
the application and the disk management system that presents a logical, rather than a
physical, interface to its transaction clients; such things as data object management and
garbage collection within disk sectors would go into this layer. The alternative is to tailor
the logging and locking design to match the native granularity of the disk management
system. Since matching the logging and locking granularity to the disk write granularity

Saltzer & Kaashoek Ch. 9, p. 75 June 25, 2009 8:22 am

9–76 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

can reduce the number of disk operations, both logging changes to and locking blocks
that correspond to disk sectors rather than individual data objects is a common practice.

Another performance refinement appears in most locking systems: the specification
of lock compatibility modes. The idea is that when a transaction acquires a lock, it can
specify what operation (for example, READ or WRITE) it intends to perform on the locked
data item. If that operation is compatible—in the sense that the result of concurrent
transactions is the same as some serial ordering of those transactions—then this transac
tion can be allowed to acquire a lock even though some other transaction has already
acquired a lock on that same data object.

The most common example involves replacing the single-acquire locking protocol
with the multiple-reader, single-writer protocol. According to this protocol, one can allow
any number of readers to simultaneously acquire read-mode locks for the same object.
The purpose of a read-mode lock is to ensure that no other thread can change the data
while the lock is held. Since concurrent readers do not present an update threat, it is safe
to allow any number of them. If another transaction needs to acquire a write-mode lock
for an object on which several threads already hold read-mode locks, that new transaction
will have to wait for all of the readers to release their read-mode locks. There are many
applications in which a majority of data accesses are for reading, and for those applica
tions the provision of read-mode lock compatibility can reduce the amount of time spent
waiting for locks by orders of magnitude. At the same time, the scheme adds complexity,
both in the mechanics of locking and also in policy issues, such as what to do if, while a
prospective writer is waiting for readers to release their read-mode locks, another thread
calls to acquire a read-mode lock. If there is a steady stream of arriving readers, a writer
could be delayed indefinitely.

This description of performance optimizations and their complications is merely
illustrative, to indicate the range of opportunities and kinds of complexity that they
engender; there are many other performance-enhancement techniques, some of which
can be effective, and others that are of dubious value; most have different values depend
ing on the application. For example, some locking disciplines compromise before-or
after atomicity by allowing transactions to read data values that are not yet committed.
As one might expect, the complexity of reasoning about what can or cannot go wrong in
such situations escalates. If a designer intends to implement a system using performance
enhancements such as buffering, lock compatibility modes, or compromised before-or
after atomicity, it would be advisable to study carefully the book by Gray and Reuter, as
well as existing systems that implement similar enhancements.

9.5.5 Deadlock; Making Progress

Section 5.2.5 of Chapter 5 introduced the emergent problem of deadlock, the wait-for
graph as a way of analyzing deadlock, and lock ordering as a way of preventing deadlock.
With transactions and the ability to undo individual actions or even abort a transaction
completely we now have more tools available to deal with deadlock, so it is worth revis
iting that discussion.

Saltzer & Kaashoek Ch. 9, p. 76 June 25, 2009 8:22 am

9.5 Before-or-After Atomicity II: Pragmatics 9–77

The possibility of deadlock is an inevitable consequence of using locks to coordinate
concurrent activities. Any number of concurrent transactions can get hung up in a dead
lock, either waiting for one another, or simply waiting for a lock to be released by some
transaction that is already deadlocked. Deadlock leaves us a significant loose end: cor
rectness arguments ensure us that any transactions that complete will produce results as
though they were run serially, but they say nothing about whether or not any transaction
will ever complete. In other words, our system may ensure correctness, in the sense that
no wrong answers ever come out, but it does not ensure progress—no answers may come
out at all.

As with methods for concurrency control, methods for coping with deadlock can also
be described as pessimistic or optimistic. Pessimistic methods take a priori action to pre
vent deadlocks from happening. Optimistic methods allow concurrent threads to
proceed, detect deadlocks if they happen, and then take action to fix things up. Here are
some of the most popular methods:

1. 	Lock ordering (pessimistic). As suggested in Chapter 5, number the locks uniquely,
and require that transactions acquire locks in ascending numerical order. With this
plan, when a transaction encounters an already-acquired lock, it is always safe to
wait for it, since the transaction that previously acquired it cannot be waiting for
any locks that this transaction has already acquired—all those locks are lower in
number than this one. There is thus a guarantee that somewhere, at least one
transaction (the one holding the highest-numbered lock) can always make
progress. When that transaction finishes, it will release all of its locks, and some
other transaction will become the one that is guaranteed to be able to make
progress. A generalization of lock ordering that may eliminate some unnecessary
waits is to arrange the locks in a lattice and require that they be acquired in some
lattice traversal order. The trouble with lock ordering, as with simple locking, is
that some applications may not be able to predict all of the locks they need before
acquiring the first one.

2. 	Backing out (optimistic): An elegant strategy devised by Andre Bensoussan in 1966
allows a transaction to acquire locks in any order, but if it encounters an already-
acquired lock with a number lower than one it has previously acquired itself, the
transaction must back up (in terms of this chapter, UNDO previous actions) just far
enough to release its higher-numbered locks, wait for the lower-numbered lock to
become available, acquire that lock, and then REDO the backed-out actions.

3. 	Timer expiration (optimistic). When a new transaction begins, the lock manager
sets an interrupting timer to a value somewhat greater than the time it should take
for the transaction to complete. If a transaction gets into a deadlock, its timer will
expire, at which point the system aborts that transaction, rolling back its changes
and releasing its locks in the hope that the other transactions involved in the
deadlock may be able to proceed. If not, another one will time out, releasing
further locks. Timing out deadlocks is effective, though it has the usual defect: it

Saltzer & Kaashoek Ch. 9, p. 77	 June 25, 2009 8:22 am

9–78 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

is difficult to choose a suitable timer value that keeps things moving along but also
accommodates normal delays and variable operation times. If the environment or
system load changes, it may be necessary to readjust all such timer values, an
activity that can be a real nuisance in a large system.

4. 	Cycle detection (optimistic). Maintain, in the lock manager, a wait-for graph (as
described in Section 5.2.5) that shows which transactions have acquired which
locks and which transactions are waiting for which locks. Whenever another
transaction tries to acquire a lock, finds it is already locked, and proposes to wait,
the lock manager examines the graph to see if waiting would produce a cycle, and
thus a deadlock. If it would, the lock manager selects some cycle member to be a
victim, and unilaterally aborts that transaction, so that the others may continue.
The aborted transaction then retries in the hope that the other transactions have
made enough progress to be out of the way and another deadlock will not occur.

When a system uses lock ordering, backing out, or cycle detection, it is common to also
set a timer as a safety net because a hardware failure or a programming error such as an
endless loop can create a progress-blocking situation that none of the deadlock detection
methods can catch.

Since a deadlock detection algorithm can introduce an extra reason to abort a trans
action, one can envision pathological situations where the algorithm aborts every
attempt to perform some particular transaction, no matter how many times its invoker
retries. Suppose, for example, that two threads named Alphonse and Gaston get into a
deadlock trying to acquire locks for two objects named Apple and Banana: Alphonse
acquires the lock for Apple, Gaston acquires the lock for Banana, Alphonse tries to
acquire the lock for Banana and waits, then Gaston tries to acquire the lock for Apple
and waits, creating the deadlock. Eventually, Alphonse times out and begins rolling back
updates in preparation for releasing locks. Meanwhile, Gaston times out and does the
same thing. Both restart, and they get into another deadlock, with their timers set to
expire exactly as before, so they will probably repeat the sequence forever. Thus we still
have no guarantee of progress. This is the emergent property that Chapter 5 called live-
lock, since formally no deadlock ever occurs and both threads are busy doing something
that looks superficially useful.

One way to deal with livelock is to apply a randomized version of a technique familiar
from Chapter 7[on-line]: exponential random backoff. When a timer expiration leads to
an abort, the lock manager, after clearing the locks, delays that thread for a random
length of time, chosen from some starting interval, in the hope that the randomness will
change the relative timing of the livelocked transactions enough that on the next try one
will succeed and then the other can then proceed without interference. If the transaction
again encounters interference, it tries again, but on each retry not only does the lock
manager choose a new random delay, but it also increases the interval from which the
delay is chosen by some multiplicative constant, typically 2. Since on each retry there is
an increased probability of success, one can push this probability as close to unity as
desired by continued retries, with the expectation that the interfering transactions will

Saltzer & Kaashoek Ch. 9, p. 78	 June 25, 2009 8:22 am

9.6 Atomicity across Layers and Multiple Sites 9–79

eventually get out of one another’s way. A useful property of exponential random backoff
is that if repeated retries continue to fail it is almost certainly an indication of some
deeper problem—perhaps a programming mistake or a level of competition for shared
variables that is intrinsically so high that the system should be redesigned.

The design of more elaborate algorithms or programming disciplines that guarantee
progress is a project that has only modest potential payoff, and an end-to-end argument
suggests that it may not be worth the effort. In practice, systems that would have frequent
interference among transactions are not usually designed with a high degree of concur
rency anyway. When interference is not frequent, simple techniques such as safety-net
timers and exponential random backoff not only work well, but they usually must be
provided anyway, to cope with any races or programming errors such as endless loops
that may have crept into the system design or implementation. Thus a more complex
progress-guaranteeing discipline is likely to be redundant, and only rarely will it get a
chance to promote progress.

9.6 Atomicity across Layers and Multiple Sites
There remain some important gaps in our exploration of atomicity. First, in a layered
system, a transaction implemented in one layer may consist of a series of component
actions of a lower layer that are themselves atomic. The question is how the commitment
of the lower-layer transactions should relate to the commitment of the higher layer trans
action. If the higher-layer transaction decides to abort, the question is what to do about
lower-layer transactions that may have already committed. There are two possibilities:

• 	Reverse the effect of any committed lower-layer transactions with an UNDO

action. This technique requires that the results of the lower-layer transactions be
visible only within the higher-layer transaction.

• 	Somehow delay commitment of the lower-layer transactions and arrange that
they actually commit at the same time that the higher-layer transaction commits.

Up to this point, we have assumed the first possibility. In this section we explore the sec
ond one.

Another gap is that, as described so far, our techniques to provide atomicity all
involve the use of shared variables in memory or storage (for example, pointers to the lat
est version, outcome records, logs, and locks) and thus implicitly assume that the
composite actions that make up a transaction all occur in close physical proximity. When
the composing actions are physically separated, communication delay, communication
reliability, and independent failure make atomicity both more important and harder to
achieve.

We will edge up on both of these problems by first identifying a common subprob
lem: implementing nested transactions. We will then extend the solution to the nested
transaction problem to create an agreement protocol, known as two-phase commit, that

Saltzer & Kaashoek Ch. 9, p. 79	 June 25, 2009 8:22 am

9–80 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.35

procedure PAY_INTEREST (reference account)
if account.balance > 0 then

interest = account.balance * 0.05
TRANSFER (bank, account, interest)

else
interest = account.balance * 0.15
TRANSFER (account, bank, interest)

procedure MONTH_END_INTEREST:()
for A ← each customer_account do

PAY_INTEREST (A)

An example of two procedures, one of which calls the other, yet each should be individually
atomic.

coordinates commitment of lower-layer transactions. We can then extend the two-phase
commit protocol, using a specialized form of remote procedure call, to coordinate steps
that must be carried out at different places. This sequence is another example of boot
strapping; the special case that we know how to handle is the single-site transaction and
the more general problem is the multiple-site transaction. As an additional observation,
we will discover that multiple-site transactions are quite similar to, but not quite the
same as, the dilemma of the two generals.

9.6.1 Hierarchical Composition of Transactions

We got into the discussion of transactions by considering that complex interpreters are
engineered in layers, and that each layer should implement atomic actions for its next-
higher, client layer. Thus transactions are nested, each one typically consisting of multi
ple lower-layer transactions. This nesting requires that some additional thought be given
to the mechanism of achieving atomicity.

Consider again a banking example. Suppose that the TRANSFER procedure of Section
9.1.5 is available for moving funds from one account to another, and it has been imple
mented as a transaction. Suppose now that we wish to create the two application
procedures of Figure 9.35. The first procedure, PAY_INTEREST, invokes TRANSFER to move
an appropriate amount of money from or to an internal account named bank, the direc
tion and rate depending on whether the customer account balance is positive or negative.
The second procedure, MONTH_END_INTEREST, fulfills the bank’s intention to pay (or
extract) interest every month on every customer account by iterating through the
accounts and invoking PAY_INTEREST on each one.

It would probably be inappropriate to have two invocations of MONTH_END_INTEREST

running at the same time, but it is likely that at the same time that MONTH_END_INTEREST

is running there are other banking activities in progress that are also invoking TRANSFER.

Saltzer & Kaashoek Ch. 9, p. 80 June 25, 2009 8:22 am

9.6 Atomicity across Layers and Multiple Sites 9–81

It is also possible that the for each statement inside MONTH_END_INTEREST actually runs
several instances of its iteration (and thus of PAY_INTEREST) concurrently. Thus we have a
need for three layers of transactions. The lowest layer is the TRANSFER procedure, in which
debiting of one account and crediting of a second account must be atomic. At the next
higher layer, the procedure PAY_INTEREST should be executed atomically, to ensure that
some concurrent TRANSFER transaction doesn’t change the balance of the account between
the positive/negative test and the calculation of the interest amount. Finally, the proce
dure MONTH_END_INTEREST should be a transaction, to ensure that some concurrent
TRANSFER transaction does not move money from an account A to an account B between
the interest-payment processing of those two accounts, since such a transfer could cause
the bank to pay interest twice on the same funds. Structurally, an invocation of the TRANS

FER procedure is nested inside PAY_INTEREST, and one or more concurrent invocations of
PAY_INTEREST are nested inside MONTH_END_INTEREST.

The reason nesting is a potential problem comes from a consideration of the commit
steps of the nested transactions. For example, the commit point of the TRANSFER transac
tion would seem to have to occur either before or after the commit point of the
PAY_INTEREST transaction, depending on where in the programming of PAY_INTEREST we
place its commit point. Yet either of these positions will cause trouble. If the TRANSFER

commit occurs in the pre-commit phase of PAY_INTEREST then if there is a system crash
PAY_INTEREST will not be able to back out as though it hadn’t tried to operate because the
values of the two accounts that TRANSFER changed may have already been used by concur
rent transactions to make payment decisions. But if the TRANSFER commit does not occur
until the post-commit phase of PAY_INTEREST, there is a risk that the transfer itself can not
be completed, for example because one of the accounts is inaccessible. The conclusion is
that somehow the commit point of the nested transaction should coincide with the com
mit point of the enclosing transaction. A slightly different coordination problem applies
to MONTH_END_INTEREST: no TRANSFERs by other transactions should occur while it runs
(that is, it should run either before or after any concurrent TRANSFER transactions), but it
must be able to do multiple TRANSFERs itself, each time it invokes PAY_INTEREST, and its own
possibly concurrent transfer actions must be before-or-after actions, since they all involve
the account named “bank”.

Suppose for the moment that the system provides transactions with version histories.
We can deal with nesting problems by extending the idea of an outcome record: we allow
outcome records to be organized hierarchically. Whenever we create a nested transaction,
we record in its outcome record both the initial state (PENDING) of the new transaction and
the identifier of the enclosing transaction. The resulting hierarchical arrangement of out
come records then exactly reflects the nesting of the transactions. A top-layer outcome
record would contain a flag to indicate that it is not nested inside any other transaction.
When an outcome record contains the identifier of a higher-layer transaction, we refer
to it as a dependent outcome record, and the record to which it refers is called its superior.

The transactions, whether nested or enclosing, then go about their business, and
depending on their success mark their own outcome records COMMITTED or ABORTED, as
usual. However, when READ_CURRENT_VALUE (described in Section 9.4.2) examines the sta-

Saltzer & Kaashoek Ch. 9, p. 81 June 25, 2009 8:22 am

9–82 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

tus of a version to see whether or not the transaction that created it is COMMITTED, it must
additionally check to see if the outcome record contains a reference to a superior out
come record. If so, it must follow the reference and check the status of the superior. If
that record says that it, too, is COMMITTED, it must continue following the chain upward,
if necessary all the way to the highest-layer outcome record. The transaction in question
is actually COMMITTED only if all the records in the chain are in the COMMITTED state. If any
record in the chain is ABORTED, this transaction is actually ABORTED, despite the COMMITTED

claim in its own outcome record. Finally, if neither of those situations holds, then there
must be one or more records in the chain that are still PENDING. The outcome of this trans
action remains PENDING until those records become COMMITTED or ABORTED. Thus the
outcome of an apparently-COMMITTED dependent outcome record actually depends on the
outcomes of all of its ancestors. We can describe this situation by saying that, until all its
ancestors commit, this lower-layer transaction is sitting on a knife-edge, at the point of
committing but still capable of aborting if necessary. For purposes of discussion we will
identify this situation as a distinct virtual state of the outcome record and the transaction,
by saying that the transaction is tentatively committed.

This hierarchical arrangement has several interesting programming consequences. If
a nested transaction has any post-commit steps, those steps cannot proceed until all of
the hierarchically higher transactions have committed. For example, if one of the nested
transactions opens a cash drawer when it commits, the sending of the release message to
the cash drawer must somehow be held up until the highest-layer transaction determines
its outcome.

This output visibility consequence is only one example of many relating to the tenta
tively committed state. The nested transaction, having declared itself tentatively
committed, has renounced the ability to abort—the decision is in someone else’s hands.
It must be able to run to completion or to abort, and it must be able to maintain the ten
tatively committed state indefinitely. Maintaining the ability to go either way can be
awkward, since the transaction may be holding locks, keeping pages in memory or tapes
mounted, or reliably holding on to output messages. One consequence is that a designer
cannot simply take any arbitrary transaction and blindly use it as a nested component of
a larger transaction. At the least, the designer must review what is required for the nested
transaction to maintain the tentatively committed state.

Another, more complex, consequence arises when one considers possible interactions
among different transactions that are nested within the same higher-layer transaction.
Consider our earlier example of TRANSFER transactions that are nested inside PAY_INTEREST,
which in turn is nested inside MONTH_END_INTEREST. Suppose that the first time that
MONTH_END_INTEREST invokes PAY_INTEREST, that invocation commits, thus moving into the
tentatively committed state, pending the outcome of MONTH_END_INTEREST. Then
MONTH_END_INTEREST invokes PAY_INTEREST on a second bank account. PAY_INTEREST needs
to be able to read as input data the value of the bank’s own interest account, which is a
pending result of the previous, tentatively COMMITTED, invocation of PAY_INTEREST. The
READ_CURRENT_VALUE algorithm, as implemented in Section 9.4.2, doesn’t distinguish
between reads arising within the same group of nested transactions and reads from some

Saltzer & Kaashoek Ch. 9, p. 82 June 25, 2009 8:22 am

9.6 Atomicity across Layers and Multiple Sites 9–83

completely unrelated transaction. Figure 9.36 illustrates the situation. If the test in
READ_CURRENT_VALUE for committed values is extended by simply following the ancestry of
the outcome record controlling the latest version, it will undoubtedly force the second
invocation of PAY_INTEREST to wait pending the final outcome of the first invocation of
PAY_INTEREST. But since the outcome of that first invocation depends on the outcome of

MONTH_END_INTEREST

outcome:

superior:

PENDING

outcome:

superior:

PAY_INTEREST1 (1st invocation)

COMMITTED

MONTH_END_INTEREST

outcome:

superior:

TRANSFER1

COMMITTED

PAY_INTEREST1

OK for TRANSFER2

none

outcome:

superior:

PAY_INTEREST2 (2nd invocation)

PENDING

MONTH_END_INTEREST

outcome:

superior:

TRANSFER2

PENDING

PAY_INTEREST2

to read?

creator: TRANSFER1

newest version of
account bank

FIGURE 9.36

Transaction TRANSFER2, nested in transaction PAY_INTEREST2, which is nested in transaction
MONTH_END_INTEREST, wants to read the current value of account bank. But bank was last writ
ten by transaction TRANSFER1, which is nested in COMMITTED transaction PAY_INTEREST1, which is
nested in still-PENDING transaction MONTH_END_INTEREST. Thus this version of bank is actually
PENDING, rather than COMMITTED as one might conclude by looking only at the outcome of
TRANSFER1. However, TRANSFER1 and TRANSFER2 share a common ancestor (namely,
MONTH_END_INTEREST), and the chain of transactions leading from bank to that common ances
tor is completely committed, so the read of bank can—and to avoid a deadlock, must—be
allowed.

Saltzer & Kaashoek Ch. 9, p. 83 June 25, 2009 8:22 am

9–84 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

MONTH_END_INTEREST, and the outcome of MONTH_END_INTEREST currently depends on the
success of the second invocation of PAY_INTEREST, we have a built-in cycle of waits that at
best can only time out and abort.

Since blocking the read would be a mistake, the question of when it might be OK to
permit reading of data values created by tentatively COMMITTED transactions requires some
further thought. The before-or-after atomicity requirement is that no update made by a
tentatively COMMITTED transaction should be visible to any transaction that would survive
if for some reason the tentatively COMMITTED transaction ultimately aborts. Within that
constraint, updates of tentatively COMMITTED transactions can freely be passed around. We
can achieve that goal in the following way: compare the outcome record ancestry of the
transaction doing the read with the ancestry of the outcome record that controls the ver
sion to be read. If these ancestries do not merge (that is, there is no common ancestor)
then the reader must wait for the version’s ancestry to be completely committed. If they
do merge and all the transactions in the ancestry of the data version that are below the
point of the merge are tentatively committed, no wait is necessary. Thus, in Figure 9.36,
MONTH_END_INTEREST might be running the two (or more) invocations of PAY_INTEREST con
currently. Each invocation will call CREATE_NEW_VERSION as part of its plan to update the
value of account “bank”, thereby establishing a serial order of the invocations. When
later invocations of PAY_INTEREST call READ_CURRENT_VALUE to read the value of account
“bank”, they will be forced to wait until all earlier invocations of PAY_INTEREST decide
whether to commit or abort.

9.6.2 Two-Phase Commit

Since a higher-layer transaction can comprise several lower-layer transactions, we can
describe the commitment of a hierarchical transaction as involving two distinct phases.
In the first phase, known variously as the preparation or voting phase, the higher-layer
transaction invokes some number of distinct lower-layer transactions, each of which
either aborts or, by committing, becomes tentatively committed. The top-layer transac
tion evaluates the situation to establish that all (or enough) of the lower-layer
transactions are tentatively committed that it can declare the higher-layer transaction a
success.

Based on that evaluation, it either COMMITs or ABORTs the higher-layer transaction.
Assuming it decides to commit, it enters the second, commitment phase, which in the
simplest case consists of simply changing its own state from PENDING to COMMITTED or
ABORTED. If it is the highest-layer transaction, at that instant all of the lower-layer tenta
tively committed transactions also become either COMMITTED or ABORTED. If it is itself
nested in a still higher-layer transaction, it becomes tentatively committed and its com
ponent transactions continue in the tentatively committed state also. We are
implementing here a coordination protocol known as two-phase commit. When we
implement multiple-site atomicity in the next section, the distinction between the two
phases will take on additional clarity.

Saltzer & Kaashoek Ch. 9, p. 84 June 25, 2009 8:22 am

9.6 Atomicity across Layers and Multiple Sites 9–85

If the system uses version histories for atomicity, the hierarchy of Figure 9.36 can be
directly implemented by linking outcome records. If the system uses logs, a separate table
of pending transactions can contain the hierarchy, and inquiries about the state of a
transaction would involve examining this table.

The concept of nesting transactions hierarchically is useful in its own right, but our
particular interest in nesting is that it is the first of two building blocks for multiple-site
transactions. To develop the second building block, we next explore what makes multi
ple-site transactions different from single-site transactions.

9.6.3 Multiple-Site Atomicity: Distributed Two-Phase Commit

If a transaction requires executing component transactions at several sites that are sepa
rated by a best-effort network, obtaining atomicity is more difficult because any of the
messages used to coordinate the transactions of the various sites can be lost, delayed, or
duplicated. In Chapter 4 we learned of a method, known as Remote Procedure Call
(RPC) for performing an action at another site. In Chapter 7[on-line] we learned how
to design protocols such as RPC with a persistent sender to ensure at-least-once execu
tion and duplicate suppression to ensure at-most-once execution. Unfortunately, neither
of these two assurances is exactly what is needed to ensure atomicity of a multiple-site
transaction. However, by properly combining a two-phase commit protocol with persis
tent senders, duplicate suppression, and single-site transactions, we can create a correct
multiple-site transaction. We assume that each site, on its own, is capable of implement
ing local transactions, using techniques such as version histories or logs and locks for all-
or-nothing atomicity and before-or-after atomicity. Correctness of the multiple-site ato
micity protocol will be achieved if all the sites commit or if all the sites abort; we will have
failed if some sites commit their part of a multiple-site transaction while others abort
their part of that same transaction.

Suppose the multiple-site transaction consists of a coordinator Alice requesting com
ponent transactions X, Y, and Z of worker sites Bob, Charles, and Dawn, respectively.
The simple expedient of issuing three remote procedure calls certainly does not produce
a transaction for Alice because Bob may do X while Charles may report that he cannot
do Y. Conceptually, the coordinator would like to send three messages, to the three
workers, like this one to Bob:

From: Alice

To: Bob

Re: my transaction 91

if (Charles does Y and Dawn does Z) then do X, please.

and let the three workers handle the details. We need some clue how Bob could accom
plish this strange request.

The clue comes from recognizing that the coordinator has created a higher-layer
transaction and each of the workers is to perform a transaction that is nested in the
higher-layer transaction. Thus, what we need is a distributed version of the two-phase
commit protocol. The complication is that the coordinator and workers cannot reliably

Saltzer & Kaashoek Ch. 9, p. 85 June 25, 2009 8:22 am

9–86 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

communicate. The problem thus reduces to constructing a reliable distributed version of
the two-phase commit protocol. We can do that by applying persistent senders and
duplicate suppression.

Phase one of the protocol starts with coordinator Alice creating a top-layer outcome
record for the overall transaction. Then Alice begins persistently sending to Bob an RPC-
like message:

From:Alice

To: Bob

Re: my transaction 271

Please do X as part of my transaction.

Similar messages go from Alice to Charles and Dawn, also referring to transaction 271,
and requesting that they do Y and Z, respectively. As with an ordinary remote procedure
call, if Alice doesn’t receive a response from one or more of the workers in a reasonable
time she resends the message to the non-responding workers as many times as necessary
to elicit a response.

A worker site, upon receiving a request of this form, checks for duplicates and then
creates a transaction of its own, but it makes the transaction a nested one, with its superior
being Alice’s original transaction. It then goes about doing the pre-commit part of the
requested action, reporting back to Alice that this much has gone well:

From:Bob

To: Alice

Re: your transaction 271

My part X is ready to commit.

Alice, upon collecting a complete set of such responses then moves to the two-phase
commit part of the transaction, by sending messages to each of Bob, Charles, and Dawn
saying, e.g.:

Two-phase-commit message #1:

From:Alice

To: Bob

Re: my transaction 271

PREPARE to commit X.

Bob, upon receiving this message, commits—but only tentatively—or aborts. Having
created durable tentative versions (or logged to journal storage its planned updates) and
having recorded an outcome record saying that it is PREPARED either to commit or abort,
Bob then persistently sends a response to Alice reporting his state:

Saltzer & Kaashoek Ch. 9, p. 86 June 25, 2009 8:22 am

9.6 Atomicity across Layers and Multiple Sites 9–87

Two-phase-commit message #2:

From:Bob
To:Alice
Re: your transaction 271

I am PREPARED to commit my part. Have you decided to commit yet? Regards.

or alternatively, a message reporting it has aborted. If Bob receives a duplicate request
from Alice, his persistent sender sends back a duplicate of the PREPARED or ABORTED

response.
At this point Bob, being in the PREPARED state, is out on a limb. Just as in a local hier

archical nesting, Bob must be able either to run to the end or to abort, to maintain that
state of preparation indefinitely, and wait for someone else (Alice) to say which. In addi
tion, the coordinator may independently crash or lose communication contact,
increasing Bob’s uncertainty. If the coordinator goes down, all of the workers must wait
until it recovers; in this protocol, the coordinator is a single point of failure.

As coordinator, Alice collects the response messages from her several workers (perhaps
re-requesting PREPARED responses several times from some worker sites). If all workers
send PREPARED messages, phase one of the two-phase commit is complete. If any worker
responds with an abort message, or doesn’t respond at all, Alice has the usual choice of
aborting the entire transaction or perhaps trying a different worker site to carry out that
component transaction. Phase two begins when Alice commits the entire transaction by
marking her own outcome record COMMITTED.

Once the higher-layer outcome record is marked as COMMITTED or ABORTED, Alice sends
a completion message back to each of Bob, Charles, and Dawn:

Two-phase-commit message #3

From:Alice
To:Bob
Re: my transaction 271

My transaction committed. Thanks for your help.

Each worker site, upon receiving such a message, changes its state from PREPARED to COM

MITTED, performs any needed post-commit actions, and exits. Meanwhile, Alice can go
about other business, with one important requirement for the future: she must remem
ber, reliably and for an indefinite time, the outcome of this transaction. The reason is
that one or more of her completion messages may have been lost. Any worker sites that
are in the PREPARED state are awaiting the completion message to tell them which way to
go. If a completion message does not arrive in a reasonable period of time, the persistent
sender at the worker site will resend its PREPARED message. Whenever Alice receives a
duplicate PREPARED message, she simply sends back the current state of the outcome
record for the named transaction.

If a worker site that uses logs and locks crashes, the recovery procedure at that site has
to take three extra steps. First, it must classify any PREPARED transaction as a tentative win
ner that it should restore to the PREPARED state. Second, if the worker is using locks for

Saltzer & Kaashoek Ch. 9, p. 87 June 25, 2009 8:22 am

9–88 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

before-or-after atomicity, the recovery procedure must reacquire any locks the PREPARED

transaction was holding at the time of the failure. Finally, the recovery procedure must
restart the persistent sender, to learn the current status of the higher-layer transaction. If
the worker site uses version histories, only the last step, restarting the persistent sender,
is required.

Since the workers act as persistent senders of their PREPARED messages, Alice can be
confident that every worker will eventually learn that her transaction committed. But
since the persistent senders of the workers are independent, Alice has no way of ensuring
that they will act simultaneously. Instead, Alice can only be certain of eventual comple
tion of her transaction. This distinction between simultaneous action and eventual
action is critically important, as will soon be seen.

If all goes well, two-phase commit of N worker sites will be accomplished in 3N mes
sages, as shown in Figure 9.37: for each worker site a PREPARE message, a PREPARED message
in response, and a COMMIT message. This 3N message protocol is complete and sufficient,
although there are several variations one can propose.

An example of a simplifying variation is that the initial RPC request and response
could also carry the PREPARE and PREPARED messages, respectively. However, once a worker
sends a PREPARED message, it loses the ability to unilaterally abort, and it must remain on
the knife edge awaiting instructions from the coordinator. To minimize this wait, it is
usually preferable to delay the PREPARE/PREPARED message pair until the coordinator knows
that the other workers seem to be in a position to do their parts.

Some versions of the distributed two-phase commit protocol have a fourth acknowl
edgment message from the worker sites to the coordinator. The intent is to collect a
complete set of acknowledgment messages—the coordinator persistently sends comple
tion messages until every site acknowledges. Once all acknowledgments are in, the
coordinator can then safely discard its outcome record, since every worker site is known
to have gotten the word.

A system that is concerned both about outcome record storage space and the cost of
extra messages can use a further refinement, called presumed commit. Since one would
expect that most transactions commit, we can use a slightly odd but very space-efficient
representation for the value COMMITTED of an outcome record: non-existence. The coordi
nator answers any inquiry about a non-existent outcome record by sending a COMMITTED

response. If the coordinator uses this representation, it commits by destroying the out
come record, so a fourth acknowledgment message from every worker is unnecessary. In
return for this apparent magic reduction in both message count and space, we notice that
outcome records for aborted transactions can not easily be discarded because if an
inquiry arrives after discarding, the inquiry will receive the response COMMITTED. The coor
dinator can, however, persistently ask for acknowledgment of aborted transactions, and
discard the outcome record after all these acknowledgments are in. This protocol that
leads to discarding an outcome record is identical to the protocol described in Chapter
7[on-line] to close a stream and discard the record of that stream.

Distributed two-phase commit does not solve all multiple-site atomicity problems.
For example, if the coordinator site (in this case, Alice) is aboard a ship that sinks after

Saltzer & Kaashoek Ch. 9, p. 88 June 25, 2009 8:22 am

9.6 Atomicity across Layers and Multiple Sites 9–89

Coordinator Worker Worker Worker

Alice Bob Charles Dawn

PREPARE X

PREPARE Y

PREPARE Z

Bob is PREPARED to

Charles is PREPARED to commit or abort

Dawn is PREPARED to commit or abort

COMMIT

COMMIT

COMMIT

Time

commit or abort

log BEGIN

log

log BEGIN

log PREPARED

log COMMITTED

COMMITTED

FIGURE 9.37

Timing diagram for distributed two-phase commit, using 3N messages. (The initial RPC
request and response messages are not shown.) Each of the four participants maintains its
own version history or recovery log. The diagram shows log entries made by the coordinator
and by one of the workers.

sending the PREPARE message but before sending the COMMIT or ABORT message the worker
sites are in left in the PREPARED state with no way to proceed. Even without that concern,
Alice and her co-workers are standing uncomfortably close to a multiple-site atomicity
problem that, at least in principle, can not be solved. The only thing that rescues them is
our observation that the several workers will do their parts eventually, not necessarily
simultaneously. If she had required simultaneous action, Alice would have been in
trouble.

The unsolvable problem is known as the dilemma of the two generals.

Saltzer & Kaashoek Ch. 9, p. 89 June 25, 2009 8:22 am

9–90 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

9.6.4 The Dilemma of the Two Generals

An important constraint on possible coordination protocols when communication is
unreliable is captured in a vivid analogy, called the dilemma of the two generals.* Suppose
that two small armies are encamped on two mountains outside a city. The city is well-
enough defended that it can repulse and destroy either one of the two armies. Only if the
two armies attack simultaneously can they take the city. Thus the two generals who com
mand the armies desire to coordinate their attack.

The only method of communication between the two generals is to send runners
from one camp to the other. But the defenders of the city have sentries posted in the val
ley separating the two mountains, so there is a chance that the runner, trying to cross the
valley, will instead fall into enemy hands, and be unable to deliver the message.

Suppose that the first general sends this message:

From:Julius Caesar

To:Titus Labienus

Date:11 January

I propose to cross the Rubicon and attack at dawn tomorrow. OK?

expecting that the second general will respond either with:

From:Titus Labienus

To:Julius Caesar;

Date:11 January

Yes, dawn on the 12th.

or, possibly:

From:Titus Labienus

To:Julius Caesar

Date:11 January

No. I am awaiting reinforcements from Gaul.

Suppose further that the first message does not make it through. In that case, the sec
ond general does not march because no request to do so arrives. In addition, the first
general does not march because no response returns, and all is well (except for the lost
runner).

Now, instead suppose the runner delivers the first message successfully and second
general sends the reply “Yes,” but that the reply is lost. The first general cannot distin
guish this case from the earlier case, so that army will not march. The second general has
agreed to march, but knowing that the first general won’t march unless the “Yes” confir
mation arrives, the second general will not march without being certain that the first

* The origin of this analogy has been lost, but it was apparently first described in print in 1977 by
Jim N. Gray in his “Notes on Database Operating Systems”, reprinted in Operating Systems, Lecture
Notes in Computer Science 60, Springer Verlag, 1978. At about the same time, Danny Cohen
described another analogy he called the dating protocol, which is congruent with the dilemma of
the two generals.

Saltzer & Kaashoek Ch. 9, p. 90 June 25, 2009 8:22 am

9.6 Atomicity across Layers and Multiple Sites 9–91

general received the confirmation. This hesitation on the part of the second general sug
gests that the first general should send back an acknowledgment of receipt of the
confirmation:

From:Julius Caesar

To:Titus Labienus

Date:11 January

The die is cast.

Unfortunately, that doesn’t help, since the runner carrying this acknowledgment may
be lost and the second general, not receiving the acknowledgment, will still not march.
Thus the dilemma.

We can now leap directly to a conclusion: there is no protocol with a bounded num
ber of messages that can convince both generals that it is safe to march. If there were such
a protocol, the last message in any particular run of that protocol must be unnecessary to
safe coordination because it might be lost, undetectably. Since the last message must be
unnecessary, one could delete that message to produce another, shorter sequence of mes
sages that must guarantee safe coordination. We can reapply the same reasoning
repeatedly to the shorter message sequence to produce still shorter ones, and we conclude
that if such a safe protocol exists it either generates message sequences of zero length or
else of unbounded length. A zero-length protocol can’t communicate anything, and an
unbounded protocol is of no use to the generals, who must choose a particular time to
march.

A practical general, presented with this dilemma by a mathematician in the field,
would reassign the mathematician to a new job as a runner, and send a scout to check
out the valley and report the probability that a successful transit can be accomplished
within a specified time. Knowing that probability, the general would then send several
(hopefully independent) runners, each carrying a copy of the message, choosing a num
ber of runners large enough that the probability is negligible that all of them fail to
deliver the message before the appointed time. (The loss of all the runners would be what
Chapter 8[on-line] called an intolerable error.) Similarly, the second general sends many
runners each carrying a copy of either the “Yes” or the “No” acknowledgment. This pro
cedure provides a practical solution of the problem, so the dilemma is of no real
consequence. Nevertheless, it is interesting to discover a problem that cannot, in princi
ple, be solved with complete certainty.

We can state the theoretical conclusion more generally and succinctly: if messages
may be lost, no bounded protocol can guarantee with complete certainty that both gen
erals know that they will both march at the same time. The best that they can do is accept
some non-zero probability of failure equal to the probability of non-delivery of their last
message.

It is interesting to analyze just why we can’t we use a distributed two-phase commit
protocol to resolve the dilemma of the two generals. As suggested at the outset, it has to
do with a subtle difference in when things may, or must, happen. The two generals
require, in order to vanquish the defenses of the city, that they march at the same time.

Saltzer & Kaashoek Ch. 9, p. 91 June 25, 2009 8:22 am

9–92 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

The persistent senders of the distributed two-phase commit protocol ensure that if the
coordinator decides to commit, all of the workers will eventually also commit, but there
is no assurance that they will do so at the same time. If one of the communication links
goes down for a day, when it comes back up the worker at the other end of that link will
then receive the notice to commit, but this action may occur a day later than the actions
of its colleagues. Thus the problem solved by distributed two-phase commit is slightly
relaxed when compared with the dilemma of the two generals. That relaxation doesn’t
help the two generals, but the relaxation turns out to be just enough to allow us to devise
a protocol that ensures correctness.

By a similar line of reasoning, there is no way to ensure with complete certainty that
actions will be taken simultaneously at two sites that communicate only via a best-effort
network. Distributed two-phase commit can thus safely open a cash drawer of an ATM
in Tokyo, with confidence that a computer in Munich will eventually update the balance
of that account. But if, for some reason, it is necessary to open two cash drawers at dif
ferent sites at the same time, the only solution is either the probabilistic approach or to
somehow replace the best-effort network with a reliable one. The requirement for reli
able communication is why real estate transactions and weddings (both of which are
examples of two-phase commit protocols) usually occur with all of the parties in one
room.

9.7 A More Complete Model of Disk Failure (Advanced Topic)
Section 9.2 of this chapter developed a failure analysis model for a calendar management
program in which a system crash may corrupt at most one disk sector—the one, if any,
that was being written at the instant of the crash. That section also developed a masking
strategy for that problem, creating all-or-nothing disk storage. To keep that development
simple, the strategy ignored decay events. This section revisits that model, considering
how to also mask decay events. The result will be all-or-nothing durable storage, mean
ing that it is both all-or-nothing in the event of a system crash and durable in the face of
decay events.

9.7.1 Storage that is Both All-or-Nothing and Durable

In Chapter 8[on-line] we learned that to obtain durable storage we should write two
or more replicas of each disk sector. In the current chapter we learned that to recover
from a system crash while writing a disk sector we should never overwrite the previous
version of that sector, we should write a new version in a different place. To obtain stor
age that is both durable and all-or-nothing we combine these two observations: make
more than one replica, and don’t overwrite the previous version. One easy way to do that
would be to simply build the all-or-nothing storage layer of the current chapter on top
of the durable storage layer of Chapter 8[on-line]. That method would certainly work
but it is a bit heavy-handed: with a replication count of just two, it would lead to allo-

Saltzer & Kaashoek Ch. 9, p. 92 June 25, 2009 8:22 am

9.7 A More Complete Model of Disk Failure (Advanced Topic) 9–93

cating six disk sectors for each sector of real data. This is a case in which modularity has
an excessive cost.

Recall that the parameter that Chapter 8[on-line] used to determine frequency of
checking the integrity of disk storage was the expected time to decay, Td. Suppose for the
moment that the durability requirement can be achieved by maintaining only two cop
ies. In that case, Td must be much greater than the time required to write two copies of
a sector on two disks. Put another way, a large Td means that the short-term chance of a
decay event is small enough that the designer may be able to safely neglect it. We can
take advantage of this observation to devise a slightly risky but far more economical
method of implementing storage that is both durable and all-or-nothing with just two
replicas. The basic idea is that if we are confident that we have two good replicas of some
piece of data for durability, it is safe (for all-or-nothing atomicity) to overwrite one of the
two replicas; the second replica can be used as a backup to ensure all-or-nothing atom
icity if the system should happen to crash while writing the first one. Once we are
confident that the first replica has been correctly written with new data, we can safely
overwrite the second one, to regain long-term durability. If the time to complete the two
writes is short compared with Td, the probability that a decay event interferes with this
algorithm will be negligible. Figure 9.38 shows the algorithm and the two replicas of the
data, here named D0 and D1.

An interesting point is that ALL_OR_NOTHING_DURABLE_GET does not bother to check the
status returned upon reading D1—it just passes the status value along to its caller. The
reason is that in the absence of decay CAREFUL_GET has no expected errors when reading
data that CAREFUL_PUT was allowed to finish writing. Thus the returned status would be
BAD only in two cases:

1. CAREFUL_PUT of D1 was interrupted in mid-operation, or

2. D1 was subject to an unexpected decay.

The algorithm guarantees that the first case cannot happen.
ALL_OR_NOTHING_DURABLE_PUT doesn’t begin CAREFUL_PUT on data D1 until after the comple
tion of its CAREFUL_PUT on data D0. At most one of the two copies could be BAD because of
a system crash during CAREFUL_PUT. Thus if the first copy (D0) is BAD, then we expect that
the second one (D1) is OK.

The risk of the second case is real, but we have assumed its probability to be small: it
arises only if there is a random decay of D1 in a time much shorter than Td. In reading
D1 we have an opportunity to detect that error through the status value, but we have no
way to recover when both data copies are damaged, so this detectable error must be clas
sified as untolerated. All we can do is pass a status report along to the application so that
it knows that there was an untolerated error.

There is one currently unnecessary step hidden in the SALVAGE program: if D0 is BAD,
nothing is gained by copying D1 onto D0, since ALL_OR_NOTHING_DURABLE_PUT, which
called SALVAGE, will immediately overwrite D0 with new data. The step is included
because it allows SALVAGE to be used in a refinement of the algorithm.

Saltzer & Kaashoek Ch. 9, p. 93 June 25, 2009 8:22 am

9–94 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

In the absence of decay events, this algorithm would be just as good as the all-or-noth
ing procedures of Figures 9.6 and 9.7, and it would perform somewhat better, since it
involves only two copies. Assuming that errors are rare enough that recovery operations
do not dominate performance, the usual cost of ALL_OR_NOTHING_DURABLE_GET is just one
disk read, compared with three in the ALL_OR_NOTHING_GET algorithm. The cost of
ALL_OR_NOTHING_DURABLE_PUT is two disk reads (in SALVAGE) and two disk writes, compared
with three disk reads and three disk writes for the ALL_OR_NOTHING_PUT algorithm.

That analysis is based on a decay-free system. To deal with decay events, thus making
the scheme both all-or-nothing and durable, the designer adopts two ideas from the dis
cussion of durability in Chapter 8[on-line], the second of which eats up some of the
better performance:

1. 	Place the two copies, D0 and D1, in independent decay sets (for example write
them on two different disk drives, preferably from different vendors).

2. 	Have a clerk run the SALVAGE program on every atomic sector at least once every
Td seconds.

1 procedure ALL_OR_NOTHING_DURABLE_GET (reference data, atomic_sector)

2 ds ← CAREFUL_GET (data, atomic_sector.D0)

3 if ds = BAD then

4 ds ← CAREFUL_GET (data, atomic_sector.D1)

5 return ds

6 procedure ALL_OR_NOTHING_DURABLE_PUT (new_data, atomic_sector)

7 SALVAGE(atomic_sector)

8 ds ← CAREFUL_PUT (new_data, atomic_sector.D0)

9 ds ← CAREFUL_PUT (new_data, atomic_sector.D1)

10 return ds

11 procedure SALVAGE(atomic_sector) //Run this program every Td seconds.

12 ds0 ← CAREFUL_GET (data0, atomic_sector.D0)

13 ds1 ← CAREFUL_GET (data1, atomic_sector.D1)

14 if ds0 = BAD then

15 CAREFUL_PUT (data1, atomic_sector.D0)

16 else if ds1 = BAD then

17 CAREFUL_PUT (data0, atomic_sector.D1)

18 if data0 ≠ data1 then

19 CAREFUL_PUT (data0, atomic_sector.D1)

D0:

FIGURE 9.38

data0 D1: data1

Data arrangement and algorithms to implement all-or-nothing durable storage on top of the
careful storage layer of Figure 8.12.

Saltzer & Kaashoek Ch. 9, p. 94	 June 25, 2009 8:22 am

9.8 Case Studies: Machine Language Atomicity 9–95

The clerk running the SALVAGE program performs 2N disk reads every Td seconds to
maintain N durable sectors. This extra expense is the price of durability against disk
decay. The performance cost of the clerk depends on the choice of Td, the value of N,
and the priority of the clerk. Since the expected operational lifetime of a hard disk is usu
ally several years, setting Td to a few weeks should make the chance of untolerated failure
from decay negligible, especially if there is also an operating practice to routinely replace
disks well before they reach their expected operational lifetime. A modern hard disk with
a capacity of one terabyte would have about N = 109 kilobyte-sized sectors. If it takes 10
milliseconds to read a sector, it would take about 2 x 107 seconds, or two days, for a clerk
to read all of the contents of two one-terabyte hard disks. If the work of the clerk is sched
uled to occur at night, or uses a priority system that runs the clerk when the system is
otherwise not being used heavily, that reading can spread out over a few weeks and the
performance impact can be minor.

A few paragraphs back mentioned that there is the potential for a refinement: If we
also run the SALVAGE program on every atomic sector immediately following every system
crash, then it should not be necessary to do it at the beginning of every
ALL_OR_NOTHING_DURABLE_PUT. That variation, which is more economical if crashes are
infrequent and disks are not too large, is due to Butler Lampson and Howard Sturgis
[Suggestions for Further Reading 1.8.7]. It raises one minor concern: it depends on the
rarity of coincidence of two failures: the spontaneous decay of one data replica at about
the same time that CAREFUL_PUT crashes in the middle of rewriting the other replica of that
same sector. If we are convinced that such a coincidence is rare, we can declare it to be
an untolerated error, and we have a self-consistent and more economical algorithm.
With this scheme the cost of ALL_OR_NOTHING_DURABLE_PUT reduces to just two disk writes.

9.8 Case Studies: Machine Language Atomicity

9.8.1 Complex Instruction Sets: The General Electric 600 Line

In the early days of mainframe computers, most manufacturers reveled in providing elab
orate instruction sets, without paying much attention to questions of atomicity. The
General Electric 600 line, which later evolved to be the Honeywell Information System,
Inc., 68 series computer architecture, had a feature called “indirect and tally.” One could
specify this feature by setting to ON a one-bit flag (the “tally” flag) stored in an unused
high-order bit of any indirect address. The instruction

Load register A from Y indirect.

was interpreted to mean that the low-order bits of the cell with address Y contain another
address, called an indirect address, and that indirect address should be used to retrieve
the operand to be loaded into register A. In addition, if the tally flag in cell Y is ON, the
processor is to increment the indirect address in Y by one and store the result back in Y.
The idea is that the next time Y is used as an indirect address it will point to a different

Saltzer & Kaashoek Ch. 9, p. 95 June 25, 2009 8:22 am

9–96 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

operand—the one in the next sequential address in memory. Thus the indirect and tally
feature could be used to sweep through a table. The feature seemed useful to the design
ers, but it was actually only occasionally, because most applications were written in
higher-level languages and compiler writers found it hard to exploit. On the other hand
the feature gave no end of trouble when virtual memory was retrofitted to the product
line.

Suppose that virtual memory is in use, and that the indirect word is located in a page
that is in primary memory, but the actual operand is in another page that has been
removed to secondary memory. When the above instruction is executed, the processor
will retrieve the indirect address in Y, increment it, and store the new value back in Y.
Then it will attempt to retrieve the actual operand, at which time it discovers that it is
not in primary memory, so it signals a missing-page exception. Since it has already mod
ified the contents of Y (and by now Y may have been read by another processor or even
removed from memory by the missing-page exception handler running on another pro
cessor), it is not feasible to back out and act as if this instruction had never executed. The
designer of the exception handler would like to be able to give the processor to another
thread by calling a function such as AWAIT while waiting for the missing page to arrive.
Indeed, processor reassignment may be the only way to assign a processor to retrieve the
missing page. However, to reassign the processor it is necessary to save its current execu
tion state. Unfortunately, its execution state is “half-way through the instruction last
addressed by the program counter.” Saving this state and later restarting the processor in
this state is challenging. The indirect and tally feature was just one of several sources of
atomicity problems that cropped up when virtual memory was added to this processor.

The virtual memory designers desperately wanted to be able to run other threads on
the interrupted processor. To solve this problem, they extended the definition of the cur
rent program state to contain not just the next-instruction counter and the program-
visible registers, but also the complete internal state description of the processor—a 216
bit snapshot in the middle of the instruction. By later restoring the processor state to con
tain the previously saved values of the next-instruction counter, the program-visible
registers, and the 216-bit internal state snapshot, the processor could exactly continue
from the point at which the missing-page alert occurred. This technique worked but it
had two awkward side effects: 1) when a program (or programmer) inquires about the
current state of an interrupted processor, the state description includes things not in the
programmer’s interface; and 2) the system must be careful when restarting an interrupted
program to make certain that the stored micro-state description is a valid one. If someone
has altered the state description the processor could try to continue from a state it could
never have gotten into by itself, which could lead to unplanned behavior, including fail
ures of its memory protection features.

9.8.2 More Elaborate Instruction Sets: The IBM System/370

When IBM developed the System/370 by adding virtual memory to its System/360
architecture, certain System/360 multi-operand character-editing instructions caused

Saltzer & Kaashoek Ch. 9, p. 96 June 25, 2009 8:22 am

9.8 Case Studies: Machine Language Atomicity 9–97

atomicity problems. For example, the TRANSLATE instruction contains three arguments,
two of which are addresses in memory (call them string and table) and the third of which,
length, is an 8-bit count that the instruction interprets as the length of string. TRANSLATE

takes one byte at a time from string, uses that byte as an offset in table, retrieves the byte
at the offset, and replaces the byte in string with the byte it found in table. The designers
had in mind that TRANSLATE could be used to convert a character string from one character
set to another.

The problem with adding virtual memory is that both string and table may be as long
as 65,536 bytes, so either or both of those operands may cross not just one, but several
page boundaries. Suppose just the first page of string is in physical memory. The TRANS

LATE instruction works its way through the bytes at the beginning of string. When it
comes to the end of that first page, it encounters a missing-page exception. At this point,
the instruction cannot run to completion because data it requires is missing. It also can
not back out and act as if it never started because it has modified data in memory by
overwriting it. After the virtual memory manager retrieves the missing page, the problem
is how to restart the half-completed instruction. If it restarts from the beginning, it will
try to convert the already-converted characters, which would be a mistake. For correct
operation, the instruction needs to continue from where it left off.

Rather than tampering with the program state definition, the IBM processor design
ers chose a dry run strategy in which the TRANSLATE instruction is executed using a hidden
copy of the program-visible registers and making no changes in memory. If one of the
operands causes a missing-page exception, the processor can act as if it never tried the
instruction, since there is no program-visible evidence that it did. The stored program
state shows only that the TRANSLATE instruction is about to be executed. After the proces
sor retrieves the missing page, it restarts the interrupted thread by trying the TRANSLATE

instruction from the beginning again, another dry run. If there are several missing pages,
several dry runs may occur, each getting one more page into primary memory. When a
dry run finally succeeds in completing, the processor runs the instruction once more, this
time for real, using the program-visible registers and allowing memory to be updated.
Since the System/370 (at the time this modification was made) was a single-processor
architecture, there was no possibility that another processor might snatch a page away
after the dry run but before the real execution of the instruction. This solution had the
side effect of making life more difficult for a later designer with the task of adding mul
tiple processors.

9.8.3 The Apollo Desktop Computer and the Motorola M68000 Microprocessor

When Apollo Computer designed a desktop computer using the Motorola 68000 micro
processor, the designers, who wanted to add a virtual memory feature, discovered that
the microprocessor instruction set interface was not atomic. Worse, because it was con
structed entirely on a single chip it could not be modified to do a dry run (as in the IBM
370) or to make it store the internal microprogram state (as in the General Electric 600
line). So the Apollo designers used a different strategy: they installed not one, but two

Saltzer & Kaashoek Ch. 9, p. 97 June 25, 2009 8:22 am

9–98 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

Motorola 68000 processors. When the first one encounters a missing-page exception, it
simply stops in its tracks, and waits for the operand to appear. The second Motorola
68000 (whose program is carefully planned to reside entirely in primary memory) fetches
the missing page and then restarts the first processor.

Other designers working with the Motorola 68000 used a different, somewhat risky
trick: modify all compilers and assemblers to generate only instructions that happen to
be atomic. Motorola later produced a version of the 68000 in which all internal state reg
isters of the microprocessor could be saved, the same method used in adding virtual
memory to the General Electric 600 line.

Exercises

9.1 	 Locking up humanities: The registrar’s office is upgrading its scheduling program for
limited-enrollment humanities subjects. The plan is to make it multithreaded, but
there is concern that having multiple threads trying to update the database at the
same time could cause trouble. The program originally had just two operations:

status ← REGISTER (subject_name)

DROP (subject_name)

where subject_name was a string such as “21W471”. The REGISTER procedure
checked to see if there is any space left in the subject, and if there was, it
incremented the class size by one and returned the status value ZERO. If there was no
space, it did not change the class size; instead it returned the status value –1. (This
is a primitive registration system—it just keeps counts!)

As part of the upgrade, subject_name has been changed to a two-component
structure:

structure subject

string subject_name

lock slock

and the registrar is now wondering where to apply the locking primitives,

ACQUIRE (subject.slock)

RELEASE (subject.slock)

Here is a typical application program, which registers the caller for two humanities

Saltzer & Kaashoek Ch. 9, p. 98	 June 25, 2009 8:22 am

 Exercises 9–99

subjects, hx and hy:

procedure REGISTER_TWO (hx, hy)

status ← REGISTER (hx)

if status = 0 then

status ← REGISTER (hy)

if status = –1 then

DROP (hx)

return status;

 9.1a. 	The goal is that the entire procedure REGISTER_TWO should have the before-or-after
property. Add calls for ACQUIRE and RELEASE to the REGISTER_TWO procedure that
obey the simple locking protocol.

 9.1b. 	Add calls to ACQUIRE and RELEASE that obey the two-phase locking protocol, and in
addition postpone all ACQUIREs as late as possible and do all RELEASEs as early as
possible.

Louis Reasoner has come up with a suggestion that he thinks could simplify the job
of programmers creating application programs such as REGISTER_TWO. His idea is to
revise the two programs REGISTER and DROP by having them do the ACQUIRE and
RELEASE internally. That is, the procedure:

procedure REGISTER (subject)

{ current code }

return status

would become instead:

procedure REGISTER (subject)

ACQUIRE (subject.slock)

{ current code }

RELEASE (subject.slock)

return status

9.1c. As usual, Louis has misunderstood some aspect of the problem. Give a brief
explanation of what is wrong with this idea.

1995–3–2a…c

9.2 Ben and Alyssa are debating a fine point regarding version history transaction
disciplines and would appreciate your help. Ben says that under the mark point
transaction discipline, every transaction should call MARK_POINT_ANNOUNCE as soon as
possible, or else the discipline won't work. Alyssa claims that everything will come
out correct even if no transaction calls MARK_POINT_ANNOUNCE. Who is right?

2006-0-1

9.3 	 Ben and Alyssa are debating another fine point about the way that the version
history transaction discipline bootstraps. The version of NEW_OUTCOME_RECORD given
in the text uses TICKET as well as ACQUIRE and RELEASE. Alyssa says this is overkill—it

Saltzer & Kaashoek Ch. 9, p. 99	 June 25, 2009 8:22 am

9–100 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

should be possible to correctly coordinate NEW_OUTCOME_RECORD using just ACQUIRE

and RELEASE. Modify the pseudocode of Figure 9.30 to create a version of
NEW_OUTCOME_RECORD that doesn't need the ticket primitive.

9.4 	 You have been hired by Many-MIPS corporation to help design a new 32-register
RISC processor that is to have six-way multiple instruction issue. Your job is to
coordinate the interaction among the six arithmetic-logic units (ALUs) that will be
running concurrently. Recalling the discussion of coordination, you realize that the
first thing you must do is decide what constitutes “correct” coordination for a
multiple-instruction-issue system. Correct coordination for concurrent operations
on a database was said to be:
No matter in what order things are actually calculated, the final result is always
guaranteed to be one that could have been obtained by some sequential ordering of
the concurrent operations.
You have two goals: (1) maximum performance, and (2) not surprising a
programmer who wrote a program expecting it to be executed on a single-
instruction-issue machine.
Identify the best coordination correctness criterion for your problem.

A. 	 Multiple instruction issue must be restricted to sequences of instructions that have
non-overlapping register sets.

B. 	 No matter in what order things are actually calculated, the final result is always
guaranteed to be one that could have been obtained by some sequential ordering of
the instructions that were issued in parallel.

C. 	 No matter in what order things are actually calculated, the final result is always
guaranteed to be the one that would have been obtained by the original ordering of
the instructions that were issued in parallel.

D. 	 The final result must be obtained by carrying out the operations in the order
specified by the original program.

E. 	 No matter in what order things are actually calculated, the final result is always
guaranteed to be one that could have been obtained by some set of instructions
carried out sequentially.

F.	 The six ALUs do not require any coordination.
1997–0–02

9.5 	 In 1968, IBM introduced the Information Management System (IMS) and it soon
became one of the most widely used database management systems in the world. In
fact, IMS is still in use today. At the time of introduction IMS used a before-or-after
atomicity protocol consisting of the following two rules:

• 	 A transaction may read only data that has been written by previously committed
transactions.

• 	 A transaction must acquire a lock for every data item that it will write.

Saltzer & Kaashoek Ch. 9, p. 100	 June 25, 2009 8:22 am

 Exercises 9–101

Consider the following two transactions, which, for the interleaving shown, both
adhere to the protocol:

1 BEGIN (t1); BEGIN (t2)
2 ACQUIRE (y.lock)
3 temp1 ← x
4 ACQUIRE (x.lock)
5 temp2 ← y
6 x ← temp2
7 y ← temp1
8 COMMIT (t1)
9 COMMIT (t2)

Previously committed transactions had set x ← 3 and y ← 4.

9.5a. After both transactions complete, what are the values of x and y? In what sense is
this answer wrong?

1982–3–3a

9.5b. 	In the mid-1970’s, this flaw was noticed, and the before-or-after atomicity protocol
was replaced with a better one, despite a lack of complaints from customers. Explain
why customers may not have complained about the flaw.

1982–3–3b

9.6 	 A system that attempts to make actions all-or-nothing writes the following type of
records to a log maintained on non-volatile storage:

• <STARTED i>	 action i starts.
•	 <i, x, old, new> action i writes the value new over the value old

for the variable x.
• <COMMITTED i> action i commits.
• <ABORTED i> 	action	 i aborts.
• <CHECKPOINT i, j,…> At this checkpoint, actions i, j,… are pending.

Actions start in numerical order. A crash occurs, and the recovery procedure finds

Saltzer & Kaashoek Ch. 9, p. 101	 June 25, 2009 8:22 am

9–102 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

the following log records starting with the last checkpoint:

<CHECKPOINT 17, 51, 52>

<STARTED 53>

<STARTED 54>

<53, y, 5, 6>

<53, x, 5, 9>

<COMMITTED 53>

<54, y, 6, 4>

<STARTED 55>

<55, z, 3, 4>

<ABORTED 17>

<51, q, 1, 9>

<STARTED 56>

<55, y, 4, 3>

<COMMITTED 54>

<55, y, 3, 7>

<COMMITTED 51>

<STARTED 57>

<56, x, 9, 2>

<56, w, 0, 1>

<COMMITTED 56>

<57, u, 2, 1>

****************** crash happened here **************

9.6a. Assume that the system is using a rollback recovery procedure. How much farther
back in the log should the recovery procedure scan?

9.6b. 	Assume that the system is using a roll-forward recovery procedure. How much
farther back in the log should the recovery procedure scan?

9.6c. Which operations mentioned in this part of the log are winners and which are
losers?

 9.6d. 	What are the values of x and y immediately after the recovery procedure finishes?
Why?

1994–3–3

9.7 	 The log of exercise 9.6 contains (perhaps ambiguous) evidence that someone didn’t
follow coordination rules. What is that evidence?

1994–3–4

9.8 	 Roll-forward recovery requires writing the commit (or abort) record to the log
before doing any installs to cell storage. Identify the best reason for this requirement.

A. So that the recovery manager will know what to undo.
B. So that the recovery manager will know what to redo.
C. 	 Because the log is less likely to fail than the cell storage.
D. 	 To minimize the number of disk seeks required.

1994–3–5

Saltzer & Kaashoek Ch. 9, p. 102	 June 25, 2009 8:22 am

 Exercises 9–103

9.9 	 Two-phase locking within transactions ensures that

A. No deadlocks will occur.
B. Results will correspond to some serial execution of the transactions.
C. 	 Resources will be locked for the minimum possible interval.
D. 	 Neither gas nor liquid will escape.
E. Transactions will succeed even if one lock attempt fails.

1997–3–03

9.10 	 Pat, Diane, and Quincy are having trouble using e-mail to schedule meetings. Pat
suggests that they take inspiration from the 2-phase commit protocol.

9.10a. Which of the following protocols most closely resembles 2-phase commit?

I. a. Pat requests everyone’s schedule openings.
b. Everyone replies with a list but does not guarantee to hold all the times available.
c. Pat inspects the lists and looks for an open time.

If there is a time,

Pat chooses a meeting time and sends it to everyone.

Otherwise

Pat sends a message canceling the meeting.

II. a–c, as in protocol I.
d. Everyone, if they received the second message,

acknowledge receipt.

Otherwise

send a message to Pat asking what happened.

III a–c, as in protocol I.
d. Everyone, if their calendar is still open at the chosen time

Send Pat an acknowledgment.

Otherwise

Send Pat apologies.

e. Pat collects the acknowledgments. If all are positive

Send a message to everyone saying the meeting is ON.

Otherwise

Send a message to everyone saying the meeting is OFF.

f. Everyone, if they received the ON/OFF message,

acknowledge receipt.

Otherwise

send a message to Pat asking what happened.

IV. a–f, as in protocol III.
g. Pat sends a message telling everyone that everyone has confirmed.
h. Everyone acknowledges the confirmation.

 9.10b. For the protocol you selected, which step commits the meeting time?
1994–3–7

Saltzer & Kaashoek Ch. 9, p. 103	 June 25, 2009 8:22 am

9–104 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

9.11 	 Alyssa P. Hacker needs a transaction processing system for updating information
about her collection of 97 cockroaches.*

9.11a. In her first design, Alyssa stores the database on disk. When a transaction commits,
it simply goes to the disk and writes its changes in place over the old data. What are
the major problems with Alyssa’s system?

 9.11b. In Alyssa’s second design, the only structure she keeps on disk is a log, with a
reference copy of all data in volatile RAM. The log records every change made to
the database, along with the transaction which the change was a part of. Commit
records, also stored in the log, indicate when a transaction commits. When the
system crashes and recovers, it replays the log, redoing each committed transaction,
to reconstruct the reference copy in RAM. What are the disadvantages of Alyssa’s
second design?

To speed things up, Alyssa makes an occasional checkpoint of her database. To
checkpoint, Alyssa just writes the entire state of the database into the log. When the
system crashes, she starts from the last checkpointed state, and then redoes or
undoes some transactions to restore her database. Now consider the five
transactions in the illustration:

T1

T2

T3

T4

T5

begin

commit

timecr
as

h

ch
ec

kp
oi

nt

Transactions T2, T3, and T5 committed before the crash, but T1 and T4 were still
pending.

9.11c. When the system recovers, after the checkpointed state is loaded, some
transactions will need to be undone or redone using the log. For each transaction,

* Credit for developing exercise 9.11 goes to Eddie Kohler.

Saltzer & Kaashoek Ch. 9, p. 104	 June 25, 2009 8:22 am

 Exercises 9–105

mark off in the table whether that transaction needs to be undone, redone, or
neither.

Undone Redone Neither

T1

T2

T3

T4

T5

9.11d. Now, assume that transactions T2 and T3 were actually nested transactions: T2 was
nested in T1, and T3 was nested in T2. Again, fill in the table

Undone Redone Neither

T1

T2

T3

T4

T5

1996–3–3

9.12 Alice is acting as the coordinator for Bob and Charles in a two-phase commit
protocol. Here is a log of the messages that pass among them:

1 Alice ⇒ Bob: please do X
2 Alice ⇒ Charles: please do Y
3 Bob ⇒ Alice: done with X
4 Charles ⇒ Alice: done with Y
5 Alice ⇒ Bob: PREPARE to commit or abort
6 Alice ⇒ Charles: PREPARE to commit or abort
7 Bob ⇒ Alice: PREPARED

8 Charles ⇒ Alice: PREPARED

9 Alice ⇒ Bob: COMMIT

10 Alice ⇒ Charles: COMMIT

At which points in this sequence is it OK for Bob to abort his part of the

Saltzer & Kaashoek Ch. 9, p. 105 June 25, 2009 8:22 am

9–106 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

transaction?

A. After Bob receives message 1 but before he sends message 3.
B. After Bob sends message 3 but before he receives message 5.
C. After Bob receives message 5 but before he sends message 7.
D. After Bob sends message 7 but before he receives message 9.
E. After Bob receives message 9.

2008–3–11

Additional exercises relating to Chapter 9 can be found in problem sets 29
through 40.

Saltzer & Kaashoek Ch. 9, p. 106 June 25, 2009 8:22 am

CHAPTER

Consistency 10
CHAPTER CONTENTS
Overview..10–2

10.1 Constraints and Interface Consistency10–2

10.2 Cache Coherence...10–4

10.2.1 Coherence, Replication, and Consistency in a Cache 10–4

10.2.2 Eventual Consistency with Timer Expiration 10–5

10.2.3 Obtaining Strict Consistency with a Fluorescent Marking Pen .. 10–7

10.2.4 Obtaining Strict Consistency with the Snoopy Cache 10–7

10.3 Durable Storage Revisited: Widely Separated Replicas..........10–9

10.3.1 Durable Storage and the Durability Mantra 10–9

10.3.2 Replicated State Machines ..10–11

10.3.3 Shortcuts to Meet more Modest Requirements10–13

10.3.4 Maintaining Data Integrity ..10–15

10.3.5 Replica Reading and Majorities ..10–16

10.3.6 Backup ..10–17

10.3.7 Partitioning Data ...10–18

10.4 Reconciliation..10–19

10.4.1 Occasionally Connected Operation10–20

10.4.2 A Reconciliation Procedure ..10–22

10.4.3 Improvements ..10–25

10.4.4 Clock Coordination ..10–26

10.5 Perspectives..10–26

10.5.1 History ..10–27

10.5.2 Trade-Offs ..10–28

10.5.3 Directions for Further Study ..10–31

Exercises..10–32
Glossary for Chapter 10 ...10–35
Index of Chapter 10 ...10–37

Last chapter page 10–38

10–1

Saltzer & Kaashoek Ch. 10, p. 1 June 24, 2009 12:28 am

10–2 CHAPTER 10 Consistency

Overview
The previous chapter developed all-or-nothing atomicity and before-or-after atomicity, two
properties that define a transaction. This chapter introduces or revisits several applica
tions that can make use of transactions. Section 10.1 introduces constraints and discusses
how transactions can be used to maintain invariants and implement memory models that
provide interface consistency. Sections 10.2 and 10.3 develop techniques used in two dif
ferent application areas, caching and geographically distributed replication, to achieve
higher performance and greater durability, respectively. Section 10.4 discusses reconcili
ation, which is a way of restoring the constraint that replicas be identical if their contents
should drift apart. Finally, Section 10.5 considers some perspectives relating to Chapters
9[on-line] and 10.

10.1 Constraints and Interface Consistency
One common use for transactions is to maintain constraints. A constraint is an applica
tion-defined requirement that every update to a collection of data preserve some
specified invariant. Different applications can have quite different constraints. Here are
some typical constraints that a designer might encounter:

• 	 Table management: The variable that tells the number of entries should equal
the number of entries actually in the table.

• 	Double-linked list management: The forward pointer in a list cell, A, should
refer a list cell whose back pointer refers to A.

• 	 Disk storage management: Every disk sector should be assigned either to the free
list or to exactly one file.

• 	 Display management: The pixels on the screen should match the description in
the display list.

• 	Replica management: A majority (or perhaps all) of the replicas of the data
should be identical.

• 	 Banking: The sum of the balances of all credit accounts should equal the sum of
the balances of all debit accounts.

• 	 Process control: At least one of the valves on the boiler should always be open.

As was seen in Chapter 9[on-line], maintaining a constraint over data within a single file
can be relatively straightforward, for example by creating a shadow copy. Maintaining
constraints across data that is stored in several files is harder, and that is one of the pri
mary uses of transactions. Finally, two-phase commit allows maintaining a constraint
that involves geographically separated files despite the hazards of communication.

A constraint usually involves more than one variable data item, in which case an
update action by nature must be composite—it requires several steps. In the midst of
those steps, the data will temporarily be inconsistent. In other words, there will be times
when the data violates the invariant. During those times, there is a question about what

Saltzer & Kaashoek Ch. 10, p. 2	 June 24, 2009 12:28 am

10.1 Constraints and Interface Consistency 10–3

to do if someone—another thread or another client—asks to read the data. This question
is one of interface, rather than of internal operation, and it reopens the discussion of
memory coherence and data consistency models introduced in Section 2.1.1.1. Different
designers have developed several data consistency models to deal with this inevitable tem
porary inconsistency. In this chapter we consider two of those models: strict consistency
and eventual consistency.

The first model, strict consistency, hides the constraint violation behind modular
boundaries. Strict consistency means that actions outside the transaction performing the
update will never see data that is inconsistent with the invariant. Since strict consistency
is an interface concept, it depends on actions honoring abstractions, for example by using
only the intended reading and writing operations. Thus, for a cache, read/write coher
ence is a strict consistency specification: “The result of a READ of a named object is always
the value that was provided by the most recent WRITE to that object”. This specification
does not demand that the replica in the cache always be identical to the replica in the
backing store, it requires only that the cache deliver data at its interface that meets the
specification.

Applications can maintain strict consistency by using transactions. If an action is all-
or-nothing, the application can maintain the outward appearance of consistency despite
failures, and if an action is before-or-after, the application can maintain the outward
appearance of consistency despite the existence of other actions concurrently reading or
updating the same data. Designers generally strive for strict consistency in any situation
where inconsistent results can cause confusion, such as in a multiprocessor system, and
in situations where mistakes can have serious negative consequences, for example in
banking and safety-critical systems. Section 9.1.6 mentioned two other consistency
models, sequential consistency and external time consistency. Both are examples of strict
consistency.

The second, more lightweight, way of dealing with temporary inconsistency is called
eventual consistency. Eventual consistency means that after a data update the constraint
may not hold until some unspecified time in the future. An observer may, using the stan
dard interfaces, discover that the invariant is violated, and different observers may even
see different results. But the system is designed so that once updates stop occurring, it
will make a best effort drive toward the invariant.

Eventual consistency is employed in situations where performance or availability is a
high priority and temporary inconsistency is tolerable and can be easily ignored. For
example, suppose a Web browser is to display a page from a distant service. The page has
both a few paragraphs of text and several associated images. The browser obtains the text
immediately, but it will take some time to download the images. The invariant is that
the appearance on the screen should match the Web page specification. If the browser
renders the text paragraphs first and fills in the images as they arrive, the human reader
finds that behavior not only acceptable, but perhaps preferable to staring at the previous
screen until the new one is completely ready. When a person can say, “Oh, I see what is
happening,” eventual consistency is usually acceptable, and in cases such as the Web
browser it can even improve human engineering. For a second example, if a librarian cat-

Saltzer & Kaashoek Ch. 10, p. 3 June 24, 2009 12:28 am

10–4 CHAPTER 10 Consistency

alogs a new book and places it on the shelf, but the public version of the library catalog
doesn't include the new book until the next day, there is an observable inconsistency, but
most library patrons would find it tolerable and not particularly surprising.

Eventual consistency is sometimes used in replica management because it allows for
relatively loose coupling among the replicas, thus taking advantage of independent fail
ure. In some applications, continuous service is a higher priority than always-consistent
answers. If a replica server crashes in the middle of an update, the other replicas may be
able to continue to provide service, even though some may have been updated and some
may have not. In contrast, a strict consistency algorithm may have to refuse to provide
service until a crashed replica site recovers, rather than taking a risk of exposing an
inconsistency.

The remaining sections of this chapter explore several examples of strict and eventual
consistency in action. A cache can be designed to provide either strict or eventual consis
tency; Section 10.2 provides the details. The Internet Domain Name System, described
in Section 4.4 and revisited in Section 10.2.2, relies on eventual consistency in updating
its caches, with the result that it can on occasion give inconsistent answers. Similarly, for
the geographically replicated durable storage of Section 10.3 a designer can choose either
a strict or an eventual consistency model. When replicas are maintained on devices that
are only occasionally connected, eventual consistency may be the only choice, in which
case reconciliation, the topic of Section 10.4, drives occasionally connected replicas
toward eventual consistency. The reader should be aware that these examples do not pro
vide a comprehensive overview of consistency; instead they are intended primarily to
create awareness of the issues involved by illustrating a few of the many possible designs.

10.2 Cache Coherence

10.2.1 Coherence, Replication, and Consistency in a Cache

Chapter 6 described the cache as an example of a multilevel memory system. A cache can
also be thought of as a replication system whose primary goal is performance, rather than
reliability. An invariant for a cache is that the replica of every data item in the primary
store (that is, the cache) should be identical to the corresponding replica in the secondary
memory. Since the primary and secondary stores usually have different latencies, when
an action updates a data value, the replica in the primary store will temporarily be incon
sistent with the one in the secondary memory. How well the multilevel memory system
hides that inconsistency is the question.

A cache can be designed to provide either strict or eventual consistency. Since a cache,
together with its backing store, is a memory system, a typical interface specification is
that it provide read/write coherence, as defined in Section 2.1.1.1, for the entire name
space of the cache:

Saltzer & Kaashoek Ch. 10, p. 4 June 24, 2009 12:28 am

10.2 Cache Coherence 10–5

• 	 The result of a read of a named object is always the value of the most recent write
to that object.

Read/write coherence is thus a specification that the cache provide strict consistency.
A write-through cache provides strict consistency for its clients in a straightforward

way: it does not acknowledge that a write is complete until it finishes updating both the
primary and secondary memory replicas. Unfortunately, the delay involved in waiting
for the write-through to finish can be a performance bottleneck, so write-through caches
are not popular.

A non-write-through cache acknowledges that a write is complete as soon as the cache
manager updates the primary replica, in the cache. The thread that performed the write
can go about its business expecting that the cache manager will eventually update the sec
ondary memory replica and the invariant will once again hold. Meanwhile, if that same
thread reads the same data object by sending a READ request to the cache, it will receive
the updated value from the cache, even if the cache manager has not yet restored the
invariant. Thus, because the cache manager masks the inconsistency, a non-write
through cache can still provide strict consistency.

On the other hand, if there is more than one cache, or other threads can read directly
from the secondary storage device, the designer must take additional measures to ensure
that other threads cannot discover the violated constraint. If a concurrent thread reads a
modified data object via the same cache, the cache will deliver the modified version, and
thus maintain strict consistency. But if a concurrent thread reads the modified data
object directly from secondary memory, the result will depend on whether or not the
cache manager has done the secondary memory update. If the second thread has its own
cache, even a write-through design may not maintain consistency because updating the
secondary memory does not affect a potential replica hiding in the second thread’s cache.
Nevertheless, all is not lost. There are at least three ways to regain consistency, two of
which provide strict consistency, when there are multiple caches.

10.2.2 Eventual Consistency with Timer Expiration

The Internet Domain Name System, whose basic operation was described in Section 4.4,
provides an example of an eventual consistency cache that does not meet the read/write
coherence specification. When a client calls on a DNS server to do a recursive name
lookup, if the DNS server is successful in resolving the name it caches a copy of the
answer as well as any intermediate answers that it received. Suppose that a client asks
some local name server to resolve the name ginger.pedantic.edu. In the course of
doing so, the local name server might accumulate the following name records in its
cache:

names.edu 198.41.0.4 name server for .edu
ns.pedantic.edu 128.32.25.19 name server for .pedantic.edu
ginger.pedantic.edu 128.32.247.24 target host name

Saltzer & Kaashoek Ch. 10, p. 5	 June 24, 2009 12:28 am

http:ginger.pedantic.edu

10–6 CHAPTER 10 Consistency

If the client then asks for thyme.pedantic.edu the local name server will be able to use
the cached record for ns.pedantic.edu to directly ask that name server, without having
to go back up to the root to find names.edu and thence to names.edu to find
ns.pedantic.edu.

Now, suppose that a network manager at Pedantic University changes the Internet
address of ginger.pedantic.edu to 128.32.201.15. At some point the manager
updates the authoritative record stored in the name server ns.pedantic.edu. The prob
lem is that local DNS caches anywhere in the Internet may still contain the old record
of the address of ginger.pedantic.edu. DNS deals with this inconsistency by limiting
the lifetime of a cached name record. Recall that every name server record comes with an
expiration time, known as the time-to-live (TTL) that can range from seconds to months.
A typical time-to-live is one hour; it is measured from the moment that the local name
server receives the record. So, until the expiration time, the local cache will be inconsis
tent with the authoritative version at Pedantic University. The system will eventually
reconcile this inconsistency. When the time-to-live of that record expires, the local name
server will handle any further requests for the name ginger.pedantic.edu by asking
ns.pedantic.edu for a new name record. That new name record will contain the new,
updated address. So this system provides eventual consistency.

There are two different actions that the network manager at Pedantic University
might take to make sure that the inconsistency is not an inconvenience. First, the net
work manager may temporarily reconfigure the network layer of ginger.pedantic.edu
to advertise both the old and the new Internet addresses, and then modify the authori
tative DNS record to show the new address. After an hour has passed, all cached DNS
records of the old address will have expired, and ginger.pedantic.edu can be recon-
figured again, this time to stop advertising the old address. Alternatively, the network
manager may have realized this change is coming, so a few hours in advance he or she
modifies just the time-to-live of the authoritative DNS record, say to five minutes, with
out changing the Internet address. After an hour passes, all cached DNS records of this
address will have expired, and any currently cached record will expire in five minutes or
less. The manager now changes both the Internet address of the machine and also the
authoritative DNS record of that address, and within a few minutes everyone in the
Internet will be able to find the new address. Anyone who tries to use an old, cached,
address will receive no response. But a retry a few minutes later will succeed, so from the
point of view of a network client the outcome is similar to the case in which gin
ger.pedantic.edu crashes and restarts—for a few minutes the server is non-responsive.

There is a good reason for designing DNS to provide eventual, rather than strict, con
sistency, and for not requiring read/write coherence. Replicas of individual name records
may potentially be cached in any name server anywhere in the Internet—there are thou
sands, perhaps even millions of such caches. Alerting every name server that might have
cached the record that the Internet address of ginger.pedantic.edu changed would be
a huge effort, yet most of those caches probably don’t actually have a copy of this partic
ular record. Furthermore, it turns out not to be that important because, as described in
the previous paragraph, a network manager can easily mask any temporary inconsistency

Saltzer & Kaashoek Ch. 10, p. 6 June 24, 2009 12:28 am

http:ns.pedantic.edu
http:ns.pedantic.edu
http:ginger.pedantic.edu

10.2 Cache Coherence 10–7

by configuring address advertisement or adjusting the time-to-live. Eventual consistency
with expiration is an efficient strategy for this job.

10.2.3 Obtaining Strict Consistency with a Fluorescent Marking Pen

In certain special situations, it is possible to regain strict consistency, and thus read/write
coherence, despite the existence of multiple, private caches: If only a few variables are
actually both shared and writable, mark just those variables with a fluorescent marking
pen. The meaning of the mark is “don't cache me”. When someone reads a marked vari
able, the cache manager retrieves it from secondary memory and delivers it to the client,
but does not place a replica in the cache. Similarly, when a client writes a marked vari
able, the cache manager notices the mark in secondary memory and does not keep a copy
in the cache. This scheme erodes the performance-enhancing value of the cache, so it
would not work well if most variables have don’t-cache-me marks.

The World Wide Web uses this scheme for Web pages that may be different each
time they are read. When a client asks a Web server for a page that the server has marked
“don’t cache me”, the server adds to the header of that page a flag that instructs the
browser and any intermediaries not to cache that page.

The Java language includes a slightly different, though closely related, concept,
intended to provide read/write coherence despite the presence of caches, variables in reg
isters, and reordering of instructions, all of which can compromise strict consistency
when there is concurrency. The Java memory model allows the programmer to declare a
variable to be volatile. This declaration tells the compiler to take whatever actions (such
as writing registers back to memory, flushing caches, and blocking any instruction reor
dering features of the processor) might be needed to ensure read/write coherence for the
volatile variable within the actual memory model of the underlying system. Where the
fluorescent marking pen marks a variable for special treatment by the memory system,
the volatile declaration marks a variable for special treatment by the interpreter.

10.2.4 Obtaining Strict Consistency with the Snoopy Cache

The basic idea of most cache coherence schemes is to somehow invalidate cache entries
whenever they become inconsistent with the authoritative replica. One situation where
a designer can use this idea is when several processors share the same secondary memory.
If the processors could also share the cache, there would be no problem. But a shared
cache tends to reduce performance, in two ways. First, to minimize latency the designer
would prefer to integrate the cache with the processor, but a shared cache eliminates that
option. Second, there must be some mechanism that arbitrates access to the shared cache
by concurrent processors. That arbitration mechanism must enforce waits that increase
access latency even more. Since the main point of a processor cache is to reduce latency,
each processor usually has at least a small private cache.

Making the private cache write-through would ensure that the replica in secondary
memory tracks the replica in the private cache. But write-through does not update any

Saltzer & Kaashoek Ch. 10, p. 7 June 24, 2009 12:28 am

10–8 CHAPTER 10 Consistency

replicas that may be in the private caches of other processors, so by itself it doesn’t pro
vide read/write coherence. We need to add some way of telling those processors to
invalidate any replicas their caches hold.

A naive approach would be to run a wire from each processor to the others and specify
that whenever a processor writes to memory, it should send a signal on this wire. The
other processors should, when they see the signal, assume that something in their cache
has changed and, not knowing exactly what, invalidate everything their cache currently
holds. Once all caches have been invalidated, the first processor can then confirm com
pletion of its own write. This scheme would work, but it would have a disastrous effect
on the cache hit rate. If 20% of processor data references are write operations, each pro
cessor will receive signals to invalidate the cache roughly every fifth data reference by each
other processor. There would not be much point in having a big cache, since it would
rarely have a chance to hold more than half a dozen valid entries.

To avoid invalidating the entire cache, a better idea would be to somehow commu
nicate to the other caches the specific address that is being updated. To rapidly transmit
an entire memory address in hardware could require adding a lot of wires. The trick is to
realize that there is already a set of wires in place that can do this job: the memory bus.
One designs each private cache to actively monitor the memory bus. If the cache notices
that anyone else is doing a write operation via the memory bus, it grabs the memory
address from the bus and invalidates any copy of data it has that corresponds to that
address. A slightly more clever design will also grab the data value from the bus as it goes
by and update, rather than invalidate, its copy of that data. These are two variations on
what is called the snoopy cache [Suggestions for Further Reading 10.1.1]—each cache is
snooping on bus activity. Figure 10.1 illustrates the snoopy cache.

The registers of the various processors constitute a separate concern because they may
also contain copies of variables that were in a cache at the time a variable in the cache was
invalidated or updated. When a program loads a shared variable into a register, it should
be aware that it is shared, and provide coordination, for example through the use of
locks, to ensure that no other processor can change (and thus invalidate) a variable that
this processor is holding in a register. Locks themselves generally are implemented using
write-through, to ensure that cached copies do not compromise the single-acquire
protocol.

A small cottage industry has grown up around optimizations of cache coherence pro
tocols for multiprocessor systems both with and without buses, and different designers
have invented many quite clever speed-up tricks, especially with respect to locks. Before
undertaking a multiprocessor cache design, a prospective processor architect should
review the extensive literature of the area. A good place to start is with Chapter 8 of Com
puter Architecture: A Quantitative Approach, by Hennessy and Patterson [Suggestions for
Further Reading 1.1.1].

Saltzer & Kaashoek Ch. 10, p. 8 June 24, 2009 12:28 am

10.3 Durable Storage Revisited: Widely Separated Replicas 10–9

10.3 Durable Storage Revisited: Widely Separated Replicas

10.3.1 Durable Storage and the Durability Mantra

Chapter 8[on-line] demonstrated how to create durable storage using a technique called
mirroring, and Section 9.7[on-line] showed how to give the mirrored replicas the all-or
nothing property when reading and writing. Mirroring is characterized by writing the
replicas synchronously—that is, waiting for all or a majority of the replicas to be written
before going on to the next action. The replicas themselves are called mirrors, and they
are usually created on a physical unit basis. For example, one common RAID configura
tion uses multiple disks, on each of which the same data is written to the same numbered
sector, and a write operation is not considered complete until enough mirror copies have
been successfully written.

Mirroring helps protect against internal failures of individual disks, but it is not a
magic bullet. If the application or operating system damages the data before writing it,
all the replicas will suffer the same damage. Also, as shown in the fault tolerance analyses
in the previous two chapters, certain classes of disk failure can obscure discovery that a
replica was not written successfully. Finally, there is a concern for where the mirrors are
physically located.

Placing replicas at the same physical location does not provide much protection
against the threat of environmental faults, such as fire or earthquake. Having them all

Secondary
Memory

Processor A

Cache

bus

1

2

2

3

Processor B

Cache

Processor C

Cache

FIGURE 10.1

A configuration for which a snoopy cache can restore strict consistency and read/write coher
ence. When processor A writes to memory (arrow 1), its write-through cache immediately
updates secondary memory using the next available bus cycle (arrow 2). The caches for pro
cessors B and C monitor (“snoop on”) the bus address lines, and if they notice a bus write cycle
for an address they have cached, they update (or at least invalidate) their replica of the con
tents of that address (arrow 3).

Saltzer & Kaashoek Ch. 10, p. 9 June 24, 2009 12:28 am

10–10 CHAPTER 10 Consistency

under the same administrative control does not provide much protection against admin
istrative bungling. To protect against these threats, the designer uses a powerful design
principle:

The durability mantra

Multiple copies, widely separated and independently administered…

Multiple copies, widely separated and independently administered…

Sidebar 4.5 referred to Ross Anderson’s Eternity Service, a system that makes use of this
design principle. Another formulation of the durability mantra is “lots of copies keep
stuff safe” [Suggestions for Further Reading 10.2.3]. The idea is not new: “…let us save
what remains; not by vaults and locks which fence them from the public eye and use in
consigning them to the waste of time, but by such a multiplication of copies, as shall
place them beyond the reach of accident.”*

The first step in applying this design principle is to separate the replicas geographi
cally. The problem with separation is that communication with distant points has high
latency and is also inherently unreliable. Both of those considerations make it problem
atic to write the replicas synchronously. When replicas are made asynchronously, one of
the replicas (usually the first replica to be written) is identified as the primary copy, and
the site that writes it is called the master. The remaining replicas are called backup copies,
and the sites that write them are called slaves.

The constraint usually specified for replicas is that they should be identical. But when
replicas are written at different times, there will be instants when they are not identical;
that is, they violate the specified constraint. If a system failure occurs during one of those
instants, violation of the constraint can complicate recovery because it may not be clear
which replicas are authoritative. One way to regain some simplicity is to organize the
writing of the replicas in a way understandable to the application, such as file-by-file or
record-by-record, rather than in units of physical storage such as disk sector-by-sector.
That way, if a failure does occur during replica writing, it is easier to characterize the state
of the replica: some files (or records) of the replica are up to date, some are old, the one
that was being written may be damaged, and the application can do any further recovery
as needed. Writing replicas in a way understandable to the application is known as mak
ing logical copies, to contrast it with the physical copies usually associated with mirrors.
Logical copying has the same attractions as logical locking, and also some of the perfor
mance disadvantages, because more software layers must be involved and it may require
more disk seek arm movement.

In practice, replication schemes can be surprisingly complicated. The primary reason
is that the purpose of replication is to suppress unintended changes to the data caused by
random decay. But decay suppression also complicates intended changes, since one must

* Letter from Thomas Jefferson to the publisher and historian Ebenezer Hazard, February 18,
1791. Library of Congress, The Thomas Jefferson Papers Series 1. General Correspondence. 1651-1827.

Saltzer & Kaashoek Ch. 10, p. 10 June 24, 2009 12:28 am

10.3 Durable Storage Revisited: Widely Separated Replicas 10–11

now update more than one copy, while being prepared for the possibility of a failure in
the midst of that update. In addition, if updates are frequent, the protocols to perform
update must not only be correct and robust, they must also be efficient. Since multiple
replicas can usually be read and written concurrently, it is possible to take advantage of
that possibility to enhance overall system performance. But performance enhancement
can then become a complicating requirement of its own, one that interacts strongly with
a requirement for strict consistency.

10.3.2 Replicated State Machines

Data replicas require a management plan. If the data is written exactly once and never
again changed, the management plan can be fairly straightforward: make several copies,
put them in different places so they will not all be subject to the same environmental
faults, and develop algorithms for reading the data that can cope with loss of, disconnec
tion from, and decay of data elements at some sites.

Unfortunately, most real world data need to be updated, at least occasionally, and
update greatly complicates management of the replicas. Fortunately, there exists an eas
ily-described, systematic technique to ensure correct management. Unfortunately, it is
surprisingly hard to meet all the conditions needed to make it work.

The systematic technique is a sweeping simplification known as the replicated state
machine. The idea is to identify the data with the state of a finite state machine whose
inputs are the updates to be made to the data, and whose operation is to make the appro
priate changes to the data, as illustrated in Figure 10.2. To maintain identical data
replicas, co-locate with each of those replicas a replica of the state machine, and send the
same inputs to each state machine. Since the state of a finite state machine is at all times
determined by its prior state and its inputs, the data of the various replicas will, in prin
ciple, perfectly match one another.

The concept is sound, but four real-world considerations conspire to make this
method harder than it looks:

1. 	All of the state machine replicas must receive the same inputs, in the same order.
Agreeing on the values and order of the inputs at separated sites is known as
achieving consensus. Achieving consensus among sites that do not have a common
clock, that can crash independently, and that are separated by a best-effort
communication network is a project in itself. Consensus has received much
attention from theorists, who begin by defining its core essence, known as the
consensus problem: to achieve agreement on a single binary value. There are various
algorithms and protocols designed to solve this problem under specified
conditions, as well as proofs that with certain kinds of failures consensus is
impossible to reach. When conditions permit solving the core consensus problem,
a designer can then apply bootstrapping to come to agreement on the complete set
of values and order of inputs to a set of replicated state machines.

Saltzer & Kaashoek Ch. 10, p. 11	 June 24, 2009 12:28 am

10–12 CHAPTER 10 Consistency

2. 	All of the data replicas (in Figure 10.2, the “prior state”) must be identical. The
problem is that random decay events can cause the data replicas to drift apart, and
updates that occur when they have drifted can cause them to drift further apart.
So there needs to be a plan to check for this drift and correct it. The mechanism
that identifies such differences and corrects them is known as reconciliation.

3. 	The replicated state machines must also be identical. This requirement is harder
to achieve than it might at first appear. Even if all the sites run copies of the same
program, the operating environment surrounding that program may affect its
behavior, and there can be transient faults that affect the operation of individual
state machines differently. Since the result is again that the data replicas drift apart,
the same reconciliation mechanism that fights decay may be able to handle this
problem.

4. 	To the extent that the replicated state machines really are identical, they will
contain identical implementation faults. Updates that cause the faults to produce
errors in the data will damage all the replicas identically, and reconciliation can
neither detect nor correct the errors.

update

request #1

prior state new state

State
machine

Site 1

prior state new state

State
machine

Site 2

prior state new state

State
machine

Site 3

update
request #2

12

12

12

FIGURE 10.2

Replicated state machines. If N identical state machines that all have the same prior state
receive and perform the same update requests in the same order, then all N of the machines
will enter the same new state.

Saltzer & Kaashoek Ch. 10, p. 12	 June 24, 2009 12:28 am

10.3 Durable Storage Revisited: Widely Separated Replicas 10–13

The good news is that the replicated state machine scheme not only is systematic, but
it lends itself to modularization. One module can implement the consensus-achieving
algorithm; a second set of modules, the state machines, can perform the actual updates;
and a third module responsible for reconciliation can periodically review the data replicas
to verify that they are identical and, if necessary, initiate repairs to keep them that way.

10.3.3 Shortcuts to Meet more Modest Requirements

The replicated state machine method is systematic, elegant, and modular, but its imple
mentation requirements are severe. At the other end of the spectrum, some applications
can get along with a much simpler method: implement just a single state machine. The
idea is to carry out all updates at one replica site, generating a new version of the database
at that site, and then somehow bring the other replicas into line. The simplest, brute
force scheme is to send a copy of this new version of the data to each of the other replica
sites, completely replacing their previous copies. This scheme is a particularly simple
example of master/slave replication. One of the things that makes it simple is that there
is no need for consultation among sites; the master decides what to do and the slaves just
follow along.

The single state machine with brute force copies works well if:

• 	 The data need to be updated only occasionally.

• 	 The database is small enough that it is practical to retransmit it in its entirety.

• 	There is no urgency to make updates available, so the master can accumulate
updates and perform them in batches.

• 	 The application can get along with temporary inconsistency among the various
replicas. Requiring clients to read from the master replica is one way to mask the
temporary inconsistency. On the other hand if, for improved performance, clients
are allowed to read from any available replica, then during an update a client
reading data from a replica that has received the update may receive different
answers from another client reading data from a different replica to which the
update hasn’t propagated yet.

This method is subject to data decay, just as is the replicated state machine, but the
effects of decay are different. Undetected decay of the master replica can lead to a disaster
in which the decay is propagated to the slave replicas. On the other hand, since update
installs a complete new copy of the data at each slave site, it incidentally blows away any
accumulated decay errors in slave replicas, so if update is frequent, it is usually not nec
essary to provide reconciliation. If updates are so infrequent that replica decay is a hazard,
the master can simply do an occasional dummy update with unchanged data to reconcile
the replicas.

The main defect of the single state machine is that even though data access can be
fault tolerant—if one replica goes down, the others may still available for reading—data
update is not: if the primary site fails, no updates are possible until that failure is detected

Saltzer & Kaashoek Ch. 10, p. 13	 June 24, 2009 12:28 am

10–14 CHAPTER 10 Consistency

and repaired. Worse, if the primary site fails while in the middle of sending out an
update, the replicas may remain inconsistent until the primary site recovers. This whole
approach doesn't work well for some applications, such as a large database with a require
ment for strict consistency and a performance goal that can be met only by allowing
concurrent reading of the replicas.

Despite these problems, the simplicity is attractive, and in practice many designers try
to get away with some variant of the single state machine method, typically tuned up
with one or more enhancements:

• 	 The master site can distribute just those parts of the database that changed (the
updates are known as “deltas” or “diffs”) to the replicas. Each replica site must then
run an engine that can correctly update the database using the information in the
deltas. This scheme moves back across the spectrum in the direction of the
replicated state machine. Though it may produce a substantial performance gain,
such a design can end up with the disadvantages of both the single and the
replicated state machines.

• 	 Devise methods to reduce the size of the time window during which replicas may
appear inconsistent to reading clients. For example, the master could hold the new
version of the database in a shadow copy, and ask the slave sites to do the same,
until all replicas of the new version have been successfully distributed. Then, short
messages can tell the slave sites to make the shadow file the active database. (This
model should be familiar: a similar idea was used in the design of the two-phase
commit protocol described in Chapter 9[on-line].)

• 	If the database is large, partition it into small regions, each of which can be
updated independently. Section 10.3.7, below, explores this idea in more depth.
(The Internet Domain Name System is for the most part managed as a large
number of small, replicated partitions.)

• 	 Assign a different master to each partition, to distribute the updating work more
evenly and increase availability of update.

• 	 Add fault tolerance for data update when a master site fails by using a consensus
algorithm to choose a new master site.

• 	 If the application is one in which the data is insensitive to the order of updates,
implement a replicated state machine without a consensus algorithm. This idea
can be useful if the only kind of update is to add new records to the data and the
records are identified by their contents, rather than by their order of arrival.
Members of a workgroup collaborating by e-mail typically see messages from other
group members this way. Different users may find that received messages appear
in different orders, and may even occasionally see one member answer a question
that another member apparently hasn’t yet asked, but if the e-mail system is
working correctly, eventually everyone sees every message.

Saltzer & Kaashoek Ch. 10, p. 14	 June 24, 2009 12:28 am

10.3 Durable Storage Revisited: Widely Separated Replicas 10–15

• 	 The master site can distribute just its update log to the replica sites. The replica
sites can then run REDO on the log entries to bring their database copies up to date.
Or, the replica site might just maintain a complete log replica rather than the
database itself. In the case of a disaster at the master site, one of the log replicas can
then be used to reconstruct the database.

This list just touches the surface. There seem to be an unlimited number of variations
in application-dependent ways of doing replication.

10.3.4 Maintaining Data Integrity

In updating a replica, many things can go wrong: data records can be damaged or even
completely lost track of in memory buffers of the sending or receiving systems, transmis
sion can introduce errors, and operators or administrators can make blunders, to name
just some of the added threats to data integrity. The durability mantra suggests imposing
physical and administrative separation of replicas to make threats to their integrity more
independent, but the threats still exist.

The obvious way to counter these threats to data integrity is to apply the method sug
gested on page 9–94 to counter spontaneous data decay: plan to periodically compare
replicas, doing so often enough that it is unlikely that all of the replicas have deteriorated.
However, when replicas are not physically adjacent this obvious method has the draw
back that bit-by-bit comparison requires transmission of a complete copy of the data
from one replica site to another, an activity that can be time-consuming and possibly
expensive.

An alternative and less costly method that can be equally effective is to calculate a wit
ness of the contents of a replica and transmit just that witness from one site to another.
The usual form for a witness is a hash value that is calculated over the content of the rep
lica, thus attesting to that content. By choosing a good hash algorithm (for example, a
cryptographic quality hash such as described in Sidebar 11.7) and making the witness
sufficiently long, the probability that a damaged replica will have a hash value that
matches the witness can be made arbitrarily small. A witness can thus stand in for a rep
lica for purposes of confirming data integrity or detecting its loss.

The idea of using witnesses to confirm or detect loss of data integrity can be applied
in many ways. We have already seen checksums used in communications, both for end-
to-end integrity verification (page 7–31) and in the link layer (page 7–40); checksums
can be thought of as weak witnesses. For another example of the use of witnesses, a file
system might calculate a separate witness for each newly written file, and store a copy of
the witness in the directory entry for the file. When later reading the file, the system can
recalculate the hash and compare the result with the previously stored witness to verify
the integrity of the data in the file. Two sites that are supposed to be maintaining replicas
of the file system can verify that they are identical by exchanging and comparing lists of
witnesses. In Chapter 11[on-line] we will see that by separately protecting a witness one
can also counter threats to data integrity that are posed by an adversary.

Saltzer & Kaashoek Ch. 10, p. 15	 June 24, 2009 12:28 am

10–16 CHAPTER 10 Consistency

10.3.5 Replica Reading and Majorities

So far, we have explored various methods of creating replicas, but not how to use them.
The simplest plan, with a master/slave system, is to direct all client read and write
requests to the primary copy located at the master site, and treat the slave replicas exclu
sively as backups whose only use is to restore the integrity of a damaged master copy.
What makes this plan simple is that the master site is in a good position to keep track of
the ordering of read and write requests, and thus enforce a strict consistency specification
such as the usual one for memory coherence: that a read should return the result of the
most recent write.

A common enhancement to a replica system, intended to increase availability for read
requests, is to allow reads to be directed to any replica, so that the data continues to be
available even when the master site is down. In addition to improving availability, this
enhancement may also have a performance advantage, since the several replicas can prob
ably provide service to different clients at the same time. Unfortunately, the
enhancement has the complication that there will be instants during update when the
several replicas are not identical, so different readers may obtain different results, a vio
lation of the strict consistency specification. To restore strict consistency, some
mechanism that ensures before-or-after atomicity between reads and updates would be
needed, and that before-or-after atomicity mechanism will probably erode some of the
increased availability and performance.

Both the simple and the enhanced schemes consult only one replica site, so loss of
data integrity, for example from decay, must be detected using just information local to
that site, perhaps with the help of a witness stored at the replica site. Neither scheme
takes advantage of the data content of the other replicas to verify integrity. A more expen
sive, but more reliable, way to verify integrity is for the client to also obtain a second copy
(or a witness) from a different replica site. If the copy (or witness) from another site
matches the data (or a just-calculated hash of the data) of the first site, confidence in the
integrity of the data can be quite high. This idea can be carried further to obtain copies
or witnesses from several of the replicas, and compare them. Even when there are dis
agreements, if a majority of the replicas or witnesses agree, the client can still accept the
data with confidence, and might in addition report a need for reconciliation.

Some systems push the majority idea further by introducing the concept of a quorum.
Rather than simply “more than half the replicas”, one can define separate read and write
quorums, Qr and Qw, that have the property that Qr + Qw > Nreplicas. This scheme
declares a write to be confirmed after writing to at least a write quorum, Qw, of replicas
(while the system continues to try to propagate the write to the remaining replicas), and
a read to be successful if at least a read quorum, Qr, agree on the data or witness value.
By varying Qr and Qw, one can configure such a system to bias availability in favor of
either reads or writes in the face of multiple replica outages. In these terms, the enhanced
availability scheme described above is one for which Qw = Nreplicas and Qr = 1.

Alternatively, one might run an Nreplicas = 5 system with a rule that requires that all
updates be made to at least Qw = 4 of the replicas and that reads locate at least Qr = 2

Saltzer & Kaashoek Ch. 10, p. 16 June 24, 2009 12:28 am

10.3 Durable Storage Revisited: Widely Separated Replicas 10–17

replicas that agree. This choice biases availability modestly in favor of reading: a success
ful write requires that at least 4 of the 5 replicas be available, while a read will succeed if
only 2 of the replicas are available and agree, and agreement of 2 is ensured if any 3 are
available. Or, one might set Qw = 2 and Qr = 4. That configuration would allow some
one doing an update to receive confirmation that the update has been accomplished if
any two replicas are available for update, but reading would then have to wait at least
until the update gets propagated to two more replicas. With this configuration, write
availability should be high but read availability might be quite low.

In practice, quorums can actually be quite a bit more complicated. The algorithm as
described enhances durability and allows adjusting read versus write availability, but it
does not provide either before-or-after or all-or-nothing atomicity, both of which are
likely to be required to maintain strict consistency if there is either write concurrency or
a significant risk of system crashes. Consider, for example, the system for which
Nreplicas = 5, Qw = 4, and Qr = 2. If an updater is at work and has successfully updated
two of the replicas, one reader could read the two replicas already written by the updater
while another reader might read two of the replicas that the updater hasn’t gotten to yet.
Both readers would believe they had found a consistent set of replicas, but the read/write
coherence specification has not been met. Similarly, with the same system parameters, if
an updater crashes after updating two of replicas, a second updater might come along and
begin updating a different two of the replicas and then crash. That scenario would leave
a muddled set of replicas in which one reader could read the replicas written by the first
updater while another reader might read the replicas written by the second updater.

Thus a practical quorum scheme requires some additional before-or-after atomicity
mechanism that serializes writes and ensures that no write begins until the previous write
has sufficiently propagated to ensure coherence. The complexity of the mechanism
depends on the exact system configuration. If all reading and updating originates at a sin
gle site, a simple sequencer at that site can provide the needed atomicity. If read requests
can come from many different sources but all updates originate at a single site, the updat
ing site can associate a version number with each data update and reading sites can check
the version numbers to ensure that they have read the newest consistent set. If updates
can originate from many sites, a protocol that provides a distributed sequencer imple
mentation might be used for atomicity. Performance maximization usually is another
complicating consideration. The interested reader should consult the professional litera
ture, which describes many (sometimes quite complex) schemes for providing
serialization of quorum replica systems. All of these mechanisms are specialized solutions
to the generic problem of achieving atomicity across multiple sites, which was discussed
at the end of Chapter 9[on-line].

10.3.6 Backup

Probably the most widely used replication technique for durable storage that is based on
a single state machine is to periodically make backup copies of a complete file system on
an independent, removable medium such as magnetic tape, writable video disk (DVD),

Saltzer & Kaashoek Ch. 10, p. 17 June 24, 2009 12:28 am

10–18 CHAPTER 10 Consistency

or removable hard disk. Since the medium is removable, one can make the copy locally
and introduce geographic separation later. If a disk fails and must be replaced, its con
tents can be restored from the most recent removable medium replica. Removable media
are relatively cheap, so it is not necessary to recycle previous backup copies immediately.
Older backup copies can serve an additional purpose, as protection against human error
by acting as archives of the data at various earlier times, allowing retrieval of old data
values.

The major downside of this technique is that it may take quite a bit of time to make
a complete backup copy of a large storage system. For this reason, refinements such as
incremental backup (copy only files changed since the last backup) and partial backup
(don’t copy files that can be easily reconstructed from other files) are often implemented.
These techniques reduce the time spent making copies, but they introduce operational
complexity, especially at restoration time.

A second problem is that if updates to the data are going on at the same time as
backup copying, the backup copy may not be a snapshot at any single instant—it may
show some results of a multi-file update but not others. If internal consistency is impor
tant, either updates must be deferred during backup or some other scheme, such as
logging updates, must be devised. Since complexity also tends to reduce reliability, the
designer must use caution when going in this direction.

It is worth repeating that the success of data replication depends on the independence
of failures of the copies, and it can be difficult to assess correctly the amount of indepen
dence between replicas. To the extent that they are designed by the same designer and
are modified by the same software, replicas may be subject to the same design or imple
mentation faults. It is folk wisdom among system designers that the biggest hazard for a
replicated system is replicated failures. For example, a programming error in a replicated
state machine may cause all of the data replicas to become identically corrupted. In addi
tion, there is more to achieving durable storage than just replication. Because a thread
can fail at a time when some invariant on the data is not satisfied, additional techniques
are needed to recover the data.

Complexity can also interfere with success of a backup system. Another piece of folk
wisdom is that the more elaborate the backup system, the less likely that it actually works.
Most experienced computer users can tell tales of the day that the disk crashed, and for
some reason the backup copy did not include the most important files. (But the tale usu
ally ends with a story that the owner of those files didn’t trust the backup system, and
was able to restore those important files from an ad hoc copy he or she made
independently.)

10.3.7 Partitioning Data

A quite different approach to tolerating failures of storage media is to simply partition
the data, thereby making the system somewhat fail-soft. In a typical design, one would
divide a large collection of data into several parts, each of about the same size, and place
each part on a different physical device. Failure of any one of the devices then compro-

Saltzer & Kaashoek Ch. 10, p. 18 June 24, 2009 12:28 am

10.4 Reconciliation 10–19

mises availability of only one part of the entire set of data. For some applications this
approach can be useful, easy to arrange and manage, easy to explain to users, and inex
pensive. Another reason that partition is appealing is that access to storage is often a
bottleneck. Partition can allow concurrent access to different parts of the data, an impor
tant consideration in high-performance applications such as popular Web servers.

Replication can be combined with partition. Each partition of the data might itself
be replicated, with the replicas placed on different storage devices, and each storage
device can contain replicas of several of the different partitions. This strategy ensures
continued availability if any single storage device fails, and at the same time an appropri
ate choice of configuration can preserve the performance-enhancing feature of partition.

10.4 Reconciliation
A typical constraint for replicas is that a majority of them be identical. Unfortunately,
various events can cause them to become different: data of a replica can decay, a repli
cated state machine may experience an error, an update algorithm that has a goal of
eventual consistency may be interrupted before it reaches its goal, an administrator of a
replica site may modify a file in a way that fails to respect the replication protocol, or a
user may want to make an update at a time when some replicas are disconnected from
the network. In all of these cases, a need arises for an after-the-fact procedure to discover
the differences in the data and to recover consistency. This procedure, called reconcilia
tion, makes the replicas identical again.

Although reconciliation is a straightforward concept in principle, in practice three
things conspire to make it more complicated than one might hope:

1. 	For large bodies of data, the most straightforward methods (e.g., compare all the
bits) are expensive, so performance enhancements dominate, and complicate, the
algorithms.

2. 	A system crash during a reconciliation can leave a body of data in worse shape than
if no reconciliation had taken place. The reconciliation procedure itself must be
resilient against failures and system crashes.

3. 	During reconciliation, one may discover conflicts, which are cases where different
replicas have been modified in inconsistent ways. And in addition to files decaying,
decay may also strike records kept by the reconciliation system itself.

One way to simplify thinking about reconciliation is to decompose it into two dis
tinct modular components:

1. 	Detecting differences among the replicas.

2. 	Resolving the differences so that all the replicas become identical.

Saltzer & Kaashoek Ch. 10, p. 19	 June 24, 2009 12:28 am

10–20 CHAPTER 10 Consistency

At the outset, every difference represents a potential conflict. Depending on how much
the reconciliation algorithm knows about the semantics of the replicas, it may be able to
algorithmically resolve many of the differences, leaving a smaller set of harder-to-handle
conflicts. The remaining conflicts generally require more understanding of the semantics
of the data, and ultimately may require a decision to be made on the part of a person. To
illustrate this decomposition, the next section examines one widely-implemented recon
ciliation application, known as occasionally connected operation, in some detail.

10.4.1 Occasionally Connected Operation

A common application for reconciliation arises when a person has both a desktop com
puter and a laptop computer, and needs to work with the same files on both computers.
The desktop computer is at home or in an office, while the laptop travels from place to
place, and because the laptop is often not network-connected, changes made to a file on
one of the two computers can not be automatically reflected in the replica of that file on
the other. This scenario is called occasionally connected operation. Moreover, while the
laptop is disconnected files may change on either the desktop or the laptop (for example,
the desktop computer may pick up new incoming mail or do an automatic system update
while the owner is traveling with the laptop and editing a report). We are thus dealing
with a problem of concurrent update to multiple replicas.

Recall from the discussion on page 9–63 that there are both pessimistic and optimis
tic concurrency control methods. Either method can be applied to occasionally
connected replicas:

• 	 Pessimistic: Before disconnecting, identify all of the files that might be needed in
work on the laptop computer and mark them as “checked out” on the desktop
computer. The file system on the desktop computer then blocks any attempts to
modify checked-out files. A pessimistic scheme makes sense if the traveler can
predict exactly which files the laptop should check out and it is likely that someone
will also attempt to modify them at the desktop.

• 	 Optimistic: Allow either computer to update any file and, the next time that the
laptop is connected, detect and resolve any conflicting updates. An optimistic
scheme makes sense if the traveler cannot predict which files will be needed while
traveling and there is little chance of conflict anyway.

Either way, when the two computers can again communicate, reconciliation of their
replicas must take place. The same need for reconciliation applies to the handheld com
puters known as “personal digital assistants” which may have replicas of calendars,
address books, to-do lists, or databases filled with business cards. The popular term for
this kind of reconciliation is “file synchronization”. We avoid using that term because
“synchronization” has too many other meanings.

The general outline of how to reconcile the replicas seems fairly simple: If a particular
file changed on one computer but not on the other, the reconciliation procedure can

Saltzer & Kaashoek Ch. 10, p. 20	 June 24, 2009 12:28 am

10.4 Reconciliation 10–21

resolve the difference by simply copying the newer file to the other computer. In the pes
simistic case that is all there is to it. If the optimistic scheme is being used, the same file
may have changed on both computers. If so, that difference is a conflict and reconcilia
tion requires more guidance to figure out how the resolve it. For the file application, both
the detection step and the resolution step can be fairly simple.

The most straightforward and accurate way to detect differences would be to read
both copies of the file and compare their contents, bit by bit, with a record copy that was
made at the time of the last reconciliation. If either file does not match the record copy,
there is a difference; if both files fail to match the record copy, there is a conflict. But this
approach would require maintaining a record copy of the entire file system as well as
transmitting all of the data of at least one of the file systems to the place that holds the
record copy. Thus there is an incentive to look for shortcuts.

One shortcut is to use a witness in place of the record copy. The reconciliation algo
rithm can then detect both differences and conflicts by calculating the current hash of a
file and comparing it with a witness that was stored at the time of the previous reconcil
iation. Since a witness is likely to be much smaller than the original file, it does not take
much space to store and it is easy to transmit across a network for comparison. The same
set of stored witnesses can also support a decay detector that runs in a low-priority thread,
continually reading files, recalculating their hash values, and comparing them with the
stored witnesses to see if anything has changed.

Since witnesses require a lot of file reading and hash computation, a different shortcut
is to just examine the time of last modification of every file on both computers, and com
pare that with the time of last reconciliation. If either file has a newer modification
timestamp, there is a difference, and if both have newer modification timestamps, there
is a conflict. This shortcut is popular because most file systems maintain modification
timestamps as part of the metadata associated with a file. One requirement of this short
cut is that the timestamp have a resolution fine enough to ensure that every time a file is
modified its timestamp increases. Unfortunately, modification timestamps are an
approximation to witnesses that have several defects. First, the technique does not dis
cover decay because decay events change file contents without updating modification
times. Second, if someone modifies a file, then undoes the changes, perhaps because a
transaction was aborted, the file will have a new timestamp and the reconciliation algo
rithm will consider the file changed, even though it really hasn’t. Finally, the system
clocks of disconnected computers may drift apart or users may reset system clocks to
match their wristwatches (and some file systems allow the user to “adjust” the modifica
tion timestamp on a file), so algorithms based on comparing timestamps may come to
wrong conclusions as to which of two file versions is “newer”. The second defect affects
performance rather than correctness, and the impact may be inconsequential, but the
first and third defects can create serious correctness problems.

A file system can provide a different kind of shortcut by maintaining a systemwide
sequence number, known as a generation number. At some point when the replicas are
known to be identical, both file systems record as part of the metadata of every file a start
ing generation number, say zero, and they both set their current systemwide generation

Saltzer & Kaashoek Ch. 10, p. 21 June 24, 2009 12:28 am

10–22 CHAPTER 10 Consistency

numbers to one. Then, whenever a user modifies a file, the file system records in the
metadata of that file the current generation number. When the reconciliation program
next runs, by examining the generation numbers on each file it can easily determine
whether either or both copies of a file were modified since the last reconciliation: if either
copy of the file has the current generation number, there is a difference; if both copies of
the file have the current generation number, there is a conflict. When the reconciliation
is complete and the two replicas are again identical, the file systems both increase their
current generation numbers by one in preparation for the next reconciliation. Genera
tion numbers share two of the defects of modification timestamps. First, they do not
allow discovery of decay, since decay events change file contents without updating gen
eration numbers. Second, an aborted transaction can leave one or more files with a new
generation number even though the file contents haven’t really changed. An additional
problem that generation numbers do not share with modification timestamps is that
implementation of generation numbers is likely to require modifying the file system.

The resolution step usually starts with algorithmic handling of as many detected dif
ferences as possible, leaving (one hopes) a short list of conflicts for the user to resolve
manually.

10.4.2 A Reconciliation Procedure

To illustrate some of the issues involved in reconciliation, Figure 10.3 shows a file rec
onciliation procedure named RECONCILE, which uses timestamps. To simplify the
example, files have path names, but there are no directories. The procedure reconciles
two sets of files, named left and right, which were previously reconciled at
last_reconcile_time, which acts as a kind of generation number. The procedure assumes
that the two sets of files were identical at that time, and its goal is to make the two sets
identical again, by examining the modification timestamps recorded by the storage sys
tems that hold the files. The function MODIFICATION_TIME(file) returns the time of the last
modification to file. The copy operation, in addition to copying a file from one set to
another, also copies the time of last modification, if necessary creating a file with the
appropriate file name.

RECONCILE operates as a transaction. To achieve all-or-nothing atomicity, RECONCILE is
constructed to be idempotent; in addition, the copy operation must be atomic. To
achieve before-or-after atomicity, RECONCILE must run by itself, without anyone else mak
ing more changes to files while its executes, so it begins by quiescing all file activity,
perhaps by setting a lock that prevents new files from being opened by anyone other than
itself, and then waiting until all files opened by other threads have been closed. For dura
bility, reconcile depends on the underlying file system. Its constraint is that when it exits,
the two sets left and right are identical.

RECONCILE prepares for reconciliation by reading from a dedicated disk sector the
timestamp of the previous reconciliation and enumerating the names of the files on both
sides. From the two enumerations, program lines 7 through 9 create three lists:

• names of files that appear on both sides (common_list),

Saltzer & Kaashoek Ch. 10, p. 22 June 24, 2009 12:28 am

10.4 Reconciliation 10–23

FIGURE 10.3

1 procedure RECONCILE (reference left, reference right,
2 reference last_reconcile_time)
3 quiesce all activity on left and right // Shut down all file-using applications
4 ALL_OR_NOTHING_GET (last_reconcile_time, reconcile_time_sector)
5 left_list ← enumerate(left)
6 right_list ← enumerate(right)
7 common_list ← intersect(left_list, right_list)
8 left_only_list ← remove members of common_list from left_list
9 right_only_list ← remove members of common_list from right_list
10 conflict_list ← NIL

11 for each named_file in common_list do // Reconcile files found both sides
12 left_new ← (MODIFICATION_TIME (left.named_file) > last_reconcile_time)
13 right_new ← (MODIFICATION_TIME (right.named_file) > last_reconcile_time)
14 if left_new and right_new then
15 add named_file to conflict_list
16 else if left_new then
17 copy named_file from left to right
18 else if right_new then
19 copy named_file from right to left
20 else if MODIFICATION_TIME (left.named_file) ≠
21 (MODIFICATION_TIME (right.named_file)
22 then TERMINATE (“Something awful has happened.”)

23 for each named_file in left_only_list do // Reconcile files found one side
24 if MODIFICATION_TIME (left.named_file) > last_reconcile_time then
25 copy named_file from left to right
26 else
27 delete left.named_file
28 for each named_file in right_only_list do
29 if MODIFICATION_TIME (right.named_file) > last_reconcile_time then
30 copy named_file from right to left
31 else
32 delete right.named_file

33 for each named_file in conflict_list do // Handle conflicts
34 MANUALLY_RESOLVE (right.named_file, left.named_file)
35 last_reconcile_time ← NOW ()
36 ALL_OR_NOTHING_PUT (last_reconcile_time, reconcile_time_sector)
37 Allow activity to resume on left and right

A simple reconciliation algorithm.

Saltzer & Kaashoek Ch. 10, p. 23 June 24, 2009 12:28 am

10–24 CHAPTER 10 Consistency

• names of files that appear only on the left (left_only_list), and
• names of files that appear only on the right (right_only_list).

These three lists drive the rest of the reconciliation. Line 10 creates an empty list named
conflict_list, which will accumulate names of any files that it cannot algorithmically
reconcile.

Next, RECONCILE reviews every file in common_list. It starts, on lines 12 and 13, by
checking timestamps to see whether either side has modified the file. If both sides have
timestamps that are newer than the timestamp of the previous run of the reconciliation
program, that indicates that both sides have modified the file, so it adds that file name
to the list of conflicts. If only one side has a newer timestamp, it takes the modified ver
sion to be the authoritative one and copies it to the other side. (Thus, this program does
some difference resolution at the same time that it is doing difference detection. Com
pletely modularizing these two steps would require two passes through the lists of files,
and thereby reduce performance.) If both file timestamps are older than the timestamp
of the previous run, it checks to make sure that the timestamps on both sides are identi
cal. If they are not, that suggests that the two file systems were different at the end of the
previous reconciliation, perhaps because something went wrong during that attempt to
reconcile, so the program terminates with an error message rather than blundering for
ward and taking a chance on irreparably messing up both file systems.

Having handled the list of names of files found on both sides, RECONCILE then consid
ers those files whose names it found on only one side. This situation can arise in three
ways:

1. one side deletes an old file,

2. the other side creates a new file, or

3. one side modifies a file that the other side deletes.

The first case is easily identified by noticing that the side that still has the file has not
modified it since the previous run of the reconciliation program. For this case RECONCILE

deletes the remaining copy. The other two cases cannot, without keeping additional
state, be distinguished from one another, so RECONCILE simply copies the file from one side
to the other. A consequence of this choice is that a deleted file will silently reappear if the
other side modified it after the previous invocation of RECONCILE. An alternative imple
mentation would be to declare a conflict, and ask the user to decide whether to delete or
copy the file. With that choice, every newly created file requires manual intervention at
the next run of RECONCILE. Both implementations create some user annoyance. Eliminat
ing the annoyance is possible but requires an algorithm that remembers additional, per-
file state between runs of RECONCILE.

Having reconciled all the differences that could be resolved algorithmically, RECONCILE

asks the user to resolve any remaining conflicts by manual intervention. When the user
finishes, RECONCILE is ready to commit the transaction, which it does by recording the cur
rent time in the dedicated disk sector, in line 36. It then allows file creation activity to
resume, and it exits. The two sets of files are again identical.

Saltzer & Kaashoek Ch. 10, p. 24 June 24, 2009 12:28 am

10.4 Reconciliation 10–25

10.4.3 Improvements

There are several improvements that we could make to this simple reconciliation algo
rithm to make it more user-friendly or comprehensive. As usual, each improvement adds
complexity. Here are some examples:

1. 	Rather than demanding that the user resolve all remaining conflicts on the spot,
it would be possible to simply notify the user that there is a non-empty conflict list
and let the user resolve those conflicts at leisure. The main complication this
improvement adds is that the user is likely to be modifying files (and changing file
modification timestamps) at the same time that other file activity is going on,
including activity that may be generating new inconsistencies among the replicas.
Changes that the user makes to resolve the conflicts may thus look like new
conflicts next time the reconciliation program runs. A second complication is that
there is no assurance that the user actually reconciles the conflicts; the conflict list
may still be non-empty the next time that the reconciliation program runs, and it
must take that possibility into account. A simple response could be for the
program to start by checking the previous conflict list to see if it is empty, and if it
is not asking the user to take care of it before proceeding.

2. 	Some of the remaining conflicts may actually be algorithmically resolvable, with
the help of an application program that understands the semantics and format of
a particular file. Consider, for example, an appointment calendar application that
stores the entire appointment book in a single file. If the user adds a 1 p.m. meeting
to the desktop replica and a 4 p.m. meeting to the laptop replica, both files would
have modification timestamps later than the previous reconciliation, so the
reconciliation program would flag these files as a conflict. On the other hand, the
calendar application program might be able to resolve the conflict by copying both
meeting records to both files. What is needed is for the calendar application to
perform the same kind of detection/resolution reconciliation we have already seen,
but applied to individual appointment records rather than to the whole file. Any
application that maintains suitable metadata (e.g. a record copy, witnesses, a
generation number, or a timestamp showing when each entry in its database was
last modified) can do such a record-by-record reconciliation. Of course, if the
calendar application encounters two conflicting changes to the same appointment
record, it probably would refer that conflict to the user for advice. The result of the
application-specific reconciliation should be identical files on both replicas with
identical modification timestamps.

Application-specific reconciliation procedures have been designed for many differ
ent specialized databases such as address books, to-do lists, and mailboxes; all that
is required is that the program designer develop an appropriate reconciliation algo
rithm. For convenience, it is helpful to integrate these application-specific
procedures with the main reconciliation procedure. The usual method is for such

Saltzer & Kaashoek Ch. 10, p. 25	 June 24, 2009 12:28 am

10–26 CHAPTER 10 Consistency

applications to register their reconciliation procedures, along with a list of files or
file types that each reconciliation procedure can handle, with the main reconcilia
tion program. The main reconciliation program then adds a step of reviewing its
conflict list to see if there is an application-specific program available for each file.
If there is, it invokes that program, rather than asking the user to resolve the
conflict.

3. 	As it stands, the reconciliation procedure enumerates only files. If it were to be
applied to a file system that has directories, links, and file metadata other than file
names and modification times, it might do some unexpected things. For example,
the program would handle links badly, by creating a second copy of the linked file,
rather than creating a link. Most reconciliation programs have substantial chunks
of code devoted to detecting and resolving differences in directories and metadata.
Because the semantics of the directory management operations are usually known
to the writer of the reconciliation program, many differences between directories
can be resolved algorithmically. However, there can still be a residue of conflicts
that require user guidance to resolve, such as when a file named A has been created
in a directory on one side and a different file named A has been created in the same
directory on the other side.

10.4.4 Clock Coordination

This RECONCILE program is relatively fragile. It depends, for example, on the timestamps
being accurate. If the two sets of files are managed by different computer systems with
independent clocks, and someone sets the clock incorrectly on one side, the timestamps
on that side will also be incorrect, with the result that RECONCILE may not notice a conflict,
it may overwrite a new version of a file with an old version, it may delete a file that should
not be deleted, or it may incorrectly revive a deleted file. For the same reason, RECONCILE

must carefully preserve the variable last_reconcile_time from one run to the next.
Some reconciliation programs try to minimize the possibility of accidental damage by

reading the current clock value from both systems, noting the difference, and taking that
difference into account. If the difference has not changed since the previous reconcilia
tion, reconcile can simply add (or subtract, as appropriate) the time difference and
proceed as usual. If the difference has changed, the amount of the change can be consid
ered a delta of uncertainty; any file whose fate depends on that uncertainty is added to
the list of conflicts for the user to resolve manually.

10.5 Perspectives
In [on-line] Chapters 9 and 10 we have gone into considerable depth on various aspects
of atomicity and systematic approaches to providing it. At this point it is appropriate to
stand back from the technical details and try to develop some perspective on how all

Saltzer & Kaashoek Ch. 10, p. 26	 June 24, 2009 12:28 am

10.5 Perspectives 10–27

these ideas relate to the real world. The observations of this section are wide-ranging: his
tory, trade-offs, and unexplored topics. Individually these observations appear somewhat
disconnected, but in concert they may provide the reader with some preparation for the
way that atomicity fits into the practical world of computer system design.

10.5.1 History

Systematic application of atomicity to recovery and to coordination is relatively recent.
Ad hoc programming of concurrent activities has been common since the late 1950s,
when machines such as the IBM 7030 (STRETCH) computer and the experimental
TX–0 at M.I.T. used interrupts to keep I/O device driver programs running concur
rently with the main computation. The first time-sharing systems (in the early 1960s)
demonstrated the need to be more systematic in interrupt management, and many dif
ferent semantic constructs were developed over the next decade to get a better grasp on
coordination problems: Edsger Dijkstra’s semaphores, Per Brinch Hansen’s message
buffers, David Reed and Raj Kanodia’s eventcounts, Nico Habermann’s path expres
sions, and Anthony Hoare’s monitors are examples. A substantial literature grew up
around these constructs, but a characteristic of all of them was a focus on properly coor
dinating concurrent activities, each of which by itself was assumed to operate correctly.
The possibility of failure and recovery of individual activities, and the consequences of
such failure and recovery on coordination with other, concurrent activities, was not a
focus of attention. Another characteristic of these constructs is that they resemble a
machine language, providing low-level tools but little guidance in how to apply them.

Failure recovery was not simply ignored in those early systems, but it was handled
quite independently of coordination, again using ad hoc techniques. The early time
sharing system implementers found that users required a kind of durable storage, in
which files could be expected to survive intact in the face of system failures. To this end
most time-sharing systems periodically made backup copies of on-line files, using mag
netic tape as the backup medium. The more sophisticated systems developed
incremental backup schemes, in which recently created or modified files were copied to
tape on an hourly basis, producing an almost-up-to-date durability log. To reduce the
possibility that a system crash might damage the on-line disk storage contents, salvager
programs were developed to go through the disk contents and repair obvious and com
mon kinds of damage. The user of a modern personal computer will recognize that some
of these techniques are still in widespread use.

These ad hoc techniques, though adequate for some uses, were not enough for design
ers of serious database management systems. To meet their requirements, they developed
the concept of a transaction, which initially was exactly an all-or-nothing action applied
to a database. Recovery logging protocols thus developed in the database environment,
and it was some time before it was recognized that recovery semantics had wider
applicability.

Within the database world, coordination was accomplished almost entirely by lock
ing techniques that became more and more systematic and automatic, with the

Saltzer & Kaashoek Ch. 10, p. 27 June 24, 2009 12:28 am

10–28 CHAPTER 10 Consistency

realization that the definition of correctness for concurrent atomic actions involved get
ting the same result as if those atomic actions had actually run one at a time in some serial
order. The database world also contributed the concept of maintaining constraints or
invariants among different data objects, and the word transaction came to mean an action
that is both all-or-nothing and before-or-after and that can be used to maintain con
straints and provide durability. The database world also developed systematic replication
schemes, primarily to enhance reliability and availability, but also to enhance
performance.

The understanding of before-or-after atomicity, along with a requirement for hierar
chical composition of programs, in turn led to the development of version history (also
called temporal database or time domain addressing) systems. Version histories systemati
cally provide both recovery and coordination with a single mechanism, and they simplify
building big atomic actions out of several, independently developed, smaller ones.

This text has reversed this order of development because the relatively simple version
history is pedagogically more straightforward, while the higher complexity of the log
ging/locking approach is easier to grasp after seeing why version histories work. Version
histories are used in source code management systems and also in user interfaces that pro
vide an UNDO button, but virtually all commercial database management systems use
logs and locking in order to attain maximum performance.

10.5.2 Trade-Offs

An interesting set of trade-offs applies to techniques for coordinating concurrent activi
ties. Figure 10.4 suggests that there is a spectrum of coordination possibilities, ranging
from totally serialized actions on the left to complete absence of coordination on the
right. Starting at the left, we can have great simplicity (for example by scheduling just
one thread at a time) but admit no concurrency at all. Moving toward the right, the com
plexity required to maintain correctness increases but so does the possibility of improved
performance, since more and more concurrency is admitted. For example, the mark-
point and simple locking disciplines might lie more toward the left end of this spectrum
while two-phase locking would be farther to the right. The solid curved line in the figure
represents a boundary of increasing minimum complexity, below which that level of
coordination complexity can no longer ensure correctness; outcomes that do not corre
spond to any serial schedule of the same actions become possible. (For purposes of
illustration, the figure shows the boundary line as a smooth increasing curve, but that is
a gross oversimplification. At the first hint of concurrency, the complexity leaps upward.)

Continuing to traverse the concurrency spectrum to the right, one passes a point,
indicated by the dashed vertical line, beyond which correctness cannot be achieved no
matter how clever or complex the coordination scheme. The closer one approaches this
limit from the left, the higher the performance, but at the cost of higher complexity. All
of the algorithms explored in [on-line] Chapters 9 and 10 are intended to operate to the
left of the correctness limit, but we might inquire about the possibilities of working on
the other side. Such a possibility is not as unthinkable as it might seem at first. If inter-

Saltzer & Kaashoek Ch. 10, p. 28 June 24, 2009 12:28 am

10.5 Perspectives 10–29

ference between concurrent activities is rare, and the cost of an error is small, one might
actually be willing to permit concurrent actions that can lead to certifiably wrong
answers. Section 9.5.4[on-line] suggested that designers sometimes employ locking pro
tocols that operate in this region.

For example, in an inventory control system for a grocery store, if an occasional sale
of a box of cornflakes goes unrecorded because two point-of-sale terminals tried to
update the cornflakes inventory concurrently, the resulting slight overstatement of
inventory may not be a serious problem. The grocery store must do occasional manual
inventory anyway because other boxes of cornflakes are misplaced, damaged, and stolen,
and employees sometimes enter wrong numbers when new boxes are delivered. This
higher-layer data recovery mechanism will also correct any errors that creep in because
of miscoordination in the inventory management system, so its designer might well
decide to use a coordination technique that allows maximum concurrency, is simple,
catches the most common miscoordination problems, but nevertheless operates below or
to the right of the strict correctness line. A decision to operate a data management system

Limit of
high

low

complexity of
coordination
scheme correct

coordination

wrong answers
miscoordination and

none unconstrained

limit of
correctness despite
unlimited complexity

correctness
for this much
complexity

subjective

Amount of concurrent activity permitted

FIGURE 10.4

The trade-off among concurrency, complexity, and correctness. The choice of where in this
chart to position a system design depends on the answers to two questions: 1) How frequently
will concurrent activities actually interfere with one another? 2) How important are 100% cor
rect results? If interference is rare, it is appropriate to design farther to the right. If correctness
is not essential, it may be acceptable to design even to the right of the two correctness
boundaries.

Saltzer & Kaashoek Ch. 10, p. 29 June 24, 2009 12:28 am

10–30 CHAPTER 10 Consistency

in a mode that allows such errors can be made on a rational basis. One would compare
the rate at which the system loses track of inventory because of its own coordination
errors with the rate at which it loses track because of outside, uncontrolled events. If the
latter rate dominates, it is not necessary to press the computer system for better accuracy.

Another plausible example of acceptable operation outside the correctness boundary
is the calculation, by the Federal Reserve Bank, of the United States money supply.
Although in principle one could program a two-phase locking protocol that includes
every bank account in every bank that contains U.S. funds, the practical difficulty of
accomplishing that task with thousands of independent banks distributed over a conti
nent is formidable. Instead, the data is gathered without locking, with only loose
coordination and it is almost certain that some funds are counted twice and other funds
are overlooked. However, great precision is not essential in the result, so lack of perfect
coordination among the many individual bank systems operating concurrently is
acceptable.

Although allowing incorrect coordination might appear usable only in obscure cases,
it is actually applicable to a wider range of situations than one might guess. In almost all
database management applications, the biggest cause of incorrect results is wrong input
by human operators. Typically, stored data already has many defects before the transac
tion programs of the database management system have a chance to “correctly”
transform it. Thus the proper perspective is that operation outside of the correctness
boundaries of Figure 10.4 merely adds to the rate of incorrectness of the database. We
are making an end-to-end argument here: there may be little point in implementing
heroic coordination correctness measures in a lower layer if the higher-layer user of our
application makes other mistakes, and has procedures in place to correct them anyway.

With that perspective, one can in principle balance heavy-handed but “correct” trans
action coordination schemes against simpler techniques that can occasionally damage the
data in limited ways. One piece of evidence that this approach is workable in practice is
that many existing data management systems offer optional locking protocols called
“cursor stability”, “read committed”, or “snapshot isolation”, all of which are demonstra
bly incorrect in certain cases. However, the frequency of interacting update actions that
actually produce wrong answers is low enough and the benefit in increased concurrency
is high enough that users find the trade-off tolerable. The main problem with this
approach is that no one has yet found a good way of characterizing (with the goal of lim
iting) the errors that can result. If you can’t bound the maximum damage that could
occur, then these techniques may be too risky.

An obvious question is whether or not some similar strategy of operating beyond a
correctness boundary applies to atomicity. Apparently not, at least in the area of instruc
tion set design for central processors. Three generations of central processor designers (of
the main frame processors of the 1950’s and 1960’s, the mini-computers of the 1970’s,
and the one-chip microprocessors of the 1980’s) did not recognize the importance of all-
or-nothing atomicity in their initial design and were later forced to retrofit it into their
architectures in order to accommodate the thread switching that accompanies multilevel
memory management.

Saltzer & Kaashoek Ch. 10, p. 30 June 24, 2009 12:28 am

10.5 Perspectives 10–31

10.5.3 Directions for Further Study

Chapters 9 and 10 have opened up only the first layer of study of atomicity, transactions,
durability, replication, and consistency; there are thick books that explore the details.
Among the things we have touched only lightly (or not at all) are distributed atomic
actions, hierarchically composing programs with modules that use locks, the systematic
use of loose or incorrect coordination, the systematic application of compensation, and
the possibility of malicious participants.

Implementing distributed atomic actions efficiently is a difficult problem for which
there is a huge literature, with some schemes based on locking, others on timestamp-
based protocols or version histories, some on combining the two, and yet others with
optimistic strategies. Each such scheme has a set of advantages and disadvantages with
respect to performance, availability, durability, integrity, and consistency. No one
scheme seems ready to dominate and new schemes appear regularly.

Hierarchical composition—making larger atomic actions out of previously pro
grammed smaller ones—interacts in an awkward way with locking as a before-or-after
atomicity technique. The problem arises because locking protocols require a lock point
for correctness. Creating an atomic action from two previously independent atomic
actions is difficult because each separate atomic action has its own lock point, coinciding
with its own commit point. But the higher-layer action must also have a lock point, sug
gesting that the order of capture and release of locks in the constituent atomic action
needs to be changed. Rearrangement of the order of lock capture and release contradicts
the usual goal of modular composition, under which one assembles larger systems out of
components without having to modify the components. To maintain modular compo
sition, the lock manager needs to know that it is operating in an environment of
hierarchical atomic actions. With this knowledge, it can, behind the scenes, systemati
cally rearrange the order of lock release to match the requirements of the action nesting.
For example, when a nested atomic action calls to release a lock, the lock manager can
simply relabel that lock to show that it is held by the higher layer, not-yet-committed,
atomic action in which this one is nested. A systematic discipline of passing locks up and
down among nested atomic actions thus can preserve the goal of modular composition,
but at a cost in complexity.

Returning to the idea suggested by Figure 10.4, the possibility of designing a system
that operates in the region of incorrectness is intriguing, but there is one major deterrent:
one would like to specify, and thus limit, the nature of the errors that can be caused by
miscoordination. This specification might be on the magnitude of errors, or their direc
tion, or their cumulative effect, or something else. Systematic specification of tolerance
of coordination errors is a topic that has not been seriously explored.

Compensation is the way that one deals with miscoordination or with recovery in sit
uations where rolling back an action invisibly cannot be accomplished. Compensation is
performing a visible action that reverses all known effects of some earlier, visible action.
For example, if a bank account was incorrectly debited, one might later credit it for the
missing amount. The usefulness of compensation is limited by the extent to which one

Saltzer & Kaashoek Ch. 10, p. 31 June 24, 2009 12:28 am

10–32 CHAPTER 10 Consistency

can track down and reverse everything that has transpired since the action that needs
reversal. In the case of the bank account, one might successfully discover that an interest
payment on an incorrect balance should also be adjusted; it might be harder to reverse
all the effects of a check that was bounced because the account balance was incorrectly
too low. Apart from generalizations along the line of “one must track the flow of infor
mation output of any action that is to be reversed” little is known about systematic
compensation; it seems to be an application-dependent concept. If committing the
transaction resulted in drilling a hole or firing a missile, compensation may not be an
applicable concept.

Finally, all of the before-or-after atomicity schemes we explored assume that the var
ious participants are all trying to reach a consistent, correct result. Another area of study
explores what happens if one or more of the workers in a multiple-site coordination task
decides to mislead the others, for example by sending a message to one site reporting it
has committed, while sending a message to another site reporting it has aborted. (This
possibility is described colorfully as the Byzantine Generals’ problem.) The possibility of
adversarial participants merges concerns of security with those of atomicity. The solu
tions so far are based primarily on extension of the coordination and recovery protocols
to allow achieving consensus in the face of adversarial behavior. There has been little
overlap with the security mechanisms that will be studied in Chapter 11[on-line].

One reason for exploring this area of overlap between atomicity and security is the
concern that undetected errors in communication links could simulate uncooperative
behavior. A second reason is increasing interest in peer-to-peer network communication,
which frequently involves large numbers of administratively independent participants
who may, either accidentally or intentionally, engage in Byzantine behavior. Another
possible source of Byzantine behavior could lie in outsourcing of responsibility for replica
storage.

Exercises

10.1 	 You are developing a storage system for a application that demands unusually high
reliability, so you have decided to use a three-replica durable storage scheme. You
plan to use three ordinary disk drives D1, D2, and D3, and arrange that D2 and
D3 store identical mirror copies of each block stored on D1. The disk drives are of
a simple design that does not report read errors. That is, they just return data,
whether or not it is valid.

10.1a. 	You initially construct the application so that it writes a block of data to the same
sector on all three drives concurrently. After a power failure occurs during the

Saltzer & Kaashoek Ch. 10, p. 32	 June 24, 2009 12:28 am

 Exercises 10–33

middle of a write, you are unable to reconstruct the correct data for that sector.
What is the problem?

 10.1b. Describe a modification that solves this problem.

10.1c. One day there is a really awful power glitch that crashes all three disks in such a
way that each disk corrupts one random track. Fortunately, the system wasn’t
writing any data at the time. Describe a procedure for reconstructing the data and
explain any cases that your procedure cannot handle.

1994–3–2

10.2 	 What assumptions does the design of the RECONCILE procedure of Section 10.4.2
make with respect to concurrent updates to different replicas of the same file?

A. It assumes that these conflicts seldom happen.
B. It assumes that these conflicts can be automatically detected.
C. 	 It assumes that all conflicts can be automatically resolved later.
D. 	 It assumes that these conflicts cannot happen.

1999–3–04

10.3 	 Mary uses RECONCILE to keep the files in her laptop computer coordinated with her
desktop computer. However, she is getting annoyed. While she is traveling, she
works on her e-mail inbox, reading and deleting messages, and preparing replies,
which go into an e-mail outbox. When she gets home, RECONCILE always tells her that
there is a conflict with the inbox and outbox on her desktop because while she was
gone the system added several new messages to the desktop inbox, and it dispatched
and deleted any messages that were in the desktop outbox. Her mailer implements
the inbox as a single file and the outbox as a single file. Ben suggests that Mary
switch to a different mailer, one that implements the inbox and outbox as two
directories, and places each incoming or outgoing message in a separate file.
Assuming that no one but the mail system touches Mary's desktop mailboxes in her
absence, which of the following is the most accurate description of the result?

A. RECONCILE will still not be able to reconcile either the inbox or the outbox.
B. RECONCILE will be able to reconcile the inbox but not the outbox.
C. 	 RECONCILE will be able to reconcile the outbox but not the inbox.
D. 	 RECONCILE will be able to reconcile both the inbox and the outbox.

1997–0–03

10.4 	 Which of the following statements are true of the RECONCILE program of Figure
10.3?

Saltzer & Kaashoek Ch. 10, p. 33	 June 24, 2009 12:28 am

10–34 CHAPTER 10 Consistency

A. 	 If RECONCILE finds that the content of one copy of a file differs from the other copy of
the same file, it indicates a conflict.

B. 	 You create a file X with content "a" in file set 1, then create a file X with content "b"
in file set 2. You then delete X from host 1, and run RECONCILE to synchronize the two
file sets. After RECONCILE finishes you’ll see a file X with content "b" in file set 1.

C. 	 If you accidentally reset RECONCILE’s variable named last_reconcile_time to
midnight, January 1, 1900, you are likely to need to resolve many more conflicts
when you next run RECONCILE than if you had preserved that variable.

2008–3–2

10.5 	 Here is a proposed invariant for a file reconciler such as the program RECONCILE of
Figure 10.3: At every moment during a run of RECONCILE, every file has either its
original contents, or its correct final contents. Which of the following statements is
true about RECONCILE?

A. 	 RECONCILE does not attempt to maintain this invariant.
B. 	 RECONCILE maintains this invariant in all cases.
C. 	 RECONCILE uses file creation time to determine the most recent version of a file.
D. 	 If the two file sets are on different computers connected by a network, RECONCILE

would have to send the content of one version of each file over the network to the
other computer for comparison.

Additional exercises relating to Chapter 10 can be found in problem sets 40 through
42.

Saltzer & Kaashoek Ch. 10, p. 34	 June 24, 2009 12:28 am

CHAPTER

Information Security 11
Information security. The protection of information and information

systems against unauthorized access or modification of information,

whether in storage, processing, or transit, and against denial of service

to authorized users.

— 	Information Operations. Joint Chiefs of Staff of the United States
Armed Forces, Joint Publication 3-13 (13 February 2006).

CHAPTER CONTENTS
Overview..11–4

11.1 	Introduction to Secure Systems ..11–5

11.1.1 Threat Classification ... 11–7

11.1.2 Security is a Negative Goal .. 11–9

11.1.3 The Safety Net Approach ..11–10

11.1.4 Design Principles ...11–13

11.1.5 A High d(technology)/dt Poses Challenges For Security11–17

11.1.6 Security Model ..11–18

11.1.7 Trusted Computing Base ..11–26

11.1.8 The Road Map for this Chapter ..11–28

11.2 	Authenticating Principals ..11–28

11.2.1 Separating Trust from Authenticating Principals11–29

11.2.2 Authenticating Principals ..11–30

11.2.3 	Cryptographic Hash Functions, Computationally Secure, Window of

Validity ..11–32

11.2.4 Using Cryptographic Hash Functions to Protect Passwords11–34

11.3 	Authenticating Messages...11–36

11.3.1 Message Authentication is Different from Confidentiality11–37

11.3.2 Closed versus Open Designs and Cryptography11–38

11.3.3 Key-Based Authentication Model ..11–41

11.3.4 Properties of SIGN and VERIFY ...11–41 11–1

Saltzer & Kaashoek Ch. 11, p. 1	 June 24, 2009 12:29 am

11–2 CHAPTER 11 Information Security

11.3.5 Public-key versus Shared-Secret Authentication11–44

11.3.6 Key Distribution ..11–45

11.3.7 Long-Term Data Integrity with Witnesses11–48

11.4 Message Confidentiality ..11–49

11.4.1 Message Confidentiality Using Encryption11–49

11.4.2 Properties of ENCRYPT and DECRYPT11–50

11.4.3 Achieving both Confidentiality and Authentication11–52

11.4.4 Can Encryption be Used for Authentication?11–53

11.5 Security Protocols ...11–54

11.5.1 Example: Key Distribution ..11–54

11.5.2 Designing Security Protocols ...11–60

11.5.3 Authentication Protocols ...11–63

11.5.4 An Incorrect Key Exchange Protocol11–66

11.5.5 Diffie-Hellman Key Exchange Protocol11–68

11.5.6 A Key Exchange Protocol Using a Public-Key System11–69

11.5.7 Summary ...11–71

11.6 Authorization: Controlled Sharing11–72

11.6.1 Authorization Operations ..11–73

11.6.2 The Simple Guard Model ..11–73

11.6.2.1 The Ticket System...11–74

11.6.2.2 The List System ..11–74

11.6.2.3 Tickets Versus Lists, and Agencies...............................11–75

11.6.2.4 Protection Groups ...11–76

11.6.3 Example: Access Control in UNIX ..11–76

11.6.3.1 Principals in UNIX ...11–76

11.6.3.2 ACLs in UNIX ...11–77

11.6.3.3 The Default Principal and Permissions of a Process.........11–78

11.6.3.4 Authenticating Users ...11–79

11.6.3.5 Access Control Check...11–79

11.6.3.6 Running Services ..11–80

11.6.3.7 Summary of UNIX Access Control11–80

11.6.4 The Caretaker Model ..11–80

11.6.5 Non-Discretionary Access and Information Flow Control11–81

11.6.5.1 Information Flow Control Example...............................11–83

11.6.5.2 Covert Channels ...11–84

11.7 Advanced Topic: Reasoning about Authentication11–85

11.7.1 Authentication Logic ..11–86

11.7.1.1 Hard-wired Approach...11–88

11.7.1.2 Internet Approach...11–88

11.7.2 Authentication in Distributed Systems11–89

11.7.3 Authentication across Administrative Realms11–90

11.7.4 Authenticating Public Keys ..11–92

11.7.5 Authenticating Certificates ..11–94

11.7.6 Certificate Chains ..11–97

11.7.6.1 Hierarchy of Central Certificate Authorities11–97

Saltzer & Kaashoek Ch. 11, p. 2 June 24, 2009 12:29 am

11–3

11.7.6.2 Web of Trust...11–98

11.8 Cryptography as a Building Block (Advanced Topic)............11–99

11.8.1 Unbreakable Cipher for Confidentiality (One-Time Pad)11–99

11.8.2 Pseudorandom Number Generators 11–101

11.8.2.1 Rc4: A Pseudorandom Generator and its Use 11–101

11.8.2.2 Confidentiality using RC4 ... 11–102

11.8.3 Block Ciphers .. 11–103

11.8.3.1 Advanced Encryption Standard (AES)......................... 11–103

11.8.3.2 Cipher-Block Chaining.. 11–105

11.8.4 Computing a Message Authentication Code 11–106

11.8.4.1 MACs Using Block Cipher or Stream Cipher 11–107

11.8.4.2 MACs Using a Cryptographic Hash Function 11–107

11.8.5 A Public-Key Cipher ... 11–109

11.8.5.1 Rivest-Shamir-Adleman (RSA) Cipher 11–109

11.8.5.2 Computing a Digital Signature 11–111

11.8.5.3 A Public-Key Encrypting System................................ 11–112

11.9 .Summary..11–112

11.10 Case Study: Transport Layer Security (TLS) for the Web.11–116

11.10.1 The TLS Handshake ... 11–117

11.10.2 Evolution of TLS .. 11–120

11.10.3 Authenticating Services with TLS 11–121

11.10.4 User Authentication ... 11–123

11.11 War Stories: Security System Breaches...........................11–125

11.11.1 Residues: Profitable Garbage .. 11–126

11.11.1.1 1963: Residues in CTSS ... 11–126

11.11.1.2 1997: Residues in Network Packets.......................... 11–127

11.11.1.3 2000: Residues in HTTP ... 11–127

11.11.1.4 Residues on Removed Disks.................................... 11–128

11.11.1.5 Residues in Backup Copies...................................... 11–128

11.11.1.6 Magnetic Residues: High-Tech Garbage Analysis 11–129

11.11.1.7 2001 and 2002: More Low-tech Garbage Analysis 11–129

11.11.2 Plaintext Passwords Lead to Two Breaches 11–130

11.11.3 The Multiply Buggy Password Transformation 11–131

11.11.4 Controlling the Configuration ... 11–131

11.11.4.1 Authorized People Sometimes do Unauthorized Things11–132

11.11.4.2 The System Release Trick 11–132

11.11.4.3 The Slammer Worm... 11–132

11.11.5 The Kernel Trusts the User .. 11–135

11.11.5.1 Obvious Trust ... 11–135

11.11.5.2 Nonobvious Trust (Tocttou) 11–136

11.11.5.3 Tocttou 2: Virtualizing the DMA Channel. 11–136

11.11.6 Technology Defeats Economic Barriers 11–137

11.11.6.1 An Attack on Our System Would be Too Expensive 11–137

11.11.6.2 Well, it Used to be Too Expensive 11–137

11.11.7 Mere Mortals Must be Able to Figure Out How to Use it 11–138

Saltzer & Kaashoek Ch. 11, p. 3 June 24, 2009 12:29 am

11–4 CHAPTER 11 Information Security

11.11.8 The Web can be a Dangerous Place 11–139

11.11.9 The Reused Password ... 11–140

11.11.10 Signaling with Clandestine Channels 11–141

11.11.10.1 Intentionally I: Banging on the Walls...................... 11–141

11.11.10.2 Intentionally II .. 11–141

11.11.10.3 Unintentionally.. 11–142

11.11.11 It Seems to be Working Just Fine 11–142

11.11.11.1 I Thought it was Secure.. 11–143

11.11.11.2 How Large is the Key Space…Really? 11–144

11.11.11.3 How Long are the Keys? 11–145

11.11.12 Injection For Fun and Profit ... 11–145

11.11.12.1 Injecting a Bogus Alert Message to the Operator...... 11–146
11.11.12.2 	CardSystems Exposes 40,000,000 Credit Card Records to

SQL Injection... 11–146
11.11.13 Hazards of Rarely-Used Components 11–148

11.11.14 A Thorough System Penetration Job 11–148

11.11.15 Framing Enigma .. 11–149

Exercises..11–151
Glossary for Chapter 11 ...11–163
Index of Chapter 11 ...11–169

Last chapter page 11–171

Overview
Secure computer systems ensure that users’ privacy and possessions are protected against
malicious and inquisitive users. Security is a broad topic, ranging from issues such as not
allowing your friend to read your files to protecting a nation’s infrastructure against
attacks. Defending against an adversary is a negative goal. The designer of a computer
system must ensure that an adversary cannot breach the security of the system in any way.
Furthermore, the designer must make it difficult for an adversary to side-step the security
mechanism; one of the simplest ways for an adversary to steal confidential information
is to bribe someone on the inside.

Because security is a negative goal, it requires designers to be careful and pay attention
to the details. Each detail might provide an opportunity for an adversary to breach the
system security. Fortunately, many of the previously-encountered design principles can
also guide the designer of secure systems. For example, the principles of the safety net
approach from Chapter 8[on-line], be explicit (state your assumptions so that they can be
reviewed) and design for iteration (assume you will make errors), apply equally, or perhaps
even with more force, to security.

The conceptual model for protecting computer systems against adversaries is that
some agent presents to a computer system a claimed identity and requests the system to

Saltzer & Kaashoek Ch. 11, p. 4	 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–5

perform some specified action. To achieve security, the system must obtain trustworthy
answers to the following three questions before performing the requested action:

1. 	Authenticity: Is the agent’s claimed identity authentic? (Or, is someone
masquerading as the agent?)

2. 	Integrity: Is this request actually the one the agent made? (Or, did someone tamper
with it?)

3. 	Authorization: Has a proper authority granted permission to this agent to perform
this action?

The primary underpinning of security of a system is the set of mechanisms that ensures
that these questions are answered satisfactorily for every action that the system performs.
This idea is known as the principle of

Complete mediation

For every requested action, check authenticity, integrity, and authorization.

To protect against inside attacks (adversaries who are actually users that have the
appropriate permissions, but abuse them) or adversaries who successfully break the secu
rity mechanisms, the service must also maintain audit trails of who used the system, what
authorization decisions have been made, etc. This information may help determine who
the adversary was after the attack, how the adversary breached the security of the system,
and bring the adversary to justice. In the end, a primary instrument to deter adversaries
is to increase the likelihood of detection and punishment.

The next section provides a general introduction to security. It discusses possible
threats (Section 11.1.1), why security is a negative goal (Section 11.1.2), presents the
safety net approach (Section 11.1.3), lays out principles for designing secure computer
systems (Section 11.1.4), the basic model for structuring secure computer systems (Sec
tion 11.1.6), an implementation strategy based on minimizing the trusted computing
base (Section 11.1.7), and concludes with a road map for the rest of this chapter (Section
11.1.8). The rest of the chapter works the ideas introduced in the next section in more
detail, but by no means provides a complete treatment of computer security. Computer
security is an active area of research with many open problems and the interested reader
is encouraged to explore the research literature to get deeper into the topic.

11.1 Introduction to Secure Systems
In Chapter 4 we saw how to divide a computer system into modules so that errors don’t
propagate from one module to another. In the presentation, we assumed that errors hap
pen unintentionally: modules fail to adhere to their contracts because users make mistakes
or hardware fails accidently. As computer systems become more and more deployed for

Saltzer & Kaashoek Ch. 11, p. 5	 June 24, 2009 12:29 am

11–6 CHAPTER 11 Information Security

mission-critical applications, however, we require computer systems that can tolerate
adversaries. By an adversary we mean a entity that breaks into systems intentionally, for
example, to steal information from other users, to blackmail a company, to deny other
users access to services, to hack systems for fun or fame, to test the security of a system,
etc. An adversary encompasses a wide range of bad guys as well as good guys (e.g., people
hired by an organization to test the security of that organization’s computers systems).
An adversary can be a single person or a group collaborating to break the protection.

Almost all computers are connected to networks, which means that they can be
attacked by an adversary from any place in the world. Not only must the security mech
anism withstand adversaries who have physical access to the system, but the mechanism
also must withstand a 16-year old wizard sitting behind a personal computer in some
country one has never heard of. Since most computers are connected through public net
works (e.g., the Internet), defending against a remote adversary is particularly
challenging. Any person who has access to the public network might be able to compro
mise any computer or router in the network.

Although, in most secure systems, keeping adversaries from doing bad things is the
primary objective, there is usually also a need to provide users with different levels of
authority. Consider electronic banking. Certainly, a primary objective must be to ensure
that no one can steal money from accounts, modify transactions performed over the pub
lic networks, or do anything else bad. But in addition, a banking system must enforce
other security constraints. For example, the owner of an account should be allowed to
withdraw money from the account, but the owner shouldn’t be allowed to withdraw
money from other accounts. Bank personnel, though, (under some conditions) should
be allowed to transfer money between accounts of different users and view any account.
Some scheme is needed to enforce the desired authority structure.

In some applications no enforcement mechanism internal to the computer system
may be necessary. For instance, an externally administered code of ethics or other mech
anisms outside of the computer system may protect the system adequately. On the other
hand, with the rising importance of computers and the Internet many systems require
some security plan. Examples include file services storing private information, Internet
stores, law enforcement information systems, electronic distribution of proprietary soft
ware, on-line medical information systems, and government social service data
processing systems. These examples span a wide range of needs for organizational and
personal privacy.

Not all fields of study use the terms “privacy,” “security,” and “protection” in the
same way. This chapter adopts definitions that are commonly encountered in the com
puter science literature. The traditional meaning of the term privacy is the ability of an
individual to determine if, when, and to whom personal information is to be released (see
Sidebar 11.1). The term security describes techniques that protect information and infor
mation systems against unauthorized access or modification of information, whether in
storage, processing, or transit, and against denial of service to authorized users. In this
chapter the term protection is used as a synonym for security.

Saltzer & Kaashoek Ch. 11, p. 6 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–7

Sidebar 11.1: Privacy The definition of privacy (the ability of an individual to determine if,
when, and to whom personal information is to be released) comes from the 1967 book Privacy
and Freedom by Alan Westin [Suggestions for Further Reading 1.1.6]. Some privacy advocates
(see for example Suggestions for Further Reading 11.1.2) suggest that with the increased
interconnectivity provided by changing technology, Westin's definition now covers only a
subset of privacy, and is in need of update. They suggest this broader definition: the ability of
an individual to decide how and to what extent personal information can be used by others.

This broader definition includes the original concept, but it also encompasses control over use
of information that the individual has agreed to release, but that later can be systematically
accumulated from various sources such as public records, grocery store frequent shopper cards,
Web browsing logs, on-line bookseller records about what books that person seems interested
in, etc.. The reasoning is that modern network and data mining technology add a new
dimension to the activities that can constitute an invasion of privacy. The traditional definition
implied that privacy can be protected by confidentiality and access control mechanisms; the
broader definition implies adding accountability for use of information that the individual has
agreed to release.

A common goal in a secure system is to enforce some privacy policy. An example of
a policy in the banking system is that only an owner and selected bank personnel should
have access to that owner’s account. The nature of a privacy policy is not a technical
question, but a social and political question. To make progress without having to solve
the problem of what an acceptable policy is, we focus on the mechanisms to enforce pol
icies. In particular, we are interested in mechanisms that can support a wide variety of
policies. Thus, the principle separate mechanism from policy is especially important in
design of secure systems.

11.1.1 Threat Classification

The design of any security system starts with identifying the threats that the system
should withstand. Threats are potential security violations caused either by a planned
attack by an adversary or unintended mistakes by legitimate users of the system. The
designer of a secure computer system must be consider both.

There are three broad categories of threats:

1. 	Unauthorized information release: an unauthorized person can read and take
advantage of information stored in the computer or being transmitted over
networks. This category of concern sometimes extends to “traffic analysis,” in
which the adversary observes only the patterns of information use and from those
patterns can infer some information content.

2. 	Unauthorized information modification: an unauthorized person can make
changes in stored information or modify messages that cross a network—an

Saltzer & Kaashoek Ch. 11, p. 7	 June 24, 2009 12:29 am

11–8 CHAPTER 11 Information Security

adversary might engage in this behavior to sabotage the system or to trick the
receiver of a message to divulge useful information or take unintended action. This
kind of violation does not necessarily require that the adversary be able to see the
information it has changed.

3. 	Unauthorized denial of use: an adversary can prevent an authorized user from
reading or modifying information, even though the adversary may not be able to
read or modify the information. Causing a system “crash,” flooding a service with
messages, or firing a bullet into a computer are examples of denial of use. This
attack is another form of sabotage.

In general, the term “unauthorized” means that release, modification, or denial of use
occurs contrary to the intent of the person who controls the information, possibly even
contrary to the constraints supposedly enforced by the system.

As mentioned in the overview, a complication in defending against these threats is
that the adversary can exploit the behavior of users who are legitimately authorized to use
the system but are lax about security. For example, many users aren’t security experts and
put their computers at risk through surfing the Internet and downloading untrusted,
third-party programs voluntarily or even without realizing it. Some users bring their own
personal devices and gadgets into their work place; these devices may contain malicious
software. Yet other users allow friends and family members to use computers at institu
tions for personal ends (e.g., storing personal content or playing games). Some employees
may be disgruntled with their company and may be willing to collaborate with an
adversary.

A legitimate user acting as an adversary is difficult to defend against because the
adversary’s actions will appear to be legitimate. Because of this difficulty, this threat has
its own label, the insider threat.

Because there are many possible threats, a broad set of security techniques exists. The
following list just provides a few examples (see Suggestions for Further Reading 1.1.7 for
a wider range of many more examples):

• 	making credit card information sent over the Internet unreadable by anyone
other than the intended recipients,

• 	 verifying the claimed identity of a user, whether local or across a network,
• 	 labeling files with lists of authorized users,
• 	 executing secure protocols for electronic voting or auctions,
• 	 installing a router (in security jargon called a firewall) that filters traffic between a

private network and a public network to make it more difficult for outsiders to
attack the private network,

• 	 shielding the computer to prevent interception and subsequent interpretation of
electromagnetic radiation,

• 	 locking the room containing the computer,
• 	 certifying that the hardware and software are actually implemented as intended,

Saltzer & Kaashoek Ch. 11, p. 8	 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–9

• 	providing users with configuration profiles to simplify configuration decisions
with secure defaults,

• 	 encouraging legitimate users to follow good security practices,
• 	monitoring the computer system, keeping logs to provide audit trails, and

protecting the logs from tampering.

11.1.2 Security is a Negative Goal

Having a narrow view of security is dangerous because the objective of a secure system is
to prevent all unauthorized actions. This requirement is a negative kind of requirement.
It is hard to prove that this negative requirement has been achieved, for one must dem
onstrate that every possible threat has been anticipated. Therefore, a designer must take a
broad view of security and consider any method in which the security scheme can be pen
etrated or circumvented.

To illustrate the difficulty, consider the positive goal, “Alice can read file x.” It is easy
to test if a designer has achieved the goal (we ask Alice to try to read the file). Further
more, if the designer failed, Alice will probably provide direct feedback by sending the
designer a message “I can't read x!” In contrast, with a negative goal, such as “Lucifer can
not read file x”, the designer must check that all the ways that the adversary Lucifer might
be able to read x are blocked, and it's likely that the designer won't receive any direct
feedback if the designer slips up. Lucifer won't tell the designer because Lucifer has no
reason to and it may not even be in Lucifer’s interest.

An example from the field of biology illustrates nicely the difference between proving
a positive and proving a negative. Consider the question “Is a species (for example, the
Ivory-Billed Woodpecker) extinct?’’ It is generally easy to prove that a species exists; just
exhibit a live example. But to prove that it is extinct requires exhaustively searching the
whole world. Since the latter is usually difficult, the most usual answer to proving a neg
ative is “we aren’t sure”.*

The question “Is a system secure?” has these same three possible outcomes: insecure,
secure, or don’t know. In order to prove a system is insecure, one must find just one
example of a security hole. Finding the hole is usually difficult and typically requires sub
stantial expertise, but once one hole is found it is clear that the system is insecure. In
contrast, to prove that a system is secure, one has to show that there is no security hole
at all. Because the latter is so difficult, the typical outcome is “we don’t know of any
remaining security holes, but we are certain that there are some.”

Another way of appreciating the difficulty of achieving a negative goal is to model a
computer system as a state machine with states for all the possible configurations in
which the system can be and with links between states for transitions between configu
rations. As shown in Figure 11.1, the possible states and links form a graph, with the

* The woodpecker was believed to be extinct, but in 2005 a few scientists claimed to have found
the bird in Arkansas after a kayaker caught a glimpse in 2004; if true, it is the first confirmed sighting
in 60 years.

Saltzer & Kaashoek Ch. 11, p. 9	 June 24, 2009 12:29 am

11–10 CHAPTER 11 Information Security

...
...

...
...Current Bad

FIGURE 11.1

Modeling a computer systems as a state machine. An adversary’s goal is to get the system into
a state, labeled “Bad”, that gives the adversary unauthorized access. To prevent the adversary
from succeeding, all paths leading to the bad state must be blocked off because the adversary
needs to find only one path to succeed.

states as nodes and possible transitions as edges. Assume that the system is in some cur
rent state. The goal of an adversary is to force the system from the current state to a state,
labeled “Bad” in the figure, that gives the adversary unauthorized access. To defend
against the adversary, the security designers must identify and block every path that leads
to the bad state. But the adversary needs to find only one path from the current state to
the bad state.

11.1.3 The Safety Net Approach

To successfully design systems that satisfy negative goals, this chapter adopts the safety
net approach of Chapter 8[on-line], which in essence guides a designer to be paranoid—
never assume the design is right. In the context of security, the two safety net principles
be explicit and design for iteration reinforce this paranoid attitude:

1. 	Be explicit: Make all assumptions explicit so that they can be reviewed. It may
require only one hole in the security of the system to penetrate it. The designer
must therefore consider any threat that has security implications and make explicit
the assumption on which the security design relies. Furthermore, make sure that
all assumptions on which the security of the system is based are apparent at all
times to all participants. For example, in the context of protocols, the meaning of
each message should depend only on the content of the message itself, and should
not be dependent on the context of the conversation. If the content of a message
depends on its context, an adversary might be able to break the security of a
protocol by tricking a receiver into interpreting the message in a different context.

Saltzer & Kaashoek Ch. 11, p. 10	 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–11

2. 	Design for iteration: Assume you will make errors. Because the designer must
assume that the design itself will contain flaws, the designer must be prepared to
iterate the design. When a security hole is discovered, the designer must review the
assumptions, if necessary adjust them, and repair the design. When a designer
discovers an error in the system, the designer must reiterate the whole design and
implementation process.

The safety net approach implies several requirements for the design of a secure
system:

• 	 Certify the security of the system. Certification involves verifying that the design
matches the intended security policy, the implementation matches the design, and
the running system matches the implementation, followed up by end-to-end tests
by security specialists looking for errors that might compromise security.
Certification provides a systematic approach to reviewing the security of a system
against the assumptions. Ideally, certification is performed by independent
reviewers, and, if possible, using formal tools. One way to make certification
manageable is to identify those components that must be trusted to ensure security,
minimize their number, and build a wall around them. Section 11.1.7 discusses
this idea, known as the trusted computing base, in more detail.

• 	 Maintain audit trails of all authorization decisions. Since the designer must assume
that legitimate users might abuse their permissions or an adversary may be
masquerading as a legitimate user, the system should maintain an tamper-proof log
(so that an adversary cannot erase records) of all authorization decisions made. If,
despite all security mechanisms, an adversary (either from the inside or from the
outside) succeeds in breaking the security of the system, the log might help in
forensics. A forensics expert may be able to use the log to collect evidence that
stands in court and help establish the identity of the adversary so that the adversary
can be prosecuted after the fact. The log also can be used as a source of feedback
that reveals an incorrect assumption, design, or implementation.

• 	 Design the system for feedback. An adversary is unlikely to provide feedback when
compromising the system, so it is up to the designer to create ways to obtain
feedback. Obtaining feedback starts with stating the assumptions explicitly, so the
designer can check the designed, implemented, and operational system against the
assumptions when a flaw is identified. This method by itself doesn’t identify
security weaknesses, and thus the designer must actively look for potential
problems. Methods include reviewing audit logs and running programs that alert
system administrators about unexpected behavior, such as unusual network traffic
(e.g., many requests to a machine that normally doesn’t receive many requests),
repeated login failures, etc. The designer should also create an environment in
which staff and customers are not blamed for system compromises, but instead are
rewarded for reporting them, so that they are encouraged to report problems

Saltzer & Kaashoek Ch. 11, p. 11	 June 24, 2009 12:29 am

11–12 CHAPTER 11 Information Security

instead of hiding them. Designing for feedback reduces the chance that security
holes will slip by unnoticed. Anderson illustrates well through a number of real-
world examples how important it is to design for feedback [Suggestions for Further
Reading 11.5.3].

As part of the safety net approach, a designer must consider the environment in which
the system runs. The designer must secure all communication links (e.g., dial-up modem
lines that would otherwise bypass the firewall that filters traffic between a private net
work and a public network), prepare for malfunctioning equipment, find and remove
back doors that create security problems, provide configuration settings for users that are
secure by default, and determine who is trustworthy enough to own a key to the room
that protects the most secure part of the system. Moreover, the designer must protect
against bribes and worry about disgruntled employees. The security literature is filled
with stories of failures because the designers didn't take one of these issues into account.

As another part of the safety net approach, the designer must consider the dynamics
of use. This term refers to how one establishes and changes the specification of who may
obtain access to what. For example, Alice might revoke Bob’s permission to read file “x.”
To gain some insight into the complexity introduced by changes to access authorization,
consider again the question, “Is there any way that Lucifer could obtain access to file x?”
One should check not only whether Lucifer has access to file x, but also whether Lucifer
may change the specification of file x’s accessibility. The next step is to see if Lucifer can
change the specification of who may change the specification of file x’s accessibility, etc.

Another problem of dynamics arises when the owner revokes a user’s access to a file
while that file is being used. Letting the previously authorized user continue until the
user is “finished” with the information may be unacceptable if the owner has suddenly
realized that the file contains sensitive data. On the other hand, immediate withdrawal
of authorization may severely disrupt the user or leave inconsistent data if the user was
in the middle of an atomic action. Provisions for the dynamics of use are at least as
important as those for static specification of security.

Finally, the safety net approach suggests that a designer should never believe that a
system is completely secure. Instead, one must design systems that defend in depth by
using redundant defenses, a strategy that the Russian army deployed successfully for cen
turies to defend Russia. For example, a designer might have designed a system that
provides end-to-end security over untrusted networks. In addition, the designer might
also include a firewall between the trusted and untrusted network for network-level secu
rity. The firewall is in principle completely redundant with the end-to-end security
mechanisms; if the end-to-end security mechanism works correctly, there is no need for
network-level security. For an adversary to break the security of the system, however, the
adversary has to find flaws in both the firewall and in the end-to-end security mecha
nisms, and be lucky enough that the first flaw allows exploitation of the second.

The defense-in-depth design strategy offers no guarantees, but it seems to be effective
in practice. The reason is that conceptually the defense-in-depth strategy cuts more edges

Saltzer & Kaashoek Ch. 11, p. 12 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–13

in the graph of all possible paths from a current state to some undesired state. As a result,
an adversary has fewer paths available to get to and exploit the undesired state.

11.1.4 Design Principles

In practice, because security is a negative goal, producing a system that actually does pre
vent all unauthorized acts has proved to be extremely difficult. Penetration exercises
involving many different systems all have shown that users can obtain unauthorized
access to these systems. Even if designers follow the safety net approach carefully, design
and implementation flaws provide paths that circumvent the intended access constraints.
In addition, because computer systems change rapidly or are deployed in new environ
ments for which they were not designed originally, new opportunities for security
compromises come about. Section 11.11 provides several war stories about security
breaches.

Design and construction techniques that systematically exclude flaws are the topic of
much research activity, but no complete method applicable to the design of computer
systems exists yet. This difficulty is related to the negative quality of the requirement to
prevent all unauthorized actions. In the absence of such methodical techniques, experi
ence has provided several security principles to guide the design towards minimizing the
number of security flaws in an implementation. We discuss these principles next.

The design should not be secret:

Open design principle

Let anyone comment on the design. You need all the help you can get.

Violation of the open design principle has historically proven to almost always lead to
flawed designs. The mechanisms should not depend on the ignorance of potential adver
saries, but rather on the possession of specific, more easily protected, secret keys or
passwords. This decoupling of security mechanisms from security keys permits the
mechanisms to be examined by many reviewers without concern that the review may
itself compromise the safeguards. In addition, any skeptical user must be able to review
that the system is adequate for the user’s purpose. Finally, it is simply not realistic to
maintain secrecy of any system that receives wide distribution. However, the open design
principle can conflict with other goals, which has led to numerous debates; Sidebar 11.2
summarizes some of the arguments.

The right people must perform the review because spotting security holes is difficult.
Even if the design and implementation are public, that is an insufficient condition for
spotting security problems. For example, standard committees are usually open in prin
ciple but their openness sometimes has barriers that cause the proposed standard not to
be reviewed by the right people. To participate in the design of the WiFi Wired Equiv
alent Privacy standard required committee members to pay a substantial fee, which
apparently discouraged security researchers from participating. When the standard was

Saltzer & Kaashoek Ch. 11, p. 13 June 24, 2009 12:29 am

CHAPTER 11 Information Security11–14

Sidebar 11.2: Should designs and vulnerabilities be public? The debate of closed versus
open designs has been raging literally for ages, and is not unique to computer security. The
advocates of closed designs argue that making designs public helps the adversaries, so why do
it? The advocates of open designs argue that closed designs don’t really provide security because
in the long run it is impossible to keep a design secret. The practical result of attempted secrecy
is usually that the bad guys know about the flaws but the good guys don’t. Open design
advocates disparage closed designs by describing them as “security through obscurity”.
On the other hand, the open design principle can conflict with the desire to keep a design and
its implementation proprietary for commercial or national security reasons. For example,
software companies often do not want a competitor to review their software in fear that the
competitor can easily learn or copy ideas. Many companies attempt to resolve this conflict by
arranging reviews, but restricting who can participate in the reviews. This approach has the
danger that not the right people are performing the reviews.
Closely related to the question whether designs should be public or not is the question whether
vulnerabilities should be made public or not? Again, the debate about the right answer to this
question has been raging for ages, and is perhaps best illustrated by the following quote from
a 1853 book* about old-fashioned door locks:

 A commercial, and in some respects a social doubt has been started within the last year
or two, whether or not it is right to discuss so openly the security or insecurity of locks.
Many well-meaning persons suppose that the discussion respecting the means for
baffling the supposed safety of locks offers a premium for dishonesty, by showing
others how to be dishonest. This is a fallacy. Rogues are very keen in their profession,
and know already much more than we can teach them respecting their several kinds of
roguery.

 Rogues knew a good deal about lock-picking long before locksmiths discussed it
among themselves, as they have lately done. If a lock, let it have been made in whatever
country, or by whatever maker, is not so inviolable as it has hitherto been deemed to
be, surely it is to the interest of honest persons to know this fact, because the dishonest
are tolerably certain to apply the knowledge practically; and the spread of the
knowledge is necessary to give fair play to those who might suffer by ignorance.

 It cannot be too earnestly urged that an acquaintance with real facts will, in the end,
be better for all parties.

Computer security experts generally believe that one should publish vulnerabilities for the
reasons stated by Hobbs and that users should know if the system they are using has a problem
so they can decide whether or not they care. Companies, however, are typically reluctant to
disclose vulnerabilities. For example, a bank has little incentive to advertise successful
compromises because it may scare away customers.

(sidebar continues)

* A.C Hobbs (Charles Tomlinson, ed.), Locks and Safes: The Construction of Locks. Virtue &
Co., London, 1853 (revised 1868).

Saltzer & Kaashoek Ch. 11, p. 14 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–15

To handle this tension, many governments have created laws and organizations that make
vulnerabilities public. In California companies must inform their customers if an adversary
might have succeeded in stealing customer priviate information (e.g., a social security number).
The U.S federal government has created the Computer Emergency Response Team (CERT) to
document vulnerabilities in software systems and help with the response to these vulnerabilities
(see www.cert.org). When CERT learns about a new vunerability, it first notifies the vendor,
then it waits for some time for the vendor to develop a patch, and then goes public with the
vulnerability and the patch.

finalized and security researchers began to examine the standard, they immediately found
several problems, one of which is described on page 11–51.

Since it is difficult to keep a secret:

Minimize secrets

Because they probably won’t remain secret for long.

Following this principle has the following additional advantage. If the secret is com
prised, it must be replaced; if the secret is minimal, then replacing the secret is easier.

An open design that minimizes secrets doesn’t provide security itself. The primary
underpinning of the security of a system is, as was mentioned on page 11–5, the principle
of complete mediation.This principle forces every access to be explicitly authenticated and
authorized, including ones for initialization, recovery, shutdown, and maintenance. It
implies that a foolproof method of verifying the authenticity of the origin and data of
every request must be devised. This principle applies to a service mediating requests, as
well as to a kernel mediating supervisor calls and a virtual memory manager mediating a
read request for a byte in memory. This principle also implies that proposals for caching
results of an authority check should be examined skeptically; if a change in authority
occurs, cached results must be updated.

The human engineering principle of least astonishment applies especially to mediation.
The mechanism for authorization should be transparent enough to a user that the user
has a good intuitive understanding of how the security goals map to the provided security
mechanism. It is essential that the human interface be designed for ease of use, so that
users routinely and automatically apply the security mechanisms correctly. For example,
a system should provide intuitive, default settings for security mechanisms so that only
the appropriate operations are authorized. If a system administrator or user must first
configure or jump through hoops to use a security mechanism, the user won’t use it.
Also, to the extent that the user’s mental image of security goals matches the security
mechanisms, mistakes will be minimized. If a user must translate intuitive security objec-

Saltzer & Kaashoek Ch. 11, p. 15 June 24, 2009 12:29 am

11–16 CHAPTER 11 Information Security

tives into a radically different specification language, errors are inevitable. Ideally,
security mechanisms should make a user’s computer experience better instead of worse.

Another widely applicable principle, adopt sweeping simplifications, also applies to
security. The fewer mechanisms that must be right to ensure protection, the more likely
the design will be correct:

Economy of mechanism

The less there is, the more likely you will get it right.

Designing a secure system is difficult because every access path must be considered to
ensure complete mediation, including ones that are not exercised during normal opera
tion. As a result, techniques such as line-by-line inspection of software and physical
examination of hardware implementing security mechanisms may be necessary. For such
techniques to be successful, a small and simple design is essential.

Reducing the number of mechanisms necessary helps with verifying the security of a
computer system. For the ones remaining, it would be ideal if only a few are common to
more than one user and depended on by all users because every shared mechanism might
provide unintended communication paths between users. Further, any mechanism serv
ing all users must be certified to the satisfaction of every user, a job presumably harder
than satisfying only one or a few users. These observations lead to the following security
principle:

Minimize common mechanism

Shared mechanisms provide unwanted communication paths.

This principle helps reduce the number of unintended communication paths and
reduces the amount of hardware and software on which all users depend, thus making it
easier to verify if there are any undesirable security implications. For example, given the
choice of implementing a new function as a kernel procedure shared by all users or as a
library procedure that can be handled as though it were the user’s own, choose the latter
course. Then, if one or a few users are not satisfied with the level of certification of the
function, they can provide a substitute or not use it at all. Either way, they can avoid
being harmed by a mistake in it. This principle is an end-to-end argument.

Complete mediation requires that every request be checked for authorization and
only authorized requests be approved. It is important that requests are not authorized
accidently. The following security principle helps reduce such mistakes:

Fail-safe defaults

Most users won’t change them, so make sure that defaults do something safe.

Saltzer & Kaashoek Ch. 11, p. 16 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–17

Access decisions should be based on permission rather than exclusion. This principle
means that lack of access should be the default, and the security scheme lists conditions
under which access is permitted. This approach exhibits a better failure mode than the
alternative approach, where the default is to permit access. A design or implementation
mistake in a mechanism that gives explicit permission tends to fail by refusing permis
sion, a safe situation that can be quickly detected. On the other hand, a design or
implementation mistake in a mechanism that explicitly excludes access tends to fail by
allowing access, a failure that may long go unnoticed in normal use.

To ensure that complete mediation and fail-safe defaults work well in practice, it is
important that programs and users have privileges only when necessary. For example,
system programs or administrators who have special privileges should have those privi
leges only when necessary; when they are doing ordinary activities the privileges should
be withdrawn. Leaving them in place just opens the door to accidents. These observa
tions suggest the following security principle:

Least privilege principle

Don’t store lunch in the safe with the jewels.

This principle limits the damage that can result from an accident or an error. Also, if
fewer programs have special privileges, less code must be audited to verify the security of
a system. The military security rule of “need-to-know” is an example of this principle.

Security experts sometimes use alternative formulations that combine aspects of sev
eral principles. For example, the formulation “minimize the attack surface” combines
aspects of economy of mechanism (a narrow interface with a simple implementation pro
vides fewer opportunities for designer mistakes and thus provides fewer attack
possibilities), minimize secrets (few opportunies to crack secrets), least privilege (run
most code with few privileges so that a successful attack does little harm), and minimize
common mechanism (reduce the number of opportunities of unintended communica
tion paths).

11.1.5 A High d(technology)/dt Poses Challenges For Security

Much software on the Internet and on personal computers fails to follow these princi
ples, even though most of these principles were understood and articulated in the 1970s,
before personal computers and the Internet came into existence. The reasons why they
weren’t followed are different for the Internet and personal computers, but they illustrate
how difficult it is to achieve security when the rate of innovation is high.

When the Internet was first deployed, software implementations of the cryptographic
techniques necessary to authenticate and protect messages (see Section 11.2 and Section
11.1) were considered but would have increased latency to unacceptable levels. Hard
ware implementations of cryptographic operations at that time were too expensive, and
not exportable because the US government enforced rules to limit the use of cryptogra-

Saltzer & Kaashoek Ch. 11, p. 17 June 24, 2009 12:29 am

11–18 CHAPTER 11 Information Security

phy. Since the Internet was originally used primarily by academics—a mostly
cooperative community—the resulting lack of security was initially not a serious defect.

In 1994 the Internet was opened to commercial activities. Electronic stores came into
existence, and many more computers storing valuable information came on-line. This
development attracted many more adversaries. Suddenly, the designers of the Internet
were forced to provide security. Because security was not part of the initial design plan,
security mechanisms today have been designed as after-the-fact additions and have been
provided in an ad-hoc fashion instead of following an overall plan based on established
security principles.

For different historical reasons, most personal computers came with little internal
security and only limited stabs at network security. Yet today personal computers are
almost always attached to networks where they are vulnerable. Originally, personal com
puters were designed as stand-alone devices to be used by a single person (that’s why they
are called personal computers). To keep the cost low, they had essentially no security
mechanisms, but because they were used stand-alone, the situation was acceptable. With
the arrival of the Internet, the desire to get on-line exposed their previously benign secu
rity problems. Furthermore, because of rapid improvements in technology, personal
computers are now the primary platform for all kinds of computing, including most
business-related computing. Because personal computers now store valuable informa
tion, are attached to networks, and have minimal protection, personal computers have
become a prime target for adversaries.

The designers of the personal computer didn’t originally foresee that network access
would quickly become a universal requirement. When they later did respond to security
concerns, the designers tried to add security mechanism quickly. Just getting the hard
ware mechanisms right, however, took multiple iterations, both because of blunders and
because they were after-the-fact add-ons. Today, designers are still trying to figure out
how to retrofit the existing personal-computer software and to configure the default set
tings right for improved security, while they are also being hit with requirements for
improved security to handle denial-of-service attacks, phishing attacks*, viruses, worms,
malware, and adversaries who try to take over machines without being noticed to create
botnets (see Sidebar 11.3). As a consequence, there are many ad hoc mechanisms found
in the field that don’t follow the models or principles suggested in this chapter.

11.1.6 Security Model

Although there are many ways to compromise the security of a system, the conceptual
model to secure a system is surprisingly simple. To be secure, a system requires complete
mediation: the system must mediate every action requested, including ones to configure
and manage the system. The basic security plan then is that for each requested action the

* Jargon term for an attack in which an adversary lures a victim to Web site controlled by the adver
sary; for an example see Suggestions for Further Reading 11.6.6.

Saltzer & Kaashoek Ch. 11, p. 18 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–19

Sidebar 11.3: Malware: viruses, worms, trojan horses, logic bombs, bots, etc. There is a
community of programmers that produces malware, software designed to run on a computer
without the computer owner’s intent. Some malware is created as a practical joke, other
malware is designed to make money or to sabotage someone; Hafner and Markoff profile a few
early high-profile cases of computer break-ins and the perpetrator’s motivation [Suggestions for
Further Reading 1.3.5]. More recently, there is an industry in creating malware that silently
turns a user’s computer into a bot, a computer controlled by an adversary, which is then used
by the adversary to send unsolicited e-mail (SPAM) on behalf of paying customers, which
generates a revenue stream for the adversary [Suggestions for Further Reading 11.6.5].*

Malware uses a combinations of techniques to take control of a user’s computer. These
techniques include ways to install malware on a user’s computer, ways to arrange that the
malware will run on the user’s computer, ways to replicate the malware on other computers,
and ways to do perfidious things. Some of the techniques rely on users naïvety while others rely
on innovative ideas to exploit errors in the software running on the user’s computer. As an
example of both, in 2000 an adversary constructed the “ILOVEYOU” virus, an e-mail message
with a malicious executable attachment. The adversary sent the e-mail to a few recipients.
When a recipient opened the executable e-mail (attracted by “ILOVEYOU” in the e-mail’s
subject), the malicious attachment read the recipient’s address book, and sent itself to the users
in the address book. So many users opened the e-mail that it spread rapidly and overwhelmed
e-mail servers at many institutions.

The Morris worm [Suggestions for Further Reading 11.6.1], created in 1984, is an example of
malware that relies only on clever ways to exploit errors in software. The worm exploited
various weaknesses in remote computers, among them a buffer overrun (see Sidebar 11.4) in
an e-mail server (sendmail) running on the UNIX operating system, which allowed it to install
and run itself on the compromised computer. There it looked for network addresses of
computers in configuration files, and then penetrated those computers, and so on. According
to its creator it was not intended to create damage but a design error caused it to effectively
create a denial-of-service attack. The worm spread so rapidly, infecting some computers
multiple times, that it effectively shut down parts of the Internet.

The popular jargon attaches colorful labels to describe different types of malware such as virus,
worm, trojan horse, logic bomb, drive-by download, etc., and new ones appear as new types of
malware show up. These labels don’t correspond to precise, orthogonal technical concepts, but
combine various malware features in different ways. All of them, however, exploit some
weakness in the security of a computer, and the techniques described in this chapter are also
relevant in containing malware.

* Problem set 47 explores a potential stamp-based solution.

Saltzer & Kaashoek Ch. 11, p. 19 June 24, 2009 12:29 am

11–20 CHAPTER 11 Information Security

agent requesting the operation proves its identity to the system and then the system
decides if the agent is allowed to perform that operation.

This simple model covers a wide range of instances of systems. For example, the agent
may be a client in a client/service application, in which case the request is in the form of
a message to a service. For another example, the agent may be a thread referring to virtual
memory, in which case the request is in the form of a LOAD or STORE to a named memory
cell. In each of these cases, the system must establish the identity of the agent and decide
whether to perform the request or not. If all requests are mediated correctly, then the job
of the adversary becomes much harder. The adversary must compromise the mediation
system, launch an insider attack, or is limited to denial-of-service attacks.

The rest of this section works out the mediation model in more detail, and illustrates
it with various examples. Of course a simple conceptual model cannot cover all attacks
and all details. And, unfortunately, in security, the devil is often in the details of the
implementation: does the system to be secure implement the model for all its operations
and is the implementation correct? Nevertheless, the model is helpful in framing many
security problems and then addressing them.

Agents perform on behalf of some entity that corresponds to a person outside the
computer system; we call the representation of such an entity inside the computer system
a principal. The principal is the unit of authorization in a computer system, and therefore
also the unit of accountability and responsibility. Using these terms, mediating an action
is asking the question, “Is the principal who requested the action authorized to perform
the action?”

The basic approach to mediating every requested action is to ensure that there is really
only one way to request an action. Conceptually, we want to build a wall around the sys
tem with one small opening through which all requested actions pass. Then, for every
requested action, the system must answer “Should I perform the action?”. To do so a sys
tem is typically decomposed in two parts: one part, called a guard, that specializes in
deciding the answer to the question and a second part that performs the action. (In the
literature, a guard that provides complete mediation is usually called a reference monitor.)

The guard can clarify the question, “Is the principal who originated the requested
action allowed to perform the action?” by obtaining answers to the three subquestions of
complete mediation (see Figure 11.2). The guard verifies that the message containing the
request is authentic (i.e., the request hasn’t been modified and that the principal is
indeed the source of the request), and that the principal is permitted to perform the
requested action on the object (authorization). If so, the guard allows the action; other
wise, it denies the request. The guard also logs all decisions for later audits

The first two (has the request been modified and what is the source of the request) of
the three mediation questions fall in the province of authentication of the request. Using
an authentication service the guard verifies the identity of the principal. Using additional
information, sometimes part of the request but sometimes communicated separately, the
guard verifies the integrity of the request. After answering the authenticity questions, the
guard knows who the principal associated with the request is and that no adversary has
modified the request.

Saltzer & Kaashoek Ch. 11, p. 20 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–21

Computer system

principal

request

guard
object

perform action

audit trail

module
authorizationauthentication

module

yes/no

log

perform
action

OK

yes/no

authentic? au
th

or
iz

ed
?

FIGURE 11.2

The security model based on complete mediation. The authenticity question includes both ver
ifying the integrity and the source of the request.

The third, and final, question falls in the province of authorization. An authorization
service allows principals to specify which objects they share with whom. Once the guard
has securely established the identity of the principal associated with the request using the
authentication service, the guard verifies with the authorization service that the principal
has the appropriate authorization, and, if so, allows the requested service to perform the
requested action.

The guard approach of complete mediation applies broadly to computer systems.
Whether the messages are Web requests for an Internet store, LOAD and STORE operations
to memory, or supervisor calls for the kernel, in all cases the same three questions must
be answered by the Web service, virtual memory manager, or kernel, respectively. The
implementation of the mechanisms for mediation, however, might be quite different for
each case.

Consider an on-line newspaper. The newspaper service may restrict certain articles to
paying subscribers and therefore must authenticate users and authorize requests, which
often work as follows. The Web browser sends requests on behalf of an Internet user to
the newspaper’s Web server. The guard uses the principal’s subscriber number and an
authenticator (e.g., a password) included in the requests to authenticate the principal
associated with the requests. If the principal is a legitimate subscriber and has authoriza
tion to read the requested article, the guard allows the request and the server replies with
the article. Because the Internet is untrusted, the communications between the Web
browser and the server must be protected; otherwise, an adversary can, for example,

Saltzer & Kaashoek Ch. 11, p. 21 June 24, 2009 12:29 am

11–22 CHAPTER 11 Information Security

obtain the subscriber’s password. Using cryptography one can create a secure channel that
protects the communications over an untrusted network. Cryptography is a branch of
computer science that designs primitives such as ciphers, pseudorandom number gener
ators, and hashes, which can be used to protect messages against a wide range of attacks.

As another example, consider a virtual memory system with one domain per thread.
In this case, the processor issues LOAD and STORE instructions on behalf of a thread to a
virtual memory manager, which checks if the addresses in the instructions fall in the
thread’s domain. Conceptually, the processor sends a message across a bus, containing
the operation (LOAD or STORE) and the requested address. This message is accompanied
with a principal identifier naming the thread. If the bus is a trusted communication link,
then the message doesn’t have to be protected. If the bus isn’t a secure channel (e.g., a
digital rights management application may want to protect against an owner snooping
on the bus to steal the copyrighted content), then the message between the processor and
memory might be protected using cryptographic techniques. The virtual memory man
ager plays the role of a guard. It uses the thread identifier to verify if the address falls in
the thread’s domain and if the thread is authorized to perform the operation. If so, the
guard allows the requested operation, and virtual memory manager replies by reading
and writing the requested memory location.

Even if the mechanisms for complete mediation are implemented perfectly (i.e., there
are no design and implementation errors in the cryptography, password checker, the vir
tual memory manager, the kernel, etc.), a system may still leave opportunities for an
adversary to break the security of the system. The adversary may be able to circumvent
the guard, or launch an insider attack, or overload the system with requests for actions,
thus delaying or even denying legitimate principals access. A designer must be prepared
for these cases—an example of the paranoid design attitude. We discusses these cases in
more detail.

To circumvent the guard, the adversary might create or find another opening in the
system. A simple opening for an adversary might be a dial-up modem line that is not
mediated. If the adversary finds the phone number (and perhaps the password to dial in),
the adversary can gain control over the service. A more sophisticated way to create an
opening is a buffer overrun attack on services written in the C programming language (see
Sidebar 11.4), which causes the service to execute a program under the control of the
adversary, which then creates an interface for the adversary that is not checked by the
system.

As examples of insider attacks, the adversary may be able to guess a principal’s pass
word, may be able to bribe a principal to act on the adversary’s behalf, or may be able to
trick the principal to run the adversary’s program on the principal’s computer with the
principal’s privileges (e.g., the principal opens an executable e-mail attachment sent by
the adversary). Or, the adversary may be a legitimate principal who is disgruntled.

Measures against badly behaving principals are also the final line of defense against
adversaries who successfully break the security of the system, thus appearing to be legit
imate users. The measures include (1) running every requested operation with the least
privilege because that minimizes damage that a legitimate principal can do, (2) maintain-

Saltzer & Kaashoek Ch. 11, p. 22 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–23

Sidebar 11.4: Why are buffer overrun bugs so common? It has become disappointingly
common to hear a news report that a new Internet worm is rapidly spreading, and a little
research on the World-Wide Web usually turns up as one detail that the worm exploits a buffer
overrun bug. The reason that buffer overrun bugs are so common is that some widely used
programming languages (in particular, C and C++) do not routinely check array bounds. When
those languages are used, array bounds checking must be explicitly provided by the
programmer. The reason that buffer overrun bugs are so easily exploited arises from an
unintentional conspiracy of common system design and implementation practices that allow a
buffer overrun to modify critical memory cells.

1. Compilers usually allocate space to store arrays as contiguous memory cells, with the first
element at some starting address and successive elements at higher-numbered addresses.

2. Since there usually isn't any hardware support for doing anything different, most operating
systems allocate a single, contiguous block of address space for a program and its data. The
addresses may be either physical or virtual, but the important thing is that the programming
environment is a single, contiguous block of memory addresses.

3. Faced with this single block of memory, programming support systems typically suballocate
the address block into three regions: They place the program code in low-numbered addresses,
they place static storage (the heap) just above those low-numbered addresses, and they start the
stack at the highest-numbered address and grow it down, using lower addresses, toward the
heap.

These three design practices, when combined with lack of automatic bounds checking, set the
stage for exploitation. For example, historically it has been common for programs written in
the C language to use library programs such as

GETS (character array reference string_buffer)

rather than a more elaborate version of the same program

FGETS (character array reference string_buffer, integer string_length, file stream)

to move character string data from an incoming stream to a local array, identified by the
memory address of string_buffer. The important difference is that GETS reads characters until
it encounters a new-line character or end of file, while FGETS adds an additional stop condition:
it stops after reading string_length characters, thus providing an explicit array bound check.
Using GETS rather than FGETS is an example of Gabriel’s Worse is Better: “it is slightly better to
be simple than to be correct." [Suggestions for Further Reading 1.5.1]

A program that is listening on some Internet port for incoming messages allocates a
string_buffer of size 30 characters, to hold a field from the message, knowing that that field
should never be larger. It copies data of the message from the port into string_buffer, using
GETS An adversary prepares and sends a message in which that field contains a string of, say,
250 characters. GETS overruns string_buffer.

(Sidebar continues)

Saltzer & Kaashoek Ch. 11, p. 23 June 24, 2009 12:29 am

11–24 CHAPTER 11 Information Security

Because of the compiler practice of placing successive array elements of string_buffer in
higher-numbered addresses, if the program placed string_buffer in the stack the overrun
overwrites cells in the stack that have higher-numbered addresses. But because the stack grows
toward lower-numbered addresses, the cells overwritten by the buffer overrun are all older
variables, allocated before string_buffer. Typically, an important older variable is the one that
holds the return point of the currently running procedure. So the return point is vulnerable. A
common exploit is thus to include runnable code in the 250-character string and, knowing
stack offsets, smash the return point stack variable to contain the address of that code. Then,
when the thread returns from the current procedure, it unwittingly transfers control to the
adversary’s code.

By now, many such simple vulnerabilities have been discovered and fixed. But exploiting buffer
overruns is not limited to smashing return points in the stack. Any writable variable that
contains a jump address and that is located adjacent to a buffer in the stack or the heap may be
vulnerable to an overrun of that buffer. The next time that the running thread uses that jump
address, the adversary gains control of that thread. The adversary may not even have to supply
executable code if he or she can cause the jump to go to some existing code such as a library
routine that, with a suitable argument value, can be made to do something bad [Suggestions
for Further Reading 11.6.2]. Such attacks require detailed knowledge of the layout and code
generation methods used by the compiler on the system being attacked, but adversaries can
readily discover that information by examining their own systems at leisure. Problem set 49
explores some of these attacks.

From that discussion one can draw several lessons that invoke security design principles:

1. The root cause of buffer overruns is the use of programming languages that do not provide
the fail-safe default of automatically checking all array references to verify that they do not
exceed the space allocated for the array.

2. Be explicit. One can interpret the problem with GETS to be that it relies on its context, rather
than the program, to tell it exactly what to do. When the context contains contradictions (a
string of one size, a buffer of another size) or ambiguities, the library routine may resolve them
in an unexpected way. There is a trade-off between convenience and explicitness in
programming languages. When security is the goal, a programming language that requires that
the programmer be explicit is probably safer.

3. Hardware architecture features can help minimize the impact of common programming
errors, and thus make it harder for an adversary to exploit them. Consider, for example, an
architecture that provides distinct, hardware-enforced memory segments as described in
Section 5.4.5, using one segment for program code, a second segment for the heap, and a third
segment for the stack. Since different segments can have different read, write, and execute
permissions, the stack and heap segments might disallow executable instructions, while the
program area disallows writing. The principle of least privilege suggests that no region of
memory should be simultaneously writable and executable. If all buffers are in segments that

(Sidebar continues)

Saltzer & Kaashoek Ch. 11, p. 24 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–25

 are not executable, an adversary would find it more difficult to deposit code in the execution
environment. Instead, the adversary may have to resort to methods that exploit code already in
that execution environment. Even better might be to place each buffer in a separate segment,
thus using the hardware to check array bounds.

Hardware for Multics [Suggestions for Further Reading 3.1.4 and 5.4.1], a system
implemented in the 1960s, provided segments. The Multics kernel followed the principle of
least privilege in setting up permissions, and the observed result was that addressing errors were
virtually always caught by the hardware at the instant they occurred, rather than leading to a
later system meltdown. Designers of currently common hardware platforms have recently
modified the memory management unit of these platforms to provide similar features, and
today’s popular operating systems are using the features to provide better protection.

4. Storing a jump address in the midst of writable data is hazardous because it is hard to protect
it against either programming errors or intentional attacks. If an adversary can control the value
of a jump address, there is likely to be some way that the adversary can exploit it to gain control
of the thread. Complete mediation suggests that all such jump values should be validated before
being used. Designers have devised schemes to try to provide at least partial validation. An
example of such a scheme is to store an unpredictable nonce value (a “canary”) adjacent to the
memory cell that holds the jump address and, before using the jump address, verify that the
canary is intact by comparing it with a copy stored elsewhere. Many similar schemes have been
devised, but it is hard to devise one that is foolproof. For the most part these schemes do not
prevent exploits, they just make the adversary’s job harder.

ing an audit trail, of the mediation decisions made for every operation, (3) making copies
and archiving data in secure places, and (4) periodically manually reviewing which prin
cipals should continue to have access and with what privileges. Of course, the archived
data and the audit trail must be maintained securely; an adversary must not be able to
modify the archived data or the audit trail. Measures to secure archives and audit trails
include designing them to be write once and append-only.

The archives and the audit trail can be used to recover from a security breach. If an
inspection of the service reveals that something bad has happened, the archived copies
can be used to restore the data. The audit trail may help in figuring out what happened
(e.g., what data has been damaged) and which principal did it. As mentioned earlier, the
audit trail might also be useful as a proof in court to punish adversaries. These measures
can be viewed as an example of defense in depth—if the first line of defense fails, one
hopes that the next measure will help.

An adversary’s goal may be just to deny service to other users. To achieve this goal an
adversary could flood a communication link with requests that take enough time of the
service that it is unavailable for other users. The challenge in handling a denial-of-service
attack is that the messages sent by the adversary may be legitimate requests and the adver
sary may use many computers to send these legitimate requests (see Suggestions for
Further Reading 11.6.4 for an example). There is no single technique that can address

Saltzer & Kaashoek Ch. 11, p. 25 June 24, 2009 12:29 am

11–26 CHAPTER 11 Information Security

denial-of-service attacks. Solutions typically involve several ideas: audit messages to be
able to detect and filter bad traffic before it reaches the service, careful design of services
to control the resources dedicated to a request and to push work back to the clients, and
replicating services (see Section 10.3[on-line]) to keep the service available during an
attack. By replicating the service, an adversary must flood multiple replicas to make the
service unavailable. This attack may require so many messages that with careful analysis
of audit trails it becomes possible to track down the adversary.

11.1.7 Trusted Computing Base

Implementing the security model of Section 11.1.6 is a negative goal, and therefore dif
ficult. There are no methods to verify correctness of an implementation that is claimed
to achieve a negative goal. So, how do we proceed? The basic idea is to minimize the
number of mechanisms that need to be correct in order for the system to be secure—the
economy of mechanism principle, and to follow the safety net approach (be explicit and
design for iteration).

When designing a secure system, we organize the system into two kinds of modules:
untrusted modules and trusted modules. The correctness of the untrusted modules does
not affect the security of the whole system. The trusted modules are the part that must
work correctly to make the system secure. Ideally, we want the trusted modules to be
usable by other untrusted modules, so that the designer of a new module doesn’t have to
worry about getting the trusted modules right. The collection of trusted modules is usu
ally called the trusted computing base (TCB).

Establishing whether or not a module is part of the TCB can be difficult. Looking at
an individual module, there isn't any simple procedure to decide whether or not the sys
tem's security depends on the correct operation of that module. For example, in UNIX if
a module runs on behalf of the superuser principal (see page 11–77), it is likely to be part
of the TCB because if the adversary compromises the module, the adversary has full priv
ileges. If the same module runs on behalf of a regular principal, it is often not part of the
trusted computing base because it cannot perform privileged operations. But even then
the module could be part of the TCB; it may be part of a user-level service (e.g., a Web
service) that makes decisions about which clients have access. An error in the module’s
code may allow an adversary to obtain unauthorized access.

Lacking a systematic decision procedure for deciding if a module is in the TCB, the
decision is difficult to make and easy to get wrong, yet a good division is important. A
bad division between trusted and untrusted modules may result in a large and complex
TCB, making it difficult to reason about the security of the system. If the TCB is large,
it also means that ordinary users can make only few changes because ordinary users
should only change modules outside the TCB that don’t impact security. If ordinary
users can change the system in only limited ways, it may make it difficult for them to get
their job done in an effective way and result in bad user experiences. A large TCB also
means that much of the system can be modified by only trusted principals, limiting the
rate at which the system can evolve. The design principles of Section 11.1.4 can guide

Saltzer & Kaashoek Ch. 11, p. 26 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–27

this part of the design process, but typically the division must be worked out by security
experts.

Once the split has been worked out, the challenge becomes one of designing and
implementing a TCB. To be successful at this challenge, we want to work in a way that
maximizes the chance that the design and implementation of the TCB are correct. To
do so, we want to minimize the chance of errors and maximize the rate of discovery of
errors. To achieve the first goal, we should minimize the size of the TCB. To achieve the
second goal, the design process should include feedback so that we will find errors
quickly.

The following method shows how to build such a TCB:

• 	Specify security requirements for the TCB (e.g., secure communication over
untrusted networks). The main reason for this step is to explicitly specify
assumptions so that we can decide if the assumptions are credible. As part of the
requirements, one also specifies the attacks against which the TCB is protected
so that the security risks are assessable. By specifying what the TCB does and
does not do, we know against which kinds of attacks we are protected and to
which kinds we are vulnerable.

• 	 Design a minimal TCB. Use good tools (such as authentication logic, which we
will discuss in Section 11.5) to express the design.

• 	Implement the TCB. It is again important to use good tools. For example,
buffer-overrun attacks can be avoided by using a language that checks array
bounds.

• 	 Run the TCB and try to break the security.

The hard part in this multistep design method is verifying that the steps are consis
tent: verifying that the design meets the specification, verifying that the design is resistant
to the specified attacks, verifying that the implementation matches the design, and veri
fying that the system running in the computer is the one that was actually implemented.
For example, as Thompson has demonstrated, it is easy for an adversary with compiler
expertise to insert a Trojan Horses into a system that is difficult to detect [Suggestions
for Further Reading 11.3.3 and 11.3.4].

The problem in computer security is typically not one of inventing clever mechanisms
and architectures, but rather one of ensuring that the installed system actually meets the
design and implementation. Performing such an end-to-end check is difficult. For exam
ple, it is common to hire a tiger team whose mission is to find loopholes that could be
exploited to break the security of the system. The tiger team may be able to find some
loopholes, but, unfortunately, cannot provide a guarantee that all loopholes have been
found.

The design method also implies that when a bug is detected and repaired, the designer
must review the assumptions to see which ones were wrong or missing, repair the
assumptions, and repeat this process until sufficient confidence in the security of the sys
tem has been obtained. This approach flushes out any fuzzy thinking, makes the system
more reliable, and slowly builds confidence that the system is correct.

Saltzer & Kaashoek Ch. 11, p. 27	 June 24, 2009 12:29 am

11–28 CHAPTER 11 Information Security

The method also clearly states what risks were considered acceptable when the system
was designed, because the prospective user must be able to look at the specification to
evaluate whether the system meets the requirements. Stating what risks are acceptable is
important because much of the design of secure systems is driven by economic con
straints. Users may consider a security risk acceptable if the cost of a security failure is
small compared to designing a system that negates the risk.

11.1.8 The Road Map for this Chapter

The rest of this chapter follows the security model of Figure 11.2. Section 11.2 presents
techniques for authenticating principals. Section 11.2 explains how to authenticate mes
sages by using a pair of procedures named SIGN and VERIFY. Section 11.4 explains how to
keep messages confidential using a pair of procedures named ENCRYPT and DECRYPT. Section
11.5 explains how to set up, for example, an authenticated and secure communication
link using security protocols. Section 11.6 discusses different designs for an authorization
service. Because authentication is the foundation of security, Section 11.5 discusses how
to reason about authenticating principals systematically. The actual implementation of
SIGN, VERIFY, ENCRYPT, and DECRYPT we outsource to theoreticians specialized in cryptogra
phy, but a brief summary of how to implement SIGN, VERIFY, ENCRYPT, and DECRYPT is
provided in Section 11.8. The case study in Section 11.10 provides a complete example
of the techniques discussed in this chapter by describing how authentication and autho
rization is done in the World-Wide Web. Finally, Section 11.11 concludes the chapter
with war stories of security failures, despite the best intentions of the designers; these sto
ries emphasize how difficult it is to achieve a negative goal.

11.2 Authenticating Principals
Most security policies involve people. For example, a simple policy might say that only

the owner of the file “x” should be able to read it. In this statement the owner corre

sponds to a human. To be able to support such a policy the file service must have a way

of establishing a secure binding between a user of the service and the origin of a request.

Establishing and verifying the binding are topics that fall in the province of

authentication.

Returning to our security model, the setup for authentication can be presented picto

rially as in Figure 11.3. A person (Alice) asks her client computer to send a message “Buy

100 shares of Generic Moneymaking, Inc.” to her favorite electronic trading service. An

adversary may be able to copy the message, delete it, modify it, or replace it. As explained

in Section 11.1, when Alice’s trading service receives this message, the guard must estab

lish two important facts related to authenticity:

1. 	Who is this principal making the request? The guard must establish if the message

indeed came from the principal that represents the real-world person “Alice.” More

generally, the guard must establish the origin of the message.

2. 	Is this request actually the one that Alice made? Or, for example, has an adversary

modified the message? The guard must establish the integrity of the message.

This section provides the techniques to answer these two questions.

Saltzer & Kaashoek Ch. 11, p. 28	 June 24, 2009 12:29 am

11.2 Authenticating Principals 11–29

Request

trading

 Service

Alice

To: service
From: Alice

Alice’s

account

Buy Generic

guard

Principal

Moneymaking, Inc.

client

FIGURE 11.3

Authentication model.

11.2.1 Separating Trust from Authenticating Principals

Authentication consists of reliably identifying the principal associated with a request.
Authentication can be provided by technical means such as passwords and signing mes
sages. The technical means create a chain of evidence that securely connects an incoming
request with a principal, perhaps by establishing that a message came from the same prin
cipal as a previous message. The technical means may even be able to establish the real-
world identity of the principal.

Once the authentication mechanisms have identified the principal, there is a closely
related but distinct problem: can the principal be trusted? The authentication means may
be able to establish that the real-world identity for a principal is the person “Alice,” but
other techniques are required to decide whether and how much to trust Alice. The trad
ing service may decide to consider Alice’s request because the trading service can, by
technical means, establish that Alice’s credit card number is valid. To be more precise,
the trading service trusts the credit card company to come through with the money and
relies on the credit card company to establish the trust that Alice will pay her credit card
bill.

The authenticity and trust problems are connected through the name of the princi
pal. The technical means establish the name of the principal. Names for principals come
in many flavors: for example, the name might be a symbolic one, like “Alice”, a credit
card number, a pseudonym, or a cryptographic key. The psychological techniques estab
lish trust in the principal’s name. For example, a reporter might trust information from
an anonymous informer who has a pseudonym because previous content of the messages
connected with the pseudonym has always been correct.

To make the separation of trust from authentication of principals more clear, con
sider the following example. You hear about an Internet bookstore named
“ShopWithUs.com”. Initially, you may not be sure what to think about this store. You

Saltzer & Kaashoek Ch. 11, p. 29 June 24, 2009 12:29 am

11–30 CHAPTER 11 Information Security

look at their Web site, you talk to friends who have bought books from them, you hear
a respectable person say publicly that this store is where the person buys books, and from
all of this information you develop some trust that perhaps this bookstore is for real and
is safe to order from. You order one book from ShopWithUs.com and the store delivers
it faster than you expected. After a while you are ordering all your books from them
because it saves the drive to the local bookstore and you have found that they take defec
tive books back without a squabble.

Developing trust in ShopWithUs.com is the psychological part. The name Shop-
WithUs.com is the principal identifier that you have learned that you can trust. It is the
name you heard from your friends, it is the name that you tell your Web browser, and it
is the name that appears on your credit card bill. Your trust is based on that name; when
you receive an e-mail offer from “ShopHere.com”, you toss it in the trash because,
although the name is similar, it does not precisely match the name.

When you actually buy a book at ShopWithUs.com, the authentication of principal
comes into play. The mechanical techniques allow you to establish a secure communica
tion link to a Web site that claims to be ShopWithUs.com, and verify that this Web site
indeed has the name ShopWithUs.com. The mechanical techniques do not themselves
tell you who you are dealing with; they just assure you that whoever it is, it is named
ShopWithUs.com. You must decide yourself (the psychological component) who that is
and how much to trust them.

In the reverse direction, ShopWithUs.com would like to assure itself that it will be
paid for the books it sends. It does so by asking you for a principal identifier—your credit
card number—and subcontracting to the credit card company the psychological compo
nent of developing trust that you will pay your credit card bills. The secure
communication link between your browser and the Web site of ShopWithUs.com
assures ShopWithUs.com that the credit card number you supply is securely associated
with the transaction, and a similar secure communication link to the credit card com
pany assures ShopWithUs.com that the credit card number is a valid principal identifier.

11.2.2 Authenticating Principals

When the trading service receives the message, the guard knows that the message claims
to come from the person named “Alice”, but it doesn’t know whether or not the claim
is true. The guard must verify the claim that the identifier Alice corresponds to the prin
cipal who sent the message.

Most authentication systems follow this model: the sender tells the guard its principal
identity, and the guard verifies that claim. This verification protocol has two stages:

1. 	A rendezvous step, in which a real-world person physically visits an authority that
configures the guard. The authority checks the identity of the real-world person,
creates a principal identifier for the person, and agrees on a method by which the
guard can later identify the principal identifier for the person. One must be

Saltzer & Kaashoek Ch. 11, p. 30	 June 24, 2009 12:29 am

http:ShopWithUs.com
http:ShopWithUs.com
http:ShopWithUs.com
http:ShopWithUs.com

11.2 Authenticating Principals 11–31

particularly cautious in checking the real-world identity of a principal because an
adversary may be able to fake it.

2. 	A verification of identity, which occurs at various later times. The sender presents
a claimed principal identifier and the guard uses the agreed-upon method to verify
the claimed principal identifier. If the guard is able to verify the claimed principal
identifier, then the source is authenticated. If not, the guard disallows access and
raises an alert.

The verification method the user and guard agree upon during the rendezvous step
falls in three broad categories:

• 	 The method uses a unique physical property of the user. For example, faces, voices,
fingerprints, etc. are assumed to identify a human uniquely. For some of these
properties it is possible to design a verification interface that is acceptable to users:
for example, a user speaks a sentence into a microphone and the system compares
the voice print with a previous voice print on file. For other properties it is difficult
to design an acceptable user interface; for example, a computer system that asks
“please, give a blood sample” is not likely to sell well. The uniqueness of the
physical property and whether it is easy to reproduce (e.g., replaying a recorded
voice) determine the strength of this identification approach. Physical
identification is sometimes a combination of a number of techniques (e.g., voice
and face or iris recognition) and is combined with other methods of verification.

• 	 The method uses something unique the user has. The user might have an ID card
with an identifier written on a magnetic strip that can be read by a computer. Or,
the card might contain a small computer that stores a secret; such cards are called
smart cards. The security of this method depends on (1) users not giving their card
to someone else or losing it, and (2) an adversary being unable to reproduce a card
that contains the secret (e.g., copying the content of the magnetic strip). These
constraints are difficult to enforce, since an adversary might bribe the user or
physically threaten the user to give the adversary the user’s card. It is also difficult
to make tamper-proof devices that will not reveal their secret.

• 	 The method uses something that only the user knows. The user remembers a secret
string, for example, a password, a personal identification number (PIN) or, as will
be introduced in Section 11.3, a cryptographic key. The strength of this method
depends on (1) the user not giving away (voluntarily or involuntarily) the password
and (2) how difficult it is for an adversary to guess the user’s secret. Your mother’s
maiden name and 4-digit PINs are weak secrets.

For example, when Alice created a trading account, the guard might have asked her
for a principal identifier and a password (a secret character string), which the guard stores.
This step is the rendezvous step. Later when Alice sends a message to trade, she includes
in the message her claimed principal identifier (“Alice”) and her password, which the

Saltzer & Kaashoek Ch. 11, p. 31	 June 24, 2009 12:29 am

11–32 CHAPTER 11 Information Security

guard verifies by comparing it with its stored copy. If the password in the message
matches, the guard knows that this message came from the principal Alice, assuming that
Alice didn’t disclose her password to anyone else voluntarily or involuntarily. This step
is the verification step.

In real-life authentication we typically use a similar process. For example, we first
obtain a passport by presenting ourselves at the passport bureau, where we answer ques
tions, provide evidence of our identity, and a photograph. This step is the rendezvous
step. Later, we present the passport at a border station. The border guard examines the
information in the passport (height, hair color, etc.) and looks carefully at the photo
graph. This step is the verification step.

The security of authenticating principals depends on, among other things, how care
fully the rendezvous step is executed. As we saw above, a common process is that before
a user is allowed to use a computer system, the user must see an administrator in person
and prove to the administrator the user’s identity. The administrator might ask the pro
spective user, for example, for a passport or a driving license. In that case, the
administrator relies on the agency that issued the passport or driving license to do a good
job in establishing the identity of the person.

In other applications the rendezvous step is a lightweight procedure and the guard
cannot place much trust in the claimed identity of the principal. In the example with the
trading service, Alice chooses her principal identifier and password. The service just
stores the principal identifier and password in its table, but it has no direct way of veri
fying Alice’s identity; Alice is unlikely to be able to see the system administrator of the
trading service in person because she might be at a computer on the other side of the
world. Since the trading service cannot verify Alice’s identity, the service puts little trust
in any claimed connection between the principal identifier and a real-world person. The
account exists for the convenience of Alice to review, for example, her trades; when she
actually buys something, the service doesn’t verify Alice’s identity, but instead verifies
something else (e.g., Alice’s credit card number). The service trusts the credit card com
pany to verify the principal associated with the credit card number. Some credit card
companies have weak verification schemes, which can be exploited by adversaries for
identity theft.

11.2.3 	Cryptographic Hash Functions, Computationally Secure, Window of
Validity

The most commonly employed method for verifying identities in computer systems is
based on passwords because it has a convenient user interface; users can just type in their
name and password on a keyboard. However, there are several weaknesses in this
approach. One weakness is that the stored copy of the password becomes an attractive
target for adversaries. One way to remove this weakness is to store a cryptographic hash
of the password in the password file of the system, rather than the password itself.

A cryptographic hash function maps an arbitrary-sized array of bytes M to a fixed-length
value V, and has the following properties:

Saltzer & Kaashoek Ch. 11, p. 32	 June 24, 2009 12:29 am

11.2 Authenticating Principals 11–33

1. 	For a given input M, it is easy to compute V ← H(M), where H is the hash function;

2. 	It is difficult to compute M knowing only V;

3. 	It is difficult to find another input M' such that H(M') = H(M);

4. 	The computed value V is as short as possible, but long enough that H has a low
probability of collision: the probability of two different inputs hashing to the same
value V must be so low that one can neglect it in practice. A typical size for V is 160
to 256 bits.

The challenge in designing a cryptographic hash function is finding a function that
has all these properties. In particular, providing property 3 is challenging. Section 11.8
describes an implementation of the Secure Hash Algorithm (SHA), which is a U.S. gov
ernment and OECD standard family of hash algorithms.

Cryptographic hash functions, like most cryptographic functions, are computationally
secure. They are designed in such a way that it is computationally infeasible to break
them, rather than being impossible to break. The idea is that if it takes an unimaginable
number of years of computation to break a particular function, then we can consider the
function secure.

Computationally security is measured quantified using a work factor. For crypto
graphic hash functions, the work factor is the minimum amount of work required to
compute a message M' such that for a given M, H(M') = H(M). Work is measured in prim
itive operations (e.g., processor cycles). If the work factor is many years, then for all
practical purposes, the function is just as secure as an unbreakable one because in both
cases there is probably an easier attack approach based on exploiting human fallibility.

In practice, computationally security is measured by a historical work factor. The his
torical work factor is the work factor based on the current best-known algorithms and
current state-of-the-art technology to break a cryptographic function. This method of
evaluation runs the risk that an adversary might come up with a better algorithm to break
a cryptographic function than the ones that are currently known, and furthermore tech
nology changes may reduce the work factor. Given the complexities of designing and
analyzing a cryptographic function, it is advisable to use only ones, such as SHA-256,
that have been around long enough that they have been subjected to much careful, public
review.

Theoreticians have developed models under which they can make absolute statements
about the hardness of some cryptographic functions. Coming up with good models that
match practice and the theoretical analysis of security primitives is an active area of
research with a tremendous amount of progress in the last three decades, but also with
many open problems.

Given that d(technology)/dt is so high in computer systems and cryptography is a fast
developing field, it is good practice to consider the window of validity for a specific cryp
tographic function. The window of validity of a cryptographic function is the minimum
of the time-to-compromise of all of its components. The window of validity for crypto
graphic hash functions is the minimum of the time to compromise the hash algorithm

Saltzer & Kaashoek Ch. 11, p. 33	 June 24, 2009 12:29 am

11–34 CHAPTER 11 Information Security

and the time to find a message M' such that for a given M, H(M') = H(M). The window of
validity of a password-based authentication system is the minimum of the window of
validity of the hashing algorithm, the time to try all possible passwords, and the time to
compromise a password.

A challenge in system design is that the window of validity of a cryptographic func
tion may be shorter than the lifetime of the system. For example, SHA, now referrred to
as “SHA-0” and which produces a 160-bit value for V was first published in 1993, and
superseded just two years later by SHA-1 to repair a possible weakness. Indeed, in 2004,
a cryptographic researcher found a way to systematically derive examples of messages M

and M' that SHA-0 hashes to the same value. Research published in 2005 suggest weak
nesses in SHA-1, but as of 2007 no one has yet found a systematic way to compromise
that widely used hash algorithm (i.e., for a given M no one has yet found a M' that hashes
to the same value of H(M)). As a precaution, however, the National Institute for Stan
dards and Technology is recommending that by 2010 users switch to versions of SHA
(for example, SHA-256) that produce longer values for V. A system designer should be
prepared that during the lifetime of a computer system the cryptographic hash function
may have to be replaced, perhaps more than once.

11.2.4 Using Cryptographic Hash Functions to Protect Passwords

There are many usages of cryptographic hash functions, and we will see them show up
in this chapter frequently. One good use is to protect passwords. The advantage of stor
ing the cryptographic hash of the password in the password file instead of the password
itself is that the hash value does not need to be kept secret. For this purpose, the impor
tant property of the hash function is the second property in the list in Section 11.2.3,
that if the adversary has only the output of a hash function (e.g., the adversary was able
to steal the password file), it is difficult to compute a corresponding input. With this
scheme, even the system administrator cannot figure out what the user’s password is.
(Design principle: Minimize secrets.)

The verification of identity happens when a user logs onto the computer. When the
user types a password, the guard computes the cryptographic hash of the typed password
and compares the result with the value stored in the table. If the values match, the veri
fication of identity was successful; if the verification fails, the guard denies access.

The most common attack on this method is a brute-force attack, in which an adver
sary tries all possible passwords. A brute-force attack can take a long time, so adversaries
often use a more sophisticated version of it: a dictionary attack, which works well for pass
words because users prefer to select an easy-to-remember password. In a dictionary
attack, an adversary compiles a list of likely passwords: first names*, last names, street
names, city names, words from a dictionary, and short strings of random characters.
Names of cartoon characters and rock bands have been shown to be effective guesses in
universities.

The adversary either computes the cryptographic hash of these strings and compares
the result to the value stored in the computer system (if the adversary has obtained the

Saltzer & Kaashoek Ch. 11, p. 34 June 24, 2009 12:29 am

11.2 Authenticating Principals 11–35

table), or writes a computer program that repeatedly attempts to log on with each of
these strings. A variant of this attack is an attack on a specific person’s password. Here
the adversary mines all the information one can find (mother’s maiden name, daughter’s
birth date, license plate number, etc.) about that person and tries passwords consisting
of that information forwards and backwards. Another variant is of this attack is to try a
likely password on each user of a popular Internet site; if passwords are 20 bits (e.g., a 6
digit PIN), then trying a given PIN as a password for 10,000,000 accounts is likely to
yield success for 10 accounts (10 × 220 = 10,000,000).

Several studies have shown that brute-force and dictionary attacks are effective in
practice because passwords are often inherently weak. Users prefer easy-to-remember
passwords, which are often short and contain existing words, and thus dictionary attacks
work well. System designers have countered this problem in several ways. Some systems
force the user to chose a strong password, and require the user to change it frequently.
Some systems disable an account after 3 failed login attempts. Some systems require users
to use both a password and a secret generated by the user’s portable cryptographic device
(e.g., an authentication device with a cryptographic coprocessor). In addition, system
designers often try to make it difficult for adversaries to compile a list of all users on a
service and limit access to the file with cryptographic hashes of passwords.

Since the verification of identity depends solely on the password, it is prudent to
make sure that the password is never disclosed in insecure areas. For example, when a
user logs on to a remote computer, the system should avoid sending the password unpro
tected over an untrusted network. That is easier said than done. For example, sending
the cryptographic hash of the password is not good enough because if the adversary can
capture the hash by eavesdropping, the adversary might be able to replay the hash in a
later message and impersonate a principal or determine the secret using a dictionary
attack.

In general, it is advisable to minimize repeated use of a secret because each exposure
increases the chance that the adversary may discover the secret. To minimize exposure,
any security scheme based on passwords should use them only once per session with a par
ticular service: to verify the identity of a person at the first access. After the first access,
one should use a newly-generated, strong secret for further accesses. More generally,
what we need is a protocol between the user and the service that has the following
properties:

1. it authenticates the principal to the guard;

2. it authenticates the service to the principal;

* A classic study is by Frederick T. Grampp and Robert H. Morris. UNIX operating system security.
Bell System Technical Journal 63, 8, Part 2 (October, 1984), pages 1649–1672. The authors made a
list of 200 names by selecting 20 common female names and appending to each one a single digit
(the system they tested required users to select a password containing at least 6 characters and one
digit). At least one entry of this list was in use as a password on each of several dozen UNIX machines
they examined.

Saltzer & Kaashoek Ch. 11, p. 35 June 24, 2009 12:29 am

11–36 CHAPTER 11 Information Security

3. 	the password never travels over the network so that adversaries cannot learn the
password by eavesdropping on network traffic;

4. 	the password is used only once per session so that the protocol exposes this secret
as few times as possible. This has the additional advantage that the user must type
the password only once per session.

The challenge in designing such a protocol is that the designer must assume that one
or more of the parties involved in the protocol may be under the control of an adversary.
An adversary should not be able to impersonate a principal, for example, by recording all
network messages between the principal and the service, and replaying it later. To with
stand such attacks we need a security protocol, a protocol designed to achieve some
security objective. Before we can discuss such protocols, however, we need some other
security mechanisms. For example, since any message in a security protocol might be
forged by an adversary, we first need a method to check the authenticity of messages. We
discuss message authentication next, the design of confidential communication links in
Section 11.4, and the design of security protocols in Section 11.5. With these mecha
nisms one can design among many other things a secure password protocol.

11.3 Authenticating Messages
Returning to Figure 11.3, when receiving a message, the guard needs an ensured way of
determining what the sender said in the message and who sent the message. Answering
these two questions is the province of message authentication. Message authentication
techniques prevent an adversary from forging messages that pretend to be from someone
else, and allow the guard to determine if an adversary has modified a legitimate message
while it was en route.

In practice, the ability to establish who sent a message is limited; all that the guard
can establish is that the message came from the same origin as some previous message.
For this reason, what the guard really does is to establish that a message is a member of
a chain of messages identified with some principal. The chain may begin in a message
that was communicated by a physical rendezvous. That physical rendezvous securely
binds the identity of a real-world person with the name of a principal, and both the real-
world person and that principal can now be identified as the origin of the current mes
sage. For some applications it is unimportant to establish the real-world person that is
associated with the origin of the message. It may be sufficient to know that the message
originated from the same source as earlier messages and that the message is unaltered.
Once the guard has identified the principal (and perhaps the real-world identity associ
ated with the principal), then we may be able to use psychological means to establish
trust in the principal, as explained in Section 11.2.

To establish that a message belongs to a chain of messages, a guard must be able to
verify the authenticity of the message. Message authenticity requires both:

• 	 data integrity: the message has not been changed since it was sent;

Saltzer & Kaashoek Ch. 11, p. 36	 June 24, 2009 12:29 am

11.3 Authenticating Messages 11–37

• 	 origin authenticity: the claimed origin of the message, as learned by the receiver
from the message content or from other information, is the actual origin.

The issues of data integrity and origin authenticity are closely related. Messages that
have been altered effectively have a new origin. If an origin cannot be determined, the
very concept of message integrity becomes questionable (the message is unchanged with
respect to what?). Thus, integrity of message data has to include message origin, and vice
versa. The reason for distinguishing them is that designers using different techniques to
tackle the two.

In the context of authentication, we mostly talk about authenticating messages. How
ever, the concept also applies to communication streams, files, and other objects
containing data. A stream is authenticated by authenticating successive segments of the
stream. We can think of each segment as a message from the point of view of
authentication.

11.3.1 Message Authentication is Different from Confidentiality

The goal of message confidentiality (keeping the content of messages private) and the
goal of message authentication are related but different, and separate techniques are usu
ally used for each objective, similar to the physical world. With paper mail, signatures
authenticate the author and sealed envelopes protect the letter from being read by others.

Authentication and confidentiality can be combined in four ways, three of which
have practical value:

• 	Authentication and confidentiality. An application (e.g., electronic banking),
might require both authentication and confidentiality of messages. This case is like
a signed letter in a sealed envelope, which is appropriate if the content of the
message (e.g., it contains personal financial information) must be protected and
the origin of the message must be established (e.g., the user who owns the bank
account).

• 	 Authentication only. An application, like DNS, might require just authentication
for its announcements. This case is like a signed letter in an unsealed envelope. It
is appropriate, for example, for a public announcement from the president of a
company to its employees.

• 	 only. confidentially authenticationConfidentiality Requiring without is
uncommon. The value of a confidential message with an unverified origin is not
great. This case is like a letter in a sealed envelope, but without a signature. If the
guard has no idea who sent the letter, what level of confidence can the guard have
in the content of the letter? Moreover, if the receiver doesn’t know who the sender
is, the receiver has no basis to trust the sender to keep the content of the message
confidential; for all the receiver knows, the sender may have released the content
of the letter to someone else too. For these reasons confidentiality only is
uncommon in practice.

Saltzer & Kaashoek Ch. 11, p. 37	 June 24, 2009 12:29 am

11–38 CHAPTER 11 Information Security

SIGN

M

VERIFY

ACCEPT or REJECTTag

M

secure areasecure area

Alice Bob

M

FIGURE 11.4

A closed design for authentication relies on the secrecy of an algorithm.

• 	 Neither authentication or confidentiality. This combination is appropriate if there
are no intentionally malicious users or there is a separate code of ethics.

To illustrate the difference between authentication and confidentiality, consider a
user who browses a Web service that publishes data about company stocks (e.g., the com
pany name, the current trading price, recent news announcements about the company,
and background information about the company). This information travels from the
Web service over the Internet, an untrusted network, to the user’s Web browser. We can
think of this action as a message that is being sent from the Web service to the user’s
browser:

From: stock.com

To: John’s browser

Body: At 10 a.m. Generic Moneymaking, Inc. was trading at $1

The user is not interested in confidentiality of the data; the stock data is public any
way. The user, however, is interested in the authenticity of the stock data, since the user
might decide to trade a particular stock based on that data. The user wants to be assured
that the data is coming from “stock.com” (and not from a site that is pretending to be
stock.com) and that the data was not altered when it crossed the Internet. For example,
the user wants to be assured that an adversary hasn’t changed “Generic Moneymaking,
Inc.”, the price, or the time. We need a scheme that allows the user to verify the authen
ticity of the publicly readable content of the message. The next section introduces
cryptography for this purpose. When cryptography is used, content that is publicly read
able is known as plaintext or cleartext.

11.3.2 Closed versus Open Designs and Cryptography

In the authentication model there are two secure areas (a physical space or a virtual
address space in which information can be safely confined) separated by an insecure com
munication path (as shown in Figure 11.4) and two boxes: SIGN and VERIFY. Our goal is

Saltzer & Kaashoek Ch. 11, p. 38	 June 24, 2009 12:29 am

11.3 Authenticating Messages 11–39

to set up a secure channel between the two secure areas that provides authenticity for mes
sages sent between the two secure areas. (Section 11.4 shows how one can implement a
secure channel that also provides confidentiality.)

Before diving in the details of how to implement SIGN and VERIFY, lets consider how
we might use them. In a secure area, the sender Alice creates an authentication tag for a
message by invoking SIGN with the message as an argument. The tag and message are
communicated through the insecure area to the receiver Bob. The insecure communica
tion path might be a physical wire running down the street or a connection across the
Internet. In both cases, we must assume that a wire-tapper can easily and surreptitiously
gain access to the message and authentication tag. Bob verifies the authenticity of the
message by a computation based on the tag and the message. If the received message is
authentic, VERIFY returns ACCEPT; otherwise it returns REJECT.

Cryptographic transformations can be used protect against a wide range of attacks on
messages, including ones on the authenticity of messages. Our interest in cryptographic
transformations is not the underlying mathematics (which is fascinating by itself, as can
been seen in Section 11.8), but that these transformations can be used to implement
security primitives such as SIGN and VERIFY.

One approach to implementing a cryptographic system, called a closed design, is to
keep the construction of cryptographic primitives, such as VERIFY and SIGN, secret with
that idea that if the adversary doesn’t understand how SIGN and VERIFY work, it will be
difficult to break the tag. Auguste Kerchkoffs more than a century ago* observed that this
closed approach is typically bad, since it violates the basic design principles for secure sys
tems in a number of ways. It doesn’t minimize what needs to be secret. If the design is
compromised, the whole system needs to be replaced. A review to certify the design must
be limited, since it requires revealing the secret design to the reviewers. Finally, it is unre
alistic to attempt to maintain secrecy of any system that receives wide distribution.

These problems with closed designs led Kerchkoffs to propose a design rule, now
known as Kerchkoffs’ criterion, which is a particular application of the principles of open
design and least privilege: minimize secrets. For a cryptographic system, open design means
that we concentrate the secret in a corner of a cryptographic transformation, and make
the secret removable and easily changeable. An effective way of doing this is to reduce
the secret to a string of bits; this secret bit string is known as a cryptographic key, or key
for short. By choosing a longer key, one can generally increase the time for the adversary
to compromise the transformation.

Figure 11.5 shows an open design for SIGN and VERIFY. In this design the algorithms
for SIGN and VERIFY are public and the only secrets are two keys, K1 and K2. What distin
guishes this open design from a closed design is (1) that public analysis of SIGN and VERIFY

can provide verification of their strength without compromising their security; and (2)

* “Il faut un systeme remplissant certaines conditions exceptionelles ... il faut qu’il n’exige pas le
secret, et qu’il puisse sans inconvenient tomber entre les mains de l’ennemi.” (Compromise of the
system should not disadvantage the participants.) Auguste Kerchkoffs, La cryptographie Militaire,
Chapter II (1883).

Saltzer & Kaashoek Ch. 11, p. 39 June 24, 2009 12:29 am

11–40 CHAPTER 11 Information Security

SIGN

M

VERIFY

ACCEPT or REJECTTag

M

secure areasecure area

Alice Bob

M

K1 K2

FIGURE 11.5

An open design for authentication relies on the secrecy of keys.

it is easy to change the secret parts (i.e., the two keys) without having to reanalyze the
system’s strength.

Depending on the relation between K1 and K2, there are two basic approaches to key-
based transformations of a message: shared-secret cryptography and public-key cryptography.
In shared-secret cryptography K1 is easily computed from K2 and vice versa. Usually in
shared-secret cryptography K1 = K2, and we make that assumption in the text that
follows.

In public-key cryptography K1 cannot be derived easily from K2 (and vice versa). In
public-key cryptography, only one of the two keys must be kept secret; the other one can
be made public. (A better label for public-key cryptography might be “cryptography
without shared secrets”, or even “non-secret encryption”, which is the label adopted by
the intelligence community. Either of those labels would better contrast it with shared-
secret cryptography, but the label “public-key cryptography” has become too widely used
to try to change it.)

Public-key cryptography allows Alice and Bob to perform cryptographic operations
without having to share a secret. Before public-key systems were invented, cryptogra
phers worked under the assumption that Alice and Bob needed to have a shared secret to
create, for example, SIGN and VERIFY primitives. Because sharing a secret can be awkward
and maintaining its secrecy can be problematic, this assumption made certain applica
tions of cryptography complicated. Because public-key cryptography removes this
assumption, it resulted in a change in the way cryptographers thought, and has led to
interesting applications, as we will see in this chapter.

To distinguish the keys in shared-secret cryptography from the ones in public-key
cryptography, we refer to the key in shared-secret cryptography as the shared-secret key.
We refer to the key that can be made public in public-key cryptography as the public key
and to the key that is kept secret in public-key cryptography as the private key. Since
shared-secret keys must also be kept secret, the unqualified term “secret key,” which is
sometimes used in the literature, can be ambiguous, so we avoid using it.

Saltzer & Kaashoek Ch. 11, p. 40 June 24, 2009 12:29 am

11.3 Authenticating Messages 11–41

We can now see more specifically the two ways in which SIGN and VERIFY can benefit
if they are an open design. First, If K1 or K2 is compromised, we can select a new key for
future communication, without having to replace SIGN and VERIFY. Second, we can now
publish the overall design of the system, and how SIGN and VERIFY work. Anyone can
review the design and offer opinions about its correctness.

Because most cryptographic techniques use open design and reduce any secrets to
keys, a system may have several keys that are used for different purposes. To keep the
keys apart, we refer to the keys for authentication as authentication keys.

11.3.3 Key-Based Authentication Model

Returning to Figure 11.5, to authenticate a message, the sender signs the messages using
a key K1. Signing produces as output an authentication tag: a key-based cryptographic trans
formation (usually shorter than the message). We can write the operation of signing as
follows:

T ← SIGN (M, K1)

where T is the authentication tag.
The tag may be sent to the receiver separately from the message or it may be appended

to the message. The message and tag may be stored in separate files or attachments. The
details don’t matter.

Let’s assume that the sender sends a message {M, T}. The receiver receives a message
{M', T'}, which may be the same as {M, T} or it may not. The purpose of message authen
tication is to decide which. The receiver unmarshals {M', T'} into its components M' and
T', and verifies the authenticity of the received message, by performing the computation:

result ← VERIFY (M', T', K2)

This computation returns ACCEPT if M' and T' match; otherwise, it returns REJECT.
The design of SIGN and VERIFY should be such that if an adversary forges a tag, re-uses

a tag from a previous message on a message fabricated by the adversary, etc. the adversary
won’t succeed. Of course, if the adversary replays a message {M, T} without modifying it,
then VERIFY will again return ACCEPT; we need a more elaborate security protocol, the topic
of Section 11.5, to protect against replayed messages.

If M is a long message, a user might sign and verify the cryptographic hash of M, which
is typically less expensive than signing M because the cryptographic hash is shorter than
M. This approach complicates the protocol between sender and receiver a bit because the
receiver must accurately match up M, its cryptographic hash, and its tag. Some imple
mentations of SIGN and VERIFY implement this performance optimization themselves.

11.3.4 Properties of SIGN and VERIFY

To get a sense of the challenges of implementing SIGN and VERIFY, we outline some of the
basic requirements for SIGN and VERIFY, and some attacks that a designer must consider.

Saltzer & Kaashoek Ch. 11, p. 41 June 24, 2009 12:29 am

11–42 CHAPTER 11 Information Security

The sender sends {M, T} and the receiver receives {M', T'}. The requirements for an
authentication system with shared-secret key K are as follows:

1. 	VERIFY (M', T', K) returns ACCEPT if M' = M, T' = SIGN (M, K)

2. 	Without knowing K, it is difficult for an adversary to compute an M' and T' such
that VERIFY (M', T', K) returns ACCEPT

3. 	Knowing M, T, and the algorithms for SIGN and VERIFY doesn’t allow an adversary to
compute K

In short, T should be dependent on the message content M and the key K. For an
adversary who doesn’t know key K, it should be impossible to construct a message M' and
a T' different from M and T that verifies correctly using key K.

A corresponding set of properties must hold for public-key authentication systems:

1. 	VERIFY (M', T', K2) returns ACCEPT if M' = M, T' = SIGN (M, K1)

2. 	Without knowing K1, it is difficult for an adversary to compute an M' and T' such
that VERIFY (M', T', K2) returns ACCEPT

3. 	Knowing M, T, K2, and the algorithms for verify and sign doesn’t allow an adversary
to compute K1

The requirements for SIGN and VERIFY are formulated in absolute terms. Many good
implementations of VERIFY and SIGN, however, don’t meet these requirements perfectly.
Instead, they might guarantee property 2 with very high probability. If the probability is
high enough, then as a practical matter we can treat such an implementation as being
acceptable.What we require is that the probability of not meeting property 2 be much
lower than the likelihood of a human error that leads to a security breach.

The work factor involved in compromising SIGN and VERIFY is dependent on the key
length; a common way to increase the work factor for the adversary is use a longer key.
A typical key length used in the field for the popular RSA public-key cipher (see Section
11.8) is 1,024 or 2,048 bits. SIGN and VERIFY implemented with shared-secret ciphers
often use shorter keys (in the range of 128 to 256 bits) because existing shared-secret
ciphers have higher work factors than existing public-key ciphers. It is also advisable to
change keys periodically to limit the damage in case a key is compromised and crypto
graphic protocols often do so (see Section 11.5).

Broadly speaking, the attacks on authentication systems fall in five categories:

1. 	Modifications to M and T. An adversary may attempt to change M and the
corresponding T. The VERIFY function should return REJECT even if the adversary
deletes or flips only a single bit in M and tries to make corresponding change to T.
Returning to our trading example, VERIFY should return REJECT if the adversary
changes M from “At 10 a.m. Generic Moneymaking, Inc. was trading at $1” to “At
10 a.m. Generic Moneymaking, Inc. was trading at $200” and tries to make the
corresponding changes to T.

Saltzer & Kaashoek Ch. 11, p. 42	 June 24, 2009 12:29 am

11.3 Authenticating Messages 11–43

2. 	Reordering M. An adversary may not change any bits, but just reorder the existing
content of M. For example, VERIFY should return REJECT if the adversary changes M

to “At 1 a.m. Generic Moneymaking, Inc. was trading at $10” (The adversary has
moved “0” from “10 a.m.” to “$10”).

3. 	Extending M by prepending or appending information to M. An adversary may not
change the content of M, but just prepend or append some information to the
existing content of M. For example, an adversary may change M to “At 10 a.m.
Generic Moneymaking, Inc. was trading at $10”. (The adversary has appended
“0” to the end of the message.)

4. 	Splicing several messages and tags. An adversary may have recorded two messages
and their tags, and tried to combine them into a new message and tag. For
example, an adversary might take “At 10 a.m. Generic Moneymaking, Inc.” from
one transmitted message and combine it with “was trading at $9” from another
transmitted message, and splice the two tags that go along with those messages by
taking the first several bytes from the first tag and the remainder from the second
tag.

5. 	Since SIGN and VERIFY are based on cryptographic transformations, it may also be
possible to directly attack those transformations. Some mathematicians, known as
cryptanalysts, are specialists in devising such attacks.

These requirements and the possible attacks make clear that the construction of SIGN

and VERIFY primitives is a difficult task. To protect messages against the attacks listed
above requires a cryptographer who can design the appropriate cryptographic transfor
mations on the messages. These transformations are based on sophisticated mathematics.
Thus, we have the worst of two possible worlds: we must achieve a negative goal using
complex tools. As a result, even experts have come up with transformations that failed
spectacularly. Thus, a non-expert certainly should not attempt to implement SIGN and
VERIFY, and their implementation falls outside the scope of this book. (The interested
reader can consult Section 11.8 to get a flavor of the complexities.)

The window of validity for SIGN and VERIFY is the minimum of the time to compromise
the signing algorithm, the time to compromise the hash algorithm used in the signature
(if one is used), the time to try out all keys, and the time to compromise the signing key.

As an example of the importance of keeping track of the window of validity, a team
of researchers in 2008 was able to create forged signatures that many Web browsers
accepted as valid.* The team used a large array of processors found in game consoles to
perform a collision attack on a hash function designed in 1994 called MD5. MD5 had
been identified as potentially weak as early as 1996 and a collision attack was demon
strated in 2004. Continued research revealed ways of rapidly creating collisions, thus
allowing a search for helpful collisions. The 2008 team was able to find a helpful collision

* A. Sotirov et al. MD5 considered harmful: creating a rogue CA certificate. 25th Annual Chaos
Communication Congress, Berlin, December 2008.

Saltzer & Kaashoek Ch. 11, p. 43	 June 24, 2009 12:29 am

11–44 CHAPTER 11 Information Security

with which they could forge a trusted signature on an authentication message. Because
some authentication systems that Web browsers trust had not yet abandoned their use
of MD5, many browsers accepted the signature as valid and the team was able to trick
these browsers into making what appeared to be authenticated connections to well-
known Web sites. The connections actually led to impersonation Web sites that were
under the control of the research team. (The forged signatures were on certificates for the
transport layer security (TLS) protocol. Certificates are discussed in Sections 11.5.1 and
11.7.4, and Section 11.10 is a case study of TLS.)

11.3.5 Public-key versus Shared-Secret Authentication

If Alice signs the message using a shared-secret key, then Bob verifies the tag using the
same shared-secret key. That is, VERIFY checks the received authentication tag from the
message and the shared-secret key. An authentication tag computed with a shared-secret
key is called a message authentication code (MAC). (The verb “to MAC” is the common
jargon for “to compute an authentication tag using shared-secret cryptography”.)

In the literature, the word “sign” is usually reserved for generating authentication tags
with public-key cryptography. If Alice signs the message using public-key cryptography,
then Bob verifies the message using a different key from the one that Alice used to com
pute the tag. Alice uses her private key to compute the authentication tag. Bob uses
Alice’s corresponding public key to verify the authentication tag. An authentication tag
computed with a public-key system is called a digital signature. The digital signature is
analogous to a conventional signature because only one person, the holder of the private
key, could have applied it.

Alice’s digital signatures can be checked by anyone who knows Alice’s public key,
while checking her MACs requires knowledge of the shared-secret key that she used to
create the MAC. Thus, Alice might be able to successfully repudiate (disown) a message
authenticated with a MAC by arguing that Bob (who also knows the shared-secret key)
forged the message and the corresponding MAC.

In contrast, the only way to repudiate a digital signature is for Alice to claim that
someone else has discovered her private key. Digital signatures are thus more appropriate
for electronic checks and contracts. Bob can verify Alice’s signature on an electronic
check she gives him, and later when Bob deposits the check at the bank, the bank can
also verify her signature. When Alice uses digital signatures, neither Bob nor the bank
can forge a message purporting to be from Alice, in contrast to the situation in which
Alice uses only MACs.

Of course, non-repudiation depends on not losing one’s private key. If one loses one’s
private key, a reliable mechanism is needed for broadcasting the fact that the private key
is no longer secret so that one can repudiate later forged signatures with the lost private
key. Methods for revoking compromised private keys are the subject of considerable
debate.

SIGN and VERIFY are two powerful primitives, but they must be used with care. Con
sider the following attack. Alice and Bob want to sign a contract saying that Alice will

Saltzer & Kaashoek Ch. 11, p. 44 June 24, 2009 12:29 am

11.3 Authenticating Messages 11–45

pay Bob $100. Alice types it up as a document using a word-processing application and
both digitally sign it. In a few days Bob comes to Alice to collect his money. To his sur
prise, Alice presents him with a Word document that states he owes her $100. Alice also
has a valid signature from Bob for the new document. In fact, it is the exact same signa
ture as for the contract Bob remembers signing and, to Bob's great amazement, the two
documents are actually bit-for-bit identical. What Alice did was create a document that
included an if statement that changed the displayed content of the document by referring
to an external input such as the current date or filename. Thus, even though the signed
contents remained the same, the displayed contents changed because they were partially
dependent on unsigned inputs. The problem here is that Bob’s mental model doesn’t
correspond to what he has signed. As always with security, all aspects must be thought
through! Bob is much better off signing only documents that he himself created.

11.3.6 Key Distribution

We assumed that if Bob successfully verified the authentication tag of a message, that
Alice is the message’s originator. This assumption, in fact, has a serious flaw. What Bob
really knows is that the message originated from a principal that knows key K1. The
assumption that the key K1belongs to Alice may not be true. An adversary may have sto
len Alice’s key or may have tricked Bob into believing that K1 is Alice’s key. Thus, the
way in which keys are bound to principals is an important problem to address.

The problem of securely distributing keys is also sometimes called the name-to-key
binding problem; in the real world, principals are named by descriptive names rather
than keys. So, when we know the name of a principal, we need a method for securely
finding the key that goes along with the named principal. The trust that we put in a key
is directly related to how secure the key distribution system is.

Secure key distribution is based on a name discovery protocol, which starts, perhaps
unsurprisingly, with trusted physical delivery. When Alice and Bob meet, Alice can give
Bob a cryptographic key. This key is authenticated because Bob knows he received it
exactly as Alice gave it to him. If necessary, Alice can give Bob this key secretly (in an
envelope or on a portable storage card), so others don’t see or overhear it. Alice could also
use a mutually trusted courier to deliver a key to Bob in a secret and authenticated
manner.

Cryptographic keys can also be delivered over a network. However, an adversary
might add, delete, or modify messages on the network. A good cryptographic system is
needed to ensure that the network communication is authenticated (and confidential, if
necessary). In fact, in the early days of cryptography, the doctrine was never to send keys
over a network; a compromised key will result in more damage than one compromised
message. However, nowadays cryptographic systems are believed to be strong enough to
take that risk. Furthermore, with a key-distribution protocol in place it is possible to
periodically generate new keys, which is important to limit the damage in case a key is
compromised.

Saltzer & Kaashoek Ch. 11, p. 45 June 24, 2009 12:29 am

11–46 CHAPTER 11 Information Security

The catch is that one needs cryptographic keys already in place in order to distribute
new cryptographic keys over the network! This approach works if the recursion ‘‘bottoms
out’’ with physical key delivery. Suppose two principals Alice and Bob wish to commu
nicate, but they have no shared (shared-secret or public) key. How can they establish keys
to use?

One common approach is to use a mutually-trusted third party (Charles) with whom
Alice and Bob already each share key information. For example, Charles might be a
mutual friend of Alice and Bob. Charles and Alice might have met physically at some
point in time and exchanged keys and similarly Charles and Bob might have met and
also exchanged keys. If Alice and Bob both trust Charles, then Alice and Bob can
exchange keys through Charles.

How Charles can assist Alice and Bob depends on whether they are using shared-
secret or public-key cryptography. Shared-secret keys need to be distributed in a way that
is both confidential and authenticated. Public keys do not need to be kept secret, but
need to be distributed in an authenticated manner. What we see developing here is a
need for another security protocol, which we will study in Section 11.5.

In some applications it is difficult to arrange for a common third party. Consider a
person who buys a personal electronic device that communicates over a wireless network.
The owner installs the new gadget (e.g., digital surveillance camera) in the owner’s house
and would like to make sure that burglars cannot control the device over the wireless net
work. But, how does the device authenticate the owner, so that it can distinguish the
owner from other principals (e.g., burglars)? One option is that the manufacturer or dis
tributor of the device plays the role of Charles. When purchasing a device, the
manufacturer records the buyer’s public key. The device has burned into it the public
key of the manufacturer; when the buyer turns on the device, the device establishes a
secure communication link using the manufacturer’s public key and asks the manufac
turer for the public key of its owner. This solution is impractical, unfortunately: what if
the device is not connected to a global network and thus cannot reach the manufacturer?
This solution might also have privacy objections: should manufacturers be able to track
when consumers use devices? Sidebar 11.5, about the resurrecting duckling provides a
solution that allows key distribution to be performed locally, without a central principal
involved.

Not all applications deploy a sophisticated key-distribution protocol. For example,
the secure shell (SSH), a popular Internet protocol used to log onto a remote computer
has a simple key distribution protocol. The first time that a user logs onto a server named
“athena.Scholarly.edu”, SSH sends a message in the clear to the machine with DNS
name athena.Scholarly.edu asking it for its public key. SSH uses that public key to set up
an authenticated and confidential communication link with the remote computer. SSH
also caches this key and remembers that the key is associated with the DNS name “ath
ena.Scholarly.edu”. The next time the user logs onto athena.Scholarly.edu, SSH uses the
cached key to set up the communication link.

Because the DNS protocol does not include message authentication, the security risk
in SSH’s approach is a masquerading attack: an adversary might be able to intercept the

Saltzer & Kaashoek Ch. 11, p. 46 June 24, 2009 12:29 am

http:athena.Scholarly.edu

11.3 Authenticating Messages 11–47

Sidebar 11.5: Authenticating personal devices: the resurrecting duckling policy
Inexpensive consumer devices have (or will soon have) embedded microprocessors in them that
are able to communicate with other devices over inexpensive wireless networks. If household
devices such as the home theatre, the heating system, the lights, and the surveillance cameras
are controlled by, say, a universal remote control, an owner must ensure that these devices (and
new ones) obey the owner’s commands and not the neighbor’s or, worse, a burglar’s.This
situation requires that a device and the remote control be able to establish a secure relationship.
The relationship may be transient, however; the owner may want to resell one of the devices,
or replace the remote control.

In The resurrecting duckling: security issues for ad-hoc wireless networks [Suggestions for Further
Reading 11.4.2], Stajano and Anderson provide a solution based on the vivid analogy of how
ducklings authenticate their mother. When a duckling emerges from its egg, it will recognize
as its mother the first moving object that makes a sound. In the Stajano and Anderson proposal,
a device will recognize as its owner the first principal that sends it an authentication key. As
soon as the device receives a key, its status changes from newborn to imprinted, and it stays
faithful to that key until its death. Only an owner can force a device to die and thereby reverse
its status to newborn. In this way, an owner can transfer ownership.

A widely used example of the resurrecting duckling is purchasing wireless routers. These routers
often come with the default user name “Admin” and password “password”. When the buyer
plugs the router in for the first time, it is waiting to be imprinted with a better password; the
first principal to change the password gets control of the router. The router has a resurrection
button that restores the defaults, thus again making it imprintable (and allowing the buyer to
recover if an adversary did grab control).

DNS lookup for “athena.Scholarly.edu” and return an IP address for a computer con
trolled by the adversary. When the user connects to that IP address, the adversary replies
with a key that the adversary has generated. When the user makes an SSH connection
using that public key, the adversary’s computer masquerades as athena.Scholarly.edu. To
counter this attack, the SSH client asks a question to the user on the first connection to
a remote computer: “I don’t recognize the key of this remote computer, should I trust
it?” and a wary user should compare the displayed key with one that it received from the
remote computer’s system administrator over an out-of-band secure communication
link (e.g., a piece of paper). Many users aren’t wary and just answer “yes” to the question.

The advantage of the SSH approach is that no key distribution protocol is necessary
(beyond obtaining the fingerprint). This has simplified the deployment of SSH and has
made it a success. As we will see in Section 11.5, securely distributing keys such that a
masquerading attack is impossible is a challenging problem.

Saltzer & Kaashoek Ch. 11, p. 47 June 24, 2009 12:29 am

http:athena.Scholarly.edu

11–48 CHAPTER 11 Information Security

11.3.7 Long-Term Data Integrity with Witnesses

Careful use of SIGN and VERIFY can provide both data integrity and authenticity guaran
tees. Some applications have requirements for which it is better to use different
techniques for integrity and authenticity. Sidebar 7.1[on-line] mentions a digital archive,
which requires protection against an adversary who tries to change the content of a file
stored in the archive. To protect a file, a designer wants to make many separate replicas
of the file, following the durability mantra, preferably in independently administered
and thus separately protected domains. If the replicas are separately protected, it is more
difficult for an adversary to change all of them.

Since maintaining widely-separated copies of large files consumes time, space, and
communication bandwidth, one can reduce the resource expenditure by replacing some
(but not all) copies of the file with a smaller witness, with which users can periodically
check the validity of replicas (as explained in Section 10.3.4[on-line]). If the replica dis
agrees with the witness, then one repairs the replica by finding a replica that matches the
witness. Because the witness is small, it is easy to protect it against tampering. For exam
ple, one can publish the witness in a widely-read newspaper, which is likely to be
preserved either on microfilm or digitally in many public libraries.

This scheme requires that a witness be cryptographically secure. One way of con
structing a secure witness is using SIGN and VERIFY. The digital archiver uses a
cryptographic hash function to create a secure fingerprint of the file, signs the fingerprint
with its private key, and then distributes copies of the file widely. Anyone can verify the
integrity of a replica by computing the finger print of the replica, verifying the witness
using the public key of the archiver, and then comparing the finger print of the witness
against the finger print of the replica.

This scheme works well in general, but is less suitable for long-term data integrity.
The window of validity of this scheme is determined by the minimum time to compro
mise the private key used for signing, the signing algorithm, the hashing algorithm, and
the validity of the name-to-public key binding. If the goal of the archiver is to protect
the data for many decades (or forever), it is likely that the digital signature will be invalid
before the data.

In such cases, it is better to protect the witness by widely publishing just the crypto
graphic hash instead of using SIGN and VERIFY. In this approach, the validity of the witness
is the time to compromise the cryptographic hash. This window can be made large. One
can protect against a compromised cryptographic hash algorithm by occasionally com
puting and publishing a new witness with the latest, best hash algorithm. The new
witness is a hash of the original data, the original witness, and a timestamp, thereby dem
onstrating the integrity of the original data at the time of the new witness calculation.

The confidence a user has in the authenticity of a witness is determined by how easily
the user can verify that the witness was indeed produced by the archiver. If the newspaper
or the library physically received the witnesses directly from the archiver, then this con
fidence may be high.

Saltzer & Kaashoek Ch. 11, p. 48 June 24, 2009 12:29 am

11.4 Message Confidentiality 11–49

11.4 Message Confidentiality
Some applications may require message confidentiality in addition to message authenti
cation. Two principals may want to communicate privately without adversaries having
access to the communicated information. If the principals are running on a shared phys
ical computer, this goal is easily accomplished using the kernel. For example, when
sending a message to a port (see Section 5.3.5), it is safe to ask the kernel to copy the
message to the recipient’s address space, since the kernel is already trusted; the kernel can
read the sender’s and receiver’s address space anyway.

If the principals are on different physical processors, and can communicate with each
other only over an untrusted network, ensuring confidentiality of messages is more chal
lenging. By definition, we cannot trust the untrusted network to not disclose the bits that
are being communicated. The solution to this problem is to introduce encryption and
decryption to allow two parties to communicate without anyone else being able to tell
what is being communicated.

11.4.1 Message Confidentiality Using Encryption

The setup for providing confidentiality over untrusted networks is shown in Figure 11.6.
Two secure areas are separated by an insecure communication path. Our goal is to pro
vide a secure channel between the two secure areas that provides confidentiality.

Encryption transforms a plaintext message into ciphertext in such a way that an
observer cannot construct the original message from the ciphertext version, yet the
intended receiver can. Decryption transforms the received ciphertext into plaintext. Thus,
one challenge in the implementation of channels that provide confidentiality is to use an
encrypting scheme that is difficult to reverse for an adversary. That is, even if an observer
could copy a message that is in transit and has an enormous amount of time and com
puting power available, the observer should not be able to transform the encrypted
message into the plaintext message. (As with signing, we use the term messages concep
tually; one can also encrypt and decrypt files, e-mail attachments, streams, or other data
objects.)

The ENCRYPT and DECRYPT primitives can be implemented using cryptographic transfor
mations. ENCRYPT and DECRYPT can use either shared-secret cryptography or public-key
cryptography. We refer to the keys used for encryption as encryption keys.

With shared-secret cryptography, Alice and Bob share a key K that only they know.
To keep a message M confidential, Alice computes ENCRYPT (M, K) and sends the resulting
ciphertext C to Bob. If the encrypting box is good, an adversary will not to be able to get
any use out of the ciphertext. Bob computes DECRYPT (C, K), which will recover the plain
text form of M. Bob can send a reply to Alice using exactly the same system with the same
key. (Of course, Bob could also send the reply with a different key, as long as that differ
ent key is also shared with Alice.)

Saltzer & Kaashoek Ch. 11, p. 49 June 24, 2009 12:29 am

11–50 CHAPTER 11 Information Security

ENCRYPT

K1

M

secure area

ENCRYPT (M, K1)

insecure area

DECRYPT

K2

DECRYPT (ENCRYPT (M, K1),K2)

secure area

FIGURE 11.6

Providing confidentiality using ENCRYPT and DECRYPT over untrusted networks.

With public-key cryptography, Alice and Bob do not have to share a secret to achieve
confidentiality for communication. Suppose Bob has a private and public key pair
(KBpriv, KBpub), where KBpriv is Bob’s private key and KBpub is Bob’s public key. Bob gives
his public key to Alice through an existing channel; this channel does not have to be
secure, but it does have to provide authentication: Alice needs to know for sure that this
key is really Bob’s key.

Given Bob’s public key (KBpub), Alice can compute ENCRYPT (M, KBpub) and send the
encrypted message over an insecure network. Only Bob can read this message, since he
is the only person who has the secret key that can decrypt her ciphertext message. Thus,
using encryption, Alice can ensure that her communication with Bob stays confidential.

To achieve confidential communication in the opposite direction (from Bob to
Alice), we need an additional set of keys, a KApub and KApriv for Alice, and Bob needs to
learn Alice’s public key.

11.4.2 Properties of ENCRYPT and DECRYPT

For both the shared-key and public-key encryption systems, the procedures ENCRYPT and
DECRYPT should have the following properties. It should be easy to compute:

• C ← ENCRYPT (M, K1)
• M' ← DECRYPT (C, K2)

and the result should be that M = M'.
The implementation of ENCRYPT and DECRYPT should withstand the following attacks:

1. 	Ciphertext-only attack. In this attack, the primary information available to the
adversary is examples of ciphertext and the algorithms for ENCRYPT and DECRYPT.
Redundancy or repeated patterns in the original message may show through even
in the ciphertext, allowing an adversary to reconstruct the plaintext. In an open

Saltzer & Kaashoek Ch. 11, p. 50	 June 24, 2009 12:29 am

11.4 Message Confidentiality 11–51

design the adversary knows the algorithms for ENCRYPT and DECRYPT, and thus the
adversary may also be able to mount a brute-force attack by trying all possible keys.

More precisely, when using shared-secret cryptography, the following property
must hold:

• 	 Given ENCRYPT and DECRYPT, and some examples of C, it should be difficult for
an adversary to reconstruct K or compute M.

When using public-key cryptography, the corresponding property holds:

• 	 Given ENCRYPT and DECRYPT, some examples of C, and assuming an adversary
knows K1 (which is public), it should be difficult for the adversary to compute
either the secret key K2 or M.

2. 	Known-plaintext attack. The adversary has access to the ciphertext C and also to
the plaintext M corresponding to at least some of the ciphertext C. For instance, a
message may contain standard headers or a piece of predictable plaintext, which
may help an adversary figure out the key and then recover the rest of the plaintext.

3. 	Chosen-plaintext attack. The adversary has access to ciphertext C that corresponds
to plaintext M that the adversary has chosen. For instance, the adversary may
convince you to send an encrypted message containing some data chosen by the
adversary, with the goal of learning information about your transforming system,
which may allow the adversary to more easily discover the key. As a special case, the
adversary may be able in real time to choose the plaintext M based on ciphertext C

just transmitted. This variant is known as an adaptive attack.

A common design mistake is to unintentionally admit an adaptive attack by pro
viding a service that happily encrypts any input it receives. This service is known
as an oracle and it may greatly simplify the effort required by an adversary to crack
the cryptographic transformation. For example, consider the following adaptive
chosen-plaintext attack on the encryption of packets in WiFi wireless networks.
The adversary sends a carefully-crafted packet from the Internet addressed to some
node on the WiFi network. The network will encrypt and broadcast that packet
over the air, where the adversary can intercept the ciphertext, study it, and imme
diately choose more plaintext to send in another packet. Researchers used this
attack as one way of breaking the design of the security of WiFi Wired Equivalent
Privacy (WEP)*.

4. 	Chosen-ciphertext attack. The adversary might be able to select a ciphertext C and
then observe the M' that results when the recipient decrypts C. Again, an adversary
may be able to mount an adaptive chosen-ciphertext attack.

* N. Borisov, I. Goldberg, and D. Wagner, Intercepting mobile communications: the insecurity of
802.11, MOBICOM ‘01, Rome, Italy, July 2001.

Saltzer & Kaashoek Ch. 11, p. 51	 June 24, 2009 12:29 am

11–52 CHAPTER 11 Information Security

Section 11.8 describes cryptographic implementations of ENCRYPT and DECRYPT that
provide protection against these attacks. A designer can increase the work factor for an
adversary by increasing the key length. A typical key length used in the field is 1,024 bits.

The window of validity of ENCRYPT and DECRYPT is the minimum of the time to com
promise of the underlying cryptographic transformation, the time to try all keys, and the
time to compromise the key itself. When considering what implementation of ENCRYPT

and DECRYPT to use, it is important to understand the required window of validity. It is
likely that the window of validity required for encrypting protocol messages between a
client and a server is smaller than the window of validity required for encrypting long-
term file storage. A protocol message that must be private just for the duration of a con
versation might be adequately protected by an cryptographic transformation that can be
compromised with, say, one year of effort. On the other hand, if the period of time for
which a file must be protected is greater than the window of validity of a particular cryp
tographic system, the designer may have to consider additional mechanisms, such as
multiple encryptions with different keys.

11.4.3 Achieving both Confidentiality and Authentication

Confidentiality and message authentication can be combined in several ways:

• 	 For confidentiality only, Alice just encrypts the message.
• 	 For authentication only, Alice just signs the message.
• 	 For both confidentiality and authentication, Alice first encrypts and then signs

the encrypted message (i.e., SIGN (ENCRYPT (M, Kencrypt), Ksign)), or, the other way
around. (If good implementations of SIGN and VERIFY are used, it doesn’t matter
for correctness in which order the operations are applied.)

The first option, confidentiality without authentication, is unusual. After all, what is
the purpose of keeping information confidential if the receiver cannot tell if the message
has been changed? Therefore, if confidentiality is required, one also provides
authentication.

The second option is common. Much data is public (e.g., routing updates, stock
updates, etc.), but it is important to know its origin and integrity. In fact, it is easy to
argue the default should be that all messages are at least authenticated.

For the third option, the keys used for authentication and confidentiality are typically
different. The sender authenticates with an authentication key, and encrypts with a
encryption key. The receiver would use the appropriate corresponding keys to decrypt
and to verify the received message. The reason to use different keys is that the key is a bit
pattern, and using the same bit pattern as input to two cryptographic operations on the
same message is risky because a clever cryptanalyst may be able to discover a way of
exploiting the repetition. Section 11.8 gives an example of exploitation of repetition in
an otherwise unbreakable encryption system known as the one-time pad. Problem set 44
and 46 also explores one-time pads to setup a secure communicaiton channel.

Saltzer & Kaashoek Ch. 11, p. 52	 June 24, 2009 12:29 am

11.4 Message Confidentiality 11–53

In addition to using the appropriate keys, there are other security hazards. For exam
ple, M should have identified explicitly the communicating parties. When Alice sends a
message to Bob, she should include in the message the names of Alice and Bob to avoid
impersonation attacks. Failure to follow this explicitness principle can create security
problems, as we will see in Section 11.5.

11.4.4 Can Encryption be Used for Authentication?

As specified, ENCRYPT and DECRYPT don’t protect against an adversary modifying M and one
must SIGN and VERIFY for integrity. With some implementations, however, a recipient of
an encrypted message can be confident not only of its confidentiality, but also of its
authenticity. From this observation arose the misleading intuition that decrypting a mes
sage and finding something recognizable inside is an effective way of establishing the
authenticity of that message. The intuition is based on the claim that if only the sender
is able to encrypt the message, and the message contains at least one component that the
recipient expected the sender to include, then the sender must have been the source of
the message.

The problem with this intuition is that as a general rule, the claim is wrong. It
depends on using a cryptographic system that links all of the ciphertext of the message
in such a way that it cannot be sliced apart and respliced, perhaps with components from
other messages between the same two parties and using the same cryptographic key. As
a result, it is non-trivial to establish that a system based on the claim is secure even in the
cases in which it is. Many protocols that have been published and later found to be defec
tive were designed using that incorrect intuition. Those protocols using this approach
that are secure require much effort to establish the necessary conditions, and it is remark
ably hard to make a compelling argument that they are secure; the argument typically
depends on the exact order of fields in messages, combined with some particular proper
ties of the underlying cryptographic operations.

Therefore, in this book we treat message confidentiality and authenticity as two sep
arate goals that are implemented independently of each other. Although both
confidentiality and authenticity rely in their implementation on cryptography, they use
the cryptographic operations in different ways. As explained in Section 11.8, the shared-
secret AES cryptographic transformation, for example, isn’t by itself suitable for either
signing or encrypting; it needs to be surrounded by various cipher-feedback mechanisms,
and the mechanisms that are good for encrypting are generally somewhat different from
those that are good for signing. Similarly, when RSA, a public-key cryptographic trans
formation, is used for signing, it is usually preceded by hashing the message to be signed,
rather than applying RSA directly to the message; a failure to hash can lead to a security
blunder.

Saltzer & Kaashoek Ch. 11, p. 53 June 24, 2009 12:29 am

11–54 CHAPTER 11 Information Security

A recent paper* on the topic on the order of authentication and encrypting suggests
that first encrypting and then computing an authentication tag may cover up certain
weaknesses in some implementations of the encrypting primitives. Also, cryptographic
transformations have been proposed that perform the transformation for encrypting and
computing an authentication tag in a single pass over the message, saving time compared
to first encrypting and then computing an authentication tag. Cryptography is a devel
oping area, and the last word on this topic has not been said; interested readers should
check out the proceedings of the conferences on cryptography. For the rest of the book,
however, the reader can think of message authentication and confidentiality as two sep
arate, orthogonal concepts.

11.5 Security Protocols
In the previous sections we discovered a need for protecting a principal’s password when
authenticating to a remote service, a need for distributing keys securely, etc. Security pro
tocols can achieve those objectives. A security protocol is an exchange of messages designed
to allow mutually-distrustful parties to achieve an objective. Security protocols often use
cryptographic techniques to achieve the objective. Other example objectives include:
electronic voting, postage stamps for e-mail, anonymous e-mail, and electronic cash for
micropayments.

In a security protocol with two parties, the pattern is generally a back-and-forth pat
tern. Some security protocols involve more than two parties in which case the pattern
may be more complicated. For example, key distribution usually involves at least three
parties (two principals and a trusted third party). A credit-purchase on the Internet is
likely to involve many more principals than three (a client, an Internet shop, a credit card
company, and one or more trusted third parties) and thus require four or more messages.

The difference between the network protocols discussed in Chapter 7[on-line] and
the security ones is that standard networking protocols assume that the communicating
parties cooperate and trust each other. In designing security protocols we instead assume
that some parties in the protocol may be adversaries and also that there may be an outside
party attacking the protocol.

11.5.1 Example: Key Distribution

To illustrate the need for security protocols, let’s study two protocols for key distribu
tion. In Section 11.3.6, we have already seen that distributing keys is based on a name
discovery protocol, which starts with trusted physical delivery. So, let’s assume that Alice
has met Charles in person, and Charles has met Bob in person. The question then is: is
there a protocol such that Alice and Bob, who have never met, can exchange keys securely

* Hugo Krawczyk, The Order of Encryption and Authentication for Protecting Communications (or:
How Secure is SSL?), Advances in Cryptology (Springer LNCS 2139), 2001, pages 310–331.

Saltzer & Kaashoek Ch. 11, p. 54 June 24, 2009 12:29 am

11.5 Security Protocols 11–55

over an untrusted network? This section introduces the basic approach and subsequent
sections work out the approach in detail.

The public-key case is simpler, so we treat it first. Alice and Bob already know
Charles’s public key (since they have met in person), and Charles knows each of Alice
and Bob’s public keys. If Alice and Bob both trust Charles, then Alice and Bob can
exchange keys through Charles.

Alice sends a message to Charles (it does not need to be either encrypted or signed),
asking:

1. Alice ⇒ Charles: {‘‘Please give me keys for Bob’’}

The message content is the string “Please, give me keys for Bob”. The source address is
“Alice” and the destination address is “Charles.” When Charles receives this message
from Alice, he cannot be certain that if the message came from Alice, since the source
and destination fields of Chapter 7[on-line] are not authenticated.
For this message, Charles doesn’t really care who sent it, so he replies:

1. Charles ⇒ Alice: {‘‘To communicate with Bob, use public key KBpub.”}Cpriv

The notation {M}k denotes signing a message M with key k. In this example, the mes
sage is signed with Charles’s private authentication key. This signed message to Alice
includes the content of the message as well as the authentication tag. When Alice receives
this message, she can tell from the fact that this message verifies with Charles’s public key
that the message actually came from Charles.

Of course, these messages would normally not be written in English, but in some
machine-readable semantically equivalent format. For expository and design purposes,
however, it is useful to write down the meaning of each message in English. Writing
down the meaning of a message in English helps make apparent oversights, such as omit
ting the name of the intended recipient. This method is an example of the design
principle be explicit.

To illustrate that problems can be caused by of lack of explicitness, suppose that the
previous message 2 were:

2'. Charles ⇒ Alice: {“Use public key KBpub.”}Cpriv

If Alice receives this message, she can verify with Charles’s public key that Charles
sent the message, but Alice is unable to tell whose public key KBpub is. An adversary Luci
fer, whom Charles has met, but doesn’t know that he is bad, might use this lack of
explicitness as follows. First, Lucifer asks Charles for Lucifer’s public key, and Charles
replies:

2'. Charles ⇒ Lucifer: {“Use public key KLpub.”}Cpriv

Lucifer saves the reply, which is signed by Charles. Later when Alice asks Charles for
Bob’s public key, Lucifer replaces Charles’s response with the saved reply. Alice receives
the message:

2'. Someone ⇒ Alice: {“Use public key KLpub.”} Cpriv

Saltzer & Kaashoek Ch. 11, p. 55 June 24, 2009 12:29 am

11–56 CHAPTER 11 Information Security

From looking at the source address (Someone), she cannot be certain where message
2' came from. The source and destination fields of Chapter 7[on-line] are not authenti
cated, so Lucifer can replace the source address with Charles’s source address. This
change won’t affect the routing of the message, since the destination address is the only
address needed to route the message to Alice. Since the source address cannot be trusted,
the message itself has to tell her where it came from, and message 2' says that it came
from Charles because it is signed by Charles.

Believing that this message came from Charles, Alice will think that this message is
Charles’s response to her request for Bob’s key. Thus, Alice will incorrectly conclude that
KLpub is Bob’s public key. If Lucifer can intercept Alice’s subsequent messages to Bob,
Lucifer can pretend to be Bob, since Alice believes that Bob’s public key is KLpub and
Lucifer has KLpriv. This attack would be impossible with message 2 because Alice would
notice that it was Lucifer’s, rather than Bob’s key.

Returning to the correct protocol using message 2 rather than message 2', after receiv
ing Charles’s reply, Alice can then sign (with her own private key, which she already
knows) and encrypt (with Bob’s public key, which she just learned from Charles) any
message that she wishes to send to Bob. The reply can be handled symmetrically, after
Bob obtains Alice’s public key from Charles in a similar manner.

Alice and Bob are trusting Charles to correctly distribute their public keys for them.
Charles’s message (2) must be signed, so that Alice knows that it really came from
Charles, instead of being forged by an adversary. Since we presumed that Alice already
had Charles’s public key, she can verify Charles’ signature on message (2).

Bob cannot send Alice his public key over an insecure channel, even if he signs it. The
reason is that she cannot believe a message signed by an unknown key asserting its own
identity. But a message like (2) signed by Charles can be believed by Alice, if she trusts
Charles to be careful about such things. Such a message is called a certificate: it contains
Bob’s name and public key, certifying the binding between Bob and his key. Bob himself
could have sent Alice the certificate Charles signed, if he had the foresight to have already
obtained a copy of that certificate from Charles. In this protocol Charles plays the role
of a certificate authority (CA). The idea of using the signature of a trusted authority to
bind a public key to a principal identifier and calling the result a certificate was invented
in Loren Kohnfelder’s 1978 M.I.T. bachelor’s thesis.

When shared-secret instead of public-key cryptography is being used, we assume that
Alice and Charles have pre-established a shared-secret authentication key AkAC and a
shared-secret encryption key EkAC, and that Bob and Charles have similarly pre-estab
lished a shared-secret authentication key AkBC and a shared-secret encryption key EkBC.
Alice begins by sending a message to Charles (again, it does not need to be encrypted or
signed):

1. Alice ⇒ Charles: {“Please, give me keys for Bob’’}

Since shared-secret keys must be kept confidential, Charles must both sign and encrypt
the response, using the two shared-secret keys AkAC and EkAC. Charles would reply to
Alice:

Saltzer & Kaashoek Ch. 11, p. 56 June 24, 2009 12:29 am

11.5 Security Protocols 11–57

2. Charles ⇒ Alice: {‘‘Use temporary authentication key AkAB and temporary encryption
key EkAB to talk to Bob.’’}

Ek AC
AkAC

The notation {M}k denotes encrypting message M with encryption key k. In this example,
the message from Charles to Alice is signed by the shared-secret authentication key AkAC
and encrypted with the shared-secret encryption key EkAC.
The keys AkAB and EkAB in Charles’ reply are newly-generated random shared-secret
keys. If Charles would have replied with AkBC and EkBC instead of newly-generated keys,
then Alice would be able to impersonate Bob to Charles, or Charles to Bob.

It is also important is that message 2 is both authenticated with Charles’ and Alice’s
shared key AkAC and encrypted with their shared EkAC. The kAC’s are known only to
Alice and Charles, so Alice can be confident that the message came from Charles and that
only she and Charles know the kAB’s. The next step is for Charles to tell Bob the keys:

3. Charles ⇒ Bob: {“Use the temporary keys AkAB and EkAB to talk to Alice.’’}Ek BC
AkBC

This message is both authenticated with key AkBC and encrypted with key EkBC,
which are known only to Charles and Bob, so Bob can be confident that the message
came from Charles and that no one else but Alice and Charles know kAB’s.

From then on, Alice and Bob can communicate using the temporary key AkAB to
authenticate and the temporary key EkAB to encrypt their messages. Charles should
immediately erase any memory he has of the two temporary keys kAB’s. In such an
arrangement, Charles is usually said to be acting as a key distribution center (or KDC).
The idea of a shared-secret key distribution center was developed in classified military
circles and first revealed to the public in a 1973 paper by Dennis Branstad*. In the aca
demic community it first showed up in a paper by Needham and Schroeder†.

A common variation is for Charles to include message (3) to Bob as an attachment to
his reply (2) to Alice; Alice can then forward this attachment to Bob along with her first
real message to him. Since message (3) is both authenticated and encrypted, Alice is sim
ply acting as an additional, more convenient forwarding point so that Bob does not have
to match up messages arriving from different places.

Not all key distribution and authentication protocols separate authentication and
encryption (e.g., see Sidebar 11.6[on-line] about Kerberos); they instead accomplish
authentication by using carefully-crafted encrypting, with just one shared key per partic
ipant. Although having fewer keys seems superficially simpler, it is then harder to
establish the correctness of the protocols. It is simpler to use the divide-and-conquer
strategy: the additional overhead of having two separate keys for authentication and
encrypting is well worth the simplicity and ease of establishing correctness of the overall
design.

* Dennis K. Branstad. Security aspects of computer networks.American Institute of Aeronautics
and Astronautics Computer Network Systems Conference, paper 73–427 (April, 1973).

† Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large net
works of computers. Communications of the ACM 21, 12 (December, 1978), pages 993–999.

Saltzer & Kaashoek Ch. 11, p. 57 June 24, 2009 12:29 am

11–58 CHAPTER 11 Information Security

Sidebar 11.6: The Kerberos authentication system Kerberos* was developed in the late
1980’s for project Athena, a network of engineering workstations and servers designed to
support undergraduate education at M.I.T.† The first version in wide-spread use was Version
4, which is described here in simplified form; newer versions of Kerberos improve and extend
Version 4 in various ways, but the general approach hasn’t changed much.

A Kerberos service implements a unique identifier name space, called a realm, in which each
name of the name space is the principal identifier of either a network service or an individual
user. Kerberos also allows a confederation of Kerberos services belonging to different
organizations to implement a name space of realms. Principal names are of the form
"alice@Scholarly.edu", a principal identifier followed by the name of the realm to which that
principal belongs. Kerberos principal identifiers are case-sensitive, some consequences of which
were discussed in Section 3.3.4. Users and services are connected by an open, untrusted
network. The goal of Kerberos is to provide two-way authentication between a user and a
network service securely under the threat of adversaries.

A user authenticates the user’s identity and logs on to a realm using a shared-secret protocol
with the realm’s Kerberos Key Distribution Service (KKDS). Kerberos derives the shared-secret
key by cryptographically hashing a user-chosen password. During the name-discovery step
(e.g., a physical rendezvous with its administrator), the Kerberos service learns the principal
identifier for the user and the shared secret. When logging on, the user sends its principal
identifier to KKDS and asks it for authentication information to talk to service S:

Alice ⇒ KDDS: {“alice@Scholarly.edu”, S, Tcurrent}

and the service responds with a ticket identifying the user:

KKDS ⇒ Alice: {Ktmp, S, Lifetime, Tcurrent, ticket}Kalice

The service encrypts this response with the user’s shared secret. The verification step occurs
when the user decrypts the encrypted response. If Tcurrent and S in the response match with the
values in the request, then Kerberos considers the response authentic, and uses the information
in the decrypted response to authenticate the user to S. If the user does not posses the key (the
hashed password) that decrypts the response, the information inside the response is worthless.

The ticket is a kind of certificate; it binds the user name to a temporary key for use during one
session with service S. Kerberos includes the following information in the ticket:

ticket = {Ktmp, “alice@Scholarly.edu”, S, Tcurrent, Lifetime}Ks

(Sidebar continues)

* S[teven] P. Miller, B. C[lifford] Neuman, J[effrey] I. Schiller, and J[erome] H. Saltzer. Ker
beros authentication and authorization system. Section E.2.1 of Athena Technical Plan, M.I.T.
Project Athena, October 27, 1988.

† George A. Champine. M.I.T. Project Athena: A Model for Distributed Campus Comput
ing. Digital Press, Bedford, Massachusetts, 1991. ISBN 1–55558–072–6. 282 pages.

Saltzer & Kaashoek Ch. 11, p. 58 June 24, 2009 12:29 am

11.5 Security Protocols 11–59

The temporary key Ktmp is to allow a user to establish a continued chain of authentication
without having to go back to KKDS for each message exchange. The ticket contains a time
stamp, the principal identifier of the user, the principal identifier of the service, and a second
copy of the temporary key, all encrypted in the key shared between the KDDS and the service
S (e.g., a network file service).*

Kerberos includes in a request to a Kerberos-mediated network service the ticket identifying
the user. When the service receives a request, it authenticates the ticket using the information
in the ticket. It decrypts the ticket, checks that the timestamp inside is recent and that its own
principal identifier is accurate. If the ticket passes these tests, the service believes that it has the
authentic principal identifier of the requesting user and the Kerberos protocol is complete.
Knowing the user’s principal identifier, the service can then apply its own authorization system
to establish that the user has permission to perform the requested operation.

A user can perform cross-realm authentication by applying the basic Kerberos protocol twice:
first obtain a ticket from a local KDC for the other realm’s KDC, and then using that ticket
obtain a second ticket from the remote realm’s KDC for a service in the remote realm. For
cross-realm authentication to work, there are two prerequisites: (1) initialization: the two
realms must have previously agreed upon a shared-secret key between the realms and (2) name
discovery: the user and service must each know the other’s principal identifier and realm name.

Versions 4 and 5 of Kerberos are in widespread use outside of M.I.T. (e.g., they were adopted
by Microsoft). They are based on formerly classified key distribution principles first publicly
described in a paper by Branstad and are strengthened versions of a protocol described by
Needham and Schroeder (mentioned on page 11–57). These protocols don’t separate
authentication from confidentiality. They instead rely on clever use of cryptographic
operations to achieve both goals. As explained in Section 11.4.4 on page 11–53, this property
makes the protocols difficult to analyze.

* This description is a simplified version of the Kerberos protocol. One important omission
is that the ticket a user receives as a result of successfully logging in is actually one for a ticket-
granting service (TGS), from which the user can obtain tickets for other services. TGS provides
what is sometimes called a single login or single sign-on system, meaning that a user needs to
present a password only once to use several different network services.

For performance reasons, computer systems typically use public-key systems for dis
tributing and authenticating keys and shared-secret systems for sending messages in an
authenticated and confidential manner. The operations in public-key systems (e.g., rais
ing to an exponent) are more expensive to compute than the operations in shared-secret
cryptography (e.g., table lookups and computing several XORs). Thus, a session between
two parties typically follows two steps:

1. 	At the start of the session use public-key cryptography to authenticate each party
to the other and to exchange new, temporary, shared-secret keys;

Saltzer & Kaashoek Ch. 11, p. 59	 June 24, 2009 12:29 am

11–60 CHAPTER 11 Information Security

2. 	Authenticate and encrypt subsequent messages in the session using the temporary
shared-secret keys exchanged in step 1.

Using this approach, only the first few messages require computationally expensive
operations, while all subsequent messages require only inexpensive operations.

One might wonder why it is not possible to the design the ultimate key distribution
protocol once, get it right, and be done with it. In practice, there is no single protocol
that will do. Some protocols are optimized to minimize the number of messages, others
are optimized to minimize the cost of cryptographic operations, or to avoid the need to
trust a third party. Yet others must work when the communicating parties are not both
on-line at the same time (e.g., e-mail), provide only one-way authentication, or require
client anonymity. Some protocols, such as protocols for authenticating principals using
passwords, require other properties than basic confidentiality and authentication: for
example, such a protocol must ensure that the password is sent only once per session (see
Section 11.2).

11.5.2 Designing Security Protocols

Security protocols are vulnerable to several attacks in addition to the ones described in
Section 11.3.4 (page 11–41) and 11.4.2 (page 11–50) on the underlying cryptographic
transformations. The new attacks to protect against fall in the following categories:

• 	 Known-key attacks. An adversary obtains some key used previously and then uses
this information to determine new keys.

• 	 Replay attacks. An adversary records parts of a session and replays them later,
hoping that the recipient treats the replayed messages as new messages. These
replayed messages might trick the recipient into taking an unintended action or
divulging useful information to the adversary.

• 	 Impersonation attacks. An adversary impersonates one of the other principals in the
protocol. A common version of this attack is the person-in-the-middle attack,
where an adversary relays messages between two principals, impersonating each
principal to the other, reading the messages as they go by.

• 	 Reflection attacks. An adversary records parts of a session and replays it to the party
that originally sent it. Protocols that use shared-secret keys are sometimes
vulnerable to this special kind of replay attack.

The security requirements for a security protocol go beyond simple confidentiality
and authentication. Consider a replay attack. Even though the adversary may not know
what the replayed messages say (because they are encrypted), and even though the adver
sary may not be able to forge new legitimate messages (because the adversary doesn’t have
the keys used to compute authentication tags), the adversary may be able to cause mis
chief or damage by replaying old messages. The (duplicate) replayed messages may well

Saltzer & Kaashoek Ch. 11, p. 60	 June 24, 2009 12:29 am

11.5 Security Protocols 11–61

be accepted as genuine by the legitimate participants, since the authentication tag will
verify correctly.

The participants are thus interested not only in confidentiality and authentication,
but also in the three following properties:

• 	 Freshness. Does this message belong to this instance of this protocol, or is it a
replay from a previous run of this protocol?

• 	 Explicitness. Is this message really a member of this run of the protocol, or is it
copied from an run of another protocol with an entirely different function and
different participants?

• 	 Forward secrecy. Does this protocol guarantee that if a key is compromised that
confidential information communicated in the past stays confidential? A
protocol has forward secrecy if it doesn’t reveal, even to its participants, any
information from previous uses of that protocol.

We study techniques to ensure freshness and explicitness; forward secrecy can be
accomplished by using different temporary keys in each protocol instance and changing
keys periodically. A brief summary of standard approaches to ensure freshness and explic
itness include:

• 	 Ensure that each message contains a nonce (a value, perhaps a counter value, serial
number, or a timestamp, that will never again be used for any other message in this
protocol), and require that a reply to a message include the nonce of the message
being replied to, as well as its own new nonce value. The receiver and sender of
course have to remember previously used nonces to detect duplicates. The nonce
technique provides freshness and helps foil replay attacks.

• 	 Ensure that each message explicitly contain the name of the sender of the message
and of the intended recipient of the message. Protocols that omit this information,
and that use shared-secret keys for authentication, are sometimes vulnerable to
reflection attacks, as we saw in the example protocol in Section 11.5.1. Including
names provides explicitness and helps foil impersonation and reflection attacks.

• 	 Ensure that each message specifies the security protocol being followed, the version
number of that protocol, and the message number within this instance of that
protocol. If such information is omitted, a message from one protocol may be
replayed during another protocol and, if accepted as legitimate there, cause
damage. Including all protocol context in the message provides explicitness and
helps foil replay attacks.

The explicitness property is an example of the be explicit design principle: ensure that
each message be totally explicit about what it means. If the content of a message is not
completely explicit, but instead its interpretation depends on its context, an adversary
might be able to trick a receiver into interpreting the message in a different context and
break the protocol. Leaving the names of the participants out of the message is a violation
of this principle.

Saltzer & Kaashoek Ch. 11, p. 61	 June 24, 2009 12:29 am

11–62 CHAPTER 11 Information Security

When a protocol designer applies these techniques, the key-distribution protocol of
Section 11.5.1 might look more like:

1 Alice ⇒ Charles: {‘‘This is message number one of the ‘‘Get Public Key’’ protocol,
version 1.0. This message is sent by Alice and intended for Charles. This message was
sent at 11:03:04.114 on 3 March 1999. The nonce for this message is
1456255797824510. What is the public key of Bob?’’}Apriv

2 Charles ⇒ Alice: {‘‘This is message number two of the ‘‘Get Public Key’’ protocol,
version 1.0. This message is sent by Charles and intended for Alice. This message was
sent at 11:03:33.004 on 3 March 1999. This is a reply to the message with nonce
1456255797824510. The nonce for this message is 5762334091147624. Bob’s public
key is (…).’’}Cpriv

In addition, the protocol would specify how to marshal and unmarshal the different
fields of the messages so that an adversary cannot trick the receiver into unmarshaling the
message incorrectly.

In contrast to the public-key protocol described above, the first message in this pro
tocol is signed. Charles can now verify that the information included in the message
came indeed from Alice and hasn’t been tampered with. Now Charles can, for example,
log who is asking for Bob’s public key.

This protocol is almost certainly overdesigned, but it is hard to be confident about
what can safely be dropped from a protocol. It is surprisingly easy to underdesign a pro
tocol and leave security loopholes. The protocol may still seem to ‘‘work OK’’ in the
field, until the loophole is exploited by an adversary. Whether a protocol ‘‘seems to work
OK’’ for the legitimate participants following the protocol is an altogether different ques
tion from whether an adversary can successfully attack the protocol. Testing the security
of a protocol involves trying to attack it or trying to prove it secure, not just implement
ing it and seeing if the legitimate participants can successfully communicate with it.
Applying the safety net approach to security protocols tells us to overdesign protocols
instead of underdesign.

Some applications require properties beyond freshness, explicitness, and forward
secrecy. For example, a service way want to make sure that a single client cannot flood
the service with messages, overloading the service and making it unresponsive to legiti
mate clients. One approach to provide this property is for the service to make it expensive
for the client to generate legitimate protocol messages. A service could achieve this by
challenging the client to perform an expensive computation (e.g., computing the inverse
of a cryptographic function) before accepting any messages from the client. Yet other
applications may require that more than one party be involved (e.g., a voting applica
tion). As in designing cryptographic primitives, designing security protocols is difficult
and should be left to experts. The rest of this section presents some common security
protocol problems that appear in computer systems and shows how one can reason about
them. Problem set 43 explores how to use the signing and encryption primitives to
achieve some simple security objectives.

Saltzer & Kaashoek Ch. 11, p. 62 June 24, 2009 12:29 am

11.5 Security Protocols 11–63

11.5.3 Authentication Protocols

To illustrate the issues in designing security protocols, we will look at two simple authen
tication protocols. The second protocol uses a challenge and a response, which is an idea
found in many security protocols. These protocols also provide the motivation for other
protocols that we will discuss in subsequent sections.

A simple example of an authentication protocol is the one for opening a garage door
remotely while driving up to the garage. This application doesn't require strong security
properties (the adversary can always open the garage with a crowbar) but must be low
cost. We want a protocol that can be implemented inexpensively so that the remote can
be small, cheap, and battery-powered. For example, we want a protocol that involves
only one-way communication, so that the remote control needs only a transmitter. In
addition, the protocol should avoid complex operations so that the remote control can
use an inexpensive processor.

The parties in the protocol are the remote control, a receiving device (the receiver),
and an adversary. The remote control uses a wireless radio to transmit “open” messages
to a receiver, which opens the garage door if an authorized remote control sends the mes
sage. The goal of the adversary is to open the garage without the permission of the owner
of the garage.

The adversary is able to listen, replay, and modify the messages that the remote con
trol sends to the receiver over the wireless medium. Of course, the adversary can also try
to modify the remote control, but we assume that stealing the remote control is at least
as hard as breaking into the garage physically, in which case there isn't much need to also
subvert the remote control protocol.

The basic idea behind the protocol is for the receiver and the remote control to share
a secret. The remote control sends the secret to the receiver and if it matches the receiver's
secret, then the receiver opens the garage. If the adversary doesn't know the secret, then
the adversary cannot open the garage. Of course, if the secret is transmitted over the air
in clear text, the adversary can easily learn the secret, so we need to refine this basic idea.

A lightweight but correct protocol is as follows. At initialization, the remote control
and receiver agree on some random number, which functions as a shared-secret key, and
a random number, which is an initial counter value. When the remote control is pressed,
it sends the following message:

remote ⇒ receiver: {counter, HASH(key, counter)},

and increments the counter.
When receiving the message, the receiver performs the following operations:

1. 	verify hash: compute HASH(key, counter) and compare result with the one in

message

2. 	if hash verifies, then increment counter and open garage. If not, do nothing.

Because the holder of the remote control may have pressed the remote while out of
radio range of the receiver, the receiver generally tries successive values of counter

Saltzer & Kaashoek Ch. 11, p. 63	 June 24, 2009 12:29 am

11–64 CHAPTER 11 Information Security

between its previous values N and, e.g., N+100 in step 1. If it finds that one of the values
works, it resets the counter to that value and opens the garage.

This protocol meets our basic requirements. It doesn't involve two-way communica
tion. It does involve computing a hash but strong, inexpensive-to-compute hashes are
readily available in the literature. Most important, the protocol is likely to provide a good
enough level of security for this application.

The adversary cannot easily construct a message with the appropriate hash because
the adversary doesn't know the shared-secret key. The adversary could try all possible val
ues for the hash output (or all possible keys, if the keys are shorter than the hash output).
If the hash output and key are sufficiently long, then this brute-force attack would take
a long time. In addition, if necessary, the protocol could periodically re-initialize the key
and counter.

The protocol is not perfect. For example, it has a replay attack. Suppose an impatient
user presses the button on the remote control twice in close succession, the receiver
responds to the first signal and doesn't hear the second signal. An adversary who happens
to be recording the signals at the time can notice the two signals and guess that replaying
the recording of the second signal may open the garage door, at least until the next time
that legitimate user again uses the remote control. This weakness is probably acceptable.

The adversary can also launch a denial-of-service attack on the protocol (e.g., by jam
ming the radio signal remotely). The adversary, however, could also wreck the garage's
door physically, which is simpler. The owner can also always get out of the car, walk to
the garage, and use a physical key, so there is little motivation to deny access to the
remote control.

Protocols such as the one described above are used in practice. For example, the
Chamberlain garage door opener* uses a similar protocol with an extremely simple hash
function (multiplication by 3 in a finite field) and it computes the hash over the previous
hash, instead of over the counter and key. The simple hash probably provides a little less
security but it has the advantage that is cheap to implement. Other vendors seem to use
similar protocols, but it is difficult to confirm because this industry has a practice of
keeping its proprietary protocols secret, perhaps hoping to increase security through
obscurity, which violates the open design principle and historically hasn’t worked.

A version that is more secure than the garage-door protocol is used for authentication
of users who want to download their e-mail from an e-mail service. Protocols for this
application can assume two-way communication and exploit the idea of a challenge and
a response. One widely used challenge-response protocol is the following†:

1 Initialization. M1: Client ⇒ Server: (Opens a TCP connection)

2 Challenge. M2: Server ⇒ Client: {“This is server S at 9:35:20.00165 EDT, 22

* Chamberlain Group, Inc. v. Skylink Techs., Inc., 292 F. Supp. 2d 1040 (N.D. Ill. 2003); aff ’d 381
F.3d 1178 (U.S. App. 2004)

† Myers and M. Rose, Post Office Protocol Version 3, Internet Engineering Task Force Request For
Comments (RFC) 1939, May 1996.

Saltzer & Kaashoek Ch. 11, p. 64 June 24, 2009 12:29 am

11.5 Security Protocols 11–65

September 2006.”}

3 Response. M3: Client ⇒ Server: {“This is user U and the hash of M2 and U’s password

is:” HASH{M2, U’s password}”}

The server, which has its own copy of the secret password associated with user U, does
its own calculation of HASH{M2, U’s password}, and compares the result with the second
field of M3. If they match, it considers the authentication successful and it proceeds to
download the e-mail messages.

The protocol isn't vulnerable to the person-in-the-middle attack of the garage proto
col because the date and time in M2 functions as a nonce, which is included in the hash
of M3. But addressing the person-in-the-middle attack requires two-way communica
tion, which couldn't be used by the garage door opener.

Although this protocol is a step up over the garage door protocol, it has weaknesses
too. It is vulnerable to brute-force attacks. The adversary can learn the user name U from
M3. Then, later the adversary can connect to the mail server, receive M2, guess a pass
word for U, and see if the attempt is successful. Although each guess takes one round of
the protocol and leaves an audit trail on the server, this might not stop a determined
adversary.

A related weakness is that the protocol doesn't authenticate the server S, so the adver
sary can impersonate the server. The adversary tricks the client in connecting to a
machine that the adversary controls (e.g., by spoofing a DNS response for the name S).
When the client connects, the adversary sends M2, and receives a correct M3. Now the
adversary can do an off-line brute-force attack on the user's password, without leaving
an audit trail. The adversary can also provide the client with bogus e-mail.

These weaknesses can be addressed. For example, instead of sending messages in the
clear over a TCP connection, the protocol could set up a confidential, authenticated con
nection to the server using SSL/TLS (see Section 11.10). Then, the client and server can
run the challenge-response protocol over this connection. The server can also send the e-
mail messages over the connection so that they are protected too. SSL/TLS authenticates
all messages between a client and server and sends them encrypted. In addition, the client
can require that the server provides a certificate with which the client can verify that the
server is authentic. This approach could be further improved by using a client certificate
instead of using U's password, which is a weak secret and vulnerable to dictionary
attacks. Using SSL/TLS (either with or without client certificate) is common practice
today.

A challenge-response protocol is a valuable tool only if it is implemented correctly.
For example, a version of the UW IMAP server (a mail server that speaks the IMAP pro
tocol and developed by the University of Washington) contained an implementation
error that incorrectly specifies the conditions of successful authentication when using the
challenge-response protocol described above*. After authenticating three times unsuc
cessfully using the challenge-response protocol, the server allowed the fourth attempt to

* United States Computer Emergency Readiness Team (US-CERT), UW-imapd fails to properly
authenticate users when using CRAM-MD5, Vulnerability Note VU #702777, January 2005.

Saltzer & Kaashoek Ch. 11, p. 65 June 24, 2009 12:29 am

11–66 CHAPTER 11 Information Security

succeed; the intention was to fail the fourth attempt immediately, but the implementers
got the condition wrong. This error allowed an adversary to successfully authenticate as
any user on the server after three attempts. Such programming errors are all too often the
reason why the security of a system can be broken.

11.5.4 An Incorrect Key Exchange Protocol

The challenge-response protocol over SSL/TLS assumes SSL/TLS can set up a confiden
tial and authenticated channel, which requires that the sender and receiver exchange keys
securely over an untrusted network. It is possible to do such an exchange, but it must be
done with care. We consider two different protocols for key exchange. The first protocol
is incorrect, the second is (as far as anyone knows) correct. Both protocols attempt to
achieve the same goal, namely for two parties to use a public-key system to negotiate a
shared-secret key that can be used for encrypting. Both protocols have been published in
the computer science literature and systems incorporating them have been built.

In the first protocol, there are three parties: Alice, Bob, and a certificate authority
(CA). The protocol is as follows:

1 Alice ⇒ CA: {“Give me certificates for Alice and Bob”}
2 CA ⇒ Alice: {“Here are the certificates:”,

{Alice, Apub, T}CApriv, {Bob, Bpub, T}CApriv}

In the protocol, the CA returns certificates for Alice and Bob. The certificates bind the

names to public keys. Each certificate contains a timestamp T for determining if the cer

tificate is fresh. The certificates are signed by the CA.

Equipped with the certificates from the CA, Alice constructs an encrypted message for

Bob:

3 Alice ⇒ Bob: {“Here is my certificate and a proposed key:”,
{Alice, Apub, T}

CApriv
, {KAB, T}Apriv }

Bpub

The message contains Alice’s certificate and her proposal for a shared-secret key (KAB).

Bob can verify that Apub belongs to Alice by checking the validity of the certificate using

the CA’s public key. The time-stamped shared-secret key proposed by Alice is signed by

Alice, which Bob can verify using Apub. The complete message is encrypted with Bob’s

public key. Thus, only Bob should be able to read KAB.

Now Alice sends a message to Bob encrypted with KAB:

4 Alice ⇒ Bob: {“Here is my message:”, T}KAB

Bob should be able to decrypt this message, once he has read message 3. So, what is the
problem with this protocol? We suggest the reader pause for some time and try to dis
cover the problem before continuing to read further. As a hint, note that Alice has signed
only part of message 3 instead of the complete message. Recall that we should assume
that some of the parties to the protocol may be adversaries.

Saltzer & Kaashoek Ch. 11, p. 66 June 24, 2009 12:29 am

11.5 Security Protocols 11–67

The fact that there is a potential problem should be clear because the protocol fails
the be explicit design principle. The essence of the protocol is part of message 3, which
contains her proposal for a shared-secret key:

Alice ⇒ Bob: {KAB, T}Apriv

Alice tells Bob that KAB is a good key for Alice and Bob at time T, but the names of
Alice and Bob are missing from this part of message 3. The interpretation of this segment
of the message is dependent on the context of the conversation. As a result, Bob can use
this part of message 3 to masquerade as Alice. Bob can, for example, send Charles a claim
that he is Alice and a proposal to use KAB for encrypting messages.

Suppose Bob wants to impersonate Alice to Charles. Here is what Bob does:

1 Bob ⇒ CA: {“Give me the certificates for Bob and Charles”}

2 CA ⇒ Bob: {“Here are the certificates:”,
{Bob, Bpub, T'}

CApriv
, {Charles, Cpub, T'}CApriv}

3 Bob ⇒ Charles: {“Here is my certificate and a proposed key”:,
{Alice, Apub, T}

CApriv
, {KAB, T}Apriv }

Cpub

Bob’s message 3 is carefully crafted: he has placed Alice’s certificate in the message (which
he has from the conversation with Alice), and rather than proposing a new key, he has
inserted the proposal, signed by Alice, to use KAB, in the third component of the
message.

Charles has no way of telling that Bob’s message 3 didn’t come from Alice. In fact,
he thinks this message comes from Alice, since {KAB, T} is signed with Alice’s private key.
So he (erroneously) believes he has key that is shared with only Alice, but Bob has it too.
Now Bob can send a message to Charles:

1 Bob ⇒ Charles: {“Please send me the secret business plan. Yours truly, Alice.”}KAB

Charles believes that Alice sent this message because he thinks he received KAB from
Alice, so he will respond. Designing security protocols is tricky! It is not surprising that
Denning and Sacco*, the designers of this protocol, overlooked this problem when they
originally proposed this protocol.

An essential assumption of this attack is that the adversary (Bob) is trusted for some
thing because Alice first has to have a conversation with Bob before Bob can masquerade
as Alice. Once Alice has this conversation, Bob can use this trust as a toehold to obtain
information he isn’t supposed to know.

The problem arose because of lack of explicitness. In this protocol, the recipient can
determine the intended use of KAB (for communication between Alice and Bob) only by
examining the context in which it appears, and Bob was able to undetectably change that
context in a message to Charles.

Another problem with the protocol is its lack of integrity verification. An adversary
can replace the string “Here is my certificate and a proposed key” with any other string

* D. Denning and G. Sacco. Timestamps in key distribution protocols. Communication of the ACM
24, 8, pages 533–535, 1981.

Saltzer & Kaashoek Ch. 11, p. 67 June 24, 2009 12:29 am

11–68 CHAPTER 11 Information Security

(e.g., “Here are the President’s certificates”) and the recipient would have no way of
determining that this message is not part of the conversation. Although Bob didn’t
exploit this problem in his attack on Charles, it is a weakness in the protocol.

One way of repairing the protocol is to make sure that the recipient can always detect
a change in context; that is, can always determine that the context is authentic. If Alice
had signed the entire message 3, and Charles had verified that message 3 was properly
signed, that would ensure that the context is authentic, and Bob would not have been
able to masquerade as Alice. If we follow the explicitness principle, we should also change
the protocol to make the key proposal itself explicit, by including the name of Alice and
Bob with the key and timestamp and signing that entire block of data (i.e., {Alice, Bob,
KAB, T}Apriv).

Making Alice and Bob explicit in the proposal for the key addresses the lack of explic
itness, but doesn’t address the lack of verifying the integrity of the explicit information.
Only signing the entire message 3 addresses that problem.

You might wonder how it is possible that many people missed these seemingly obvi
ous problems. The original protocol was designed in an era before the modular
distinction between encrypting and signing was widely understood. It used encrypting
of the entire message as an inexpensive way of authenticating the content; there are some
cases where that trick works, but this is one where the trick failed. This example is
another one of why the idea of obtaining authentication by encrypting is now considered
to be a fundamentally bad practice.

11.5.5 Diffie-Hellman Key Exchange Protocol

The second protocol uses public-key cryptography to negotiate a shared-secret key.
Before describing that protocol, it is important to understand the Diffie-Hellman key
agreement protocol first. In 1976 Diffie and Hellman published the ground-breaking
paper New Directions in cryptography [Suggestions for Further Reading 1.8.5], which
proposed the first protocol that allows two users to exchange a shared-secret key over an
untrusted network without any prior secrets. This paper opened the floodgates for new
papers in cryptography. Although there was much work behind closed doors, between
1930 and 1975 few papers with significant technical contributions regarding cryptogra
phy were published in the open literature. Now there are several conferences on
cryptography every year.

The Diffie-Hellman protocol has two public system parameters: p, a prime number,
and g, the generator. The generator g is an integer less than p, with the property that for
every number n between 1 and p – 1 inclusive, there is a power k of g such that n = gk

(modulo p).
If Alice and Bob want to agree on a shared-secret key, they use p and g as follows. First,

Alice generates a random value a and Bob generates a random value b. Both a and b are
drawn from the set of integers {1, ..., p-2}. Alice sends to Bob: ga (modulo p), and Bob
sends to Alice: gb (modulo p).

Saltzer & Kaashoek Ch. 11, p. 68 June 24, 2009 12:29 am

11.5 Security Protocols 11–69

On receiving these messages, Alice computes gab = (gb)a (modulo p), and Bob com
putes gba = (ga)b (modulo p). Since gab = gba = k, Alice and Bob now have a shared-secret
key k. An adversary hearing the messages exchanged between Alice and Bob cannot com
pute that value because the adversary doesn’t know a and b; the adversary hears only p,
g, ga and gb.

The protocol depends on the difficulty of calculating discrete logarithms in a finite
field. It assumes that if p is sufficiently large, it is computationally infeasible to calculate
the shared-secret key k = gab (modulo p) given the two public values ga (modulo p) and
gb (modulo p). It has been shown that breaking the Diffie-Hellman protocol is equivalent
to computing discrete logarithms under certain assumptions.

Because the participants are not authenticated, the Diffie-Hellman protocol is vulner
able to a person-in-the-middle attack, similar to the one in Section 11.5.4. The
importance of the Diffie-Hellman protocol is that it is the first example of a much more
general cryptographic approach, namely the derivation of a shared-secret key from one
party's public key and another party's private key. The second protocol is a specific
instance of this approach, and addresses the weaknesses of the Denning-Sacco protocol.

11.5.6 A Key Exchange Protocol Using a Public-Key System

The second protocol uses a Diffie-Hellman-like exchange to set up keys for encrypting
and authentication. The protocol is designed to set up a secure channel from a client to
a service in the SFS self-certifying file system [Suggestions for Further Reading 11.4.3];
a similar protocol is also used in the Taos distributed operating system [Suggestions for
Further Reading 11.3.2]. Web clients and servers use the more complex SSL/TLS pro
tocol, which is described in Section 11.10.

The goal of the SFS protocol is to create a secure (authenticated and encrypted) con
nection between a client and a server that has a well-known public key. The client wants
to be certain that it can authenticate the server and that all communication is confiden
tial, but at the end of this protocol, the client will still be unauthenticated; an additional
protocol will be required to identify and authenticate the client.

The general plan is to create two shared-secret nonce keys for each connection
between a client and a server. One nonce key (Kcs) will be used for authentication and
encryption of messages from client to server, the other (Ksc) for authentication and
encryption of messages from server to client. Each of these nonce keys will be constructed
using a Diffie-Hellman-like exchange in which the client and the server each contribute
half of the key.

To start, the client fabricates two nonce half-keys, named Kc-cs and Kc-sc, and also a
nonce private and public key pair: Tpriv and Tpub. Tpub is, in effect, a temporary name for
this connection with this anonymous client.

The client sends to the service a request message to open a connection, containing
Tpub, Kc-cs, and Kc-sc. The client encrypts the latter two with Spub, the public key of the
service:

Saltzer & Kaashoek Ch. 11, p. 69 June 24, 2009 12:29 am

11–70 CHAPTER 11 Information Security

Client ⇒ service: {“Here is a temporary public key Tpub and two key halves

encrypted with your public key:”, {Kc-cs, Kc-sc}Spub}

The protocol encrypts Kc-cs, and Kc-sc to protect against eavesdroppers. Since Tpub is a
public key, there is no need to encrypt it.

The service can decrypt the keys proposed by the client with its private key, thus
obtaining the three keys. At this point, the service has no idea who the client may be, and
because the message may have been modified by an adversary, all it knows is that it has
received three keys, which it calls Tpub', Kc-cs' and Kc-sc', and which may or may not be
the same as the corresponding keys fabricated by the client. If they are the same, then Kc

' and Kc-sc' are shared secrets known only to the client and the server.cs
The service now fabricates two more nonce half-keys, named Ks-cs and Ks-sc. It sends

a response to the client, consisting of these two half-keys encrypted with Tpub':

Service ⇒ client: {“Here are two key halves encrypted with your temporary
public key:”, {Ks-cs, Ks-sc}Tpub}

Unfortunately, even if Tpub' = Tpub, Tpub is public, so the client has no assurance that
the response message came from the service; an adversary could have sent it or modified
it. The client decrypts the message using Tpriv, to obtain Ks-cs' and Ks-sc'.

At this point in the protocol, the two parties have the following components in hand:

• 	 Client: Spub, Tpub, Kc-cs, Kc-sc, Ks-cs', Ks-sc'
• 	 Server: Spub, Tpub', Kc-cs', Kc-sc', Ks-cs, Ks-sc

Now the client calculates

• 	 Kcs ← HASH (“client to server”, Spub, Tpub, Ks-cs', Kc-cs)
• 	 Ksc ← HASH (“server to client”, Spub, Tpub, Ks-sc', Kc-sc)

and the server calculates

• 	 Kcs' ← HASH (“client to server”, Spub, Tpub', Ks-cs, Kc-cs')
• 	 Ksc ’ ← HASH (“server to client”, Spub, Tpub', Ks-sc, Kc-sc ')

If all has gone well (that is, there have been no attacks), Kcs = Kcs' and Ksc = Ksc'.
At this point there are three concerns:

1. 	An adversary may have replaced one or more components in such a way that the
two parties do not have matching sets. If so, and assuming that the hash function
is cryptographically secure, about half the bits of Kcs will not match Kcs'; the same
will be true for Ksc and Ksc '. Ksc and Kcs are about to be used as keys, so the parties
will quickly discover any such mismatch.

2. 	An adversary may have replaced a component in such a way that both parties still
have matching sets. But if we compare the components of Kcs and Kcs', we notice
that at least one of the parties uses a personally chosen (unprimed) version of every
component, and the adversary could not have changed that version, so there is no
way for an adversary to make a matching change for both parties.

Saltzer & Kaashoek Ch. 11, p. 70	 June 24, 2009 12:29 am

11.5 Security Protocols 11–71

3. 	An adversary may have been able to discover all of the components and thus be
able to calculate Ksc, Kcs, or both. But the values of Kc-cs and Kc-sc were created by
the client and encrypted under Spub before sending them to the service, so only the
client and the service know those two components.

If Kcs = Kcs' and Ksc = Ksc', the two parties have two keys that only they know, and only
the service and this client could have calculated them. In addition, because they are cal
culated using Ks-sc, Kc-sc, Ks-cs, and Kc-cs, which are nonces created just for this exchange,
both parties are ensured that Kcs and Ksc are fresh. In summary, Kcs and Ksc are newly gen
erated shared secrets.

The protocol proceeds with the client generating a shared-secret authentication key
Kssa-cs and a shared-secret encryption key Ksse-cs from Kcs, perhaps by simply using the
first half of Kcs as Kssa-cs and the second half as Ksse-cs. The client can now prepare and
send an encrypted and authenticated request:

{M}Ksse-cs
Kssa-cs

to the server. The server generates the same shared-secret authentication key Kssa-cs and
a shared-secret encryption key Ksse-cs from Kcs' and it can now try to decrypt and authen
ticate M. If the authentication succeeds, the server knows that Kcs = Kcs'.

The server performs a similar procedure based on Ksc for its response. If the client suc
cessfully authenticates the response the client knows Ksc = Ksc'. The fact that it received
a response tells it that the server successfully verified that Kcs = Kcs'.

From now on, the client knows that it is talking to the server associated with Spub,
and the connection is confidential. The server knows that the connection is confidential
and that all messages are coming from the same source, but it does not know what that
source is. If the server wants to know the source, it can ask and, for example, demand a
password to authenticate the identity that the source claims.

To ensure forward secrecy, the client periodically repeats the whole protocol period
ically. At regular intervals (e.g., every hour), the client discards the temporary keys Tpub
and Tpriv, generates a new public key Tpub and private key Tpriv, and runs the protocol
again.

11.5.7 Summary

This section described several security protocols to obtain different objectives. We stud
ied a challenge-response protocol to open garage doors. We studied an incorrect protocol
to set up a secure communication channel between two parties. Then, we studied a cor
rect protocol for that same purpose that provides confidentiality but doesn’t authenticate
the participants. Finally, we studied a protocol for setting up a secure communication
channel that provides both confidentiality and authenticity. Protocols for setting up
secure channels become imporant whenever the participants are separated by a network.
Section 11.10 describes a protocol for setting up secure channels in the World-Wide
Web.

Saltzer & Kaashoek Ch. 11, p. 71	 June 24, 2009 12:29 am

11–72 CHAPTER 11 Information Security

Many systems have additional security requirements, and therefore may need proto
cols with different features. For example, a system that provides anonymous e-mail must
provide an authenticated and confidential communication channel between two parties
with the property that the receiver knows that a message came from the same source as
previous messages and that nobody else has read the message, but must also hide the
identity of the sender from the receiver. Such a system requires a more sophisticated
design and protocols because hiding the identity of the sender is a difficult problem. The
receiver may be able to learn the Internet address from which some of the messages were
sent or may be able to observe traffic on certain communication links; to make anony
mous e-mail resist such analysis requires elaborate protocols that are beyond the scope of
this text, but see, for example, Chaum’s paper for a solution [Suggestions for Further
Reading 11.5.6]. Security protocols are also an active area of research and researchers
continuously develop novel systems and protocols for new scenarios or for particular
challenging problems such as electronic voting, which may require keeping the identity
of the voter secret, preventing a voter from voting more than once, allowing the voter to
verify that the vote was correctly recorded, and permitting recounts. The interested
reader is encouraged to consult the professional literature for developments.

11.6 Authorization: Controlled Sharing
Some data must stay confidential. For example, users require that their private authenti
cation key stay confidential. Users wish to keep their password and credit card numbers
confidential. Companies wish to keep the specifics of their upcoming products confiden
tial. Military organizations wish to keep attack plans confidential.

The simplest way of providing confidentiality of digital data is to separate the pro
grams that manipulate the data. One way of achieving that is to run each program and
its associated data on a separate computer and require that the computers cannot com
municate with each other.

The latter requirement is usually too stringent: different programs typically need to
share data and strict separation makes this sharing impossible. A slight variation, how
ever, of the strict separation approach is used by military organizations and some
businesses. In this variation, there is a trusted network and an untrusted network. The
trusted network connects trusted computers with sensitive data, and perhaps uses
encryption to protect data as it travels over the network. By policy, the computers on the
untrusted network don’t store sensitive data, but might be connected to public networks
such as the Internet. The only way to move data between the trusted and untrusted net
work is manual transfer by security personnel who can deny or authorize the transfer
after a careful inspection of the data.

For many services, however, this slightly more relaxed version of strict isolation is still
inconvenient because users need to have the ability to share more easily but keep control
over what is shared and with whom. For example, users may want share files on a file
server, but have control over whom they authorize to have access to what files. As another

Saltzer & Kaashoek Ch. 11, p. 72 June 24, 2009 12:29 am

11.6 Authorization: Controlled Sharing 11–73

example, many users acquire programs created by third parties, run them on their com
puter, but want to be assured that their confidential data cannot be read by these
untrusted programs. This section introduces authorization systems that can support
these requirements.

11.6.1 Authorization Operations

We can distinguish three primary operations in authorization systems:

• 	 authorization. This operation grants a principal permission to perform an

operation on an object.

• 	 mediation. This operation checks whether or not a principal has permission to

perform an operation on a particular object.

• 	 revocation. This decision removes a previously-granted permission from a

principal.

The agent that makes authorization and revocation decisions is known as an author
ity. The authority is the principal that can increase or decrease the set of principals that
have access to a particular object by granting or revoking respectively their permissions.
In this chapter we will see different ways how a principal can become an authority.

The guard is distinct from, but operates on behalf of the authority, making mediation
decisions by checking the permissions, and denying or allowing a request based on the
permissions.

We discuss three models that differ in the way the service keeps track of who is autho
rized and who isn’t: (1) the simple guard model, (2) the caretaker model, and (3) the
flow-control model. The simple guard model is the simplest one, while flow control is
the most complex model and is used primarily in heavy-duty security systems.

11.6.2 The Simple Guard Model

The simple guard model is based on an authorization matrix, in which principals are the
rows and objects are the columns. Each entry in the matrix contains the permissions that
a principal has for the given object. Typical permissions are read access and write access.
When the service receives a request for an object, the guard verifies that the requesting
principal has the appropriate permissions in the authorization matrix to perform the
requested operation on the object, and if so, allows the request.

The authority of an object is the principal who can set the permissions for each prin
cipal, which raises the question how a principal can become an authority. One common
design is that the principal who creates an object is automatically the authority for that
object. Another option is to have an additional permission in each entry of the authori
zation matrix that grants a principal permission to change the permissions. That is, the
permissions of an object may also include a permission that grants a principal authority
to change the permissions for the object.

Saltzer & Kaashoek Ch. 11, p. 73	 June 24, 2009 12:29 am

11–74 CHAPTER 11 Information Security

When a principal creates a new object, the access-control system must determine
which is the appropriate authority for the new object and also what initial permissions it
should set. Discretionary access-control systems make the creator of the object the author
ity and allow the creator to change the permission entries at the creator’s discretion. The
creator can specify the initial permission entries as an argument to the create operation
or, more commonly, use the system’s default values. Non-discretionary access-control sys
tems don’t make the creator the authority but chose an authority and set the permission
entries in some other way, which the creator cannot change at the creator’s discretion. In
the simple guard model, access control is usually discretionary. We will return to non
discretionary access control in Section 11.6.5.

There are two primary instances of the simple guard model: list systems, which are
organized by column, and ticket systems, which are organized by row. The primary way
these two systems differ is who stores the authorization matrix: the list system stores col
umns in a place that the guard can refer to, while the ticket system stores rows in a place
that principals have access to. This difference has implications on the ease of revocation.
We will discuss ticket systems, list systems, and systems that combine them, in turn.

11.6.2.1 The Ticket System
In the ticket system, each guard holds a ticket for each object it is guarding. A principal
holds a separate ticket for each different object the principal is authorized to use. One
can compare the set of tickets that the principal holds to a ring with keys. The set of tick
ets that principal holds determines exactly which objects the principal can obtain access
to. A ticket in a ticket-oriented system is usually called a capability.

To authorize a principal to have access to an object, the authority gives the principal
a matching ticket for the object. If the principal wishes, the principal can simply pass this
ticket to other principals, giving them access to the object.

To revoke a principal’s permissions, the authority has to either hunt down the prin
cipal and take the ticket back, or change the guard’s ticket and reissue tickets to any other
principals who should still be authorized. The first choice may be hard to implement; the
second may be disruptive.

11.6.2.2 The List System
In the list system, revocation is less disruptive. In the list system, each principal has a token
identifying the principal (e.g., the principal’s name) and the guard holds a list of tokens
that correspond to the set of principals that the authority has authorized. To mediate, a
guard must search its list of tokens to see if the principal’s token is present. If the search
for a match succeeds, the guard allows the principal access; if not, the guard denies that
principal access. To revoke access, the authority removes the principal’s token from the
guard’s list. In the list system, it is also easy to perform audits of which principals have
permission for a particular object because the guard has access to the list of tokens for
each object. The list of tokens is usually called an access-control list (ACL).

Saltzer & Kaashoek Ch. 11, p. 74 June 24, 2009 12:29 am

11.6 Authorization: Controlled Sharing 11–75

Table 11.1: Comparison of access control systems

System Advantage Disadvantage

Ticket Quick access check Revocation is difficult

Tickets can be passed around Tickets can be passed around

List Revocation is easy Access check requires searching a list

Audit possible

Agency List available Revocation might be hard

11.6.2.3 Tickets Versus Lists, and Agencies
Ticket and list systems each have advantages over the other. Table 11.1 summarizes the
advantages and disadvantages. The differences in the ticket and list system stem primarily
from who gathers, stores, and searches the authorization information. In the ticket sys
tem, the responsibility for gathering, storing, and searching the tickets rests with the
principal. In the list system, responsibility for gathering, storing, and searching the
tokens on a list rests with the guard. In most ticket systems, the principals store the tick
ets and they can pass tickets to other principals without involving the guard. This
property makes sharing easy (no interaction with the authority required), but makes it
hard for an authority to revoke access and for the guard to prepare audit trails. In the list
system, the guard stores the tokens and they identify principals, which makes audit trails
possible; on the other hand, to grant another principal access to an object requires an
interaction between the authority and the guard.

The tokens in the ticket and list systems must be protected against forgery. In the
ticket system, tickets must be protected against forgery. If an adversary can cook up valid
tickets, then the adversary can obtain access to any object. In the list system, the token
identifying the principal and the access control list must be protected. If an adversary can
cook up valid principal identifiers and change the access control list at will, then the
adversary can have access to any object. Since the principal identifier tokens and access
control lists are in the storage of the system, protecting them isn’t too hard. Ticket stor
age, on the other hand, may be managed by the user, and in that case protecting the
tickets requires extra machinery.

A natural question to ask is if it is possible to get the best of both ticket and list sys
tems. An agency can combine list and ticket systems by allowing one to switch from a
ticket system to a list system, or vice versa. For example, at a by-invitation-only confer
ence, upon your arrival, the organizers may check your name against the list of invited
people (a list system) and then hand you a batch of coupons for lunches, dinners, etc. (a
ticket system).

Saltzer & Kaashoek Ch. 11, p. 75 June 24, 2009 12:29 am

11–76 CHAPTER 11 Information Security

11.6.2.4 Protection Groups
Cases often arise where it would be inconvenient to list by name every principal who is
to have access to each of a large number of objects that have identical permissions, either
because the list would be awkwardly long, or because the list would change frequently,
or to ensure that several objects have the same list. To handle this situation, most access
control list systems implement protection groups, which are principals that may be used
by more than one user. If the name of a protection group appears in an access control list
for an object, all principals who are members of that protection group share the permis
sions for that object.

A simple way to implement protection groups is to create an access control list for
each group, consisting of a list of tokens representing the individual principals who are
authorized to use the protection group’s principal identifier. When a user logs in, the sys
tem authenticates the user, for example, by a password, and identifies the user’s token.
Then, the system looks up the user’s token on each group’s access control list and gives
the user the group token for each protection group the user belongs to. The guard can
then mediate access based on the user and group tokens.

11.6.3 Example: Access Control in UNIX

The previous section described access control based on a simple guard model in the
abstract. This section describes a concrete access control system, namely the one used by
UNIX (see Section 2.5). UNIX was originally designed for a computer shared among mul
tiple users, and therefore had to support access control. As described in Section 4.4, the
Network File System (NFS) extends the UNIX file system to shared file servers, reinforc
ing the importance of access control, since without access control any user has access to
all files. The version of the UNIX system described in Section 2.5 didn’t provide network
ing and didn’t support servers well; modern UNIX systems, however, do, which further
reenforces the need of security. For this reason, this section mostly describes the core
access control features that one can find in a modern UNIX system, which are based on
the features found in early UNIX systems. For the more advanced and latest features the
reader is encouraged to consult the professional literature.

One of the benefits of studying a concrete example is that it makes the clear the
importance of the dynamics of use in an access control system. How are running pro
grams associated with principals? How are access control lists changed? Who can create
new principals? How does a system get initialized? How is revocation done? From these
questions it should be clear that the overall security of a computer system is to a large
part based on how carefully the dynamics of use have been thought through.

11.6.3.1 Principals in UNIX

The principals in UNIX are users and groups. Users are named by a string of characters.
A user name with some auxiliary information is stored in a file that is historically called
the password file. Because it is inconvenient for the kernel to use character strings for user

Saltzer & Kaashoek Ch. 11, p. 76 June 24, 2009 12:29 am

11.6 Authorization: Controlled Sharing 11–77

names, it uses fixed-length integer names (called UIDs). The UID of each user is stored
along with the user name in a file called colloquially the password file (/etc/passwd). The
password file usually contains other information for each user too; for example, it con
tains the name of the program that a users wants the system to run when the user logs in.

A group is a protection group of users. Like users, groups are named by a string of
characters. The group file (“/etc/group”) stores all groups. For each group it stores the
group name, a fixed-length integer name for the group (called the GID), and the user
names (or UIDs depending on which version of UNIX) of the users who are a member of
the group. A user can be in multiple groups; one of these group is the user’s default
group. The name of the default group is stored in the user’s entry in the password file.

The principal superuser is the one used by system administrators and has full author
ity; the kernel allows the superuser to change any permissions. The superuser is also
called root, and has the UID 0.

A system administrator usually creates several service principals to run services instead
of for running them with superuser authority. For example, the principal named “www”
runs the Web server in a typical UNIX configuration. The reason to do so is that if the
server is compromised (e.g., through a buffer overrun attack), then the adversary acquires
only the privileges of the principal www, and not those of the superuser.

11.6.3.2 ACLs in UNIX

UNIX represents all shared objects (files, devices, etc.) as files, which are protected by the
UNIX kernel (the guard). All files are manipulated by programs, which act on behalf of
some principal. To isolate programs from one another, UNIX runs each program in its
own address space with one or more threads (called a process in UNIX). All mediation
decisions can be viewed as whether or not a particular process (and thus principal) should
be allowed to have access to a particular file. UNIX implements this mediation using
ACLs.

Each file has an owner, a principal that is the authority for the file. The UID of the
owner of a file is stored in a file’s inode (see page 2.5.11). Each file also has an owning
group, designated by a GID stored in the file’s inode. When a file is created its UID is
the UID of the principal who created the file and its GID is the GID of principal’s
default group. The owner of a file can change the owner and group of the file.

The inode for each file also stores an ACL. To avoid long ACLs, UNIX ACLs contain
only 3 entries: the UID of the owner of the file, a group identifier (GID), and other.
“Other’’ designates all users with UIDs and GIDs different from the ones on the ACL.

This design is sufficient for a time-sharing system for a small community, where all
one needs is some privacy between groups. But when such a system is attached to the
Internet, it may run services such as a Web service that provide access to certain files to
any user on the Internet. The Web server runs under some principal (e.g., “www”).
The UID associated with that principal is included in the “other” category, which means
that “other” can mean anyone in the entire Internet. Because allowing access to the entire
world may be problematic, Web servers running under UNIX usually implement their
own access restrictions in addition to those enforced by the ACL. (But recall the discus-

Saltzer & Kaashoek Ch. 11, p. 77 June 24, 2009 12:29 am

11–78 CHAPTER 11 Information Security

sion of the TCB on page 11–26. This design drags the Web server inside the TCB.) For
reasons such as these, file servers that are designed for a larger community or to be
attached to the Internet, such as the Andrew File System [Suggestions for Further Read
ing 4.2.3], support full-blown ACLs.

Per ACL entry, UNIX keeps several permissions: READ (if set, read operations are
allowed), WRITE (if set, write operations are allowed), and EXECUTE (if set, the file is allowed
to be executed as a program). So, for example, the file “y’’ might have an ACL with UID
18, GID 20, and permissions “rwxr-xr--’’. This information says the owner (UID 18) is
allowed to read, write, and execute file “y”, users belonging to group 20 are allowed to
read and execute file “y”, and all other users are allowed only read access. The owner of
a file has the authority to change the permission on the file.

The initial owner and permission entries of a new file are set to the corresponding val
ues of the process that created the file. What the default principal and permissions are of
a process is explained next.

11.6.3.3 The Default Principal and Permissions of a Process
The kernel stores for a process the UID and the GIDs of the principal on whose behalf
the process is running. The kernel also stores for a process the default permissions for files
that that process may create. A common default permission is write permission for the
owner, and read permission for the owner, group, and other. A process can change its
default permissions with a special command (called UMASK).

By default, a process inherits the UID, GIDs, and default permissions of the process
that created it. However, if the SETUID permission of a file is set on—a bit in a file’s
inode—the process that runs the program acquires the UID of the principal that owns
the file storing the program. Once a process is running, a process can invoke the SETUID

supervisor call to change its UID to one with fewer permissions.
The SETUID permission of a file is useful for programs that need to increase their priv

ileges to perform privileged operations. For example, an e-mail delivery program that
receives an e-mail for a particular user must be able to append the mail to the user’s mail
box. Making the target mailbox writable for anyone would allow any user to destroy
another user’s mailbox. If a system administrator sets the SETUID permission on the mail
delivery program and makes the program owned by the superuser, then the mail program
will run with superuser privileges. When the program receives an e-mail for a user, the
program changes its UID to the target user’s, and can append the mail to the user’s mail
box. (In principle the delivery program doesn’t have to change to the target’s UID, but
changing the UID is better practice than running the complete program with superuser
privileges. It is another example of the principle of least privilege.)

Another design option would be for UNIX to set the ACL on the mailbox to include
the principal of the e-mail deliver program. Unfortunately, because UNIX ACLs are lim
ited to the user, group, and other entries, they are not flexible enough to have an entry
for a specific principal, and thus the SETUID plan is necessary. The SETUID plan is not ideal
either, however, because there is a temptation for application designers to run applica
tions with superuser privileges and never drop them, violating the principle of least

Saltzer & Kaashoek Ch. 11, p. 78 June 24, 2009 12:29 am

11.6 Authorization: Controlled Sharing 11–79

privilege. In retrospect, UNIX’s plan for security is weak, and the combination of buffer-
overrun attacks and applications running with too much privilege has led to many secu
rity breaches. To design an application to run securely on UNIX requires much careful
thought and sophisticated use of UNIX.

With the exception of the superuser, only the principal on whose behalf a process is
running can control a process (e.g., stop it). This design makes it difficult for an adver
sary who successfully compromised one principal to damage other processes that act on
behalf of a different principal.

11.6.3.4 Authenticating Users
When a UNIX computer starts, it boots the kernel (see Sidebar 5.3). The kernel starts the
first user program (called init in UNIX) and runs it with the superuser authority. The init
program starts among other things a login program, which also executes with the supe
ruser authority. Users type in their user name and a password to a login program. When
a person types in a name and password, the login program hashes the password using a
cryptographic hash (as was explained on page 11–32) and compares it with the hash of
the password that it has on file that corresponds to the user name the person has claimed.
If they match, the login program looks up the UID, GIDs, and the starting program for
that user, uses SETUID to change the UID of the login program to the user’s UID, and runs
the user’s starting program. If hashes don’t match, the login program denies access.

As mentioned earlier, the user name, UID, default GID, and other information are
stored in the password file (named “/etc/passwd”). At one time, hashed passwords were
also stored in the password file. But, because the other information is needed by many
programs, including programs run by other users, most systems now store the hashed
password in a separate file called the “shadow file” that is accessible only to the superuser.
Storing the passwords in a limited access file makes it harder for an adversary to mount
a dictionary attack against the passwords. Users can change their password by invoking
a SETUID program that can write the shadow file. Storing public user information in the
password file and sensitive hashed passwords in the shadow file with more restrictive per
missions is another example of applying the principle of least privilege.

11.6.3.5 Access Control Check
Once a user is logged in, subsequent access control is performed by the kernel based on
UIDs and GIDs of processes, using a list system. When a process invokes OPEN to use a
file, the process performs a system call to enter the kernel. The kernel looks up the UID
and GIDs for the process in its tables. Then, the kernel performs the access check as
follows:

1. 	If the UID of the process is 0 (superuser), the process has the necessary
permissions by default.

2. 	If the UID of the process matches the UID of the owner of the file, the kernel
checks the permissions in the ACL entry for owner.

Saltzer & Kaashoek Ch. 11, p. 79	 June 24, 2009 12:29 am

11–80 CHAPTER 11 Information Security

3. 	If UIDs do not match, but if one of the process’s GIDs match the GID of the file,
the kernel checks the permissions in the ACL entry for group.

4. 	If the UID and GIDs do not match, the kernel checks the permissions in the ACL
entry for “other” users.

If the process has the appropriate permission, the kernel performs the operation; oth
erwise, it returns a permission error.

11.6.3.6 Running Services
In addition to starting the login program, the init program usually starts several services
(e.g., a Web server, an e-mail server, a X Windows System server, etc.). The services often
start run with the privileges of the superuser principal, but switch to a service principal
using SETUID. For example, a well-designed Web server changes its UID from the supe
ruser principal to the www principal after it did the few operations that require superuser
privileges. To ensure that these services have limited access if an adversary compromises
one of them, the system administrator sets file permissions so that, for example, the prin
cipal named www has permission to access only the files it needs. In addition, a Web
server designed with security in mind will also use the CHROOT call (see Section 2.5.1) so
that it can name only the files in its corner of file system. These measures ensure that an
adversary can do only restricted harm when compromising a service. These measures are
examples of both the paranoid design attitude and of the principle of least privilege.

11.6.3.7 Summary of UNIX Access Control
The UNIX login program can be viewed as an access control system following the pure
guard model that combines authentication of users with mediating access to the com
puter to which the user logs in. The guard is the login program. The object is the UNIX

system. The principal is the user. The ticket is the password, which is protected using a
cryptographic hash function. If the tickets match, access is allowed; otherwise, access is
denied. We can view the whole UNIX system as an agent system. It switches from a simple
ticket-based guard system (the login program) to a list-oriented system (the kernel and
file system). UNIX thus provides a comprehensive example of the simple guard model. In
the next two sections we investigate two other models for access control.

11.6.4 The Caretaker Model

The caretaker model generalizes the simple guard model. It is the object-oriented version
of the simple guard model. The simple guard model checks permissions for simple meth
ods such as read, write, and execute. The caretaker model verifies permissions for
arbitrary methods. The caretaker can enforce arbitrary constraints on access to an object,
and it may interpret the data stored in the object to decide what to do with a given
request.

Example access-control systems that follow the caretaker model are:

Saltzer & Kaashoek Ch. 11, p. 80	 June 24, 2009 12:29 am

11.6 Authorization: Controlled Sharing 11–81

• 	 A bank vault that can be opened at 5:30 pm, but not at any other time.
• 	 A box that can be opened only when two principals agree.
• 	 Releasing salary information only to principals who have a higher salary.
• 	 Allowing the purchase of a book with a credit card only after the bank approves

the credit card transaction.

The hazard in the caretaker model is that the program for the caretaker is more com
plex than the program for the guard, which makes it easy to make mistakes and leave
loopholes to be exploited by adversaries. Furthermore, the specification of what the care
taker’s methods do and how they interact with respect to security may be difficult to
understand, which may lead to configuration errors. Despite these challenges, database
systems typically support the caretaker model to control access to rows and columns in
tables.

11.6.5 Non-Discretionary Access and Information Flow Control

The description of authorization has so far rested on the assumption that the principal
that creates an object is the authority. In the UNIX example, the owner of a file is the
authority for that file; the owner can give all permissions including the ability to change
the ACL, to another user.

This authority model is discretionary: an individual user may, at the user’s own dis
cretion, authorize other principals to obtain access to the objects the user creates. In
certain situations, discretionary control may not be acceptable and must be limited or
prohibited. In this case, the authority is not the principal who created the object, but
some other principal. For example, the manager of a department developing a new prod
uct line may want to compartmentalize the department’s use of the company computer
system to ensure that only those employees with a need to know have access to informa
tion about the new product. The manager thus desires to apply the least privilege
principle. Similarly, the marketing manager may wish to compartmentalize all use of the
company computer for calculating product prices, since pricing policy may be sensitive.

Either manager may consider it unacceptable that any individual employee within the
department can abridge the compartments merely by changing an access control list on
an object that the employee creates. The manager has a need to limit the use of discre
tionary controls by the employees. Any limits the manager imposes on authorization are
controls that are out of the hands of the employees, and are viewed by them as non
discretionary.

Similar constraints are imposed in military security applications, in which not only
isolated compartments are required, but also nested sensitivity levels (e.g., unclassified,
confidential, secret, and top secret) that must be modeled in the authorization mechanics
of the computer system. Commercial enterprises also use non-discretionary controls. For
example, a non-disclosure agreement may require a person for the rest of the person’s life
not to disclose the information that the agreement gave the person access to.

Saltzer & Kaashoek Ch. 11, p. 81	 June 24, 2009 12:29 am

11–82 CHAPTER 11 Information Security

Compartment

Object

Principal

Guard program

Untrusted

FIGURE 11.7

Confining a program within a compartment.

Non-discretionary controls may need to be imposed in addition to or instead of dis
cretionary controls. For example, the department manager may be prepared to allow the
employees to adjust their access control lists any way they wish, within the constraint that
no one outside the compartment is ever given access. In that case, both non-discretionary
and discretionary controls apply.

The reason for interest in non-discretionary controls is not so much the threat of
malicious insubordination as the need to safely use complex and sophisticated programs
created by programmers who are not under the authority’s control. A user may obtain
some code from a third party (e.g., a Web browser extension, a software upgrade, a new
application) and if the supplied program is to be useful, it must be given access to the
data it is to manipulate or interpret (see Figure 11.7). But unless the downloaded pro
gram has been completely audited, there is no way to be sure that it does not misuse the
data (for example, by making an illicit copy and sending it somewhere) or expose the data
either accidentally or intentionally. One way to prevent this kind of security violation
would be to forbid the use of untrusted third-party programs, but for most organizations
the requirement that all programs be locally written (or even thoroughly audited) would
be an unbearable economic burden. The alternative is confinement of the untrusted pro
gram. That is, the untrusted program should run on behalf of some principal in a
compartment containing the necessary data, but should be constrained so that it cannot
authorize sharing of anything found or created in that compartment with other
compartments.

Complete elimination of discretionary controls is easy to accomplish. For example,
one could arrange that the initial value for the access control list of all newly created
objects not give “ACL-modification” permission to the creating principal (under which
the downloaded program is running). Then the downloaded program could not release
information by copying it into an object that it creates and then adjusting the access con
trol list on that object. If, in addition, all previously existing objects in the compartment
of the downloaded program do not permit that principal to modify the access control
list, the downloaded program would have no discretionary control at all.

Saltzer & Kaashoek Ch. 11, p. 82 June 24, 2009 12:29 am

11.6 Authorization: Controlled Sharing 11–83

An interesting requirement for a non-discretionary control system that implements
isolated compartments arises whenever a principal is authorized to have access to two or
more compartments simultaneously, and some data objects may be labeled as being
simultaneously in two or more compartments (e.g., pricing data for a new product may
be labeled as requiring access to the “pricing policy” compartment as well as the “new
product line” compartment). In such a case it would seem reasonable that, before per
mitting reading of data from an object, the control mechanics should require that the set
of compartments of the object being referenced be a subset of the compartments to
which the accessor is authorized.

A more stringent interpretation, however, is required for permission to write, if
downloaded programs are to be confined. Confinement requires that the program be
constrained to write only into objects that have a compartment set that is a subset of that
of the program itself. If such a restriction were not enforced, a malicious downloaded
program could, upon reading data labeled for both the “pricing policy” and the “new
product line” compartments, make a copy of part of it in an object labeled only “pricing
policy,” thereby compromising the “new product line’’ compartment boundary. A sim
ilar set of restrictions on writing can be expressed for sensitivity levels. A set of such
restrictions is known as rules for information flow control.

11.6.5.1 Information Flow Control Example
To make information flow control more concrete, consider a company that has informa
tion divided in two compartment:

1. financial (e.g., product pricing)

2. product (e.g., product designs)

Each file in the computer system is labeled to belong to one of these compartments.
Every principal is given a clearance for one or both compartments. For example, the
company’s policy might be as follows: the company’s accounts have clearance for reading
and writing files in the financial compartment, the company’s engineers have clearance
for reading and writing files in the product compartment, and the company’s product
managers have clearance for reading and writing files in both compartments.

The principals of the system interact with the files through programs, which are
untrusted. We want ensure that information flows only to the company’s policy. To
achieve this goal, every thread records the labels of the compartments for which the prin
cipal is cleared; this clearance is stored in Tlabelsseen. Furthermore, the system remembers
the maximum compartment label of data the thread has seen, Tmaxlabels. Now the infor
mation flow control rules can be implemented as follows. The read rule is:

• Before reading an object with labels Olabels, check that Olabels ⊆ Tmaxlabels.
• If so, set Tlabelsseen ← Tlabelsseen ∪ Clabels, and allow access.

This rule can be summarized by “no read up.” The thread is not allowed to have
access to information in compartments for which it has no clearance.

Saltzer & Kaashoek Ch. 11, p. 83 June 24, 2009 12:29 am

11–84 CHAPTER 11 Information Security

The corresponding write rule is:

• Allow a write to an object with clearance Olabels only if Tlabelsseen ⊆ Olabels

This rule could be called “no write down.” Every object written by a thread that read
data in compartments L must be labeled with L’s labels. This rule ensures that if a thread
T has read information in a compartment other than the ones listed in L than that infor
mation doesn’t leak into the object O.

These information rules can be used to implement a wide range of policies. For exam
ple, the company can create more compartments, more principals, or modify the list of
compartments a principal has clearance for. These changes in policy don’t require
changes in the information flow rules. This design is another example of the principle
separate mechanism from policy.

Sometimes there is a need to move an object from one compartment to another
because, for example, the information in the object isn’t confidential anymore. Typically
downgrading of information (declassification in the security jargon) must be done by a
person who inspects the information in the object, since a program cannot exercise
judgement. Only a human can establish that information to be declassified is not
sensitive.

This example sketches a set of simple information flow control rules. In real system
systems more complex information flow rules are needed, but they have a similar flavor.
The United States National Security Agency has a strong interest in computer systems
with information flow control, as do companies that have sensitive data to protect. The
Department of Defense has a specification for what these computer systems should pro
vide (this specification is part of a publication known as the Orange Book*, which
classifies systems according to their security guarantees). It is possible that information
flow control will find other usages than in high-security systems, as the problems with
untrusted programs become more prevalent in the Internet, and sophisticated confine
ment is required.

11.6.5.2 Covert Channels
Complete confinement of a program in a system with shared resources is difficult, or per
haps impossible, to accomplish, since the program may be able to signal to other users
by strategies more subtle than writing into shared objects. Computer systems with shared
resources always contain covert channels, which are hidden communication channels
through which information can flow unchecked. For example, two threads might con
spire to send bits by the logical equivalent of “banging on the wall.’’ See Section
11.11.10.1 for a concrete example and see problem set 43 for an example that literally
involves banging. In practice, just finding covert channels is difficult. Blocking covert
channels is an even harder problem: there are no generic solutions.

* U.S.A. Department of Defense, Department of Defense trusted computer system evaluation criteria,
Department of Defense standard 5200, December 1985.

Saltzer & Kaashoek Ch. 11, p. 84 June 24, 2009 12:29 am

11.7 Advanced Topic: Reasoning about Authentication 11–85

11.7 Advanced Topic: Reasoning about Authentication
The security model has three key steps that are executed by the guard on each request:
authenticating the user, verifying the integrity of the request, and determining if the user
is authorized. Authenticating the user is typically the most difficult of the three steps
because the guard can establish only that the message came from the same origin as some
previous message. To determine the principal that is associated with a message, the guard
must establish that it is part of a chain of messages that often originated in a message that
was communicated by physical rendezvous. That physical rendezvous securely binds the
identity of a real-world person with a principal.

The authentication step is further complicated because the messages in the chain
might even come from different principals, as we have seen in some of the security pro
tocols in Section 11.5. If a message in the chain comes from a different principal and
makes a statement about another principal, we can view the message as one principal
speaking for another principal. To establish that the chain of messages originated from a
particular real-world user, the guard must follow a chain of principals.

Consider a simple security protocol, in which a certificate authority signs certificates,
associating authentication keys with names (e.g., “key Kpub belongs to the user named
X”). If a service receives this certificate together with a message M for which
VERIFY (M, Kpub) returns ACCEPT, then the question is if the guard should believe this mes
sage originated with “X”. The answer is no until the guard can establish the following
facts:

1. 	The guard knows that a message originated from a principal who knows a private
authentication key Kpriv because the message verified with Kpub.

2. 	The certificate is a message from the certification authority telling the guard that
the authentication key Kpub is associated with user “X.” (The guard can tell that
the certificate came from the certificate authority because the certificate was signed
with the private authentication key of the authority and the guard has obtained the
public authentication key of the authority through some other chain of messages
that originated in physical rendezvous.)

3. 	The certification authority speaks for user “X”. The guard may believe this
assumption, if the guard can establish two facts:

• 	User “X” says the certificate authority speaks for “X”. That is, user “X”
delegated authority to the certificate authority to speak on behalf of “X”. If
the guard bel ficate authority carefully minted a key for “X” that speaks for
only “X” and verified the identity of “X”, then the guard may consider this
belief a fact.

• 	 The certificate authority says Kpub speaks for user “X”. If the guard believes
that the certificate authority carefully minted a key for “X” that speaks for

Saltzer & Kaashoek Ch. 11, p. 85	 June 24, 2009 12:29 am

11–86 CHAPTER 11 Information Security

only “X” and verified the identity of “X”, then the guard may consider this
belief a fact.

With these facts, the guard can deduce that the origin of the first message is user “X”
as follows:

1. 	If user “X” says that the certificate authority speaks on behalf of “X”, then the
guard can conclude that the certificate authority speaks for “X” because “X” said it.

2. 	If we combine the first conclusion with the statement that the certificate authority
says that “X” says that Kpub speaks for X, then the guard can conclude that “X” says
that Kpub speaks for “X”.

3. 	If “X” says that Kpub speaks for X, then the guard can conclude that Kpub speaks
for “X” because “X” said it.

4. 	Because the first message verified with Kpub, the guard can conclude that the
message must have originated with user “X”.

In this section, we will formalize this type of reasoning using a simple form of what
is called authentication logic, which defines more precisely what “speaks for” means.
Using that logic we can establish the assumptions under which a guard is willing to
believe that a message came from a particular person. Once the assumptions are identi
fied, we can decide if the assumptions are acceptable, and, if the assumptions are
acceptable, the guard can accept the authentication as valid and go on to determine if the
principal is authorized.

11.7.1 Authentication Logic

Burrows-Abadi-Needham (BAN) authentication logic is a particular logic to reason
about authentication systems. We give an informal and simplified description of the
logic and its usage. If you want to use it to reason about a complete protocol, read
Authentication in Distributed Systems: Theory and Practice [Suggestions for Further Read
ing 11.3.1].

Consider the following example. Alice types at her workstation “Send me the quiz”
(see Figure 11.8). Her workstation A sends a message over the wire from network inter
face 14 to network interface 5, which is attached to the file service machine F, which runs
the file service. The file service stores the object “quiz.”

What the file service needs to know is that “Alice says send quiz”. This phrase is a
statement in the BAN authentication logic. This statement “A says B” means that agent
A originated the request B. Informally, “A says B” means we have determined somehow
that A actually said B. If we were within earshot, “A says B” is an axiom (we saw A say
it!); but if we only know that “A says B” indirectly (“through hearsay”), we need to use
additional reasoning, and perhaps make some other assumptions before we believe it.

Unfortunately, the file system knows only that network interface F.5 (that is, network
interface 5 on machine F) said Alice wants the quiz sent to her. That is, the file system

Saltzer & Kaashoek Ch. 11, p. 86	 June 24, 2009 12:29 am

11.7 Advanced Topic: Reasoning about Authentication 11–87

Quiz

File service

Workstation

Interface 5Interface 14

Alice To: service
From: Alice

Send me the quiz

FIGURE 11.8

Authentication example.

knows “network interface F.5 says (Alice says send the quiz)”. So “Alice says send the
quiz” is only hearsay at the moment. The question is, can we trust network interface F.5
to tell the truth about what Alice did or did not say? If we do trust F.5 to speak for Alice,
we write “network interface F.5 speaks for Alice” in BAN authentication logic. In this
example, then, if we believe that “network interface F.5 speaks for Alice, we can deduce
that “Alice says send the quiz.”

To make reasoning with this logic work, we need three rules:

• Rule 1: Delegating authority:

If A says (B speaks for A)
then B speaks for A

This rule allows Alice to delegate authority to Bob, which allows Bob to speak for Alice.

• Rule 2: Use of delegated authority.

If A speaks for B

and A says (B says X)

then B says X

This rule says that if Bob delegated authority to Alice, and Alice says that Bob said some
thing then we can believe that Bob actually said it.

• Rule 3: Chaining of delegation.

If A speaks for B

and B speaks for C

then A speaks for C

This rule says that delegation of authority is transitive: if Bob has delegated authority to
Alice and Charles has delegated authority to Bob, then Charles also delegated authority
to Alice.

Saltzer & Kaashoek Ch. 11, p. 87 June 24, 2009 12:29 am

11–88 CHAPTER 11 Information Security

To capture real-world situations better, the full-bore BAN logic uses more refined
rules then these. However, as we will see in the rest of this chapter, even these three sim
ple rules are useful enough to help flush out fuzzy thinking.

11.7.1.1 Hard-wired Approach
How can the file service decide that “network interface F.5 speaks for Alice”? The first
approach would be to hard-wire our installation. If we hard-wire Alice to her worksta
tion, her workstation to network interface A.14, and network interface A.14 through the
wire to network interface F.5, then we have:

• 	 network interface F.5 speaks for the wire: we must assume no one rewired it.
• 	 the wire speaks for network interface A.14: we must assume no one tampered

with the channel.
• 	network interface A.14 	speaks for workstation A: we must assume the

workstation was wired correctly.
• 	 workstation A 	speaks for Alice: we assume the operating system on Alice’s

workstation can be trusted.

In short, we assume that the network interface, the wiring, and Alice’s workstation
are part of the trusted computing base. With this assumption we can apply the chaining
of delegation rule repeatedly to obtain “network interface F.5 speaks for Alice”. Then,
we can apply the use of delegated authority rule and obtain “Alice says send the quiz”.
Authentication of message origin is now complete, and the file system can look for Alice’s
token on its access control list.

The logic forced us to state our assumptions explicitly. Having made the list of
assumptions, we can inspect them and see if we believe each is reasonable. We might even
hire an outside auditor to offer an independent opinion.

11.7.1.2 Internet Approach
Now, suppose we instead connect the workstation’s interface 14 to the file service’s inter
face 5 using the Internet. Then, following the previous pattern, we get:

• 	 network interface F.5 speaks for the Internet: we must assume no one rewired it.
• 	 the Internet speaks for network interface A.14: we must assume the Internet is

trusted!

The latter assumption is clearly problematic; we are dead in the water.
What can we do? Suppose the message is sent with some authentication tag—Alice

actually sends the message with a MAC (reminder: {M}k denotes a plaintext message
signed with a key k):

Alice ⇒ file service: {From: Alice; To: file service; “send the quiz”}T

Then, we have:

• 	 key T says (Alice says send the quiz).

Saltzer & Kaashoek Ch. 11, p. 88	 June 24, 2009 12:29 am

11.7 Advanced Topic: Reasoning about Authentication 11–89

If we know that Alice was the only person in the world who knows the key T, then we
would be able to say:

• key T speaks for Alice.

With the use of delegated authority rule we could conclude “Alice says send the quiz”.
But is Alice really the only person in the world who knows key T? We are using a shared-
secret key system, so the file service must also know the key, and somehow the key must
have been securely exchanged between Alice and the file service. So we must add to our
list of assumptions:

• the file service is not trying to trick itself;
• the exchange of the shared-secret key was secure;
• Neither Alice nor the file service have revealed the key.

With these assumptions we really can believe that “key T speaks for Alice”, and we
are home free. This reasoning is not a proof, but it is a method that helps us to discover
and state our assumptions clearly.

The logic as presented doesn’t deal with freshness. In fact, in the example, we can
conclude only that “Alice said send the quiz”, but not that Alice said it recently. Someone
else might be replaying the message. Extensions to the basic logic can deal with freshness
by introducing additional rules for freshness that relate says and said.

11.7.2 Authentication in Distributed Systems

All of the authentication examples we have discussed so far have involved one service.
Using the techniques from Section 11.6, it is easy to see how we can build a single-service
authentication and authorization system. A user sets up a confidential and authenticated
communication channel to a particular service. The user authenticates itself over the
secure channel and receives from the service a token to be used for access control. The
user sends requests over the secure channel. The service then makes its access control
decisions based on the token that accompanies the request.

Authentication in the World-Wide Web is an example of this approach. The browser
sets up a secure channel using the SSL/TLS protocol described in Section 11.10. Then,
the browser asks the user for a password and sends this password over the secure channel
to the service. If the service identifies the user successfully with the received password,
the service returns a token (a cookie in Web terminology), which the browser stores. The
browser sends subsequent Web requests over the secure channel and includes the cookie
with each request so that the user doesn’t have to retype the password for each request.
The service authenticates the principal and authorizes the request based on the cookie.
(In practice, many Web applications don’t set up a secure channel, but just communicate
the password and cookie without any protection. These applications are vulnerable to
most of the attacks discussed in previous sections.)

The disadvantage of this approach to authentication is that services cannot share
information about clients. The user has to log in to each service separately and each ser-

Saltzer & Kaashoek Ch. 11, p. 89 June 24, 2009 12:29 am

11–90 CHAPTER 11 Information Security

vice has to implement its own authentication scheme. If the user uses only a few services,
these shortcomings are not a serious inconvenience. However, in a realm (say a large
company or a university) where there are many services and where information needs to
be shared between services, a better plan is needed.

In such an environment we would like to have the following properties:

1. 	the user logs in once;

2. 	the tokens the user obtains after login in should be usable by all services for
authentication and to make authorization decisions;

3. 	users are named in a uniform way so that their names can be put on and removed
from access control lists;

4. 	users and services don’t have to trust the network.

These goals are sometimes summarized as single login or single sign-on. Few system
designs or implementations meet these requirements. One system that comes close is
Kerberos (see Sidebar 11.6). Another system that is gaining momentum for single sign-
on to Web sites is openID; its goal is to allow users to have one ID for different Internet
stores. The openID protocols are driven by a public benefit organization called the
OpenID Foundation. Many major companies have joined the openID Foundation and
providing support in their services for openID.

11.7.3 Authentication across Administrative Realms

Extending authentication across realms that are administrated by independent authori
ties is a challenge. Consider a student who is running a service on a personal computer
in his dorm room. The personal computer is not under the administrative authority of
the university; yet the student might want to obtain access to his service from a computer
in a laboratory, which is administered by central campus authority. Furthermore, the
student might want to provide access to his service to family and friends who are in yet
other administrative realms. It is unlikely that the campus administration will delegate
authority to the personal computer, and set up secure channels from the campus authen
tication service to each student’s authentication service.

Sharing information with many users across many different administrative realms
raises a number of questions:

1. 	How can we authenticate services securely? The Domain Name System (DNS)
doesn’t provide authenticated bindings of name to IP addresses (see Section 4.4)
and so we cannot use DNS names to authenticate services.

2. 	How can we name users securely? We could use e-mail addresses, such as
bob@Scholarly.edu, to identify principals but e-mail addresses can be spoofed.

3. 	How do we manage many users? If Pedantic University is willing to share course
software with all students at The Institute of Scholar Studies, Pedantic University

Saltzer & Kaashoek Ch. 11, p. 90	 June 24, 2009 12:29 am

http:bob@Scholarly.edu

11.7 Advanced Topic: Reasoning about Authentication 11–91

shouldn’t have to list individually every student of The Institute of Scholar Studies
on the access control list for the files. Clearly, protection groups are needed. But,
how does a student at The Institute of Scholar Studies prove to Pedantic
University’s service that the student is part of the group students@Scholarly.edu?

These three problems are naming problems: how do we name a service, a user, a
group, and a member of a protection group securely? A promising approach is to split the
problem into two parts: (1) name all principals (e.g., services, users, and groups) by public
keys and (2) securely distribute symbolic names for the public keys separately. We discuss
this approach in more detail.

By naming principals by a public key we eliminate the distinction of realms. For
example, a user Alice at Pedantic University might be named by a public key KApub and
a user Bob at The Institute of Scholar Studies is named by a public KBpub; from the pub
lic key we cannot tell whether the Alice is at Pedantic University or The Institute of
Scholar Studies. From the public key alone we cannot tell if the public key is Alice’s, but
we will solve the binding from public key to symbolic name separately in the next Sec
tions 11.7.4 through 11.7.6.

If the Alice wants to authorize Bob to have access to her files, Alice adds KBpub to her
access control list. If Bob wants to use Alice’s files, Bob sends a request to Alice’s service
including his public key KBpub. Alice checks if KBpub appears on her access control list. If
not, she denies the request. Otherwise, Alice’s service challenges Bob to prove that he has
the private key corresponding to KBpub. If Bob can prove that he has KBpriv (e.g., for
example by signing a challenge that Alice’s service verifies with Bob’s public key KBpub),
then Alice’s service allows access.

When Alice approves the request, she doesn’t know for sure if the request came from
the principal named “Bob”; she just knows the request came from a principal holding
the private key KBpriv. The symbolic name “Bob” doesn’t play a role in the mediation
decision. Instead, the crucial step was the authorization decision when Alice added KBpub
to her access control; as part of that authorization decision Alice must assure herself that
KBpub speaks for Bob before adding KBpub to her access control list. That assurance relies
on securely distributing bindings from name to public key, which we separated out as an
independent problem and will discuss in the next Sections 11.7.4 through 11.7.6.

We can name protection groups also by a public key. Suppose that Alice knew for sure
that KISSstudentspub is a public key representing students of The Institute of Scholarly
Studies. If Alice wanted to grant all students at The Institute of Scholarly Studies access
to her files, she could add KISSstudentspub to her access control list. Then, if Charles, a stu
dent at The Institute of Scholar Studies, wanted to have access to one of Alice’s files, he
would have to present a proof that he is a member of that group, for example, by provid
ing a statement to Alice signed by KISSstudentspriv to Alice saying:

{KCharlespub is a member of the group KISSstudentspub}
KISSstudentspriv

,

which in the BAN logic translates to:

KCharlespub speaks for KISSstudentspub,

Saltzer & Kaashoek Ch. 11, p. 91 June 24, 2009 12:29 am

11–92 CHAPTER 11 Information Security

that is, Alice delegated authority to the member Charles to speak on behalf of the group
of students at The Institute of Scholarly Studies.

Alice’s service can verify this statement using KISSstudentspub, which is on Alice’s access
control list. After Alice’s service successfully verifies the statement, then the service can
challenge Charles to prove that he is the holder of the private key KCharlespriv. Once
Charles can prove he is the holder of that private key, then Alice’s service can grant access
to Charles.

In this setup, Alice must trust the holder of KISSstudentspriv to be a responsible person
who carefully verifies that Charles is a student at The Institute of Scholarly Studies. If
she trusts the holder of that key to do so, then Alice doesn’t have to maintain her own
list of who is a student at The Institute of Scholar Studies; in fact, she doesn’t need to
know at all which particular principals are students at The Institute of Scholarly Studies.

If services are also named by public keys, then Bob and Charles can easily authenticate
Alice’s service. When Bob wants to connect to Alice’s service, he specifies the public key
of the service. If the service can prove that it possesses the corresponding private key, then
Bob can have confidence that he is talking to the right service.

By naming all principals with public keys we can construct distributed authentication
systems. Unfortunately, public keys are long, unintelligible bit strings, which are awk
ward and unfriendly for users to remember or type. When Alice adds KBobpub and
KISSstudentspub to her access control list, she shouldn’t be required to type in a 1,024-bit
number. Similarly when Bob and Charles refer to Alice’s service, they shouldn’t be
required to know the bit representation of the public key of Alice’s service. What is nec
essary is a way of naming public keys with symbolic names and authenticating the
binding between name and key, which we will discuss next.

11.7.4 Authenticating Public Keys

How do we authenticate that KBpub is Bob’s public key? As we have seen before, that
authentication can be based on a key-distribution protocol, which start with a rendez
vous step. For example, Bob and Alice meet face-to-face and Alice hands Bob a signed
piece of paper with her public key and name. This piece of paper constitutes a self-signed
certificate. Bob can have reasonable confidence in this certificate because Bob can verify
that the certificate is valid and is Alice’s. (Bob can ask Alice to sign again and compare it
with the signature on the certificate and ask Alice for her driver license to prove her
identity.)

If Bob receives a self-signed certificate over an untrusted network, however, we are
out of luck. The certificate says “Hi, I am Alice and here is my public key” and it is signed
with Alice’s digital signature, but Bob does not know Alice’s public key yet. In this case,
anybody could impersonate Alice to Bob because Bob cannot verify whether or not Alice
produced this certificate. An adversary can generate a public/private key pair, create a cer
tificate for Alice listing the public key as Alice’s public key, and sign it with the private
key, and send this self-signed certificate to Bob.

Saltzer & Kaashoek Ch. 11, p. 92 June 24, 2009 12:29 am

11.7 Advanced Topic: Reasoning about Authentication 11–93

Bob needs a way to find out securely what Alice’s public key is. Most systems rely on
a separate infrastructure for naming and distributing public keys securely. Such an infra
structure is called a public key infrastructure, PKI for short. There is a wide range of
designs for such infrastructures, but their basic functions can be described well with the
authentication logic. We start with a simple example using physical rendezvous and then
later use certificate authorities to introduce principals to each other who haven’t met
through physical rendezvous.

Consider the following example where Alice receives a message from Bob, asking
Alice to send a private file, and Alice wants to decide whether or not to send it. The first
step in this decision is for Alice to establish if the message really came from Bob.

Suppose that Bob previously handed Alice a piece of paper on which Bob has written
her public key, KpubBob. We can describe Alice’s take on this event in authentication
logic as

Bob says (KpubBob speaks for Bob) (belief #1)

and by applying the delegation of authority rule, Alice can immediately conclude that
she is safe in believing

KpubBob speaks for Bob (belief #2)

assuming that the information on the piece of paper is accurate. Alice realizes that she
should should start making a list of assumptions for review later. (She ignores freshness
for now because our stripped-down authentication logic has no said operation for cap
turing that.)

Next, Bob prepares a message, M1:

Bob says M1

signs it with his private key:

{M1}KprivBob

which, in authentication logic, can be described as

KprivBob says (Bob says M1)

and sends it to Alice. Since the message arrived via the Internet, Alice now wonders if she
should believe

Bob says M1 (?)

Fortunately, M1 is signed, so Alice doesn’t need to invoke any beliefs about the Internet.
But the only beliefs she has established so far are (#1) and (#2), and those are not suffi
cient to draw any conclusions. So the first thing Alice does is check the signature:

result ← VERIFY ({M1}KprivBob, KpubBob)

If result is ACCEPT then one might think that Alice is entitled to believe:

KprivBob says (Bob says M1) (belief #3?)

Saltzer & Kaashoek Ch. 11, p. 93 June 24, 2009 12:29 am

11–94 CHAPTER 11 Information Security

but that belief actually requires a leap of faith: that the cryptographic system is secure.
Alice decides that it probably is, adds that assumption to her list, and removes the ques
tion mark on belief #3. But she still hasn’t collected enough beliefs to answer the
question. In order to apply the chaining and use of authority rules, Alice needs to believe
that

(KprivBob speaks for KpubBob) (belief #4?)

which sounds plausible, but for her to accept that belief requires another leap of faith:
that Bob is the only person who knows KprivBob. Alice decides that Bob is probably care
ful enough to be trusted to keep his private key private, so she adds that assumption to
her list and removes the question mark from belief #4.

Now, Alice can apply chaining of delegation rule to beliefs #4 and #2 to conclude

KprivBob speaks for Bob (belief #5)

and she can now use the use of delegated authority rule to beliefs #5 and #3 to conclude
that

Bob says M1 (belief #6)

Alice decides to accepts the message as a genuine utterance of Bob. The assumptions that
emerged during this reasoning were:

• KpubBob is a true copy of Bob’s public key.
• The cryptographic system used for signing is computationally secure.
• Bob has kept KprivBob secret.

11.7.5 Authenticating Certificates

One of the prime usages of a public key infrastructure is to introduce principals that
haven’t met through a physical rendezvous. To do so a public key infrastructure provides
certificates and one or more certificate authorities.

Continuing our example, suppose that Charles, whom Alice does not know, sends
Alice the message

{M2}KprivCharles

This situation resembles the previous one, except that several things are missing: Alice
does not know KpubCharles, so she can’t verify the signature, and in addition, Alice does
not know who Charles is. Even if Alice finds a scrap of paper that has written on it
Charles’s name and what purports to be Charles’s public key, KpubCharles, and

result ←VERIFY (M2, SIGN (M2, KprivCharles), KpubCharles)

is ACCEPT, all she believes (again assuming that the cryptographic system is secure) is that

KprivCharles says (Charles says M2)

Saltzer & Kaashoek Ch. 11, p. 94 June 24, 2009 12:29 am

11.7 Advanced Topic: Reasoning about Authentication 11–95

Without something corresponding to the previous beliefs #2 and #4, Alice still does not
know what to make of this message. Specifically, Alice doesn’t yet know whether or not
to believe

KprivCharles speaks for Charles (?)

Knowing that this might be a problem, Charles went to a well-known certificate
authority, TrustUs.com, purchased the digital certificate:

{“Charles’s public key is KpubCharles”}KprivTrustUs

and posted this certificate on his Web site. Alice discovers the certificate and wonders if
it is any more useful than the scrap of paper she previously found. She knows that where
she found the certificate has little bearing on its trustworthiness; a copy of the same cer
tificate found on Lucifer’s Web site would be equally trustworthy (or worthless, as the
case may be).

Expressing this certificate in authentication logic requires two steps. The first thing
we note is that the certificate is just another signed message, M3, so Alice can interpret
it in the same way that she interpreted the message from Bob:

KprivTrustUs says M3

Following the same reasoning that she used for the message from Bob, if Alice believes
that she has a true copy of KpubTrustUs she can conclude that

TrustUs says M3

subject to the assumptions (exactly parallel to the assumptions she used for the message
from Bob)

• KpubTrustUs is a true copy of the TrustUs.com public key.
• The cryptographic system used for signing is computationally secure.
• TrustUs.com has kept KprivTrustUs secret.

Alice decides that she is willing to accept those assumptions, so she turns her attention
to M3, which was the statement “Charles’s public key is KpubCharles”. Since TrustUs.com
is taking Charles’s word on this, that statement can be expressed in authentication logic
as

Charles says (KpubCharles speaks for Charles)

Combining, we have:

TrustUs says (Charles says (KpubCharles speaks for Charles))

To make progress, Alice needs to a further leap of faith. If Alice knew that

TrustUs speaks for Charles (?)

then she could apply the delegated authority rule to conclude that

Charles says (KpubCharles speaks for Charles)

Saltzer & Kaashoek Ch. 11, p. 95 June 24, 2009 12:29 am

http:TrustUs.com

11–96 CHAPTER 11 Information Security

and she could then follow an analysis just like the one she used for the earlier message
from Bob. Since Alice doesn’t know Charles, she has no way of knowing the truth of the
questioned belief (TrustUs speaks for Charles), so she ponders what it really means:

1. 	TrustUs.com has been authorized by Charles to create certificates for her. Alice
might think that finding the certificate on Charles’s Web site gives her some
assurance on this point, but Alice has no way to verify that Charles’s Web site is
secure, so she has to depend on TrustUs.com being a reputable outfit.

2. 	TrustUs.com was careful in checking the credentials—perhaps, a driver’s license—
that Charles presented for identification. If TrustUs.com was not careful, it might,
without realizing it, be speaking for Lucifer rather than Charles. (Unfortunately,
certificate authorities have been known to make exactly that mistake.) Of course,
TrustUs.com is assuming that the credentials Charles presented were legitimate; it
is possible that Charles has stolen someone else’s identity. As usual, authentication
of origin is never absolute; at best it can provide no more than a secure tie to some
previous authentication of origin.

Alice decides to review the complete list of the assumptions she needs to make in order
to accept Charles’s original message M2 as genuine:

• 	 KpubTrustUs is a true copy of the TrustUs.com public key.
• 	 The cryptographic system used for signing is computationally secure.
• 	 TrustUs.com has kept KprivTrustUs secret.
• 	 TrustUs.com has been authorized by Charles.
• 	 TrustUs.com carefully checked Charles’s credentials.
• 	 TrustUs.com has signed the right public key (that is KpubCharles).
• 	 Charles has kept KprivCharles secret.

and she notices that in addition to relying heavily on the trustworthiness of Trus
tUs.com, she doesn’t know Charles, so the last assumption may be a weakness. For this
reason, she would be well-advised to accept message M2 with a certain amount of cau
tion. In addition, Alice should keep in mind that since Charles’s public key was not
obtained by a physical rendezvous, she knows only that the message came from someone
named “Charles”; she as yet has no way to connect that name with a real person.

As in the previous examples, the stripped-down authentication logic we have been
using for illustration has no provision for checking freshness, so it hasn’t alerted Alice
that she is also assuming that the two public keys are fresh and that the message itself is
recent.

The above example is a distributed authorization system that is ticket-oriented.
Trust.com has generated a ticket (the certificate) that Alice uses to authenticate Charles’s
request. Given this observation, this immediately raises the question of how Charles
revokes the certificate that he bought from TrustUs.com. If Charles, for example, acci
dently discloses his private key, the certificate from TrustUS.com becomes worthless and
he should revoke it so that Alice cannot be tricked into believing that M2 came from

Saltzer & Kaashoek Ch. 11, p. 96	 June 24, 2009 12:29 am

http:tUs.com
http:TrustUs.com

11.7 Advanced Topic: Reasoning about Authentication 11–97

Charles. One way to address this problem is to make a certificate valid for only a limited
length of time. Another approach is for TrustUs.com to maintain a list of revoked cer
tificates and for Alice to first check with TrustUS.com before accepting an certificate as
valid.

Neither solution is quite satisfactory. The first solution has the disadvantage that if
Charles loses his private key, the certificate will remain valid until it expires. The second
solution has the disadvantage that TrustUs.com has to be available at the instant that
Alice tries to check the validity of the certificate.

11.7.6 Certificate Chains

The public key infrastructure developed so far has one certificate authority, Trus
tUS.com. How do we certify the public key of TrustUs.com? There might be many
certificate authorities, some of which Alice doesn’t know about. However, Alice might
possess a certificate for another certificate authority that certifies TrustUs.com, creating
a chain of certification. Public key infrastructures organize such chains in two primary
ways; we discuss them in turn.

11.7.6.1 Hierarchy of Central Certificate Authorities
In the central-authority approach, key certificate authorities record public keys and are
managed by central authorities. For example, in the Word Wide Web, certificates
authenticating Web sites are usually signed by one of several well-known root certificate
authorities. Commercial Web sites, such as amazon.com, for instance, present a certifi
cate signed by Versign to a client when it connects. All Web browsers embed the public
key of the root certificates in their programs. When the browser receives a certificate from
amazon.com, it uses the embedded public key for Verisign to verify the certificate.

Some Web sites, for example a company’s internal Web site, generate a self-signed
certificate and send that to a client when it connects. To be able to verify a self-signed
certificate, the client must have obtained the key of the Web site securely in advance.

The Web approach to certifying keys has a shallow hierarchy. In DNSSEC*, a secure
version of DNS, CAs can be arranged in a deeper hierarchy. If Alice types in the name
“athena.Scholarly.edu”, her resolver will contact one of the root servers and obtain an
address and certificate for “edu”. In authentication logic, the meaning of this certificate
is “Kprivroot says that Kpubedu speaks for edu”. To be able to verify this certificate she must
have obtained the public key of the root servers in some earlier rendezvous step. If the
certificate for “edu” verifies, she contacts the server for the “edu” domain, and asks for
the server’s address and certificate for “Scholarly”, and so on.

One problem with the hierarchical approach is that one must trust a central authority,
such as the DNS root service. The central authority may ask an unreasonable price for
the service, enforce policies that you don’t like, or considered untrustworthy by some.

* D. Eastlake, Domain Name System Security Extensions, Internet Engineering Task Force Request
For Comments (RFC 2535), Mach 1999.

Saltzer & Kaashoek Ch. 11, p. 97 June 24, 2009 12:29 am

http:tUS.com
http:TrustUs.com
http:amazon.com
http:amazon.com

11–98 CHAPTER 11 Information Security

For example, in DNS and DNSSEC, there is a lot of politics around which institution
should run the root servers and the policies of that institution. Since the Internet and
DNS originated in the U.S.A., it is currently run by an U.S.A. organization. Unhappi
ness with this organization has led the Chinese to start their own root service.

Another problem with the hierarchical approach is that certificate authorities deter
mine to whom they delegate authority for a particular domain name. You might be
happy with the Institute of Schlarly Studies managing the “Scholarly” domain, but have
less trust in a rogue government managing the top-level domain for all DNS names in
that country.

Because of problems like these, it is difficult in practice to agree and manage a single
PKI that allows for strong authentication world wide. Currently, no global PKI exist.

11.7.6.2 Web of Trust
The web-of-trust approach avoids using a chain of central authorities. Instead, Bob can
decide himself whom he trusts. In this approach, Alice obtains certificates from her
friends Charles, Dawn, and Ella and posts these on her Web page: {Alice, KApub}KCpriv,
{Alice, KApub}KDpriv, {Alice, KApub}KEpriv. If Bob knows the public key of any one of
Charles, Dawn, or Ella, he can verify one of the certificates by verifying the certificate
that person signed. To the extent that he trusts that person to be careful in what he or
she signs, he has confidence that he now has Alice’s true public key.

On the other hand, if Bob doesn’t know Charles, Dawn, or Ella, he might know
someone (say Felipe) who knows one of them. Bob may learn that Felipe knows Ella
because he checks Ella’s Web site and finds a certificate signed by Felipe. If he trusts
Felipe, he can get a certificate from Felipe, certifying one of the public keys KCpub, KDpub,
or KEpub, which he can then use to certify Alice’s public key. Another possibility is that
Alice offers a few certificate chains in the hope that Bob trusts one of the of the signers
in one of the chains, and has the signer’s public key in his set of keys. Independent of
how Bob learned Alice’s public key, he can inspect the chain of trust by which he learned
and verified Alice’s public key and see whether he likes it or not. The important point
here is that Bob must trust every link in the chain. If any link untrustworthy, he will have
no guarantees.

The web of trust scheme relies on the observation that it usually takes only a few
acquaintance steps to connect anyone in the world to anyone else. For example, it has
been claimed that everyone is separated by no more than 6 steps from the President of
the United States. (There may be some hermits in Tibet that require more steps.) With
luck, there will be many chains connecting Bob with Alice, and one of them may consist
entirely of links that Bob trusts.

The central idea in the web-of-trust approach is that Bob can decide whom he trusts
instead of having to trust a central authority. PGP (Pretty Good Privacy) [Suggestions
for Further Reading 1.3.16] and a number of other systems use the web of trust
approach.

Saltzer & Kaashoek Ch. 11, p. 98 June 24, 2009 12:29 am

11.8 Cryptography as a Building Block (Advanced Topic) 11–99

11.8 Cryptography as a Building Block (Advanced Topic)
This section sketches how primitives such as ENCRYPT, DECRYPT, pseudorandom number
generators, SIGN, VERIFY, and cryptographic hashes can be implemented using crypto
graphic transformations (also called ciphers). Readers who wish to understand the
implementations in detail should consult books such as Applied Cryptography by Bruce
Schneier [Suggestions for Further Reading 1.2.4], or Handbook of Applied Cryptography
by Menezes, van Oorschot, and Vanstore [Suggestions for Further Reading 1.3.13].
Introduction to cryptography by Buchmann provides a concise description of the number
theory that underlies cryptography [Suggestions for Further Reading 1.3.14]. There are
many subtle issues in designing secure implementations of the primitives, which are
beyond the scope of this text.

11.8.1 Unbreakable Cipher for Confidentiality (One-Time Pad)

Making an unbreakable cipher for only confidentiality is easy, but there’s a catch. The
recipe is as follows. First, find a process that can generate a truly random unlimited string
of bits, which we call the key string, and transmit this key string through secure (i.e., pro
viding confidentiality and authentication) channels to both the sender and receiver
before they transmit any data through an insecure network.

Once the key string is securely in the hands of the sender, the sender converts the
plaintext into a bit string and computes bit-for-bit the exclusive OR (XOR) of the plaintext
and the key string. The sender can send the resulting ciphertext over an insecure network
to a receiver. Using the previously communicated key string, the receiver can recover the
plaintext by computing the XOR of the ciphertext and key string.

To be more precise, this transforming scheme is a stream cipher. In a stream cipher,
the conversion from plaintext to ciphertext is performed one bit or one byte at a time,
and the input can be of any length. In our example, a sequence of message (plaintext)
bits m1, m2,…, mn is transformed using an equal-length sequence of secret key bits k1,
k2, …, kn that is known to both the sender and the receiver. The i-th bit ci of the cipher
text is defined to be the XOR (modulo-2 sum) of mi and ki, for i = 1,…,n:

=ci mi ⊕ ki

Untransforming is just as simple, because:

= ci ⊕ = mi ⊕ ⊕ = mimi ki ki ki

This scheme, under the name “one-time pad” was patented by Vernam in 1919 (U.S.
patent number 1,310,719). In his version of the scheme, the ‘‘pad’’ (that is, the one-time
key) was stored on paper tape.

The key string is generated by a random number generator, which produces as output
a “random” bit string. That is, from the bits generated so far, it is impossible to predict
the next bit. True random-number generators are difficult to construct; in fact, true

Saltzer & Kaashoek Ch. 11, p. 99 June 24, 2009 12:29 am

11–100 CHAPTER 11 Information Security

sources of random sequences come only from physical processes, not from deterministic
computer programs.

Assuming that the key string is truly random, a one-time pad cannot be broken by
the attacks discussed in Section 11.4, since the ciphertext does not give the adversary any
information about the plaintext (other than the length of the message). Each bit in the
ciphertext has an equal probability of being one or zero, assuming the key string consists
of truly random bits. Patterns in the plaintext won’t show up as patterns in the cipher
text. Knowing the value of any number of bits in the ciphertext doesn’t allow the
adversary to guess the bits of the plaintext or other bits in the ciphertext. To the adversary
the ciphertext is essentially just a random string of the same length as the message, no
matter what the message is.

If we flip a single message bit, the corresponding ciphertext bit flips. Similarly, if a
single ciphertext bit is flipped by a network error (or an adversary), the receiver will
untransform the ciphertext to obtain a message with a single bit error in the correspond
ing position. Thus, the one-time pad (both transforming and untransforming) has
limited change propagation: changing a single bit in the input causes only a single bit in
the output to change.

Unless additional measures are taken, an adversary can add, flip, or replace bits in the
stream without the recipient realizing it. The adversary may have no way to know exactly
how these changes will be interpreted at the receiving end, but the adversary can proba
bly create quite a bit of confusion. This cipher provides another example of the fact that
message confidentiality and integrity are separate goals.

The catch with a one-time pad is the key string. We must have a secure channel for
sending the key string and the key string must be at least as long as the message. One
approach to sending the key string is for the sender to generate a large key string in
advance. For example, the sender can generate 10 CDs full of random bits and truck
them over to the receiver by armored car. Although this scheme may have high band
width (6.4 Gigabytes per truckload), it probably has latency too large to be satisfactory.

The key string must be at least as long as the message. It is not hard to see that if the
sender re-uses the one-time pad, an adversary can determine quickly a bit (if not every
thing) about the plaintext by examining the XOR of the corresponding ciphertext (if the
bits are aligned properly, the pads cancel). The National Security Agency (NSA) once
caught the Russians in such a mistake* in Project VENONA†.

* R. L. Benson, The Venona Story, National Security Agency, Center for logic History, 2001.
http://www.nsa.gov/publications/publi00039.cfm

† D. P. Moynihan (chair), Secrecy: Report of the commision on protecting and reducing govern
ment secrecy, Senate document 105-2, 103rd congress, United States government printing
office,1997.

Saltzer & Kaashoek Ch. 11, p. 100 June 24, 2009 12:29 am

http://www.nsa.gov/publications/publi00039.cfm

11.8 Cryptography as a Building Block (Advanced Topic) 11–101

11.8.2 Pseudorandom Number Generators

One shortcut to avoid having to send a long key string over a secure channel is to use a
pseudorandom number generator. A pseudorandom number generator produces deter
ministically a random-appearing bit stream from a short bit string, called the seed.
Starting from the same seed, the pseudorandom generator will always produce the same
bit stream. Thus, if both the sender and the receiver have the secret short key, using the
key as a seed for the pseudorandom generator they can generate the same, long key string
from the short key and use the long key string for the transformation.

Unlike the one-time pad, this scheme can in principle be broken by someone who
knows enough about the pseudorandom generator. The design requirement on a pseu
dorandom number generator is that it is difficult for an opponent to predict the next bit
in the sequence, even with full knowledge of the generating algorithm and the sequence
so far. More precisely:

1. 	Given the seed and algorithm, it is easy to compute the next bit of the output of

the pseudorandom generator.

2. 	Given the algorithm and some output, it is difficult (or impossible) to predict the

next bit.

3. 	Given the algorithm and some output, it is difficult (or impossible) to compute

what the seed is.

Analogous to ciphers, the design is usually open: the algorithm for the pseudorandom
generator is open. Only the seed is secret, and it must be produced from a truly random
source.

11.8.2.1 Rc4: A Pseudorandom Generator and its Use
RC4 was designed by Ron Rivest for RSA Data Security, Inc. RC4 stands for Ron’s Code
number 4. RSA tried to keep this cipher secret, but someone published a description
anonymously on the Internet. (This incident illustrates how difficult it is to keep some
thing secret, even for a security company!) Because RSA never confirmed whether the
description is indeed RC4, people usually refer to the published version as ARC4, or
alleged RC4.

The core of the RC4 cipher is a pseudorandom generator, which is surprisingly sim
ple. It maintains a fixed array S of 256 entries, which contains a permutation of the

Saltzer & Kaashoek Ch. 11, p. 101	 June 24, 2009 12:29 am

11–102 CHAPTER 11 Information Security

numbers 0 through 255 (each array entry is 8 bits). It has two counters i and j, which are
used as follows to generate a pseudorandom byte k:

1 procedure RC4_GENERATE ()

2 i ← (i + 1) modulo 256

3 j ← (j + S[i]) modulo 256

4 SWAP (S[i], S[j])

5 t ← (S[i] + S[j]) modulo 256

6 k ← S[t]

7 return k

The initialization procedure takes as input a seed, typically a truly-random number,
which is used as follows:

1 procedure RC4_INIT (seed)

2 for i from 0 to 255 do

3 S[i] ← i

4 K[i] ← seed[i]

5 j ← 0

6 for i from 0 to 255 do

7 j ← (j + S[i] + K[i]) modulo 256

8 SWAP(S[i], S[j])

9 i ← j ← 0

The procedure RC4_INIT fills each entry of S with its index: S[0] ← 0, S[1] ←1, etc. (see
lines 2 through 4). It also allocates another 256-entry array (K) with each 8-bit entries. It
fills K with the seed, repeating the seed as necessary to fill the array. Thus, K[0] contains
the first 8 bits of the key string, K[1] the second 8 bits, etc. Then, it runs a loop (lines 6
through 8) that puts S in a pseudorandom state based on K (and thus the seed).

11.8.2.2 Confidentiality using RC4
Given the RC4 pseudorandom generator, ENCRYPT and DECRYPT can be implemented as in
the one-time pad, except instead of using a truly-random key string, we use the output
of the pseudorandom generator. To initialize, the sender and receiver invoke on their
respective computers RC4_INIT, supplying the shared-secret key for the stream as the seed.
Because the sender and receiver supply the same key to the initialization procedure,
RC4_GENERATE on the sender and receiver computer will produce identical streams of key
bytes, which ENCRYPT and DECRYPT use as a one-time pad.

In more detail, to send a byte b, the sender invokes RC4_GENERATE to generate a pseu
dorandom byte k and encrypts byte b by computing c = b ⊕ k. When the receiver receives
byte c, it invokes RC4_GENERATE on its computer to generate a pseudorandom byte k1 and
decrypts the byte c by computing b ⊕ k1. Because the sender and receiver initialized the
generator with the same seed, k and k1 are identical, and c ⊕ k1 gives b.

RC4 is simple enough that it can be coded from memory, yet it appears it is compu
tationally secure and a moderately strong stream cipher for confidentiality, though it has
been noticed that the first few bytes of its output leak information about the shared-

Saltzer & Kaashoek Ch. 11, p. 102 June 24, 2009 12:29 am

11.8 Cryptography as a Building Block (Advanced Topic) 11–103

secret key, so it is important to discard them. Like any stream cipher, it cannot be used
for authentication without additional mechanism. When using it to encrypt a long
stream, it doesn’t seem to have any small cycles and its output values vary highly (RC4
can be in about 256! × 2562 possible states). The key space contains 2256 values so it is
also difficult to attack RC4 by brute force. RC4 must be used with care to achieve a sys
tem’s overall security goal. For example, the Wired Equivalent Privacy scheme for WiFi
wireless networks (see page 11–50) uses the RC4 output stream without discarding the
beginning of the stream. As a result, using the leaked key information mentioned above
it is relatively easy to crack WEP wireless encryption*.

The story of flawed confidentiality in WiFi’s use of RC4 illustrates that it is difficult
to create a really good pseudorandom number generator. Here is another example of that
difficulty: during World War II, the Lorenz SZ 40 and SZ 42 cipher machines, used by
the German Army, were similarly based on a (mechanical) pseudorandom number gen
erator, but a British code-breaking team was able, by analyzing intercepted messages, to
reconstruct the internal structure of the generator, build a special-purpose computer to
search for the seed, and thereby decipher many of the intercepted messages of the Ger
man Army.†

11.8.3 Block Ciphers

Depending on the constraints on their inputs, ciphers are either stream ciphers or block
ciphers. In a block cipher, the cipher performs the transformation from plaintext to
ciphertext on fixed-size blocks. If the input is shorter than a block, ENCRYPT must pad the
input to make it a full block in length. If the input is longer than a block, ENCRYPT breaks
the input into several blocks, padding the last block is padded, if necessary, and then
transforms the individual blocks. Because a given plaintext block always produces the
same output with a block cipher, ENCRYPT must use a block cipher with care. We outline
one widely used block cipher and how it can be used to implement ENCRYPT and DECRYPT.

11.8.3.1 Advanced Encryption Standard (AES)
Advanced Encryption Standard (AES)‡ has 128-bit (or longer) keys and 128-bit plaintext
and ciphertext blocks. AES replaces Data Encryption Standard (DES)**††, which is now
regarded as too insecure for many applications, as distributed Internet computations or

* A. Stubblefield, J. Ioannidis, and A. Rubin, Using the Fluhrer, Mantin, and Shamir attack to
break WEP, Symposium on Network and Distributed System Security, 2002.

† F. H. Hinsley and Alan Stripp, Code Breakers: The Inside Story of Bletchley Park (Oxford University
Press, 1993) page 161.

‡ Advanced Encryption Standard, Federal Information Processing Standards Publications (FIPS
PUBS) 197, National Institute of Standards and Technology (NIST), Nov. 2001.

** Data Encryption Standard. U.S. Department of Standards, National Bureau of Standards, Fed
eral Information Processing Standard (FIPS) Publication #46, January, 1977 (#46–1 updated 1988;
#46–2 updated 1994).

Saltzer & Kaashoek Ch. 11, p. 103 June 24, 2009 12:29 am

11–104 CHAPTER 11 Information Security

dedicated special-purpose machines can use a brute-force exhaustive search to quickly
find a 56-bit DES key given corresponding plaintext and ciphertext [Suggestions for Fur
ther Reading 11.5.2].

AES takes a 128-bit input and produces a 128-bit output. If you don’t know the 128
bit key, it is hard to reconstruct the input given the output. The algorithm works on a
4×4 array of bytes, called state. At the beginning of the cipher the input array in is copied
to the state array as follows:

input state output

i0 i4 i8 i12

i1 i5 i9 i13

i2 i6 i10 i14

i3 i7 i11 i15

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1.2 s1,3

s2,0 s2,1 s2,2 s2.3

s3,0 s3,1 s3,2 s3,3

o0 o4 o8 o12

o1 o5 o9 o13

o2 o6 o10 o14

o3 o7 o11 o15

At the end of the cipher the state array is copied into the output array out as depicted.
The four bytes in a column form 32-bit words.

The cipher transforms state as follows:

1 procedure AES (in, out, key)
2 state ← in // copy in into state as described above
3 ADDROUNDKEY (state, key) // mix key into state
4 for r from 1 to 9 do
5 SUBBYTES (state) // substitute some bytes in state
6 SHIFTROWS (state) // shift rows of state cyclically
7 MIXCOLUMNS (state) // mix the columns up
8 ADDROUNDKEY (state, key[r×4, (r+1)×4 – 1]) // expand key, mix in
9 SUBBYTES (state)
10 SHIFTROWS (state)
11 ADDROUNDKEY (state, key[10×4, 11×4 – 1])
12 out ← state // copy state into out as described above

The cipher performs 10 rounds (denoted by the variable r), but the last round doesn’t
invoke MIXCOLUMNS. Each ADDROUNDKEY takes the 4 words from key and adds them into
the columns of state as follows:

[s0,c,s1,c,s2,c,s3,c,s4,c] ← [s0,c,s1,c,s2,c,s3,c,s4,c] ⊕ keyr×4+c, for 0 ≤ c < 4.

That is, each word of key is added to the corresponding column in state.

†† Horst Feistel, William A. Notz, and J. Lynn Smith. Some cryptographic techniques for
machine-to-machine data communications. Proceedings of the IEEE 63, 11 (November, 1975),
pages 1545–1554. An older paper by the designers of the DES providing background on why it
works the way it does. One should be aware that the design principles described in this paper are
incomplete; the really significant design principles are classified as military secrets.

Saltzer & Kaashoek Ch. 11, p. 104 June 24, 2009 12:29 am

11.8 Cryptography as a Building Block (Advanced Topic) 11–105

For the first invocation (on line 3) of ADDROUNDKEY r is 0, and in that round
ADDROUNDKEY uses the 128-bit key completely. For subsequent rounds, AES generates
additional key words using a carefully-designed algorithm. The details and justification
are outside of the scope of this textbook, but the flavor of the algorithm is as follows. It
takes earlier-generated words of the key and produces a new word, by substituting well-
chosen bits, rotating words, and computing the XOR of certain words.

The procedure SUBBYTES applies a substitution to the bytes of state according to a
well-chosen substitution table. In essence, this mixes the bytes of state up.

The procedure SHIFTROWS shifts the last three rows of state cyclically as follows:

sr,c ← sr,(c+shift(r, 4)) modulo 4, for 0 ≤ c < 4

The value of SHIFT is dependent on the row number as follows:

SHIFT(1,4) = 1, SHIFT(2,4) = 2, and SHIFT(3,4) = 3

The procedure MIXCOLUMNS operates column by column, applying a well-chosen
matrix multiplication.

In essence, AES is a complicated transformation of state based on key. Why this
transformation is thought to be computationally secure is beyond the scope of this text.
We just note that it has been studied by many cryptographers and it is believed to secure.

11.8.3.2 Cipher-Block Chaining
With block ciphers, the same input with the same key generates the same output. Thus,
one must be careful in using a block cipher for encryption. For example, if the adversary
knows that the plaintext is formatted for a printer and each line starts with 16 blanks,
then the line breaks will be apparent in the ciphertext because there will always be an 8
byte block of blanks, enciphered the same way. Knowing the number of lines in the text
and the length of each line may be usable for frequency analysis to search for the shared-
secret key.

A good approach to constructing ENCRYPT using a block cipher is cipher-block chain
ing. Cipher-block chaining (CBC) randomizes each plaintext block by XOR-ing it with the
previous ciphertext block before transforming it (see Figure 11.9). A dummy, random,
ciphertext block, called the initialization vector (or IV) is inserted at the beginning.

More precisely, if the message has blocks M1, M2, …, Mn, ENCRYPT produces the cipher
text consisting of blocks C0, C1, …, Cn as follows:

C0 = IV and Ci ←BC (Mi ⊕ Ci-1, key) for i = 1, 2,…, n

where BC is some block cipher (e.g., AES).

To implement DECRYPT, one computes:

Mi ← Ci-1 ⊕ BC (Ci, key)

CBC has cascading change propagation for the plaintext: changing a single message bit
(say in Mi), causes a change in Ci, which causes a change in Ci+1, and so on. CBC’s cas
cading change property, together with the use of a random IV as the first ciphertext

Saltzer & Kaashoek Ch. 11, p. 105 June 24, 2009 12:29 am

11–106 CHAPTER 11 Information Security

⊕

E E E

M1

C1 C2 C3

C1

D D D

C2

M1 M2 M3

IV

IV

M2 M3 C3

⊕

⊕⊕

⊕

⊕

(a) Encipher (b) Decipher

FIGURE 11.9

Cipher-block chaining.

block, implies that two encryptions of the same message with the same key will result in
entirely different-looking ciphertexts. The last ciphertext block Cn is a complicated key-
dependent function of the IV and of all the message blocks. We will use this property
later.

On the other hand, CBC has limited change propagation for the ciphertext: changing
a bit in ciphertext block Ci causes the receiver to compute Mi and Mi+1 incorrectly, but all
later message blocks are still computed correctly. Careful study of Figure 11.9 should
convince you that this property holds.

Ciphers with limited change propagation have important applications, particularly in
situations where ciphertext bits may sometimes be changed by random network errors
and where, in addition, the receiving application can tolerate a moderate amount of con
sequently modified plaintext.

11.8.4 Computing a Message Authentication Code

So far we used ciphers for only confidentiality, but we can use ciphers also to compute
authentication tags so that the receiver can detect if an adversary has changed any of the
bits in the ciphertext. That is, we can use ciphers to implement the SIGN and VERIFY inter
face, discussed in Section 11.2. Using shared-secret cryptography, there are two different
approaches to implementing the interface: 1) using a block or stream cipher or 2) using
a cryptographic hash function. We discuss both.

Saltzer & Kaashoek Ch. 11, p. 106 June 24, 2009 12:29 am

11.8 Cryptography as a Building Block (Advanced Topic) 11–107

11.8.4.1 MACs Using Block Cipher or Stream Cipher
CBC-MAC is a simple message authentication code scheme based on a block cipher in
CBC mode. To produce an authentication tag for a message M with a key k, SIGN pads
the message out to an integral number of blocks with zero bits, if necessary, and trans
forms the message M with cipher-block chaining, using the key k as the initialization
vector (IV). (The key k is an authentication key, different from the encryption key that
the sender and receiver may also use.) All ciphertext blocks except the last are discarded,
and the last ciphertext block is returned as the value of the authentication tag (the MAC).
As noted earlier, because of cascading change propagation, the last ciphertext block is a
complicated function of the secret key and the entire message.

VERIFY recomputes the MAC from M and key k using the same procedure that SIGN

used, and compares the result with the received authentication tag. An adversary cannot
produce a message M that the receiver will believe is authentic because the adversary
doesn’t know key k.

One can also build SIGN and VERIFY using stream ciphers by, for example, using the
cipher in a mode called cipher-feedback (CFB). CFB works like CBC in the sense that it
links the plaintext bytes together so that the ciphertext depends on all the preceding
plaintext. For the details consult the literature.

11.8.4.2 MACs Using a Cryptographic Hash Function
The basic idea for computing a MAC with a cryptographic hash function is as follows.
If the sender and receiver share an authentication key k, then the sender constructs a
MAC for a message M by computing the cryptographic hash of the concatenated message
k + M: HASH (k + M). Since the receiver knows k, the receiver can recompute HASH (k + M)
and compare the result with the received MAC. Because an adversary doesn’t know k,
the adversary cannot forge the MAC for the message M.

This basic idea must be refined to make the MAC secure because without modifica
tions it has problems. For example, Lucifer can add bytes to the end of the message
without the receiver noticing. This attack can perhaps be countered with adding the
length of the message to the beginning of the message. Cryptographers have given this
problem a lot of attention and have come up with a construction, called HMAC [Sug
gestions for Further Reading 11.5.5], which is said to be as secure as the underlying
cryptographic hash function. HMAC uses two strings:

• innerpad, which is the byte 36hex repeated 64 times

• outerpad, which is the byte 5Chex repeated 64 times

Using these strings, HMAC computes the MAC for a message M and an authentication
key k as follows:

HASH ((k ⊕ outerpad) + HASH ((k ⊕ innerpad) + M))

To compute the XOR, HMAC pads k with enough zero bytes to make it of length 64. If
k is longer than 64 bytes, HMAC uses HASH (k), padded with enough zero bytes to make
the result of length 64 bytes.

Saltzer & Kaashoek Ch. 11, p. 107 June 24, 2009 12:29 am

CHAPTER 11 Information Security11–108

Sidebar 11.7: Secure Hash Algorithm (SHA) SHA* is a family of cryptographic hash
algorithms. SHA-1 takes as input a message of any length smaller than 264 bits and produces
a 160-bit hash. It is cryptographic in the sense that given a hash value, it is computationally
infeasible to recover the corresponding message or to find two different messages that produce
the same hash.

SHA-1 computes the hash as follows. First, the message being hashed is padded to make it a
multiple of 512 bits long. To pad, one appends a 1, then as many 0’s as necessary to make it
64 bits short of a multiple of 512 bits, and then a 64-bit big-endian representation of the length
(in bits) of the unpadded message. The padded string of bits is turned into a 160-bit value as
follows.

The message is split into 512-bit blocks. Each block is expanded from 512 bits (16 32-bit
words M) to 80 32-bit words as follows (W(t) is the t-th word):

Mt, for t = 0 to 15
W(t) = (W(t–3) ⊕ (W(t–8) ⊕ (W(t–14) ⊕ (W(t–16)<<<1 for t = 16 to 79

where <<< is a left circular shift.

SHA uses four nonlinear functions and four 32-bit constants. The four functions are

(X & Y) | ((~X) & Z), for t = 0 to 19
F(t, x, y, z) = (X ⊕ Y ⊕ Z), for t = 20 to 39

(X & Y) | (X & Z) | (Y & Z), for t = 40 to 59
X ⊕ Y ⊕ Z, for t = 60 to 79

The constants are

5A827999hex, for t = 0 to 19 // 2.5/4 in hex
K (t) = 6ED9EBA1hex, for t = 20 to 39 // 3.5/4 in hex

8F1BBCDChex, for t = 40 to 59 // 5.5/5 in hex
CA62C1D6hex, for t = 60 to 79 // 10.5/4 in hex

(Sidebar continues)

* Secure hash standard, Federal Information Processing Standards Publications (FIPS PUBS)
180-1, National Institute of Standards and Technology (NIST), April 1995.

HMAC can be used with any good cryptographic hash function. Sidebar 11.7
describes SHA-1, a widely used cryptographic hash function. Even though SHA-1 must
have collisions, no one has uncovered an example of one so far. Recent findings (Febru
ary 2005) suggest weaknesses in SHA-1 and National Institute for Standards and
Technology is recommending switching to longer versions named SHA-256 and SHA
512. Some cryptographers are recommending that research on designing cryptographic
hash functions should start over.

Saltzer & Kaashoek Ch. 11, p. 108 June 24, 2009 12:29 am

11.8 Cryptography as a Building Block (Advanced Topic) 11–109

SHA uses five 32-bit variables (160 bits) to compute the hash. They are initialized and copied
into 5 temporary variables:

a ← A ← 67452301hex
b ← B ← EFCDAB89hex
c ← C ← 98BADCFEhex
d ← D ← 10325476hex
e ← E ← C3D2E1F0hex

The 160-bit hash value for a message is now computed as follows:

1 for each 512-bit block of M do
2 for t from 0 to 79 do
3 x ← (a <<< 5) + F(t, b, c, d) + e + W(t) + K(t)
4 e ← d
5 d ← c
6 c ← b <<< 30
7 b ← a
8 a ← x
9 A ← A + a; B ← B + b; C ← C + c; D ← D + d; E ← E + e
10 hash = A + B + C + D + E // concatenate A, B, C, D, and E

Other hashes in the SHA family are similar in spirit, but have different constants, word sizes,
and produce hash values with more bits. For example, SHA-256 has a different W, F, and
produces a 256-bit value.The justification for the SHA family of hashes is outside the scope of
this text.

11.8.5 A Public-Key Cipher

The ciphers described so far are shared-secret ciphers. Both the sender and receiver must
know the shared secret key. Public-key ciphers remove this requirement, which opens up
new kinds of applications, as the main body of the chapter described. The literature con
tains several public-key ciphers. We explain the first invented one because it is easy to
explain, yet is still believed to be secure.

11.8.5.1 Rivest-Shamir-Adleman (RSA) Cipher
The security of the RSA cipher relies on a simple-to-state (but hard to solve) well-known
problem in number theory [Suggestions for Further Reading 11.5.1]. RSA was devel
oped at M.I.T. in 1977 (patent number 4,405,829), and is named after its inventors:
Rivest, Shamir, and Adleman (RSA). It is based on properties of prime numbers; in par
ticular, it is computationally expensive to factor large numbers (for ages mathematicians
have been trying to come up with efficient algorithms with little success), but much
cheaper to find large primes.

Saltzer & Kaashoek Ch. 11, p. 109 June 24, 2009 12:29 am

11–110 CHAPTER 11 Information Security

The basic idea behind RSA is as follows. Initially you choose two large prime numbers
(p and q, each larger than 10100). Then compute n = p × q and z = (p – 1) × (q – 1), and
find a large number d that is relatively prime to z. Finally, find an e such that e × d = 1
(modulo z). After finding these numbers once, you have two keys, (e, n) and (d, n), which
are hard to derive from each other, even though n is public.

For now assume that the message to be transformed using RSA has a value P that is
greater than or equal to zero and smaller than n. (Sections 11.8.5.2 and 11.8.5.3 discuss
how to use RSA for signatures and encryption of any message in more detail.) The cipher
C is computed by raising P to the power e: Pe (modulo n). To decipher, we compute C to
the power d: Cd (modulo n).

The reason this works is as follows. Cd = Ped = Pk(p – 1)(q – 1) + 1, since e × d = 1 (modulo
z). Now, Pk(p – 1)(q – 1)+1 = P × Pk(p – 1)(q – 1) = P × P0 = P × 1 = P. The theorem that the
exponent k(p – 1)(q – 1) = 0 (modulo n) is a result by Euler and Fermat (see I. Niven and
H.S. Zuckerman, An introduction to the Theory of Numbers, Wiley, New York, 1980).

An example with concrete numbers may illuminate the abstract mathematics. If one
chooses p = 47 and q = 59, then e is 17 and d = 157 because e × d = 1 (modulo 2668).
This gives us two keys: (17, 2773) and (157, 2773). Now we can transform any P with
a value between 0 and 2773. For example, if P is 31, C is 587 = 3117 (modulo 2773). To
reverse the transform, we compute 587157 = 31 (modulo 2773).

One way to break this scheme is to factor the modulus (n). In 1977 Ron Rivest (the
R in RSA) estimated that factoring a 125-digit decimal number would take 40 quadril
lion years, using the best known algorithms and state-of-the-art hardware running at 1
million instructions per second*. To test this claim and to encourage research into com
putational number theory and factoring, RSA Security, the company commercializing
RSA, has posted several products of two primes, also called RSA numbers, as factoring
challenges. Understanding the speed at which factoring can be done helps in choosing a
suitable key length for a desired level of security.

In 1994, a group of researchers under the guidance of A.J. Lenstra factored a 129
digit decimal RSA number in 8 months using the Internet as a parallel computer, with
out paying for the cycles†. It required 5,000 MIPS years (i.e., 5,000 one-million
instructions-per-second computers each running for one year). Rivest’s calculation is an
example of the hazards involved in estimating an historic work factor. Better algorithms
have been developed, allowing the computation to be performed in only 5,000 MIPS
years instead of 40 quadrillion MIPS years, and communication technology has
improved substantially, allowing a 5,000 or more computers to be harnessed to perform
that much computation in only one year.

In November 2005, the RSA challenge number of 193 decimal digits was factored in
3 months using even better algorithms and faster computers (80 2.2 Gigahertz Opteron

* Martin Gardner, Mathematical games: A new kind of cipher that would take million of years to break,
Scientific American 237, pages 120–124, August 1977.

† K. Leutwyler, Superhack: forty quadrillion years early, 129-digit code is broken, Scientific American,
271, 17–20, 1994.

Saltzer & Kaashoek Ch. 11, p. 110 June 24, 2009 12:29 am

11.8 Cryptography as a Building Block (Advanced Topic) 11–111

processors). A 193 decimal digit number is 640 binary bits. Currently it is considered
secure to use 1024-bit RSA numbers as keys. The RSA challenge numbers of 704, 768,
896, 1024, 1536, and 2048 bits are still open.

The security of RSA is based on its historical work factor. At this point, there are no
known algorithms for factoring large numbers quickly. Although several other public-
key ciphers exist, some of which are not covered by patents, to date no public-key system
has been found for which one can prove a sufficiently large lower bound on the work fac
tor. The best statement one can make now is the work factor based on the best known
algorithms. It might be possible that some day a technique is discovered that may lead to
fast factoring (e.g., using quantum computation), and thereby undermine the security of
RSA.

RSA needs prime numbers; fortunately, there are many of them and generating them
is much easier than factoring a product of two primes: ‘‘is n prime?’’ is a much easier
question than ‘‘what are the factors of n?’’ There are approximately n/ln(n) prime num
ber less than or equal to n. Thus, for numbers that can be expressed with 1024 bits or
fewer, there are approximately 21021 prime numbers. Therefore, we won’t run out of
prime numbers, if everyone needs two prime numbers different from everyone else’s
primes. In addition, an adversary won’t have a lot of success creating a database that con
tains all prime numbers because there are so many.

11.8.5.2 Computing a Digital Signature
An important use of public-key ciphers is to implement the SIGN and VERIFY interface. If
this interface is implemented using public-key cryptography, the authentication tag is
called a digital signature. The basic idea—which needs refinement to be secure—for
computing an RSA digital signature is as follows. SIGN produces an authentication tag by
raising M to the private exponent. VERIFY raises the authentication tag to the public expo
nent, compares the result to the received message, and returns ACCEPT if they match and
REJECT if don’t.

The implementation doesn’t always guarantee authenticity, however. For example, if
Lucifer succeeds in having Alice sign messages M1 and M2, then he can claim that Alice
also signed M3, where M3 is the product of M1 and M2: (M3)d = (M1 × M2)d = M1

d × M2
d

(modulo n). Thus, if Lucifer sends M3 to Bob, when Bob uses Alice’s public key to verify
message M3 that message will appear to have been signed by Alice.

To avoid this problem (and some others) SIGN usually computes a cryptographic hash
of the message, and creates an authentication tag by raising this hash to the private expo
nent. This also has the pleasant side effect that it simplifies signing large messages because
n only has to be larger than the value of the hash output, and we don’t have to worry
about splitting the message into blocks and signing each block. Upon receipt, VERIFY

recomputes the hash from the received version of the message, raises the hash to the pub
lic exponent, and compares the result with the received authentication tag.

Using a cryptographic hash helps in constructing a secure SIGN and VERIFY but isn’t suf
ficient either. There is a substantial literature that presents even better schemes that also
address other subtle issues that come up in the design of a good digital signature scheme.

Saltzer & Kaashoek Ch. 11, p. 111 June 24, 2009 12:29 am

11–112 CHAPTER 11 Information Security

11.8.5.3 A Public-Key Encrypting System
ENCRYPT and DECRYPT can also be implemented using public-key cryptography, but because
operations in public-key systems are expensive (e.g., exponentiation in RSA instead of
XOR in RC4), public-key implementations of ENCRYPT and DECRYPT are used sparingly. As
described in Section 11.5, public-key encryption is used only to encrypt a newly-minted
shared-secret key during the set up of a connection between a sender and a receiver, and
then that secret-secret key is used for shared-secret encryption of further communication
between the sender and the receiver. For example, SSL/TLS, which is described in the
next section, uses this approach.

The basic idea, which needs refinement to be secure, for implementing ENCRYPT and
DECRYPT using RSA is as follows. Split the message M into fixed size blocks P so that the
value of P is smaller than n, then ENCRYPT raises P to the public exponent (d). DECRYPT raises
the encrypted block to the private exponent (e). This order is exactly the opposite of the
one for SIGN; SIGN raises to the private exponent and VERIFY raises to the public exponent.

That the order is the opposite doesn’t matter because RSA is reversible. Since (Md)e =
(Me)d = Med (modulo n), one can raise to the public exponent (e) first, and raise to the
private exponent (d) second, or vice versa, and either way obtain M back. It is claimed
that the security of RSA is equally good both ways.

This basic implementation is relatively weak; there are a number of well-known
attacks if the RSA cipher is used by itself for encrypting. To counter these attacks, ENCRYPT

should pad short blocks with independent randomized variables so that the value of P is
close to n, and then raise the padded P to the public exponent. In addition, ENCRYPT

should run the message through what is called an all or nothing transform (AONT). An
AONT is a non-secret, reversible transformation of a message that ensures that the
receiver must have all of the bits of the transformed message in order to recover any of
the bits of the original message. Thus, an adversary cannot launch an attack by just con
centrating on individual blocks of the message. Readers should consult the literature to
learn what other measures are necessary to obtain a good implementation of ENCRYPT and
DECRYPT using RSA

11.9 .Summary
Section 11.1 of this chapter provided a general perspective on how to think about build
ing secure systems, including a set of design principles, and was then followed by 7
sections of details. One might expect, after reading all this text, that one should now
know how to build secure computer systems.

Unfortunately, this expectation is incorrect. Section 11.11 relates several war stories
of security system failures that have occurred over a 40-year time span. Failures from
decades past might be explained as mistakes while learning that have helped lead to the
better understanding now provided in this chapter. But most of the design principles
presented in this chapter were formulated and published back in 1975. The section
includes several examples of recent failures, which are reinforced by regular reports in the

Saltzer & Kaashoek Ch. 11, p. 112 June 24, 2009 12:29 am

11.9 .Summary 11–113

media about yet another virus, worm, distributed denial-of-service attack, identity theft,
stolen credit card, or defaced Web site. If we know how to build secure systems, why does
the real world of the Internet, corporate services, desktop computers, and personal com
puters seem to be so vulnerable?

The question does not have a single, simple answer. A lot of different things are tan
gled together. There are honest and dishonest opinions that the security problem isn't
that important, and thus it is unnecessary to get it right. Since organizations prefer not
to disclose security problems, it is even difficult to establish what the cost of a security
compromise is. Some problems are due to designers just building systems that are too
complex. Some problems come from lack of awareness. Some problems are due to
designers attempting to build secure systems on Internet time, and not taking the time
to do it properly. Some problems arise from ignorance. To get a handle on this general
question it is helpful to split the question into several more specific questions:

• 	The Internet protocols do not provide a default of authentication of message
source and privacy of message contents. Why? As discussed in Section 11.1, when
the Internet was designed processors weren’t fast enough to apply cryptographic
transformations in software, the deployment of cryptographic-transformation
hardware was hindered by government export regulations, and good key
distribution protocols hadn’t been designed yet. Since the Internet was originally
primarily used by a cooperative set of academics, this lack of security was also not
a serious omission. By the time it became economically feasible to do ciphers in
software, key distribution was understood, and government export regulations
were relaxed, the insecure protocols were so widespread that it was too hard to do
a retrofit. Section 11.10 describes one of the now most widely-used secure
protocols for Web transactions on the Internet.

• 	 Personal computer systems do not come with enforced modularity that creates
strong internal firewalls between applications. Why? The main reasons are keeping
the cost low and naivité. Initially PCs were designed to be inexpensive computers
for personal use. Few people, or perhaps nobody, anticipated that the rapid
improvements in technology would lead to the current situation where PCs are the
dominant platform for all computing. Furthermore, as explained in Section 5.7, it
took the PC designers and operating system vendors for PCs several iterations to
get the designs for enforced modularity correct. Currently vendors are struggling
to make PCs easier to configure and manage so that they aren’t as vulnerable to
attacks.

• 	Inadequately secured computers are attached to the Internet. 	Why? Most
computers on the Internet are personal computers. When originally conceived
personal computers were for personal computing, which at the time was editing
documents and playing games. Network attacks were impossible, and thus
network security was just not a requirement. But the value of being attached to the
Internet grew rapidly as the number of available services increased. The result was

Saltzer & Kaashoek Ch. 11, p. 113	 June 24, 2009 12:29 am

11–114 CHAPTER 11 Information Security

that most users pursued that evident value, without much concern about the risks,
which at first, despite warnings, seemed mostly hypothetical.

• 	 UNIX systems, commonly used as services, have enforced modularity, but many
UNIX services were originally (and some still seem to be) vulnerable to buffer-
overrun attacks (see Sidebar 11.4), which subvert modular boundaries. Why are
these buffer overruns so difficult to eradicate? As explained in the sidebar, the main
reason is the success of the C programming language, which was not designed to
check array bounds. Much system software is written in C and has been deployed
successfully for decades. A drastic change to the C programming language (or its
library) is now difficult because change would break most existing C programs. As
a result, each service program must be fixed individually.

• 	Why isn’t	 software verified for security? Recent progress has been made in
analyzing cryptographic algorithms, checking software for common security
problems, and verifying security protocols within an adversary model. All these
techniques are useful for verifying properties of a system, but they don’t prove that
a system is secure. In general, we don’t know what properties to verify to proof
security.

• 	 Why don't basic economic principles reward the company that produces secure
systems? For example, why don't customers buy the more secure products, why
don't firms that insure companies against security attacks cause software to be
better, etc.? Economics is indeed a factor in information security, but the
economic factors interact in surprising ways, and these questions don't have simple
answers. Sidebar 11.8 summarizes some of the interactions, and their
consequences.

• 	 Why doesn't security certification help more? There are no adequate standards for
what kind of attacks a minimal secure system should protect against. Standards
that do exist for security requirements are out of date because they don’t cover
network security. Standardization organizations have a difficult time keeping up
with the rate of change in technology.

• 	 Many secure systems require a public key infrastructure, but no universal PKI
exists. Why? PKIs exist only in isolated islands, limited to a single institution or
application. For example, there is a specialized PKI that supports only the use of
SSL/TLS in the World-Wide Web. Why doesn’t a universal one exist? A reason is
that realistically it is difficult to develop a single one that is satisfactory to everyone.
Anyone trying to propose one has run into political and economic problems.

• 	Many organizations have installed network firewalls between their internal
network and the Internet. Do they really help? Yes, but in a limited way, and they
have the danger of creating a false sense of security. Because desktop and service
operating systems have so many security problems (for the reasons mentioned

Saltzer & Kaashoek Ch. 11, p. 114	 June 24, 2009 12:29 am

11.9 .Summary 11–115

Sidebar 11.8: Economics of computer security Why is the company that produces software
with fewest security vulnerabilities not the most successful one? Ross Anderson has studied
some of the many economic factors in play and analyzed their impact on information security*.
First, there are misaligned incentives. For example, under U.S. law it is the bank’s burden to
prove that a fraudulent withdrawal at an automated teller machine (ATM) is the customer’s
fault, but under U.K. law, it is the customer’s burden to prove that a fraudulent ATM
withdrawal is the bank’s fault. One might think that U.K. banks spend less money on security,
but Anderson reports that the opposite is true: U.K. banks spend more money on security and
experience more fraud. It appears that U.K. banks became lazy and careless, knowing that
customers complaints of fraud did not require a careful response on their part.

Second, there are network externalities: the larger the network of developers and users the more
valuable that network is to each of its members. Selecting a new operating system partly
depends on the number of other people who made the same choice (i.e., because it simplifies
exchanging files in closed formats). While an operating system vendor is building market
dominance, it must appeal to vendors that complement the operating system as well as the
customers. Since security could get in the way of vendors complementing the operating system,
operating system vendors have a strong incentive to ignore security in the beginning in favor
of features that might help obtain market leadership, and address security later. Unfortunately,
adding on security later is never as good as security that is part of the original design.

Third, there are security externalities. For example, if a PC owner considers spending $40 to
buy a good firewall, that owner is not the primary beneficiary; what the firewall really protects
is targets like Google and Microsoft because because by avoiding becoming a bot the firewall
installer is helping prevent distributed denial-of-service attacks on other sites. Thus the
incentive to purchase and install the firewall is low. Bot herders understand this phenomenon
well, so they are careful not to attack the files stored on the bots themselves or otherwise give
the owner of the bot any incentive to install the firewall.

Finally, security risks are interdependent. A firm’s computer infrastructure is often connected
to infrastructure under control of others (e.g., the Internet) or uses software written by others,
and so the firm’s efforts may be undermined by security failures elsewhere. In addition, attacks
often exploit a weakness in a system used by many firms. This interdependence makes security
risks unattractive to insurers, and as a result there are no market pressures from them.

The impact of economics on computer security is an emerging field of study, and as it develops
the explanations might change, the actions of companies may change, but for now it is clear
simple economic analysis may miss important interactions.

* Ross Anderson and Tyler Moore, The Economics of Information Security, Science, 314 (5799),
Oct. 2006, pp. 610–613.

Saltzer & Kaashoek Ch. 11, p. 115 June 24, 2009 12:29 am

11–116 CHAPTER 11 Information Security

above), end-to-end security is difficult to achieve. If firewalls are properly deployed
they can keep the external, low-budget adversaries away from the vulnerable
internal computers. But firewalls don’t help against inside adversaries, nor against
adversaries that find ways around the firewall to reach the inside network from the
outside (e.g., by using the internal wireless network from outside, dialing into a
desktop computer that is connected both to the internal network and the
telephone system, by hitching rides on data or program files that inside users
download through the firewall or load from detachable media, etc.)

• 	 One hears reports that wireless network (WiFi or 802.11b/g) security is weak. This
is a relatively new design. Why is it so vulnerable? As mentioned in Section 11.1,
one reason appears to be that the security design was done by a committee that was
expensive to join, and that only committee members were allowed to review the
design. As a result, although the design was nominally open, it was effectively
closed, and few security experts actually reviewed the design until after it was
deployed, at which point several security weaknesses (for an example see page
11–51) were identified.

• 	 Cable TV scrambling systems, DSS (Satellite TV) security, the CSS system for
protecting DVD movie content, and a proposed music watermarking system, were
all compromised almost immediately following their deployment. Why were these
systems so easy to break? Many of these systems used a closed design and the right
people didn’t review it. When the system was deployed, experts investigated the
design and immediately found problems.

In addition to these more specific reasons, there are two general problems that con
tribute to the large number of security vulnerability. First, the rate of innovation is high
in computer systems. New technologies emerge and are deployed must faster than their
designers anticipated and the lack of a security plan in the initial versions becomes a
problem suddenly. Furthermore, successful technologies become deployed for applica
tions that the designer didn’t anticipate and often turn out to have additional security
requirements. Second, no one has a recipe for building secure systems because these sys
tems try to achieve a negative goal. Designing and implementing secure systems requires
experts that are extremely careful, have an eye for detail, and exhibit a paranoid attitude.
As long as the rate of innovation is high and there is no recipe for engineering secure sys
tems, it is likely that security exploits will be with us. The TLS example in Section 11.10
describes a successful secure protocol (with some growing pains to get it right) and the
examples in Section 11.11 illustrate many ways to get things wrong.

11.10 Case Study: Transport Layer Security (TLS) for the Web
The Transport Layer Security (TLS) protocol* is a widely used security protocol to estab
lish a secure channel (confidential and authenticated) over the Internet. The TLS

Saltzer & Kaashoek Ch. 11, p. 116	 June 24, 2009 12:29 am

11.10 Case Study: Transport Layer Security (TLS) for the Web 11–117

protocol is at the time of this writing a proposed international standard. TLS is a version
of the Socket Security Layer (SSL) protocol, defined by Netscape in 1999, so current lit
erature frequently uses the name “SSL/TLS” protocol. The TLS protocol has some
improvements over the last version (3) of the SSL protocol, and this case study describes
the TLS protocol, version 1.2.

The TLS protocol allows client/service applications to communicate in the face of
eavesdroppers and adversaries who would tamper with and forge messages. In the hand
shake phase, the TLS protocol negotiates, using public-key cryptography, shared-secret
keys for message authentication and confidentiality. After the handshake, messages are
encrypted and authenticated using the shared-secret keys. This case study describes how
TLS sets up a secure channel, its evolution from SSL, and how it authenticates principals.

11.10.1 The TLS Handshake

The TSL protocol consists of several protocols, including the record protocol which
specifies the format of messages between clients and services, the alert protocol to com
municate errors, the change cipher protocol to apply a cipher suite to messages sent using
the record layer protocol, and several handshaking protocols. We describe the handshake
protocol for the case where an anonymous user is browsing a Web site and requires ser
vice authentication and a secure channel to that service.

Figure 11.10 shows the handshake protocol for establishing a connection from a cli
ent to a server. The CLIENTHELLO message announces to the service the version of the
protocol that the client is running (SSL 2.0, SSL 3.0, TLS 1.0, etc.), a random sequence
number, and a prioritized set of ciphers and compression methods that the client is will
ing to use. The session_id in the CLIENTHELLO message is null if the client hasn’t connected
to the service before.

The service responds to the CLIENTHELLO message with 3 messages. It first replies with
a SERVERHELLO message, announcing the version of the protocol that will be used (the
lower of the one suggested by the client and the highest one supported by the service), a
random number, a session identifier, and the cipher suite and compression method
selected from the ones offered by the client.

To authenticate the service to the client, the service sends a SERVERCERTIFICATE mes
sage. This message contains a chain of certificates, ordered with the service’s certificate
first followed by any certificate authority certificates proceeding sequentially upward.
Usually the list contains just two certificates: a certificate for the public key of the service
and a certificate for the public key of the certification authority. (We will discuss certif
icates in more detail in Section 11.10.3.)

After the service sends its certificates, it sends a SERVERHELLODONE message to indicate
that it is done with the first part of the handshake. After receiving this message and after
satisfactorily verifying the authenticity of the service, the client generates a 48-byte

* Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) protocol Version 1.2. RFC
4346. November 2007.

Saltzer & Kaashoek Ch. 11, p. 117 June 24, 2009 12:29 am

11–118 CHAPTER 11 Information Security

Client Service

1. {ClientHello, client_version, randomclient, session_id, cipher_suites, compression_f}

2. {ServerHello, server_version, randomserver, session_id, cipher_suite, compression_f}

3. {ServerCertificate, certificate_list}

4. {ServerHelloDone}

5. {ClientKeyExchange, ENCRYPT (pre_master_secret, ServerPubKey)}

6. {ChangeCipherSpec, cipher_suite}

client_write_key
7. {Finished, MAC (master_secret, messages 1, 2, 3, 4, 5)}client_write_MAC_secret

8. {ChangeCipherSpec, cipher_suite}

server_write_key
9. {Finished, mac (master_secret, messages 1, 2, 3, 4, 5, 7)}server_write_MAC_secret

client_write_key
10. {Data, plaintext}

client_write_MAC_secret

FIGURE 11.10

Typical TLS exchange of handshake protocol messages.

pre_master_secret. TLS supports multiple public-key systems and depending on the
choice of the client and service, the pre_master_secret is communicated to the service in
slightly different ways.

In practice, TLS typically uses a public-key system, in which the client encrypts the
pre_master_secret with the public key of the service found in the certificate, and sends
the result to the service in the CLIENTKEYEXCHANGE message. The pre_master_secret thus
can be decrypted by any entity that knows the private key that corresponds to the public
key in the certificate that the service presented. The security of this scheme therefore

Saltzer & Kaashoek Ch. 11, p. 118 June 24, 2009 12:29 am

11.10 Case Study: Transport Layer Security (TLS) for the Web 11–119

depends on the client carefully verifying that the certificate is valid and that it corre
sponds to the desired service. This point is explored in more detail in Section 11.10.3,
below.

The pre_master_secret is used to compute the master_secret using the service and
client nonce (“+” denotes concatenation):

master_secret ← PRF (pre_master_secret, “master secret”, randomclient+ randomserver)

PRF is a pseudorandom function, which takes as input a secret, a label, and a seed. As out
put it generates pseudorandom bytes. TLS assigns the first 48 bytes of the PRF output to
the master_secret. The TLS version 1.2 uses a PRF function that is based on the HMAC
construction and the SHA-256 hash function (see Section 11.8 for the HMAC construc
tion and the SHA family of hash functions).

It is important that the master_secret be dependent both on the pre_master_secret

and the random values supplied by the service and client. For example, if the random
number of the service were omitted from the protocol, an adversary could replay a
recorded conversation without the service being able to tell that the conversation was old.

After the master_secret is computed, the pre_master_secret should be deleted from
memory, since it is no longer needed and continuing to store it would just create an
unnecessary security risk.

After sending the encrypted pre_master_secret, the client sends a CHANGECIPHERSPEC

message. This message* specifies that all future message from the client will use the
ciphers specified as the encrypting and authentication ciphers.

The keys for message encrypting and authentication ciphers are computed using the
master_secret, randomclient, and randomserver (which both the client and the service now
have). Using this information a key block is computed:

key_block ← PRF (master_secret, “key expansion”, randomserver + randomclient)

until enough output has been produced to provide the following keys:

client_write_MAC_secret[CipherSpec.hash_size]

server_write_MAC_secret[CipherSpec.hash_size]

client_write_key[CipherSpec.key_material]

server_write_key[CipherSpec.key_material]

client_write_IV[CipherSpec.IV_size]

server_write_IV[CipherSpec.IV_size]

The first 4 variables are the keys for authentication and confidentiality, one for each
direction. The last 2 variables are the initialization vectors, one for each direction, for
ciphers using CBC mode (see Section 11.8). These variables together are the state neces
sary for the client and the service to communicate securely.

Now the client sends a FINISHED message to announce that it is done with the hand
shake. The FINISHED message contains at least 12† bytes of the following output:

* The TLS standard considers ChangeCipherSpec not part of the handshake protocol, but part of
the Change Cipher Spec protocol, even though the handshake protocol uses it.

† Clients may specify in the HELLO message that they prefer more bytes.

Saltzer & Kaashoek Ch. 11, p. 119 June 24, 2009 12:29 am

11–120 CHAPTER 11 Information Security

PRF (master_secret, finish_label, HASH (handshake_messsages))

The FINISHED message is a verifier of the protocol sequence so far (the value of all mes
sages starting at the CLIENTHELLO message, but not including the FINISHED message). The
client use the value “client finished” for finish_label. HASH is the same hash function used
for the PRF, SHA-256. If the service verifies the hash, the service and client agree on the
protocol sequence and the master_secret. TLS encrypts and authenticated the FINISHED

message using the cipher suite that the client and service agreed on in the HELLO messages.
After the service receives the client’s FINISHED message, it sends a CHANGECIPHERSPEC

message, informing the client that all subsequent messages from service to client will be
encrypted and authenticated with the specified ciphers. (The client and service can use
different ciphers for their traffic.) Like the client, the service concludes the handshake
with a FINISHED message, but uses the value “server finished” for finish_label. After both
finish messages have been received and checked out correctly, the client and service have
a secure (that is, encrypted and authenticated) channel over which they can carry on the
remainder of their conversation.

11.10.2 Evolution of TLS

The TLS handshake protocol is more complicated than some of the protocols that we
described in this chapter. In a large part, this complexity is due to all the options TLS
supports. It allows a wide range of ciphers and key sizes. Service and client authentication
are optional. Also, it supports different versions of the protocol. To support all these
options, the TLS protocol needs a number of additional protocol messages. This makes
reasoning about TLS difficult, since depending on the client and service constraints, the
protocol has a different set of message exchanges, different ciphers, and different key
sizes. Partly because of these features the predecessors of TLS 1.2, the earlier SSL proto
cols, were vulnerable to new attacks, such as cipher suite substitution and version
rollback attacks.

In version 2 of SSL, the adversary could edit the CLIENTHELLO message undetected,
convincing the service to use a weak cipher, for example one that is vulnerable to brute-
force attacks. SSL Version 3 and TLS protect against this attack because the FINISHED

message computes a MAC over all message values.
Version 3 of SSL accepts connection requests from version 2 of SSL. This opens a ver

sion-rollback attack, in which an adversary convinces the service to use version 2 of the
protocol, which has a number of well-documented vulnerabilities, such as the cipher sub
stitution attack. Version 3 appears to be carefully designed to withstand such attacks, but
the specification doesn’t forbid implementations of version 2 to resume connections that
were started with version 3 of the protocol. The security implications of this design are
unclear.

One curious aspect of version 3 of the SSL protocol is that the computation for the
MAC of the FINISHED messages does not include the CHANGECIPHER messages. As pointed
out by Wagner and Schneier, an adversary can intercept the CHANGECIPHER message and

Saltzer & Kaashoek Ch. 11, p. 120 June 24, 2009 12:29 am

11.10 Case Study: Transport Layer Security (TLS) for the Web 11–121

delete it, so that the service and client don’t update their current cipher suite. Since mes
sages during the handshake are not encrypted and authenticated, this can open a security
hole. Wagner and Schneier describe an attack that exploits this observation [Suggestions
for Further Reading 11.5.4]. Currently, widely used implementations of SSL 3.0 protect
against this attack by accepting a FINISHED message only after receiving a CHANGECIPHER

message.
TLS is the international standard version of SSL 3.0, but also improves over SSL 3.0.

For example, it mandates that a FINISHED message must follow immediately after a
CHANGECIPHER message. It also replaces ad-hoc ways of computing hash functions in var
ious parts of the SSL protocol (e.g., in the FINISHED message and master_secret) with a
single way, using the PRF function. TLS 1.1 has a number of small security improvements
over 1.0. TLS 1.2 improves over TLS 1.1 by replacing an MD5/SHA-1 implementation
of PRF with one specified in the cipher suite in the HELLO messages, preferable based on
SHA-256. This allows TLS to evolve more easily when ciphers are becoming suspect
(e.g., SHA-1).

11.10.3 Authenticating Services with TLS

TLS can be used for many client/service applications, but its main use is for secure Web
transactions. In this case, a Web browser uses TLS to set up a message-authenticated,
confidential communication connection with a Web service. HTTP requests and
responses are sent over this secure connection. Since users typically visit Web sites and
perform monetary transactions at these sites, it is important for users to authenticate the
service. If users don’t authenticate the service, the service might be one run by an adver
sary who can now record private information (e.g., credit card numbers) and supply fake
information. Therefore, a key problem TLS addresses is service authentication.

The main challenge for a client is to convince itself that the service’s public key is
authentic. If a user visits a Web site, say amazon.com (an on-line book retailer), then a
user wants to make sure that the Web site the user connects to is indeed owned by Ama
zon.com Inc. The basic idea is for Amazon to sign its name with its private key. Then,
the client can verify the signed name using Amazon’s public key. This approach reduces
the problem to securely distributing the public key for Amazon. If it is done insecurely,
an adversary can convince the client that the adversary has the public key of Amazon, but
substitute the adversary’s own public key and sign Amazon’s name with the adversary’s
private key. This problem is an instance of the key-distribution problem, discussed in
Section 11.5.

TLS relies on well-known certification authorities for key distribution. An organiza
tion owning a Web site buys a certificate from one or more certification authorities. Each
authority runs a certification check to validate that the organization is the one it claims
to be. For example, a certification authority might ask Amazon Inc. for articles of incor
poration to prove that it is the entity it claims to be. After the certification authority has
verified the identity of the organization, it issues a certificate. The certificate contains the
public key of the organization and the name of the organization, signed with the private

Saltzer & Kaashoek Ch. 11, p. 121 June 24, 2009 12:29 am

11–122 CHAPTER 11 Information Security

structure certificate
version
serial_number
signature_cipher_identifier
issuer_signature
issuer_name
subject_name
subject_public_key_cipher_identifier
subject_public_key
validity_period

FIGURE 11.11

Some fields in version 3 of the X.509 certificate

key of the certificate authority. (The service sends the certificates in step 3 of the hand
shake protocol, described in Section 11.10.1.)

The client verifies the certificate as follows. First, it obtains in a secure way the public
key of certification authorities that it is willing to trust. Typically a number of public keys
come along with the distribution of a Web browser. Second, after receiving the service
certificates, it uses the public keys of the authorities to verify one of the certificates. If one
of the certificates verifies correctly, the client can be confident about the name of the
organization owning the service. Whether a user can trust the organization that goes by
that name is a different question and one that the user must resolve using psychological
means.

TLS uses certificates that are standardized by the ISO X.509 standard. Figure 11.11
shows some of the fields in Version 3 of X.509 certificates (the standard specifies them
in a different order). The version field specifies the version of the certificate (it would be
3 in this example). The serial_number field contains a nonce assigned by the issuing cer
tification authority and different for every certificate. The signature_cipher_identifier

field identifies the algorithm used by the authority to sign this certificate. This informa
tion allows a client of the certification authority to know which of several standard
algorithms to use to verify the issuer_signature field, which contains the value of the cer
tificate’s signature. If the signature checks out, the recipient can believe that the
information in the certificate is authentic. The issuer_name field specifies the real-world
name of the certificate authority. The subject_name field specifies the real-world name
for the principal. The two other subject fields specify the public-key cipher the principal
wants to use (say RSA), and the principal’s public key.

The validity_period field specifies the time for which this signature is valid (the start
and expiry dates and times). The validity_period field provides a weak method for key
revocation. If Amazon obtains a certificate and the certificate is valid for 12 months (a
typical number) and if the next day an adversary compromises the private key of ama
zon.com, then the adversary can impersonate amazon for the next 12 months. To

Saltzer & Kaashoek Ch. 11, p. 122 June 24, 2009 12:29 am

http:zon.com

11.10 Case Study: Transport Layer Security (TLS) for the Web 11–123

counter this problem a certification authority maintains a certification revocation list,
which contains compromised certificates (identified by the certificate’s serial number).
Anyone can download the certificate revocation list to check if a certificate is on this
blacklist. Unfortunately, revocation lists are not in widespread use today. Good certifi
cate revocation procedures are an open research problem.

The crucial security step for establishing a principal’s identity is the certification pro
cess executed by the certification authority. If the authority issues certificates without
checking out the identity of the organization owning the service, the certificate doesn’t
improve security. In that case, Lucifer could ask the certification authority to create a cer
tificate for Amazon.com Inc. If the authority doesn’t check Lucifer’s identity, Lucifer will
obtain a certificate for Amazon Inc. that binds the name Amazon Inc. to Lucifer’s public
key, allowing Lucifer to impersonate Amazon Inc. Thus, it is important that the certifi
cation authority do a careful job of certifying the principal’s identity. A typical
certification procedure includes paying money to the authority, sending by surface mail
the articles of incorporation (or equivalent) of the organization. The authority will run a
partly manual check to validate the provided information before issuing the certificate.

Certification authorities face an inherent conflict between good security and conve
nience. The procedure must be thorough enough that the certificate means something.
On the other hand, the certification procedure must be convenient enough that organi
zations are able or willing to obtain a certificate. If it is expensive in time and money to
obtain a certificate, organizations might opt to go for an insecure solution (i.e., not
authenticating their identity with TLS). In practice, certification authorities have a hard
time striking the appropriate balance and therefore specialize for a particular market. For
example, Verisign, a well-known certification authority, is mostly used by commercial
organizations. Private parties who want to obtain a certificate from Verisign for their per
sonal Web sites are likely to find Verisign’s certification procedure impractical.

Ford and Baum provide a nice discussion of the current practice for secure electronic
commerce using certificate authories, certificates, etc., and the legal status of certificates
[Suggestions for Further Reading 1.3.17].

11.10.4 User Authentication

User authentication can in principle be handled in the same way as server authentication.
The user could obtain a certificate from an authority testifying to the user’s identity.
When the server asks for it, the user could provide the certificate and the server could
verify the certificate (and thus the user’s identity according to a certification authority)
by using the public key of the authority that issued the certificate. Extensions of the TLS
handshake protocol support this form of user authentication.

In practice, and in particular in the Web, user authentication doesn’t rely on user cer
tificates. Some organizations run a certificate authority and use it to authenticate
members of their organization. However, often it is too much trouble for a user to obtain
a certificate, so few Web users are willing to obtain a certificate. Instead, many servers

Saltzer & Kaashoek Ch. 11, p. 123 June 24, 2009 12:29 am

11–124 CHAPTER 11 Information Security

authenticate users based on the IP address of the client machine or based on shared pass-
phrase. Both methods are currently implemented insecurely.

Using the IP address for authentication is insecure because it is easy for an adversary
to spoof an IP address. Thus, when the server checks whether a user on a machine with
a particular IP address has access, the server has no guarantees. Typically, this method is
used inside an organization that puts all it’s machines behind a firewall. The firewall
attempts to keep adversaries out of the organization’s network by monitoring all network
traffic that is coming from the Internet and blocking bad traffic (e.g., a packet that is
coming from outside the firewall but an internal IP address).

Passphrase authentication is better. In this case, the user sets up an account on the
service and protects it with a passphrase that only the user and the service know. Later
when the user visits the service again, the server puts up a login page and asks the user to
provide the passphrase. If the passphrase is valid, the server assumes that the user is the
principal who created the account.

To avoid having the user to type the password on each request, services can exploit a
Web mechanism called cookies. A service sends a cookie, a service-specific piece of infor
mation, to the user’s Web browser, which stores it for us in later requests to the service.
The service sends the cookie by including in a response a SET_COOKIE directive containing
data to be stored in the cookie. The browser stores the cookie in memory. (In practice,
there may be many cookies, so they are named, but for this description, assume that there
is only one and no name is needed.) On subsequent calls (i.e., GET or POST) to the service
that installed the cookie, the browser sends the installed cookie along with the other
arguments to GET or POST.

Web services can use cookies for user authentication as follows. When the user logs
in, the service creates a cookie that contains information to authenticate the user later
and sends it to the user’s browser, which stores it for use in future requests to this service.
Every subsequent request from that browser will include a copy of the cookie, and the
service can use the information stored in the cookie to learn which user issued this
request. If the cookie is missing (for example, the user is using a different browser), the
service will return an error to the browser and ask the user to login again. The security
of this scheme depends on how careful the service is in constructing the authenticating
cookie. One possibility is to create a nonce for a session and sign the nonce with a MAC.
Kevin Fu et al. describe some ways to get it wrong and recommend a secure approach*.
Problem set 45 explores some of the issues in protecting and authenticating cookies.

Web sites use cookies in many ways. For example, many Web sites uses cookies to
track the browsing patterns of returning visitors. Users who want to protect their privacy
must disable cookie tracking in their browser.

* K. Fu, E. Sit, K. Smith, and N. Feamster, Dos and don’ts of client authentication on the Web,
Proceedings of the tenth USENIX Security Symposium, Washington, August 2001.

Saltzer & Kaashoek Ch. 11, p. 124 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–125

11.11 War Stories: Security System Breaches
A designer responsible for system security can bring to the job three different, related
assets. The first is an understanding of the fundamental security concepts discussed in
the main body of this chapter. The second is knowledge of several different real security
system designs; some examples have been discussed elsewhere in this chapter and more
can be found in the Suggestions for Further Reading. This section concentrates on
a third asset: familiarity with examples of real-world breaches of security systems. In
addition to encouraging a certain amount of humility, one can develop from these case
studies some intuition about approaches that are inherently fragile or difficult to imple
ment correctly. They also provide evidence of the impressive range of considerations that
a designer of a security system must consider.

The case studies selected for description all really happened, although inhibitions
have probably colored some of the stories. Failures can be embarrassing, have legal con
sequences, or, if publicized, jeopardize production systems that have not yet been
repaired or redesigned. For this reason, many of the cases described here were, when they
first appeared in public, sanitized by omitting certain identifying details or adding mis
leading “facts”. Years later, reconstructing the missing information is difficult, as is
distinguishing the reality from any fantasy that was added as part of the disguise. To help
separate fact from fiction, this section cites original sources wherever they are available.

The case studies start in the early 1960s, when the combination of shared computers
and durable storage first brought the need for computer security into focus. In several
examples, an anecdote describing a vulnerability discovered and a countermeasure
devised decades ago is juxtaposed with a much more recent example of essentially the
same vulnerability being again found in the field. The purpose is not to show that there
is nothing new under the sun, but rather to emphasize Santayana’s warning that “Those
who cannot remember the past are condemned to repeat it.”*

At the same time it is important to recognize that the rapid improvement of computer
hardware technology over the last 40 years has created new vulnerabilities. Technology
improvement has provided us with new case studies of security breaches in several ways:

• 	 Adversaries can bring to bear new tools. For example, performance improvements
have enabled previously infeasible attacks on security such as brute force key space
searches.

• 	 Cheap computers have increased the number of programmers much faster than
the number of security-aware programmers.

• 	 The attachment of computer systems to data communication networks has, from
the point of view of a potential adversary, vastly increased the number of potential
points of attack.

* George Santayana, The Life of Reason, Volume 1, Introduction and Reason in Common Sense (Scrib
ner's: 1905)

Saltzer & Kaashoek Ch. 11, p. 125	 June 24, 2009 12:29 am

11–126 CHAPTER 11 Information Security

• 	 Rapid technology change has encouraged giving high priority to rolling out new
features and applications, so the priority of careful attention to security suffers.

• 	 Technology improvement has enabled the creation of far more complex systems.
Complexity is a progenitor of error, and error is a frequent cause of security
vulnerabilities.

Although it is common to identify a single mistake that was the proximate cause of a
security breach, if one keeps digging it is usually possible to establish that several violations
of security principles contributed to making the breach possible, and thus to failure of
defense in depth.

11.11.1 Residues: Profitable Garbage

Security systems sometimes fail because they do not protect residues, the analyzable
remains of a program or data after the program has finished. This general attack has been
reported in many forms; adversaries have discovered secrets by reading the contents of
newly allocated primary memory, second-hand hard disks, and recycled magnetic tapes
as well as by pawing through piles of physical trash (popularly known as “dumpster
diving”).

11.11.1.1 1963: Residues in CTSS
In the M.I.T. Compatible Time-Sharing System (CTSS), a user program ran in a mem
ory region of an allocated size, and the program could request a change in allocation by
calling the operating system. If the user requested a larger allocation, the system assigned
an appropriate block of memory. Early versions of the system failed to clear the contents
of the newly allocated block, so the residue of some previous program would be accessible
to any other program that extended its memory size.

At first glance, this oversight seems to provide an attacker with the ability to read only
an uncontrollable collection of garbage, which appears hard to exploit systematically. An
industrious penetrator noticed that the system administrator ran a self-rescheduling job
every midnight that updated the primary accounting and password files. On the assump
tion that the program processed the password file by first reading it into primary
memory, the penetrator wrote a program that extended its own memory size from the
minimum to the maximum, then it searched the residue in the newly assigned area for
the penetrator’s own password. If the program found that password, it copied the entire
memory residue to a file for later analysis, expecting that it might also contain passwords
of other users. The penetrator scheduled the program to go into operation just before
midnight, and then reschedule itself every few seconds. It worked well. The penetrator
soon found in the residue a section of the file relating user names and passwords.*

Lesson: A design principle applies: use fail-safe defaults. In this case, the fail-safe default
is for the operating system memory allocator to clear the contents of newly-allocated
memory.

Saltzer & Kaashoek Ch. 11, p. 126	 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–127

11.11.1.2 1997: Residues in Network Packets
If one sends a badly formed request to a Kerberos Version 4 server (Sidebar 11.6)
describes the Kerberos authentication system), the service responds with a packet con
taining an error message. Since the error packet was shorter than the minimum frame
size, it had to be padded out to reach the minimum frame size. The problem was that the
padding region wasn’t being cleared, so it contained the residue of the previous packet
sent out by that Kerberos service. That previous packet was probably a response to a cor
rectly formed request, which typically includes both the Kerberos realm name and the
plaintext principal identifier of some authorized user. Although exposing the principal
identifier of an authorized user to an adversary is not directly a security breach, the first
step in mounting a dictionary attack (to which Kerberos is susceptible) is to obtain a
principal identifier of an active user and the exact syntax of the realm name used by this
Kerberos service*

Lesson: As in example 11.11.1.1, above, use fail-safe defaults. The packet buffer should
have been cleared between uses.

11.11.1.3 2000: Residues in HTTP
To avoid retransmitting an entire file following a transmission failure, the HyperText
Transfer Protocol (HTTP), the primary transport mechanism of the World Wide Web,
allows a client to ask a service for just a portion of a file, describing that part by a starting
address and a data length. If the requested region lies beyond the end of the file, the pro
tocol specifies that the service return just the data up to the end of the file and alert the
client about the error.

The Apple Macintosh AppleShare Internet Web service was discovered to return
exactly as much data as the client requested. When the client asked for more data than
was actually in the file, the service returned as much of the file as actually existed, fol
lowed by whatever data happened to be in the service’s primary memory following the
file. This implementation error allowed any client to mine data from the service.†

Lesson: Apparently unimportant specifications, such as “return only as much data as
is actually in the file” can sometimes be quite important.

* Reported on CTSS by Maxim G. Smith in 1963. The identical problem was found in the General
Electric GCOS system when its security was being reviewed by the U.S. Defense Department in the
1970’s, as reported by Roger R. Schell. Computer Security: the Achilles’ heel of the electronic Air
Force? Air University Review XXX, 2 (January-February 1979) page 21.

* Reported by L0pht Heavy Industries in 1997, after the system had been in production use for ten
years.

† Reported Monday 17April 2000 to an (unidentified) Apple Computer technical support mailing
list by Clint Ragsdale, followed up by analysis by Andy Griffin in Macintouch (Tuesday 18 April
2000) <http://www.macintouch.com/>.

Saltzer & Kaashoek Ch. 11, p. 127 June 24, 2009 12:29 am

<http://www.macintouch.com/>

11–128 CHAPTER 11 Information Security

11.11.1.4 Residues on Removed Disks
The potential for analysis of residues turns up in a slightly different form when a techni
cian is asked to repair or replace a storage device such as a magnetic disk. Unless the
device is cleared of data first, the technician may be able to read it. Clearing a disk is gen
erally done by overwriting it with random data, but sometimes the reason for repair is
that the write operation isn’t working. Worse, if the hardware failure is data-dependent,
it may be essential that the technician be allowed to read the residue to reproduce and
diagnose the failure.

In November 1998, the dean of the Harvard Divinity School was sacked after he
asked a University technician to upgrade his personal computer to use a new, larger hard
disk and transfer the contents of the old disk to the new one. When the technician’s
supervisor asked why the job was taking so long, the technician, after some prodding,
reluctantly replied that there seemed to be a large number of image files to transfer. That
reply led to further questions, upon which it was discovered that the image files were
pornographic.*

Lesson: Physical possession of storage media usually allows bypass of security measures
that are intended to control access within a system. The technician who removes a disk
doesn’t need a password to read it. Encryption of stored files can help minimize this
problem.

11.11.1.5 Residues in Backup Copies
It is common practice for a data-storing system to make periodic backup copies of all files
onto magnetic tape, often in several different formats. One format might allow quick
reloading of all files, while another might allow efficient searching for a single file. Several
backup copies, perhaps representing files at one-week intervals for a month, and at one-
month intervals for a year, might be kept.

The administrator of a Cambridge University time-sharing system was served with an
official government request to destroy all copies of a specific file belonging to a certain
user. The user had compiled a list of secret telephone access codes, which could be used
to place free long-distance calls. Removing the on-line file was straightforward, but the
potential cost of locating and expunging the backup copies of that file—while maintain
ing backup copies of all other files—was enormous. (A compromise was reached, in
which the backup tapes received special protection until they were due to be recycled.)†

A similar, more highly publicized backup residue incident occurred in November
1986 when Navy Vice-Admiral John M. Poindexter and Lieutenant Colonel Oliver
North deleted 5,748 e-mail messages in connection with the Iran-Contra affair. They
apparently did not realize that the PROFS e-mail system used by the National Security
Council maintained backup copies. The messages found on the backup tapes became

* James Bandler. Harvard ouster linked to porn; Divinity School dean questioned. Boston Globe
(Wednesday 19 May 1999) City Edition, page B1, Metro/Region section.

† Incident ca. 1970, reported by Roger G. Needham.

Saltzer & Kaashoek Ch. 11, p. 128 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–129

important evidence in subsequent trials of both individuals. An interesting aspect of this
case was that the later investigation focused not just on the content of specific messages,
but on their context in relation to other messages, which the backup system also pre
served.* †

Lesson: there is a tension between reliability, which calls for maintaining multiple cop
ies of data, and security, which is enhanced by minimizing extra copies.

11.11.1.6 Magnetic Residues: High-Tech Garbage Analysis
A more sophisticated version of the residue problem is encountered when recording on
continuous media such as magnetic tape or disk. If the residue is erased by overwriting,
an ordinary read to the disk will no longer return the previous data. However, analysis
of the recording medium in the laboratory may disclose residual magnetic traces of pre
viously recorded data. In addition, many disk controllers automatically redirect a write
to a spare sector when the originally addressed sector fails, leaving on the original sector
a residue that a laboratory can retrieve. For these reasons, certain U.S. Department of
Defense agencies routinely burn magnetic tapes and destroy magnetic disk surfaces in an
acid bath before discarding them. ‡

11.11.1.7 2001 and 2002: More Low-tech Garbage Analysis
The lessons about residues apparently have not yet been completely absorbed by system
designers. In July 2001, a user of the latest version of the Microsoft Visual C++ compiler
who regularly clears the unused part of his hard disk by overwriting it with a character
istic data pattern discovered copies of that pattern in binary executables created by the
compiler. Apparently the compiler allocated space on the disk as temporary storage but
did not clear that space before using it.** In January 2002, people who used the Macin
tosh operating system to create CD's for distribution were annoyed to find that most
disk-burning software, in order to provide icons for the files on the CD, simply copied
the current desktop database, which contains those icons, onto the CD. But this database
file contains icons for every application program of the user as well as incidental other
information about many of the files on the user's personal hard disks—such as the
World-Wide Web address from which they were downloaded. Thus users who received
such CD’s found that in addition to the intended files, there was a remarkable, and occa
sionally embarrassing, collection of personal information there, too.

* Lawrence E. Walsh. Final report of the independent counsel for Iran/Contra matters Volume 1, Chap
ter 3 (4 August 1993) U.S. Court of Appeals for the District of Columbia Circuit, Washington,
D.C.

† The context issue is highlighted in Armstrong v. Bush, 721 F. Supp. 343, 345 n.1 (D.D.C. 1989).

‡ Remanence Security Guidebook. Naval Staff Office Publication NAVSO P-5239-26 (September
1993:United States Naval Information Systems Management Center: Washington D.C.)

** David Winfrey. “Uncleared disk space and MSVC”. Risks Forum Digest 21, 50 (12 July 2001).

Saltzer & Kaashoek Ch. 11, p. 129 June 24, 2009 12:29 am

11–130 CHAPTER 11 Information Security

Lesson: “Visit with your predecessors… They know the ropes and can help you see
around some corners. Try to make original mistakes, rather than needlessly repeating
theirs.”*

11.11.2 Plaintext Passwords Lead to Two Breaches

Some design choices, while not directly affecting the internal security strength of a sys
tem, can affect operational aspects enough to weaken system security.

In CTSS, as already mentioned, passwords were stored in the file system together
with user names. Since this file was effectively a master user list, the system administrator,
whenever he changed the file, printed a copy for quick reference. His purpose was not to
keep track of passwords. Rather, he needed the list of user names to avoid duplication
when adding new users. This printed copy, including the passwords, was processed by
printer controller software, handled by the printer operator, placed in output bins,
moved to the system administrator’s office, and eventually discarded by his secretary
when the next version arrived. At least one penetration of CTSS was accomplished by a
student who discovered an old copy of this printed report in a wastebasket (another
example of a residue problem).†

Lesson: Pay attention to the least privilege principle: don’t store your lunch (in this case,
the names of users) in the safe with the jewels (the passwords).

At a later time, another system administrator was reviewing and updating the master
user list, using the standard text editor. The editor program, to ensure atomic update of
the file, operated by creating a copy of the original file under a temporary name, making
all changes to that copy, and at the end renaming the copy to make it the new original.
Another system operator was working at the same time as the system administrator, using
the same editor to update a different file in the same directory. The different file was the
“message of the day,” which the system automatically displayed whenever a user logged
in. The two instances of the editor used the same name for their intermediate copies,
with the result that the master user list, complete with passwords, was posted as the mes
sage of the day. Analysis revealed that the designer of the editor had, as a simplification,
chosen to use a fixed name for the editor’s intermediate copy. That simplification seemed
reasonable because the system had a restriction that prevented two different users from
working in the same directory at the same time. But in an unrelated action, someone else
on the system programming staff had decided that the restriction was inconvenient and
unnecessary, and had removed the interlock.‡

* Donald Rumsfeld, “Rumsfeld’s Rules: Advice on Government, Business, and Life”, 1974. A later
version appeared as an op-ed submission in The Wall Street Journal, 29 January 2001.

† Reported by Richard G. Mills, 1963.

‡ Fernando J. Corbató. On building systems that will fail. Communications of the ACM 34, 9 (Sep
tember, 1991) page 77. This 1966 incident led to the use of one-way transformations for stored pass
word records in Multics, the successor system to CTSS. But see item 11.11.3, which follows.

Saltzer & Kaashoek Ch. 11, p. 130 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–131

Lesson (not restricted to security): Removing interlocks can be risky because it is hard
to track down every part of the system that depended on the interlock being there.

11.11.3 The Multiply Buggy Password Transformation

Having been burned by residues and weak designs on CTSS, the architects of the Multics
system specified and implemented a (supposedly) one-way cryptographic transformation
on passwords before storing them, using the same one-way transformation on typed pass
words before comparing them with the stored version. A penetration team
mathematically examined the one-way transformation algorithm and discovered that it
wasn’t one-way after all: an inverse transformation existed.

Lesson: Amateurs should not dabble in crypto-mathematics.
To their surprise, when they tried the inverse transformation it did not work. After

much analysis, the penetration team figured out that the system procedure implementing
the supposedly one-way transformation used a mathematical library subroutine that con
tained an error, and the passwords were being transformed incorrectly. Since the error
was consistent, it did not interfere with later password comparisons, so the system per
formed password authentication correctly. Further, the erroneous algorithm turned out
to be reversible too, so the system penetration was successful.

An interesting sidelight arose when penetration team reported the error in the math
ematical subroutine and its implementers released a corrected update. Had the updated
routine simply been installed in the library, the password-transforming algorithm would
have begun working correctly. But then, correct user-supplied passwords would trans
form to values that did not match the stored values previously created using the incorrect
algorithm. Thus, no one would be able to log in. A creative solution (which the reader
may attempt to reinvent) was found for the dilemma.*

11.11.4 Controlling the Configuration

Even if one has applied a consistent set of security techniques to the hardware and soft
ware of an installation, it can be hard to be sure that they are actually effective. Many
aspects of security depend on the exact configuration of the hardware and software—that
is, the versions being used and the controlling parameter settings. Mistakes in setting up
or controlling the configuration can create an opportunity for an attacker to exploit.
Before Internet-related security attacks dominated the news, security consultants usually
advised their clients that their biggest security problem was likely to be unthinking or
unauthorized action by an authorized person. In many systems the number of people
authorized to tinker with the configuration is alarmingly large.

* Peter J. Downey. Multics Security Evaluation: Password and File Encryption Techniques. United
States Air Force Electronics Systems Division Technical Report ESD–TR–74–193, Vol. III (June
1977).

Saltzer & Kaashoek Ch. 11, p. 131 June 24, 2009 12:29 am

11–132 CHAPTER 11 Information Security

11.11.4.1 Authorized People Sometimes do Unauthorized Things
A programmer was temporarily given the privilege of modifying the kernel of a university
operating system as the most expeditious way of solving a problem. Although he properly
made the changes appropriate to solve the problem, he also added a feature to a rarely-
used metering entry of the kernel. If called with a certain argument value, the metering
entry would reset the status of the current user’s account to show no usage. This new
“feature” was used by the programmer and his friends for months afterwards to obtain
unlimited quantities of service time.*

11.11.4.2 The System Release Trick
A Department of Defense operating system was claimed to be secured well enough that
it could safely handle military classified information. A (fortunately) friendly penetration
team looked over the system and its environment and came up with a straightforward
attack. They constructed, on another similar computer, a modified version of the oper
ating system that omitted certain key security checks. They then mailed to the DoD
installation a copy of a tape containing this modified system, together with a copy of the
most recent system update letter from the operating system vendor. The staff at the site
received the letter and tape, and duly installed its contents as the standard operating sys
tem. A few days later one of the team members invited the management of the
installation to watch as he took over the operating system without the benefit of either a
user id or a password.†

Lesson: Complete mediation includes checking the authenticity, integrity, and permis
sion to install of software releases, whether they arrive in the mail or are downloaded over
the Internet.

11.11.4.3 The Slammer Worm‡

A malware program that copies itself from one computer to another over a network is
known as a “worm”. In January 2003 an unusually virulent worm named Slammer
struck, demonstrating the remarkable ease with which an attacker might paralyze the
otherwise robust Internet. Slammer did not quite succeed because it happened to pick
on an occasionally used interface that is not essential to the core operation of the Inter
net. If Slammer had found a target in a really popular interface, the Internet would have

* Reported by Richard G. Mills, 1965.

† This story has been in the folklore of security for at least 25 years, but it may be apocryphal. A
similar tale is told of mailing a a bogus field change order, which would typically apply to the hard
ware, rather than the software, of a system. The folklore is probably based on a 1974 analysis of oper
ating practices of United States Defense contractors and Defense Department sites that outlined this
attack possibility in detail and suggested strongly that mailing a bogus software update would almost
certainly result in its being installed at the target site. The authors never actually tried the attack.
Paul A. Karger and Roger R. Schell. MULTICS Security Evaluation: Vulnerability Analysis. United
States Air Force Electronics Systems Division Technical Report ESD–TR–74–193 Vol. II (June
1974), Section 3.4.5.1.

Saltzer & Kaashoek Ch. 11, p. 132 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–133

locked up before anyone could do anything about it, and getting things back to even a
semblance of normal operation would probably have taken a long time.

The basic principle of operation of Slammer was stunningly simple:

1. Discover an Internet port that is enabled in many network-attached computers,
and for which a popular listener implementation has a buffer overrun bug that a
single, short packet can trigger. Internet Protocol UDP ports are thus a target of
choice. Slammer exploited a bug in Microsoft SQL Server 2000 and Microsoft
Server Desktop Engine 2000, both of which enable the SQL UDP port. This port
is used for database queries, and it is vulnerable only on computers that run one
of these database packages, so it is by no means universal.

2. Send to that port a packet that overruns a buffer, captures the execution point of
the processor, and runs a program contained in the packet.

3. Write that program to go into a tight loop, generating an Internet address at
random and sending a copy of the same packet to that address, as fast as possible.
The smaller the packet, the more packets per second the program can launch.
Slammer used packets that were, with headers, 404 bytes long, so a broadband-
connected (1 megabit/second) machine could launch packets at a rate of
300/second, a machine with a 10 megabits/second path to the Internet could
launch packets at a rate of 3,000/second and a high-powered server with a 155
megabits/second connection might be able to launch as many as 45,000
packets/second.

Forensics: Receipt of this single Slammer worm packet is enough to instantly recruit
the target to help propagate the attack to other vulnerable systems. An interesting foren
sic problem is that recruitment modifies no files and leaves few traces because the worm
exists only in volatile memory. If a suspicious analyst stops a recruited machine, discon
nects it from the Internet, and reboots it, the analyst will find nothing. There may be
some counters indicating that there was a lot of outbound network traffic, but no clue
why. So one remarkable feature of this kind of worm is the potential difficulty of tracing
its source. The only forensic information available is likely to be the payload of the inten
tionally tiny worm packet.

Exponential attack rate: A second interesting observation about the Slammer worm is
how rapidly it increased its aggregate rate of attack. It recruited every vulnerable com
puter on the Internet as both a prolific propagator and also as an intense source of
Internet traffic. The original launcher needed merely to find one vulnerable machine
anywhere in the Internet and send it a single worm packet. This newly-recruited target
immediately began sending copies of the worm packet to other addresses chosen at ran
dom. Internet version 4, with its 32-bit address fields, provided about 4 billion addresses,

‡ This account is based on one originally published under the title “Slammer: an urgent wake-up
call”, pages 243–248 in Computer Systems: theory, technology and applications/A tribute to Roger
Needham, Andrew Herbert & Karen Spärck Jones, editors. (Springer: New York: 2004)

Saltzer & Kaashoek Ch. 11, p. 133 June 24, 2009 12:29 am

11–134 CHAPTER 11 Information Security

and even though many of them were unassigned, sooner or later one of these worm pack
ets was likely to hit another machine with the same vulnerability. The worm packet
immediately recruited this second machine to help with the attack. The expected time
until a worm packet hit yet another vulnerable machine dropped in half and the volume
of attack traffic doubled. Soon third and fourth machines were recruited to join the
attack; thus the expected time to find new recruits halved again and the malevolent traffic
rate doubled again. This epidemic process proceeded with exponential growth until
either a shortage of new, vulnerable targets or bottlenecked network links slowed it
down; the worm quickly recruited every vulnerable machine attached to the Internet.

The exponent of growth depends on the average time it takes to recruit the next target
machine, which in turn depends on two things: the number of vulnerable targets and the
rate of packet generation. From the observed rate of packet arrivals at the peak, a rough
estimate is that there were 50 thousand or more recruits, launching at least 50 million
packets per second into the Internet. The aggregate extra load on the Internet of these
3200-bit packets probably amounted to something over 150 Gigabits/second, but that
is well below the aggregate capacity of the Internet, so reported disruptions were localized
rather than universal.

With 50 thousand vulnerable ports scattered through a space of 4 billion addresses,
the chance that any single packet hits a vulnerable port is one in 120 thousand. If the
first recruit sends one thousand packets per second, the expected time to hit a vulnerable
port would be about two minutes. In four minutes there would be four recruits. In six
minutes, eight recruits. In half an hour, nearly all of the 50 thousand vulnerable
machines would probably be participating.

Extrapolation: The real problem appears if we redo that analysis for a port to which
five million vulnerable computers listen: the time scale drops by two orders of magni
tude. With that many listeners, a second recruit would receive the worm and join the
attack within one second, two more one second later, etc. In less than 30 seconds, most
of the 5 million machines would be participating, each launching traffic onto the Inter
net at the fastest rate they (or their Internet connection) can sustain. This level of attack,
about two orders of magnitude greater than the intensity of Slammer, would almost cer
tainly paralyze every corner of the Internet. It could take quite a while to untangle
because the overload of every router and link would hamper communication among peo
ple who are trying to resolve the problem. In particular, it could be difficult for owners
of vulnerable machines to learn about and download any necessary patches.

Prior art: Slammer used a port that is not widely enabled, yet its recruitment rate,
which determines its exponential growth rate, was at least one and perhaps two orders of
magnitude faster than that reported for previous generations of fast-propagating worms.
Those worms attacked much more widely-enabled ports, but they took longer to prop
agate because they used complex multipacket protocols that took much longer to set up.
The Slammer attack demonstrates the power of brute force. By choosing a UDP port,
infection can be accomplished by a single packet, so there is no need for a time-consum
ing protocol interchange. The smaller the packet size, the faster a recruit can then launch
packets to discover other vulnerable ports.

Saltzer & Kaashoek Ch. 11, p. 134 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–135

Another risk: The worm also revealed a risk of networks that advertise a large number
of addresses. At the time that individual computers that advertise a single address were
receiving one Slammer worm packet every 80 seconds, a network that advertises 16 mil
lion addresses would have been receiving 200,000 packets/second, with a data rate of
about 640 megabits/second. In confirmation, incoming traffic to the M.I.T. network
border routers, which actually do advertise 16 million addresses, peaked at a measured
rate of around 500 megabits/second with some of its links to the public Internet satu
rated. Being the home of 16 million Internet addresses has its hazards.

Lessons: From this incident we can draw different lessons for different network partic
ipants: For users, the perennial but often-ignored advice to disable unused network ports
does more than help a single computer resist attack, it helps protect the entire network.
For vendors, shipping an operating system that by default activates a listener for a feature
that the user does not explicitly request is hazardous to the health of the network (use fail-
safe defaults). For implementers, it emphasizes the importance of diligent care (and para
noid design) in network listener implementations, especially on widely activated UDP
ports.*

11.11.5 The Kernel Trusts the User

11.11.5.1 Obvious Trust
In the first version of CTSS, a shortcut was taken in the design of the kernel entry that
permitted a user to read a large directory as a series of small reads. Rather than remem
bering the current read cursor in a system-protected region, as part of each read call the
kernel returned the cursor value to the caller. The caller was to provide that cursor as an
argument when calling for the next record. A curious user printed out the cursor, con
cluded that it looked like a disk sector address, and wrote a program that specified sector
zero, a starting block that contained the sector address of key system files. From there he
was able to find his way to the master user table containing (as already mentioned, plain
text) passwords.†

Although this vulnerability seems obvious, many operating systems have been discov
ered to leave some critical piece of data in an unprotected user area, and later rely on its
integrity. In OS/360, the operating system for the IBM System/360, each system module
was allocated a limited quota of system-protected storage, as a strategy to keep the system
small. Since the quota was unrealistically small in many cases, system programmers were
effectively forced to place system data in unprotected user areas. Despite many later
efforts to repair the situation, an acceptable level of security was never achieved in that
system.‡

Lesson: A bit more attention to paranoid design would have avoided these problems.

* A detailed analysis of the Slammer worm and its effects on the Internet can be found in David
Moore, et al., “Inside the Slammer Worm”, IEEE Security and Privacy 1, 4 (July 2003) pages 33 - 39.

† Noticed by the author, exploit developed by Maxim G. Smith, 1963.

Saltzer & Kaashoek Ch. 11, p. 135 June 24, 2009 12:29 am

11–136 CHAPTER 11 Information Security

11.11.5.2 Nonobvious Trust (Tocttou)
As a subtle variation of the previous problem, consider the following user-callable kernel
entry point:

1 procedure DELETE_FILE (file_name)

2 auth ← CHECK_DELETE_PERMISSION (file_name, this_user_id)

3 if auth = PERMITTED

4 then DESTROY (file_name)
5 else signal (“You do not have permission to delete file_name”)

This program seems to be correctly checking to verify that the current user (whose iden
tity is found in the global variable this_user_id) has permission to delete file file_name.
But, because the code depends on the meaning of file_name not changing between the
call to CHECK_DELETE_PERMISSION on line 2 and the call to DESTROY on line 4, in some sys
tems there is a way to defeat the check.

Suppose that the system design uses indirection to decouple the name of a file from
its permissions (as for example, in the UNIX file system, which stores its permissions in
the inode, as described in Section 2.5.7). With such a design, the user can, in a concur
rent thread, unlink and then relink the name file_name to a different file, thereby causing
deletion of some other file that CHECK_DELETE_PERMISSION would not have permitted.
There is, of course a race—the user’s concurrent thread must perform the unlinking and
relinking in the brief interval between when CHECK_DELETE_PERMISSION looks up filename

in the file system and DESTROY looks up that same name again. Nevertheless, a window of
opportunity does exist, and a clever adversary may also be able to find a way to stretch
out the window.

This class of error is so common in kernel implementations that it has a name: “Time
Of Check To Time Of Use” error, written “tocttou” and pronounced “tock-two”.*

Lesson: For complete mediation to be effective, one must also consider the dynamics of
the system. If the user can change something after the guard checks for authenticity,
integrity, and permission, all bets are off.

11.11.5.3 Tocttou 2:Virtualizing the DMA Channel.
A common architecture for Direct Memory Access (DMA) input/output channel pro
cessors is the following: DMA channel programs refer to absolute memory addresses
without any hardware protection. In addition, these channel programs may be able to
modify themselves by reading data in over themselves. If the operating system permits
the user to create and run DMA channel programs, it becomes difficult to enforce secu
rity constraints, and even more difficult for an operating system to create virtual DMA

‡ Allocation strategy reported by Fred Brooks in The Mythical Man-Month.[Suggestions for Fur
ther Reading 1.1.3

* Richard Bisbey II, Gerald Popek, and Jim Carlstedt. Protection errors in operating systems: inconsis
tency of a single data value over time. USC/Information Sciences Institute Technical Report SR–75–4
(January 1976).

Saltzer & Kaashoek Ch. 11, p. 136 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–137

channels as part of a virtual machine implementation. Even if the channel programs are
reviewed by the operating system to make sure that all memory addresses refer to areas
assigned to the user who supplied the channel program, if the channel program is self-
modifying, the checks of its original content are meaningless. Some system designers try
to deal with this problem by enforcing a prohibition on timing-dependent and self-mod
ifying DMA channel programs. The problem with this approach was that it is difficult
to methodically establish by inspection that a program conforms with the prohibition.
The result is a battle of wits: for every ingenious technique developed to discover that a
DMA channel program contains an obscure self-modification feature, some clever adver
sary may discover a still more obscure way to conceal self-modification. Precisely such a
problem was noted with virtualization of I/O channels in the IBM System/360 architec
ture and its successors.*

Lesson: It can be a major challenge to apply complete mediation to a legacy hardware
architecture.

11.11.6 Technology Defeats Economic Barriers

11.11.6.1 An Attack on Our System Would be Too Expensive
A Western Union vice-president, when asked if the company was using encryption to
protect the privacy of messages sent via geostationary satellites, dismissed the question by
saying, “Our satellite ground stations cost millions of dollars apiece. Eavesdroppers don’t
have that kind of money.”† This response seems oblivious of two things: (1) an eaves
dropper may be able to accomplish the job with relatively inexpensive equipment that
does not have to meet commercial standards of availability, reliability, durability, main
tainability, compatibility, and noise immunity, and (2) improvements in technology can
rapidly reduce an eavesdropper’s cost. The next anecdote provides an example of the sec
ond concern.

Lesson: Never underestimate the effect of technology improvement, and the effective
ness of the resources that a clever adversary may bring to bear.

11.11.6.2 Well, it Used to be Too Expensive
In 2003, the University of Texas and Georgia Tech were victims of an attack made pos
sible by advancing computer and network technology. The setup went as follows: The
database of student, staff, and alumni records included in each record a field containing
that person’s Social Security number. Furthermore, the Social Security number field was

* This battle of wits is well known to people who have found themselves trying to “virtualize” exist
ing computer architectures, but apparently the only specific example that has been documented is
in C[lement]. R[ichard]. Attanasio, P[eter] W. Markstein and R[ay]. J. Philips, “Penetrating an
operating system: a study of VM/370 integrity,” IBM System Journal 15, 1 (1976), pages 102–117.

† Reported by F. J. Corbató, ca. 1975.

Saltzer & Kaashoek Ch. 11, p. 137 June 24, 2009 12:29 am

11–138 CHAPTER 11 Information Security

a key field, which means that it could be used to retrieve records. The assumption was
that this feature was useful only to a client who knew a Social Security number.

The attackers realized that the universities had a high-performance database service
attached to a high-bandwidth network, and it was therefore possible to systematically try
all of the 999 million possible Social Security numbers in a reasonably short time—in
other words, a dictionary attack. Most trials resulted in a “no such record” response, but
each time an offered Social Security number happened to match a record in the database,
the service returned the entire record for that person, thereby allowing the Social Security
number to be matched with a name, address, and other personal information.

The attacks were detected only when it was noticed that the service seemed to be
experiencing an unusually heavy load.*

Lesson: As technology improves, so do the tools available for adversaries.

11.11.7 Mere Mortals Must be Able to Figure Out How to Use it

In an experiment at Carnegie-Mellon University, Alma Whitten and Doug Tygar
engaged twelve subjects who were experienced users of e-mail, but who had not previ
ously tried to send secure e-mail. The task for these subjects was to figure out how to send
a signed and encrypted message, and decrypt and authenticate the response, within 90
minutes. They were to use the cryptographic package Pretty Good Privacy (PGP)
together with the Eudora e-mail system, both of which were already installed and con
figured to work together.

Of the twelve participants, four succeeded in sending the message correctly secured;
three others sent the message in plaintext thinking that it was secure, and the remaining
five never figured out how to complete the task. The report on this project provides a
step-by-step analysis of the mistakes and misconceptions encountered by each of the
twelve test subjects. It also includes a cognitive walkthrough analysis (that is, an a priori
review) of the user interface of PGP.†

Lessons:

1. 	The mental model that a person needs to make correct use of public-key
cryptography is hard for a non-expert to grasp; a simpler description is needed.

2. 	Any undetected mistake can compromise even the best security. Yet it is well
known that it requires much subtlety to design a user interface that minimizes
mistakes. The principle of least astonishment applies.

* Robert Lemos. “Data thieves nab 55,000 student records” CNET News.com, March 6, 2003. Rob
ert Lemos. “Data thieves strike Georgia Tech” CNET News.com, March 31, 2003.

† Alma Whitten and J. D. Tygar. Usability of Security: A Case Study. Carnegie-Mellon University
School of Computer Science Technical Report CMU–CS–98–155, December 1998. A less detailed
version appeared in Why Johnny Can’t Encrypt: A Usability Evaluation of PGP 5.0. Proceedings of
the eighth USENIX security symposium, August 1999.

Saltzer & Kaashoek Ch. 11, p. 138	 June 24, 2009 12:29 am

http:News.com
http:News.com

11.11 War Stories: Security System Breaches 11–139

11.11.8 The Web can be a Dangerous Place

In the race to create the World Wide Web browser with the most useful features, security
sometimes gets overlooked. One potentially useful feature is to launch the appropriate
application program (called a helper) after downloading a file that is in a format not han
dled directly by the browser. However, launching an application program to act on a file
whose contents are specified by someone else can be dangerous.

Cognizant of this problem, the Microsoft browser, named Internet Explorer, main
tained a list of file types, the corresponding applications, and a flag for each that indicates
whether or not launching should be automatic or the user should be asked first. When
initially installed, Internet Explorer came with a pre-configured list, containing popular
file types and popular application programs. Some flags were preset to allow automatic
launch, indicating that the designer believed certain applications could not possibly
cause any harm.

Apparently, it is harder than it looks to make such decisions. So far, three different
file types whose default flags allow automatic launch have been identified as exploitable
security holes on at least some client systems:

• 	 Files of type “.LNK”, which in Windows terminology are called “shortcuts” and
are known elsewhere as symbolic links. Downloading one of these files causes the
browser to install a symbolic link in the client’s file system. If the internals of the
link indicate a program at the other end of the link, the browser then attempts to
launch that program, giving it arguments found in the link.

• 	 Files of type “.URL”, known as “Internet shortcuts”, which contain a URL. The
browser simply loads this URL, which would seem to be a relatively harmless thing
to do. But a URL can be a pointer to a local file, in which case the browser does
not apply security restrictions (for example, in running scripts in that file) that it
would normally apply to files that came from elsewhere.

• 	 Files of type “.ISP”, which are intended to contain scripts used to set up an account
with an Information Service Provider. Since the script interpreter was an
undocumented Microsoft-provided application, deciding that a script cannot
cause any harm was not particularly easy. Searching the binary representation of
the program for character strings revealed a list of script keywords, one of which
was “RUN”. A little experimenting revealed that the application that interprets
this keyword invokes the operating system to run whatever command line follows
the RUN key word.

The first two of these file types are relatively hard to exploit because they operate by
running a program already stored somewhere on the client’s computer. A prospective
attacker would have to either guess the location of an existing, exploitable application
program or surreptitiously install a file in a known location. Both of these courses are,
however, easier than they sound. Most system installations follow a standard pattern,
which means that vendor-supplied command programs are stored in standard places

Saltzer & Kaashoek Ch. 11, p. 139	 June 24, 2009 12:29 am

11–140 CHAPTER 11 Information Security

with standard names, and many of those command programs can be exploited by passing
them appropriate arguments. By judicious use of comments and other syntactic tricks
one can create a file that can be interpreted either as a harmless HTML Web page or as
a command script. If the client reads such an HTML Web page, the browser places a
copy in its Web cache, where it can then be exploited as a command script, using either
the .LNK or .URL type.

Lesson: The fact that these security problems were not discovered before product
release suggests that competitive pressures can easily dominate concern for security. One
would expect that even a somewhat superficial security inspection would have quickly
revealed each of these problems. Failure to adhere to the principle of open design is also
probably implicated in this incident. Finally, the principle of least privilege suggests that
automatically launched programs that could be under control of an adversary should be
run in a distinct virtual machine, the computer equivalent of a padded cell, where they
can’t do much damage.*

11.11.9 The Reused Password

A large corporation arranged to obtain network-accessible computing services from two
competing outside suppliers. Employees of the corporation had individual accounts with
each supplier.

Supplier A was quite careful about security. Among other things, it did not permit
users to choose their own passwords. Instead, it assigned a randomly-chosen password to
each new user. Supplier B was much more relaxed—users could choose their own pass
words for that system. The corporation that had contracted for the two services
recognized the difference in security standards and instructed its employees not to store
any company confidential or proprietary information on supplier B's more loosely man
aged system.

In keeping with their more relaxed approach to security, a system programmer for
supplier B had the privilege of reading the file of passwords of users of that system.
Knowing that this customer's staff also used services of supplier A, he guessed that some
of them were probably lazy and had chosen as their password on system B the same pass
word that they had been assigned by supplier A. He proceeded to log in to system A
successfully, where he found a proprietary program of some interest and copied it back
to his own system. He was discovered when he tried to sell a modified version of the pro
gram, and employees of the large corporation became suspicious.†

Lesson: People aren’t good at keeping secrets.

* Chris Rioux provided details on this collection of browser problems, and discovered the .ISP
exploitation, in 1998.

† This anecdote was reported in the 1970’s, but its source has been lost.

Saltzer & Kaashoek Ch. 11, p. 140 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–141

11.11.10 Signaling with Clandestine Channels

11.11.10.1 Intentionally I: Banging on the Walls
Once information has been released to a program, it is difficult to be sure that the pro
gram does not pass the information along to someone else. Even though non
discretionary controls may be in place, a program written by an adversary may still be
able to signal to a conspirator outside the controlled region by using a clandestine chan
nel. In an experiment with a virtual memory system that provides shared library
procedures, an otherwise confined program used the following signalling technique: For
the first bit of the message to be transmitted, it touched (if the bit value was ONE) or failed
to touch (if the bit value was ZERO) a previously agreed-upon page of a large, infrequently
used, shared library program. It then waited a while, and repeated the procedure for the
second bit of the message. A receiving thread observed the presence of the agreed-upon
page in memory by measuring the time required to read from a location in that page. A
short (microsecond) time meant that the page was already in memory and a ONE value
was recorded for that bit. Using an array of pages to send multiple bits, interspersed with
pauses long enough to allow the kernel to page out the entire array, a data rate of about
one bit per second was attained.* This technique of transmitting data by an otherwise
confined program is known as “banging on the walls”.

In 2005, Colin Percival noticed that when two processors share a cache, as do certain
chips that contain multiple processors, this same technique can be used to transmit infor
mation at much higher rate. Percival estimates that the L1 cache of a 2.8 gigahertz
Pentium 4 could be used to transmit data upwards of 400 kilobytes per second†.

Lesson: Minimize common mechanisms. A common mechanism such as a shared vir
tual memory or a shared cache can provide an unintended communication path.

11.11.10.2 Intentionally II
In an interesting 1998 paper,‡ Marcus Kuhn and Ross Anderson describe how easy it is
to write programs that surreptitiously transmit data to a nearby, cheap, radio receiver by
careful choice of the patterns of pixels appearing on the computer’s display screen. A dis
play screen radiates energy in the form of radio waves whose shape depends on the
particular pattern on the screen. They also discuss how to design fonts to minimize the
ability for an adversary to interpret this unwanted radiation.

Lesson: Paranoid design requires considering all access paths.

* Demonstrated by Robert E. Mullen ca. 1976, described by Tom Van Vleck in a poster session at
the IEEE Symposium on Research in Security and Privacy, Oakland, California, May 1990. The
description is posted on the Multics Web site, at <www.multicians.org/thvv/timing-chn.html>.

† C. Percival, Cache missing for fun and profit. Proceedings of BSDCAN 2005, Ottawa.
http://www.deamonology.net/papers/htt.pdf (May 2005).

‡ Markus G. Kuhn and Ross J. Anderson. Soft Tempest: Hidden Data Transmission Using Electro
magnetic Emanations. In David Aucsmith (Ed.): Information Hiding 1998, Lecture Notes in Com
puter Science 1525, pages 124–142 (1998: Springer-Verlag: Berlin and Heidelberg).

Saltzer & Kaashoek Ch. 11, p. 141 June 24, 2009 12:29 am

http://www.deamonology.net/papers/htt.pdf

11–142 CHAPTER 11 Information Security

11.11.10.3 Unintentionally
If an operating system is trying to avoid releasing a piece of information, it may still be
possible to infer its value from externally observed behavior, such as the time it takes for
the kernel to execute a system call or the pattern of pages in virtual memory after the ker
nel returns. An example of this attack was discovered in the Tenex time-sharing system,
which provided virtual memory. Tenex allowed a program to acquire the privileges of
another user if the program could supply that user’s secret password. The kernel routine
that examined the user-supplied password did so by comparing it, one character at a
time, with the corresponding entry in the password table. As soon as a mismatch was
detected, the password-checking routine terminated and returned, reporting a mismatch
error.

This immediate termination turned out to be easily detectable by using two features
of Tenex. The first feature was that the system reacted to an attempt to touch a nonex
istent page by helpfully creating an empty page. The second feature was that the user can
ask the kernel if a given page exists. In addition, the user-supplied password can be placed
anywhere in user memory.

An attacker can place the first character of a password guess in the last byte of the last
existing page, and then call the kernel asking for another user’s privileges. When the ker
nel reports a password mismatch error, the attacker then can check to see whether or not
the next page now exists. If so, the attacker concludes that the kernel touched the next
page to look for the next byte of the password, which in turn implies that the first char
acter of the password was guessed correctly. By cycling through the letters of the
alphabet, watching for one that causes the system to create the next page, the attacker
could systematically search for the first character of the password. Then, the attacker
could move the password down in memory one character position and start a similar
search for the second character. Continuing in this fashion, the entire password could be
quickly exposed with an effort proportional to the length of the password rather than to
the number of possible passwords.*

Lesson: We have here another example of a common mechanism, the virtual memory
shared between the user and the password checker inside the supervisor. Common mech
anisms can provide unintended communication paths.

11.11.11 It Seems to be Working Just Fine

A hazard with systems that are supposed to provide security is that there often is no obvi
ous indication that they aren’t actually doing their job. This hazard is especially acute in
cryptographic systems.

* This attack (apparently never actually exploited in the field before it was blocked) has been con
firmed by Ray Tomlinson and Dan Murphy, the designers of Tenex. A slightly different description
of the attack appears in Butler Lampson, “Hints for computer system design,” Operating Systems
Review 17, 5 (October 1983) pages 35–36.

Saltzer & Kaashoek Ch. 11, p. 142 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–143

11.11.11.1 I Thought it was Secure
The Data Encryption Standard (DES) is a block cryptographic system that transforms
each 64-bit plaintext input block into a 64-bit output ciphertext block under what
appears to be a 64-bit key. Actually, the eighth bit of each key byte is a parity check on
the other seven bits, so there are only 56 distinct key bits.

One of the many software implementations of DES works as follows. One first loads
a key, say my_key, by invoking the entry

status ← LOAD_KEY (my_key)

The LOAD_KEY procedure first resets all the temporary variables of the cryptographic
software, to prevent any interaction between successive uses. Then, it checks its argu
ment value to verify that the parity bits of the key to be loaded are correct. If the parity
does not check, LOAD_KEY returns a non-zero status. If the status argument indicates that
the key loaded properly, the application program can go on to perform other operations.
For example, a cryptographic transformation can be performed by invoking

ciphertext ← ENCRYPT (plaintext)

for each 64-bit block to be transformed. To apply the inverse transformation, the appli
cation invokes LOAD_KEY with the same key value that was used for encryption and then
executes

plaintext ← DECRYPT (ciphertext)

A network application used this DES implementation to encrypt messages. The client
and the service agreed in advance on a key (the “permanent key”). To avoid exposing the
permanent key by overuse, the first step in each session of the client/service protocol was
for the client to randomly choose a temporary key to be used in this session, encipher it
with the permanent key, and send the result to the service. The service decrypted the first
block using the permanent key to obtain the temporary session key, and then both ends
used the session key to encrypt and decrypt the streams of data exchanged for rest of that
session.

The same programmer implemented the key exchange and loading program for both
the client and the service. Not realizing that the DES key was structured as 56 bits of key
with 8 parity bits, he wrote the program to simply use a random number generator to
produce a 64-bit session key. In addition, not understanding the full implications of the
status code returned by LOAD_KEY, he wrote the call to that program as follows (in the C
language):

LOAD_KEY (tempkey)

thereby ignoring the returned status value.
Everything seemed to work properly. The client generated a random session key, enci
phered it, and sent it to the service. The service deciphered it, and then both the client
and the service loaded the session key. But in 255 times out of 256, the parity bits of the
session key did not check, and the cryptographic software did not load the key. With this
particular implementation, failing to load a key after state initialization caused the pro-

Saltzer & Kaashoek Ch. 11, p. 143 June 24, 2009 12:29 am

11–144 CHAPTER 11 Information Security

gram to perform the identity transformation. Consequently, in most sessions all the data
of the session was actually transmitted across the network in the clear.*

Lesson: The programmer who ignored the returned status value was not sufficiently
paranoid in the implementation. Also, the designer of LOAD_KEY, in implementing an
encryption engine that performs the identity transformation when it is in the reset state
did not apply the principle of fail-safe defaults,. That designer also did not apply the prin
ciple to be explicit; the documentation of the package could have included a warning
printed in large type of the importance of checking the returned status values.

11.11.11.2 How Large is the Key Space…Really?
When a client presents a Kerberos ticket to a service (see Sidebar 11.6 for a brief descrip
tion of the Kerberos authentication system), the service obtains a relatively reliable
certification that the client is who it claims to be. Kerberos includes in the ticket a newly-
minted session key known only to it, the service, and the client. This new key is for use
in continued interactions between this service and client, for example to encrypt the
communication channel or to authenticate later messages.

Generating an unpredictable session key involves choosing a number at random from
the 56-bit Data Encryption Standard key space. Since computers aren’t good at doing
things at random, generating a genuinely unpredictable key is quite difficult. This prob
lem has been the downfall of many cryptographic systems. Recognizing the difficulty, the
designers of Kerberos in 1986 chose to defer the design of a high-quality key generator
until after they had worked out the design of the rest of the authentication system. As a
placeholder, they implemented a temporary key generator which simply used the time of
day as the initial seed for a pseudorandom-number generator. Since the time of day was
measured in units of microseconds, using it as a starting point introduced enough unpre
dictability in the resulting key for testing.

When the public release of Kerberos was scheduled three years later, the project to
design a good key generator bubbled to the top of the project list. A fairly good, hard-to
predict key generator was designed, implemented, and installed in the library. But,
because Kerberos was already in trial use and the new key generator was not yet field-
tested, modification of Kerberos to use the new key generator was deferred until experi
ence with it and confidence in it could be accumulated.

In February of 1996, some 7 years later, two graduate students at Purdue University
learned of a security problem attributed to a predictable key generator in a different net
work authentication system. They decided to see if they could attack the key generator
in Kerberos. When they examined the code they discovered that the temporary, time-of
day key generator had never been replaced, and that it was possible to exhaustively search
its rather limited key space with a contemporary computer in just a few seconds. Upon
hearing this report, the maintainers of Kerberos were able to resecure Kerberos quickly

* Reported by Theodore T’so in 1997.

Saltzer & Kaashoek Ch. 11, p. 144 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–145

because the more sophisticated key-generator program was already in its library and only
the key distribution center had to be modified to use the library program.

Lesson: This incident illustrates how difficult it is to verify proper operation of a func
tion with negative specifications. From all appearances, the system with the predictable
key generator was operating properly.*

11.11.11.3 How Long are the Keys?
A World Wide Web service can be configured, using the Secure Socket Layer, to apply
either weak (40-bit key) or strong (128-bit key) cryptographic transformations in
authenticating and encrypting communication with its clients. The Wells Fargo Bank
sent the following letter to on-line customers in October, 1999:

“We have, from our initial introduction of Internet access to retirement account
information nearly two years ago, recognized the value of requiring users to utilize brows
ers that support the strong, 128-bit encryption available in the United States and
Canada. Following recent testing of an upgrade to our Internet service, we discovered
that the site had been put into general use allowing access with standard 40-bit encryp
tion. We fixed the problem as soon as it was discovered, and now, access is again only
available using 128-bit encryption…We have carefully checked our Internet service and
computer files and determined that at no time was the site accessed without proper
authorization…”†

Some Web browsers display an indication, such as a padlock icon, that encryption is
in use, but they give no clue about the size of the keys actually being used. As a result, a
mistake such as this one will likely go unnoticed.

Lesson: The same as for the preceding anecdote 11.11.11.2.

11.11.12 Injection For Fun and Profit

A common way of attacking a system that is not well defended is to place control infor
mation in a typed input field, a method known as “injection”. The programmer of the
system provides an empty space, for example on a Web form, in which the user is sup
posed to type something such as a user name or an e-mail address. The adversary types
in that space a string of characters that, in addition to providing the requested informa
tion, invokes some control feature. The typical mistake is that the program that reads the
input field simply passes the typed string along to some potentially powerful interpreter
without first checking the string to make sure that it doesn’t contain escape characters,
control characters, or even entire program fragments. The interpreter may be anything
from a human operator to a database management system, and the result can be that the
adversary gains unauthorized control of some aspect of the system.

* Jared Sandberg, with contribution by Don Clark. Major flaw in Internet security system is dis
covered by two Purdue students. Wall Street Journal CCXXVII, 35 (Tuesday 20 February 1996),
Eastern Edition page B–7A.

† Jeremy Epstein. Risks-Forum Digest 20, 64 (Thursday 4 November 1999).

Saltzer & Kaashoek Ch. 11, p. 145 June 24, 2009 12:29 am

11–146 CHAPTER 11 Information Security

The countermeasure for injection is known as “sanitizing the input”. In principle,
santizing is simple: scan all input strings and delete inappropriate syntactical structures
before passing them along. In practice, it it is sometimes quite challenging to distinguish
acceptable strings from dangerous ones.

11.11.12.1 Injecting a Bogus Alert Message to the Operator
Some early time-sharing systems had a feature that allowed a logged-in user to send a
message to the system operator, for example, to ask for a tape to be mounted. This mes
sage is displayed at the operator’s terminal, intermixed with other messages from the
operating system. The operating system normally displays a warning banner ahead of
each user message so that the operator knows its source. In the Compatible Time Sharing
System at M.I.T., the operating system placed no constraint on either the length or con
tent of messages from users. A user could therefore send a single message that, first,
cleared the display screen to eliminate the warning banner, and then displayed what
looked like a standard system alert message, such as a warning that the system was over
heating, which would lead the operator to immediately shut down the system.*

11.11.12.2 CardSystems Exposes 40,000,000 Credit Card Records to SQL Injection
A currently popular injection attack is known as “SQL injection”. Structured Query
Language (SQL) is a widely-implemented language for making queries of a database sys
tem. A typical use is that a Web form asks for a user name, and the program that receives
the form inserts the typed string in place of typedname in an SQL statement such as this
one:

select * from USERS where NAME = ‘typedname’;

This SQL statement finds the record in the USERS table that has a NAME field equal to the
value of the string that replaced typedname. Thus, if the user types “John Doe” in the
space on the Web form, the SQL statement will look for and return the record for user
John Doe.
Now, suppose that an adversary types the following string in the blank provided for the
name field:

John Doe’ ; drop USERS;

When that string replaces typedname, the result is to pass this input to the SQL
interpreter:

select * from USERS where NAME = ‘John Doe’ ; drop USERS;’;

The SQL interpreter considers that input to be three statements, separated by semico
lons. The first statement returns the record corresponding to the name “John Doe”. The
second statement deletes the USERS table. The third statement consists of a single quote,

* This vulnerability was noticed, and corrected, by staff programmers in the late 1960’s. As far as is
known, it was never actually exploited.

Saltzer & Kaashoek Ch. 11, p. 146 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–147

which the interpreter probably treats as a syntax error, but the damage intended by the
adversary has been done. The same scheme can be used to inject much more elaborate
SQL code, as in the following incident, described by excerpts from published accounts.

Excerpt from wired.com, June 22, 2005: “MasterCard International announced last
Friday that intruders had accessed the data from CardSystems Solutions, a payment pro
cessing company based in Arizona, after placing a malicious script on the company's
network.”* The New York Times reported that “…more than 40 million credit card
accounts were exposed; data from about 200,000 accounts from MasterCard, Visa and
other card issuers are known to have been stolen…”†

Excerpt from the testimony of the Chief Executive Officer of CardSystems Solutions
before a Congressional committee: “An unauthorized script extracted data from 239,000
unique account numbers and exported it by FTP…”‡

Excerpt from the FTC complaint, filed a year later: “6. Respondent has engaged in a
number of practices that, taken together, failed to provide reasonable and appropriate
security for personal information stored on its computer network. Among other things,
respondent: (1) created unnecessary risks to the information by storing it in a vulnerable
format for up to 30 days; (2) did not adequately assess the vulnerability of its Web appli
cation and computer network to commonly known or reasonably foreseeable attacks,
including but not limited to “Structured Query Language” (or “SQL”) injection attacks;
(3) did not implement simple, low-cost, and readily available defenses to such attacks;
(4) failed to use strong passwords to prevent a hacker from gaining control over comput
ers on its computer network and access to personal information stored on the network;
(5) did not use readily available security measures to limit access between computers on
its network and between such computers and the Internet; and (6) failed to employ suf
ficient measures to detect unauthorized access to personal information or to conduct
security investigations.

“7. In September 2004, a hacker exploited the failures set forth in Paragraph 6 by
using an SQL injection attack on respondent’s Web application and Web site to install
common hacking programs on computers on respondent’s computer network. The pro
grams were set up to collect and transmit magnetic stripe data stored on the network to
computers located outside the network every four days, beginning in November 2004.
As a result, the hacker obtained unauthorized access to magnetic stripe data for tens of
millions of credit and debit cards.

“8. In early 2005, issuing banks began discovering several million dollars in fraudu
lent credit and debit card purchases that had been made with counterfeit cards. The
counterfeit cards contained complete and accurate magnetic stripe data, including the
security code used to verify that a card is genuine, and thus appeared genuine in the

* http://www.wired.com/news/technology/0,67980-0.html

† The New York Times, Tuesday, June 21, 2005.

‡ Statement of John M. Perry, President and CEO CardSystems Solutions, Inc., before the United
States House of Representatives Subcommittee on Oversight and Investigations of the Committee
on Financial Services, July 21, 2005.

Saltzer & Kaashoek Ch. 11, p. 147 June 24, 2009 12:29 am

http:wired.com
http://www.wired.com/news/technology/0,67980-0.html

11–148 CHAPTER 11 Information Security

authorization process. The magnetic stripe data matched the information respondent
had stored on its computer network. In response, issuing banks cancelled and re-issued
thousands of credit and debit cards. Consumers holding these cards were unable to use
them to access their credit and bank accounts until they received replacement cards.”*

Visa and American Express cancelled their contracts with CardSystems, and the com
pany is no longer in business.

Lesson: Injection attacks, and the countermeasure of sanitizing the input, have been
recognized and understood for at least 40 years, yet another example is reported nearly
every day. The lesson following anecdote 11.11.1.7 seems to apply here, also.

11.11.13 Hazards of Rarely-Used Components

In the General Electric 645 processor, the circuitry to check read and write permission
was invoked as early in the instruction cycle as possible. When the instruction turned out
to be a request to execute an instruction in another location, the execution of the second
instruction was carried out with timing later in the cycle. Consequently, instead of the
standard circuitry to check read and write permission, a special-case version of the circuit
was used. Although originally designed correctly, a later field change to the processor
accidentally disabled one part of the special-case protection-checking circuitry. Since
instructions to execute other instructions are rarely encountered, the accidental disable
ment was not discovered until a penetration team began a systematic study and found
the problem. The disablement was dependent on the address of both the executed
instruction and its operand, and was therefore unlikely to have ever been noticed by any
one not intentionally looking for security holes.†

Lesson: Most reliability design principles also apply to security: avoid rarely-used
components.

11.11.14 A Thorough System Penetration Job

One particularly thorough system penetration operation went as follows. First, the team
of attackers legitimately obtained computer time at a different site that ran the same
hardware and same operating system. On that system they performed several experi
ments, eventually finding an obscure error in protecting a kernel routine. The error,
which permitted general changing of any kernel-accessible variable, could be used to
modify the current thread’s principal identifier. After perfecting the technique, the team
of attackers shifted their activities to the site where the operating system was being used
for development of the operating system itself. They used the privilege of the new prin
cipal identifier to modify one source program of the operating system. The change was
a one-byte revision—replacing a “less than” test with a “greater than” test, thereby com

* United States Federal Trade Commission Complaint, Case 0523148, Docket C-4168, September
5, 2006.

† Karger and Schell, op. cit., Section 3.2.2.

Saltzer & Kaashoek Ch. 11, p. 148 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–149

promising a critical kernel security check. Having installed this change in the program,
they covered their trail by changing the directory record of date-last-modified on that
file, thereby leaving behind no traces except for one changed line of code in the source
files of the operating system. The next version of the system to be distributed to custom
ers contained the attacker’s revision, which could then be exploited at the real target site.*

This exploit was carried out by a tiger team that was engaged to discover security slip
ups. To avoid compromising the security of innocent customer sites, after verifying that
the change did allow compromise, the tiger team further modified the change to one that
was not exploitable, but was detectable by someone who knew where to look. They then
waited until the next system release. As expected, the change did appear in that release.†

Lesson: Complete mediation includes verifying the authenticity, integrity, and autho
rization of the software development process, too.

11.11.15 Framing Enigma

Enigma is a family of encipherment machines designed in Poland and Germany in the
1920s and 1930s. An Enigma machine consists of a series of rotors, each with contacts
on both sides, as in Figure 11.12. One can imagine a light bulb attached to each contact
on one side of the rotor. If one touches a battery to a contact on the other side, one of
the light bulbs will turn on, but which one depends on the internal wiring of that rotor.
An Enigma rotor had 26 contacts on each side, thus providing a permutation of 26 let
ters, and the operator had a basket of up to eight such rotors, each wired to produce a
different permutation.

The first step in enciphering was to choose four rotors from the basket [j, k, l and m]
and place them on an axle in that order. This choice was the first component of the
encoding key. The next step was to set each rotor into one of 26 initial rotational posi
tions [a, b, c, d], which constituted the second component of the encoding key. The
third step was to choose one of 26 offsets [e, f, g, h] for a tab on the edge of each rotor.
The offsets were the final component of the encoding key. The Enigma key space was,
in terms of the computational abilities available during World War II, fairly formidable
against brute force attack. After transforming one stream element of the message, the first
rotor would turn clockwise one position, producing a different transformation for the
next stream element. Each time the offset tab of the first rotor completed one revolution,
it would strike a pawl on the second rotor, causing the second rotor to rotate clockwise
by one position, and so on. The four rotors taken together act as a continually changing
substitution cipher in which any letter may transform into any letter, including itself.

The chink in the armor came about with an apparently helpful change, in which a
reflecting rotor was added at one end—in the hope of increasing the difficulty of cryp
tanalysis. With this change, input to and output from the substitution were both done
at the same end of the rotors. This change created a restriction: since the reflector had to

* Schell, 1979 op. cit., page 22.

† Karger and Schell, 1974 op. cit., Sections 3.4.5 and 3.4.6.

Saltzer & Kaashoek Ch. 11, p. 149 June 24, 2009 12:29 am

11–150 CHAPTER 11 Information Security

Enigma Rotor with eight contacts

.

Side view, showing contacts. Edge view, showing some connections.

In

Out

Two Enigma Rotors with a reflector, showing an input-output path.

FIGURE 11.12

Enigma design concept (simplified for illustration).

Saltzer & Kaashoek Ch. 11, p. 150 June 24, 2009 12:29 am

 Exercises 11–151

connect some incoming character position into some other outgoing character position,
no character could ever transform into itself. Thus the letter “E” never encodes into the
letter “E”.

This chink could be exploited as follows. Suppose that the cryptanalyst knew that
every enciphered message began with the plaintext string of characters “The German
High Command sends greetings to its field operations”. Further, suppose that one has
intercepted a long string of enciphered material, not knowing where messages begin and
end. If one placed the known string (of length 60 characters) adjacent to a randomly
selected adjacent set of 60 characters of intercepted ciphertext, there will probably be
some positions where the ciphertext character is the same as the known string character.
If so, the reflecting Enigma restriction guaranteed that this place could not be where that
particular known plaintext was encoded. Thus, the cryptanalyst could simply slide the
known plaintext along the ciphertext until he or she came to a place where no character
matches and be reasonably certain that this ciphertext does correspond to the plaintext.
(For a known or chosen plaintext string of 60 characters, there is a 9/10 probability that
this framing is not a chance occurrence. For 120 characters, the probability rises to
99/100.)

 Being able systematically to frame most messages is a significant step toward breaking
a code because it greatly reduces the number of trials required to discover the key.*

Exercises

11.1 Louis Reasoner has been using a simple RPC protocol that works as follows†:

client ⇒ service: {nonce, procedure, arguments}

service ⇒ client: {nonce, response}

The client sets a timer, and if it does not receive a response before the timer expires,
it restarts the protocol from the beginning, repeating this sequence as many times
as necessary until a response returns. The service maintains a table of nonces and
responses, and when it receives a request containing a duplicate nonce it repeats the
response, rather than repeating execution of the procedure. The client similarly
maintains a list of nonces for which no response has yet been received, and it

* A thorough explanation of the mechanism of Enigma appeared in Alan M. Turing, “A description
of the machine,” (Chapter 1 of an undated typescript, sometimes identified as the Treatise on Enigma
or “the prof ’s book”, c. 1942) [United States National Archives and Records Administration, record
group 457, National Security Agency Historical Collection, box 204, Nr. 964, as reported by Frode
Weierude]. A nontechnical account of the flaws in Enigma and the ways they could be exploited can
be found in Stephen Budianski, Battle of Wits [New York: Simon & Schuster: 2000].

† Throughout the Problems and Solutions, the notation {a, b, c} denotes a message constructed of
the named items, marshaled in some unspecified way that is unimportant for the purposes of the
problem so long as the recipient knows how to unmarshal the individual arguments.

Saltzer & Kaashoek Ch. 11, p. 151 June 24, 2009 12:29 am

11–152 CHAPTER 11 Information Security

discards any responses for nonces not in that list, assuming that they are duplicates.
One possible response is “unknown procedure”, meaning that the service received
a request it didn’t know how to handle. The link layer checksums all frames and
discards any that are damaged in transmission. All messages fit in one frame.

Louis wants to make this protocol secure against eavesdroppers. He has discovered
that the client and the service already share a key, Kcs, for a shared-secret-key
cryptographic system. So the first thing he tries is to encrypt the requests and
responses of the simple RPC protocol:

 client ⇒ service: ENCRYPT ({nonce, procedure, arguments}, Kcs)
 service ⇒ client: ENCRYPT ({nonce, response}, Kcs)

This seems to work, but Louis has heard that if you use the same key to repeatedly
transform predictable fields such as procedure names, someone may eventually
discover the key by cryptanalysis. So he wants to use a different key for each RPC
call. To minimize the coding effort, he changes the protocol to work as follows:

client ⇒ service: ENCRYPT ({Ktn}, Kcs)
client ⇒ service: ENCRYPT ({nonce, procedure, arguments}, Ktn)
service ⇒ client: ENCRYPT ({nonce, response}, Ktn)

in which Ktn is a one-time key chosen by the client to be used only for the n’th RPC
call. When the service receives a key, it decrypts it and uses it until the service gets
another key message. Louis figures that since Kcs is now being used only to
temporary keys, which look like random numbers, it should be safer from
cryptanalysis.

At first, this protocol, too, seems to work. Then Louis notices that the client is
receiving the response “unknown procedure” much more often than it used to.
Explain why, using a timing diagram to demonstrate an example of the failure. And
offer a suggestion to fix the problem.

1983-3-5b

11.2 	 Lucifer is determined to figure out Alice’s password by a brute-force attack. From
watching her log in he knows that her password is eight characters long and all

Saltzer & Kaashoek Ch. 11, p. 152	 June 24, 2009 12:29 am

 Exercises

lower-case letters, of which there are 26. He sets out to try all possible combinations
of eight lower-case letters.

11.2a. Assuming he has to try about half the possibilities before he runs across the right
one, one trial can be done in one machine cycle, and he has a 600 mHz computer
available, about how long will the project take?

1994–2–1a

11.2b. How long will it take if Alice chooses an eight-character password that includes
upper- and lower-case letters, numbers, and 16 special characters, 78 characters in
all?

1994–2–1b

11.2c. Suppose processors continue to get faster, improving by a factor of three every two
years. How long will it be until Alice’s new password can be cracked as easily as her
old one?

1994–2–1c

11.3 Tracy Swallow has a bright idea for avoiding the need to store passwords securely.
She suggests transforming the user’s name with a key-driven cryptographic
transformation using a systemwide “password key” and giving the result back to the
user to present as a password. A user who wishes to log in simply presents his or her
name and this password; the system can authenticate the user by again transforming
the user’s name with the password key to see if the result is the same as the presented
password. Thus no central file of passwords is needed. What is wrong with Tracy’s
idea?

[1983–2–4b]

11.4 	 Louis Reasoner is fascinated with the discovery that some cryptographic
transformations are commutative. A commutative transformation has the interesting
property that for every message and every pair of keys k1 and k2,

TRANSFORM (TRANSFORM (M, Ka), Kb) = TRANSFORM (TRANSFORM (M, Kb), Ka)

That is, you get the same result no matter in which order you do two
transformations with different keys.

Louis did some further research, identified a high-quality commutative
transformation, and used it to devise a commutative implementation of two
confidentiality primitives he calls ENCRYPT_C and DECRYPT_C. He has proposed that
Alice, in San Francisco, and Bob, in Boston, use the following scheme for secure
private delivery of messages between their computers, which are connected via the
Internet:

• 	 Alice chooses a random key, Ka, encrypts her message M with that key, and sends
the result, ENCRYPT_C (M, Ka), to Bob.

11–153

Saltzer & Kaashoek Ch. 11, p. 153	 June 24, 2009 12:29 am

11–154 CHAPTER 11 Information Security

• 	 Bob chooses another random key, Kb, encrypts the already-encrypted message to
produce ENCRYPT_C (ENCRYPT_C (M, Ka), Kb) and sends the doubly-encrypted result
back to Alice.

• 	 By commutativity, this message is identical to ENCRYPT_C (ENCRYPT_C (M, Kb), Ka),
which is a message that Alice can decrypt with her key Ka. She does so, revealing
ENCRYPT_C (M, Kb).

• 	 She sends this result back to Bob, who can now decrypt it with his key Kb to
reveal M.

The appealing thing about this scheme is that Alice and Bob did not have to agree
on a secret key in advance. Louis calls this the “No-Prior-Agreement” protocol.

11.4a. Is it possible for a passive intruder (that is, one who just listens to the encrypted
messages) to discover M? If so, describe how. If not, explain why not.

1994–2–2a

11.4b. Is it possible for an active intruder (that is, one who can also insert, delete, or
replay messages) to discover M? If so, describe how. If not, explain why not.

1994–2–2b

11.5 	 Secure Inc. is developing a remote file system, Secure RFS (SRFS), which
automatically encrypts files to guarantee better privacy of information. When a
request to store a file arrives, SRFS encrypts the file using the client’s key. On arrival
of a request to read a file, SRFS looks up the client key, decrypts the file, and sends
the file back to the client. SRFS keeps for each client a separate key.

11.5a. The designers of Secure Inc. are wondering how long it would take to crack a file
that is encrypted using RSA with a 512-bit key. To crack an RSA-encrypted file one
has to factor the key. The designers found a 1993 paper that reports that factoring
a 100 decimal digit number takes about 1 month using idle cycles from 300 3
MIPS workstations. It is estimated that factoring an additional 3 decimal digits
roughly doubles the computation time needed. How many 3-MIPS computers
would be needed to factor a 155 decimal digit number (which corresponds to about
512 bits) in one month?

1995–2–3a

11.5b. If processors are doubling computation performance per year, how many
workstations would it take to factor a 512-bit key in one month in the year 2001?

1995–2–3b

11.5c. Assume that the cryptographic transformations can be done at 250 kilobytes per
second. How much would the throughput be reduced for reading files stored by
SRFS, if the current maximum throughput without cryptographic transformations

Saltzer & Kaashoek Ch. 11, p. 154	 June 24, 2009 12:29 am

 Exercises 11–155

is 800 kilobytes per second? (Assume that the cryptographic transformations
cannot be pipelined with sending and receiving.)

1995–2–3c

11.5d. Secure Inc. is also considering adding automatic compression of files to SRFS.
Compression reduces redundancy of information in a file so that the file takes less
disk space. Should they first compress files, then encrypt them, or should they first
encrypt files and then compress them? Explain.

1995–2–3d

11.6 	 Alice wants to communicate with Bob over an insecure network. She learned
about one-time pads in Section 11.8, and decides to use a one-time pad to secure
her communications. Since Alice wants to send a k-bit message to Bob in the future,
she generates a random k-bit key r and hands it to Bob in person.
When Alice comes to send Bob her message, she XORs the message m with the key r
to produce a ciphertext c, and sends this on the network. Bob XORs c with r to
retrieve m.

11.6a. 	Assume that Alice’s message m is a concatenation of a header followed by some
data. Consider an eavesdropper Eve who snoops on Alice’s conversation. If Eve can
correctly guess the value of the header in Alice’s message, which of the following are
correct?

A. 	 Eve’s ability to decrypt the data bits in m is not improved by her knowledge of the
header bits.

B. 	 The data bits in Alice’s message are confidential.
C. 	 The data bits in Alice’s message are securely authenticated.

Alice rapidly grows tired of the effort in exchanging one-time pads with Bob, and
has an idea to simplify the key distribution process. Alice’s idea works as follows:

To send a k-bit message m1 to Bob, Alice picks a k-bit random number r1,
computes ciphertext c1 = m1 ⊕ r1, and sends c1 to Bob. Bob then picks his own
k-bit random number r2, computes c2 = c1 ⊕ r2, and sends c2 to Alice. Alice finally
computes c3 = c2 ⊕ r1 and sends c3 to Bob.

 11.6b. Which of the following statements are correct of Alice’s new scheme?

A. 	 Bob can correctly decrypt Alice’s message m1, without receiving r1 ahead of time,
assuming all messages between Alice and Bob are correctly delivered.

B. 	 An active attacker Lucifer (who can intercept, drop, and replay messages) can decrypt
the message.

C. 	 A passive eavesdropper Eve can decrypt the message.
2008-3-12-13

Saltzer & Kaashoek Ch. 11, p. 155	 June 24, 2009 12:29 am

11–156 CHAPTER 11 Information Security

11.7 	 Bank of America is struggling to convince itself of the authenticity of a message it
just received, and has asked your help in what to do next. So far, they know the
following two facts to be true:

• Louis says (Ben says (Transfer $1,000,000 to Alyssa))
• Jim speaks for Ben

Ben’s account has enough money for such a transaction, so if they can convince
themselves that Ben really authorized the transaction, they will do the transfer.
Which of the following things should they attempt to establish the truth of, and
why?]

A. Louis speaks for Jim
B. Ben speaks for Louis
C. 	 Ben says (Jim speaks for Louis)

1995–2–4a

11.8 	 Ben Bitdiddle has hit on a bright idea for fixing the problem that capabilities are
hard to revoke. His plan is to invent something called timed capabilities. One of the
fields of a timed capability is its expiration time, which is the time of creation plus
E. A timed capability can be used like any other capability until the system clock
reaches the expiration time; after that time, it becomes worthless. Analyze this
proposal with respect to:

A. Performance.
B. Propagation.
C. 	 Revocation.
D. 	 Auditing.
E. Ease of use.

1984–2–4

11.9 	 Two banks are developing an inter-bank funds transfer system. They are
connected by a telephone line which runs in a duct along Main street, and Alyssa P.
Hacker is concerned that there might be foul play. The banks' expert, Ben Bitdiddle,
says that the banks will use a shared-secret key K1 to encrypt their communications
and a second shared-secret key K2 to authenticate their communications, using the
following protocol:

Bank 1 ⇒ Bank 2{{“transfer from our Account Y”}K2}K1

Bank 1 ⇒ Bank 2{{“to your Account X”}K2}K1

Bank 1 ⇒ Bank 2{{“Amount Z”}K2}K1

Bank 2 ⇒ Bank 1{{“OK”}K2}K1

Alyssa immediately realizes that without knowing either K1 or K2 an intruder could

Saltzer & Kaashoek Ch. 11, p. 156	 June 24, 2009 12:29 am

 Exercises 11–157

subvert the banks.

11.9a. With an Apple II in the manhole in middle of Main street describe how Alyssa
could

A. Increase or decrease the amount of a transfer.
B. Cause a transfer to occur more than once.
C. 	 Cause a transfer not to occur at all without arousing suspicion at the requesting bank.

1984–2–3a

11.9b. Design a new protocol that eliminates these problems and uses only two messages.
1984–2–3b

11.10 	 To attract attention to their Web site, OutofMoney.com has added a feature that
broadcasts a stream of messages containing free stock market quotations. They
intend the information to be public, so there is no need for confidentiality, but they
are concerned about their reputation, so they want the stream of data to be
authenticated.

Their current implementation signs every message with the company's private key,
and clients authenticate the data by verifying it with the company's widely
publicized public key. This technique works, but is proving problematic because the
public-key algorithm uses too much computation time and the typical client,
running a four-year-old pentium processor, can't keep up with the stream of
messages on days when the stock market is crashing.
From reading this chapter, they learned that authentication using a shared-secret
key MAC is much faster. They have hired Ben Bitdiddle and Louis Reasoner as a
consulting team to put this idea into practice. (Unfortunately, they didn't do any
of the problem sets, so they don't know about the reputations of these two
characters.)

Louis's first proposal is as follows: any client who wishes to use the authenticated
service starts by contacting the service and requesting a start message. The service
signs this start message with the company's public key. The start message contains
the shared-secret key that is currently being used to authenticate the stream of
messages containing the stock market quotations.

11.10a. Ben's intuition is that this can't possibly work, but he isn't sure why. Give Ben
some help by explaining why.

2002–0–1

Undaunted, Louis has been reading about delayed authentication and decides it is
the ideal way to tackle this problem. The idea is the following: since the service is
sending a stream of messages, for each message use a different shared-secret key to
create its authentication tag, and then publicly disclose that shared-secret key after

Saltzer & Kaashoek Ch. 11, p. 157	 June 24, 2009 12:29 am

11–158 CHAPTER 11 Information Security

all clients have received that message.

In Louis’s design, each message Pi is constructed as follows:

raw_messagei ← {i, Di, Ki-2}
authtagi ← SIGN (raw_messagei, Ki)
Pi ← {raw_messagei, authtagi}

Thus Pi contains

• its own sequence number, i
• some data, Di
• the key Ki-2, which can be used to verify the data in message Pi-2
• an authentication tag created by signing the rest of the message with Ki

The key that authenticates this message will appear in message Pi+2. Louis argues
that even though the key Ki is sent in plaintext, if the client receives Di before the
service sends Ki, by the time the attacker knows Ki, it is too late for the attacker to
modify Di. As with Louis's previous system, a client begins by requesting a start
message. This time, the start message contains the same data as the next message in
the broadcast stream, but it is signed with the company's private key.

11.10b. 	Again, Ben is (rightly) suspicious of this system, but he can't figure out what is
wrong with it. Help him out by explaining the flaw and how to fix it.

2002–0–2

11.11 	 This chapter discusses both capabilities and access control lists as mechanisms for
authorization. Which of the following statements are true?

A. 	 A capability system associates a list of object references with each principal,
indicating which objects the principal is allowed to use.

B. 	 An access control list system associates a list of principals with each object, indicating
which principals are allowed to use the object.

C. 	 Revocation of a particular access permission of a principal is more difficult in an
access control list system than in a capability system.

D. 	 Protection in the UNIX file system is based on capabilities only.
2002–2–04

11.12 	 Alice decided to try out a new RFID Student Tracking System, so she created an
access control list that allows a few close friends to track her. One of those friends,
Bob, wants to ask Alice to join his design project team, so this morning he requested
that the tracking system give him a callback if Alice walks by the Administration
building. Alice, working in a nearby laboratory, belatedly realizes that Bob is
probably going to pop that question, so she logs in to the tracking system and
removes Bob from her access control list. She then logs out and leaves for lunch. As

Saltzer & Kaashoek Ch. 11, p. 158	 June 24, 2009 12:29 am

 Exercises 11–159

she walks by the Administration building, Bob comes running out of the library to
greet her, saying that he just received a callback from the tracking system.

The designer of the tracking system made a security blunder. Which of the
following is the most likely explanation?

A. 	 The tracking system didn’t properly erase residues.
B. 	 In her rush to leave for lunch, Alice removed Lucy, rather than Bob, from her ACL.
C. 	 The tracking system has a time-of-check to time-of-use bug.
D. 	 The system used a version of SSL that is subject to cipher substitution attacks.
E. 	 The system did not require a face-to-face rendezvous between users and system

administrator.
2003–3–5

11.13 	 Ben decides to start an Internet Service Provider. He buys an address space that
contains 224 addresses (out of the total of 232 in the Internet) that have never been
used before. A few days after he buys this address space, someone launches a new
worm similar in design to the Slammer worm described in Section 11.11.4.3. The
new worm targets a buffer overflow in the FOO server, which listens on UDP port
5044. Ben monitors all traffic sent to his part of the Internet address space on port
5044 and plots the number of worm probes versus time below:

Time

10,000

probes/sec

100
probes/sec

0

Assume the worm spreads by probing IP addresses chosen at random, and that its
pseudorandom number generator is bug-free and generates a complete permutation
of the integers before revisiting any integer. Ben learns from a security analyst that
each infected machine sends 100 probes/second.

 11.13a. Give an estimate of the total number of machines that run the FOO server.

A. 	 100 machines
B. 	 7.2×1018 machines
C. 	 25,600 machines
D. 	 8,000 machines

Saltzer & Kaashoek Ch. 11, p. 159	 June 24, 2009 12:29 am

11–160 CHAPTER 11 Information Security

11.13b. Ben thinks that the worm used a hit list of vulnerable addresses (i.e., addresses of
FOO servers). Do you agree? If you do, what is the best estimate for the number of
machines contained in the hit list?

A. no hit list
B. 100 machines
C. 	 256 machines
D. 	 25600 machines
E. 	 80 machines

2007-3-3-4

11.14 	 Ben Bitdiddle, the new head of Cyber Security for the Department of Homeland
Security, studied the war story about the Slammer worm in Section 11.11.4.3 and
he wants to build a system that will detect and stop future worm attacks before they
can reach 50% of the vulnerable hosts. Ben makes the following assumptions about
the worms to be defended against:

• 	 Each worm instance sends 512 (29) probes per second.
• 	 The worm’s software probes all IP addresses at random.
• 	 Of the 232 possible addresses on the Internet, there are 32,768 (215) that are

attached to active hosts that are vulnerable to the worm.
• 	 The worm begins by infecting a single vulnerable host.

11.14a. Given the assumptions above, roughly how many seconds will it take for the size
of the infected population to double, during the early stages of a worm outbreak?\

A. 16 seconds
B. 256 seconds
C. 	 1024 seconds

Ben convinces a consortium of router vendors to develop a new, remotely
configurable packet-filtering feature, and develops a system that can propagate filter
updates to all routers in the Internet within 15 minutes (900 seconds) of a detected
outbreak. Once all routers have the filter, the filters will prevent all further worm
infections. Ben’s detection mechanism is a network monitor that can observe
1/256-th of the Internet address space. His system automatically sends a filter
update whenever worm traffic directed to the set of addresses he monitors reaches
a predefined threshold.

11.14b. 	What traffic threshold should Ben choose to stop the worm before it reaches 50%
of the vulnerable hosts?

Saltzer & Kaashoek Ch. 11, p. 160	 June 24, 2009 12:29 am

 Exercises 11–161

A. 10 worm probes/second
B. 100 worm probes/second
C. 	 1000 worm probes/second
D. 	 10000 worm probes/second
E. 100000 worm probes/second

2008-3-6-7

11.15 	 Ben Bitdiddle visits the Web site amazing.com and obtains a fresh page signed
with a private key. Which of these methods of obtaining the certificate for the
server's public key can assure Ben that the private key used for the page's signature
indeed belongs to the organization that owns the domain amazing.com? (Assume
that the certificate is signed by a trusted certificate authority and is valid.)

A. Using HTTP Ben downloads the certificate from http://amazing6033.com.
B. Using HTTP Ben downloads the certificate from the certificate authority.
C. 	 Ben finds the certificate by doing a Web search on Google.
D. 	 Ben gets the certificate in e-mail from a spammer.

11.16 	 Ben Bitdiddle and Louis Reasoner have founded a startup company, named
Public Key Publication, Inc. (PKPI), whose business is distributing public keys.
Their idea is that people who have a key pair for use with a public-key system need
a way of letting other people know the public key of their key pair. Ben and Louis
are not interested in creating keys, but just in acting as a public key distributor.

Ben and Louis have designed the following protocol, in which Alice sends a private
message to Bob. They need your help in debugging the protocol. KPxyz

is the public
key of principal xyz.

Alice	 PKPI Bob

Message 1

Message 2

Message 3

What is Bob’s public key?

KPBob

ENCRYPT (M, KPBob)

Messages 1 and 2 constitute the PKPI protocol; message 3 is the beginning of Alice’s
protocol with Bob and is not under the control of PKPI; message 3 is shown here

Saltzer & Kaashoek Ch. 11, p. 161	 June 24, 2009 12:29 am

http://amazing6033.com

11–162 CHAPTER 11 Information Security

only to place the PKPI protocol in context.

11.16a. Louis believes that Eve, the passive eavesdropper, will find that she cannot learn
anything by overhearing the PKPI protocol in use. Give an argument that supports
Louis’ position, or an example demonstrating that Louis is mistaken.

11.16b. Louis originally hoped that Lucifer, the active attacker, wouldn’t be able to cause
any problems, either, but since reading this chapter he is not sure. Give an example
of an active attack that demonstrates that Louis needs to revise the PKPI protocol
to protect against Lucifer.

11.16c. Ben suggests that the protocol could be improved by changing Message 2. What
changes should be made so that Alice can be confident that no one but Bob can
decrypt message 3?

1995–2–5a…c

11.17 	 Louis Reasoner’s cousin Norris has discovered the following interesting fact, and
would like to put it to use:

• 	 Interesting 	fact: 2150 proton-sized objects will compactly fill the known
universe.

Since nonces are used in so many different applications, Norris proposes to create
the Norris Nonce Service for use by everyone. If you send a request to Norris’s
service it will return the next 200-bit integer, in increasing order, for use as a nonce.
(Norris chose 200 in case the size of the universe turns out to have been
underestimated.) What are some of the things that make this proposal harder to do
than Norris probably suspects?

1983–3–3

Additional exercises relating to Chapter 11 can be found in problem sets 43–49.

Saltzer & Kaashoek Ch. 11, p. 162	 June 24, 2009 12:29 am

CHAPTERSuggestions for Further Reading

TABLE OF CONTENTS
Introduction... SR–2

1 Systems ... SR–4

1.1 Wonderful books about systems ... SR–4

1.2 Really good books about systems. .. SR–6

1.3 Good books on related subjects deserving space on the systems

bookshelf ... SR–7

1.4 Ways of thinking about systems ... SR–11

1.5 Wisdom about system design .. SR–13

1.6 Changing technology and its impact on systems SR–14

1.7 Dramatic visions .. SR–16

1.8 Sweeping new looks ... SR–17

1.9 Keeping big systems under control: .. SR–20

2 Elements of Computer System Organization............................. SR–21

2.1 Naming systems .. SR–22

2.2 The UNIX® system ... SR–22

3 The Design of Naming Schemes ... SR–23

3.1 Addressing architectures ... SR–23

3.2 Examples ... SR–24

4 Enforcing Modularity with Clients and Services SR–25

4.1 Remote procedure call .. SR–25

4.2 Client/service systems .. SR–26

4.3 Domain Name System (DNS) .. SR–26

5 Enforcing Modularity with Virtualization SR–27

5.1 Kernels ... SR–27

5.2 Type extension as a modularity enforcement tool SR–28

5.3 Virtual Processors: Threads ... SR–29

5.4 Virtual Memory .. SR–30

5.5 Coordination ... SR–30

5.6 Virtualization ... SR–32

6 Performance... SR–33

6.1 Multilevel memory management .. SR–33

6.2 Remote procedure call .. SR–34

6.3 Storage .. SR–35

6.4 Other performance-related topics ... SR–36

7 The Network as a System and as a System Component SR–37

7.1 Networks .. SR–37

7.2 Protocols .. SR–37

7.3 Organization for communication .. SR–39

7.4 Practical aspects .. SR–40

SR–1

Saltzer & Kaashoek Ch. sr, p. 1 June 24, 2009 12:32 am

SR–2 Suggestions for Further Reading

8 Fault Tolerance: Reliable Systems from Unreliable Components
SR–40

8.1 Fault Tolerance .. SR–40

8.2 Software errors ... SR–41

8.3 Disk failures .. SR–41

9 Atomicity: All-or-Nothing and Before-or-After.......................... SR–42

9.1 Atomicity, Coordination, and Recovery SR–42

9.2 Databases .. SR–42

9.3 Atomicity-related topics .. SR–44

10 Consistency and Durable Storage... SR–44

10.1 Consistency ... SR–44

10.2 Durable storage ... SR–46

10.3 Reconciliation .. SR–47

11 Information Security.. SR–48

11.1 Privacy ... SR–48

11.2 Protection Architectures .. SR–48

11.3 Certification, Trusted Computer Systems and Security Kernels . SR–49
11.4 Authentication ... SR–50

11.5 Cryptographic techniques .. SR–51

11.6 Adversaries (the dark side) ... SR–52

Last section page SR–53

Introduction
The hardware technology that underlies computer systems has improved so rapidly and
continuously for more than four decades that the ground rules for system design are con
stantly subject to change. It takes many years for knowledge and experience to be
compiled, digested, and presented in the form of a book, so books about computer sys
tems often seem dated or obsolete by the time they appear in print. Even though some
underlying principles are unchanging, the rapid obsolescence of details acts to discourage
prospective book authors, and as a result some important ideas are never documented in
books. For this reason, an essential part of the study of computer systems is found in cur
rent—and, frequently, older—technical papers, professional journal articles, research
reports, and occasional, unpublished memoranda that circulate among active workers in
the field.

Despite that caveat, there are a few books, relatively recent additions to the literature
in computer systems, that are worth having on the shelf. Until the mid-1980s, the books
that existed were for the most part commissioned by textbook publishers to fill a market,
and they tended to emphasize the mechanical aspects of systems rather than insight into
their design. Starting around 1985, however, several good books started to appear, when
professional system designers became inspired to capture their insights. The appearance
of these books also suggests that the concepts involved in computer system design are

Saltzer & Kaashoek Ch. sr, p. 2 June 24, 2009 12:32 am

Suggestions for Further Reading SR–3

finally beginning to stabilize a bit. (Or it may just be that computer system technology
is beginning to shorten the latencies involved in book publishing.)

The heart of the computer systems literature is found in published papers. Two of the
best sources are Association for Computing Machinery (ACM) publications: the journal
ACM Transactions on Computer Systems (TOCS) and the bi-annual series of conference
proceedings, the ACM Symposium on Operating Systems Principles (SOSP). The best
papers of each SOSP are published in a following issue of TOCS, and the rest—in recent
years all—of the papers of each symposium appear in a special edition of Operating Sys
tems Review, an ACM special interest group quarterly that publishes an extra issue in
symposium years. Three other regular symposia are also worth following: the European
Conference on Computer Systems (EuroSys), the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), and the USENIX Symposium on Network Systems
Design and Implementation (NSDI). These sources are not the only ones—worthwhile
papers about computer systems appear in many other journals, conferences, and work
shops. Complete copies of most of the papers listed here, including many of the older
ones, can be found on the World Wide Web by an on-line search for an author’s last
name and a few words of the paper title. Even papers whose primary listing requires a
subscription are often posted elsewhere as open resources.

The following pages contain suggestions for further reading about computer systems,
both papers and books. The list makes no pretensions of being complete. Instead, the
suggestions have been selected from a vast literature to emphasize the best available
thinking, best illustrations of problems, and most interesting case studies of computer
systems. The readings have been reviewed for obsolescence, but it is often the case that a
good idea is still best described by a paper from some time ago, where the idea was devel
oped in a context that no longer seems interesting. Sometimes that early context is much
simpler than today’s systems, thus making it easier to see how the idea works. Often, an
early author was the first on the scene, so it was necessary to describe things more com
pletely than do modern authors who usually assume significant familiarity with the
surroundings and with all of the predecessor systems. Thus the older readings included
here provide a useful complement to current works.

By its nature, the study of the engineering of computer systems overlaps with other
areas of computer science, particularly computer architecture, programming languages,
databases, information retrieval, security, and data communications. Each of those areas
has an extensive literature of its own, and it is often not obvious where to draw the
boundary lines. As a general rule, this reading list tries to provide only first-level guidance
on where to start in those related areas.

One thing the reader must watch for is that the terminology of the computer systems
field is not agreed upon, so the literature is often confusing even to the professional. In
addition, the quality level of the literature is quite variable, ranging from the literate
through the readable to the barely comprehensible. Although the selections here try to
avoid that last category, the reader must still be prepared for some papers, however
important in their content, that do not explain their subject as well as they could.

Saltzer & Kaashoek Ch. sr, p. 3 June 24, 2009 12:32 am

SR–4 Suggestions for Further Reading

In the material that follows, each citation is accompanied by a comment suggesting
why that paper is worth reading—its importance, interest, and relation to other readings.
When a single paper serves more than one area of interest, cross-references appear rather
than repeating the citation.

1 Systems
As mentioned above, a few wonderful and several really good books about computer sys
tems have recently begun to appear. Here are the must-have items for the reference shelf
of the computer systems designer. In addition to these books, the later groupings of read
ings by topic include other books, generally of narrower interest.

1.1 Wonderful books about systems

1.1.1 David A. Patterson and John L. Hennessy. Computer Architecture: A
Quantitative Approach. Morgan Kaufman, fourth edition, 2007. ISBN:
978–0–12–370490–0. 704 + various pages (paperback). The cover gives the authors’
names in the opposite order.

This book provides a spectacular tour-de-force that explores much of the design
space of current computer architecture. One of the best features is that each area
includes a discussion of misguided ideas and their pitfalls. Even though the subject
matter gets sophisticated, the book is always readable. The book is opinionated
(with a strong bias toward RISC architecture), but nevertheless this is a definitive
work on computer organization from the system perspective.

1.1.2 Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons,
1991. ISBN 978–0–471–50336–1. 720 pages.

Much work on performance analysis of computer systems originates in academic
settings and focuses on analysis that is mathematically tractable rather than on
measurements that matter. This book is at the other end of the spectrum. It is
written by someone with extensive industrial experience but an academic flair for
explaining things. If you have a real performance analysis problem, it will tell you
how to tackle it, how to avoid measuring the wrong thing, and how to step by other
pitfalls.

1.1.3 Frederick P. Brooks Jr. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, 20th Anniversary edition, 1995. ISBN:
978–0–201–83595–3 (paperback). 336 pages.

Well-written and full of insight, this reading is by far the most significant one on
the subject of controlling system development. This is where you learn why adding
more staff to a project that is behind schedule will delay it further. Although a few

Saltzer & Kaashoek Ch. sr, p. 4 June 24, 2009 12:32 am

Suggestions for Further Reading SR–5

of the chapters are now a bit dated, much of the material here is timeless. Trouble
in system development is also timeless, as evidenced by continual reports of failures
of large system projects. Most successful system designers have a copy of this book
on their bookshelf, and some claim to reread it at least once a year. Most of the 1995
edition is identical to the first, 1974, edition; the newer edition adds Brooks’ No
Silver Bullets paper (which is well worth reading) and some summarizing chapters.

1.1.4 Lawrence Lessig. Code and Other Laws of Cyberspace, Version 2.0. Basic Books,
2006. ISBN 978–0–465–03914–28 (paperback) 432 pages; 978–0–465–03913–5
(paperback) 320 pages. Also available on-line at http://codev2.cc/

This book is an updated version of an explanation by a brilliant teacher of
constitutional law of exactly how law, custom, market forces, and architecture
together regulate things. In addition to providing a vocabulary to discuss many of
the legal issues surrounding technology and the Internet, a central theme of this
book is that because technology raises issues that were foreseen neither by law nor
custom, the default is that it will be regulated entirely by market forces and
architecture, neither of which is subject to the careful and deliberative thought that
characterize the development of law and custom. If you have any interest in the
effect of technology on intellectual property, privacy, or free speech, this book is
required reading.

1.1.5 Jim [N.] Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Mateo, California, 1993 (Look for the low-bulk
paper edition, which became available with the third printing in 1994). ISBN:
978–1–55860–190–1. 1,070 pages.

All aspects of fault tolerance, atomicity, coordination, recovery, rollback, logs, locks,
transactions, and engineering trade-offs for performance are pulled together in this
comprehensive book. This is the definitive work on transactions. Though not
intended for beginners, given the high quality of its explanations, this complex
material is surprisingly accessible. The glossary of terms is excellent, whereas the
historical notes are good as far as they go, but are somewhat database-centric and
should not be taken as the final word.

1.1.6 Alan F. Westin. Privacy and Freedom. Atheneum Press, 1967. 487 pages. (Out
of print.)

If you have any interest in privacy, track down a copy of this book in a library or
used-book store. It is the comprehensive treatment, by a constitutional lawyer, of
what privacy is, why it matters, and its position in the U.S. legal framework.

1.1.7 Ross Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems. John Wiley & Sons, second edition, 2008. ISBN 978

Saltzer & Kaashoek Ch. sr, p. 5 June 24, 2009 12:32 am

http://codev2.cc/

SR–6 Suggestions for Further Reading

0–470–06852–6. 1,040 pages.
This book is remarkable for the range of system security problems it considers, from
taxi mileage recorders to nuclear command and control systems. It provides great
depth on the mechanics, assuming that the reader already has a high-level picture.
The book is sometimes quick in its explanations; the reader must be quite
knowledgeable about systems. One of its strengths is that most of the discussions of
how to do it are immediately followed by a section titled “What goes wrong”,
exploring misimplementations, fallacies, and other modes of failure. The first
edition is available on-line.

1.2 Really good books about systems.

1.2.1 Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, third
edition, 2008. ISBN 978–0–13–600663-3 (hardcover). 952 pages.

This book provides a thorough tutorial introduction to the world of operating
systems but with a tendancy to emphasize the mechanics. Insight into why things
are designed the way they are is there, but in many cases requires teasing out.
Nevertheless, as a starting point, it is filled with street knowledge that is needed to
get into the rest of the literature. It includes useful case studies of GNU/Linux,
Windows Vista, and Symbian OS, an operating system for mobile phones.

1.2.2 Thomas P. Hughes. Rescuing Prometheus. Vintage reprint (paperback),
originally published in 1998. ISBN 978–0679739388. 372 pages.

A retired professor of history and sociology explains the stories behind the
management of four large-scale, one-of-a-kind system projects: the Sage air defense
system, the Atlas rocket, the Arpanet (predecessor of the Internet), and the design
phase of the Big Dig (Boston Central Artery/Tunnel). The thesis of the book is that
such projects, in addition to unique engineering, also had to develop a different
kind of management style that can adapt continuously to change, is loosely coupled
with distributed control, and can identify a consensus among many players.

1.2.3 Henry Petroski. Design Paradigms: Case Histories of Error and Judgment in
Engineering. Cambridge University Press, 1994. ISBN: 978–0–521–46108–5
(hardcover), 978–0–521–46649–3 (paperback). 221 pages.

This remarkable book explores how the mindset of the designers (in the examples,
civil engineers) allowed them to make what in retrospect were massive design errors.
The failures analyzed range from the transportation of columns in Rome through
the 1982 collapse of the walkway in the Kansas City Hyatt Regency Hotel, with a
number of famous bridge collapses in between. Petroski analyzes particularly well
how a failure of a scaled-up design often reveals that the original design worked
correctly, but for a different reason than originally thought. There is no mention of

Saltzer & Kaashoek Ch. sr, p. 6 June 24, 2009 12:32 am

Suggestions for Further Reading SR–7

computer systems in this book, but it contains many lessons for computer system
designers.

1.2.4 Bruce Schneier. Applied Cryptography. John Wiley and Sons, second edition,
1996. ISBN: 978–0–471–12845–8 (hardcover), 978–0–471–11709–4 (paperback).
784 pages.

Here is everything you might want to know about cryptography and cryptographic
protocols, including a well-balanced perspective on what works and what doesn’t.
This book saves the need to read and sort through the thousand or so technical
papers on the subject. Protocols, techniques, algorithms, real-world considerations,
and source code can all be found here. In addition to being competent, it is also
entertainingly written and articulate. Be aware that a number of minor errors have
been reported in this book; if you are implementing code, it would be a good idea
to verify the details by consulting reading 1.3.13.

1.2.5 Radia Perlman. Interconnections, Second Edition: Bridges, Routers, Switches, and
Internetworking Protocols. Addison-Wesley, 1999. ISBN: 978–0–201–63448–8. 560
pages.

This book presents everything you could possibly want to know about how the
network layer actually works. The style is engagingly informal, but the content is
absolutely first-class, and every possible variation is explored. The previous edition
was simply titled Interconnections: Bridges and Routers.

1.2.6 Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach.
Morgan Kaufman, fourth edition, 2007. ISBN: 978–0–12–370548–8. 848 pages.

This book provides a systems perspective on computer networks. It represents a
good balance of why networks are they way they are and a discussion of the
important protocols in use. It follows a layering model but presents fundamental
concepts independent of layering. In this way, the book provides a good discussion
of timeless ideas as well as current embodiments of those ideas.

1.3 Good books on related subjects deserving space on the systems
bookshelf

There are several other good books that many computer system professionals insist on
having on their bookshelves. They don’t appear in one of the previous categories because
their central focus is not on systems or because the purpose of the book is somewhat
narrower.

1.3.1 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. McGraw-Hill, second edition, 2001. 1,184 pages.

Saltzer & Kaashoek Ch. sr, p. 7 June 24, 2009 12:32 am

SR–8 Suggestions for Further Reading

ISBN: 978–0–07–297054–8 (hardcover); 978–0–262–53196–2 (M.I.T. Press
paperback, not sold in U.S.A.)

1.3.2 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufman, 1996. 872 pages
ISBN: 978–1–55860–348–6.

Occasionally, a system designer needs an algorithm. Corman et al. and Lynch’s
books are the place to find that algorithm, together with the analysis necessary to
decide whether or not it is appropriate for the application. In a reading list on
theory, these two books would almost certainly be in one of the highest categories,
but for a systems list they are better identified as supplementary.

1.3.3 Douglas K. Smith and Robert C. Alexander. Fumbling the Future. William
Morrow and Company, 1988. ISBN 978–0–688–06959–9 (hardcover),
978–1–58348266–7 (iuniverse paperback reprint). 274 pages.

The history of computing is littered with companies that attempted to add general-
purpose computer systems to an existing business—for example, Ford, Philco,
Zenith, RCA, General Electric, Honeywell, A. T. & T., and Xerox. None has
succeeded, perhaps because when the going gets tough the option of walking away
from this business is too attractive. This book documents how Xerox managed to
snatch defeat from the jaws of victory by inventing the personal computer, then
abandoning it.

1.3.4 Marshall Kirk McKusick, Keith Bostic, and Michael J. Karels. The Design and
Implementation of the 4.4BSD Operating System Addison-Wesley, second edition,
1996. ISBN 978–0–201–54979–9. 606 pages.

This book provides a complete picture of the design and implementation of the
Berkeley version of the UNIX operating system. It is well-written and full of detail.
The 1989 first edition, describing 4.3BSD, is still useful.

1.3.5 Katie Hafner and John Markoff. Cyberpunk: Outlaws and Hackers on the
Computer Frontier. Simon & Schuster (Touchstone), 1991, updated June 1995. ISBN
978–0–671–68322–1 (hardcover), 978–0–684–81862–7 (paperback). 368 pages.

This book si a readable, yet thorough, account of the scene at the ethical edges of
cyberspace: the exploits of Kevin Mitnick, Hans Hubner, and Robert Tappan
Morris. It serves as an example of a view from the media, but an unusually well-
informed view.

1.3.6 Deborah G. Johnson and Helen Nissenbaum. Computers, Ethics & Social
Values. Prentice-Hall, 1995. ISBN: 978–0–13–103110–4 (paperback). 714 pages.

A computer system designer is likely to consider reading a treatise on ethics to be a
terribly boring way to spend the afternoon, and some of the papers in this extensive

Saltzer & Kaashoek Ch. sr, p. 8 June 24, 2009 12:32 am

Suggestions for Further Reading SR–9

collection do match that stereotype. However, among the many scenarios, case
studies, and other reprints in this volume are a large number of interesting and
thoughtful papers about the human consequences of computer system design. This
collection is a good place to acquire the basic readings concerning privacy, risks,
computer abuse, and software ownership as well as professional ethics in computer
system design.

1.3.7 Carliss Y. Baldwin and Kim B. Clark. Design Rules: Volume 1, The Power of
Modularity. M.I.T. Press, 2000. ISBN 978–0–262–02466–2. 471 pages.

This book focuses wholly on modularity (as used by the authors, this term merges
modularity, abstraction, and hierarchy) and offers an interesting representation of
interconnections to illustrate the power of modularity and of clean, abstract
interfaces. The work uses these same concepts to interpret several decades of
developments in the computer industry. The authors, from the Harvard Business
School, develop a model of the several ways in which modularity operates by
providing design options and making substitution easy. By the end of the book,
most readers will have seen more than they wanted to know, but there are some
ideas here that are worth at least a quick reading. (Despite the “Volume 1” in the
title, there does not yet seem to be a Volume 2.)

1.3.8 Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, fourth edition,
2003. ISBN: 978–0–13–066102–9. 813 pages.

This book provides a thorough tutorial introduction to the world of networks. Like
the same author’s book on operating systems (see reading 1.2.1), this one also tends
to emphasize the mechanics. But again it is a storehouse of up-to-date street
knowledge, this time about computer communications, that is needed to get into
(or perhaps avoid the need to consult) the rest of the literature. The book includes
a selective and thoughtfully annotated bibliography on computer networks. An
abbreviated version of this same material, sufficient for many readers, appears as a
chapter of the operating systems book.

1.3.9 David L. Mills. Computer Network Time Synchronization: The Network Time
Protocol. CRC Press/Taylor & Francis, 2006. ISBN: 978–0849358050. 286 pages.

A comprehensive but readable explanation of the Network Time Protocol (NTP),
an under-the-covers protocol of which most users are unaware: NTP coordinates
multiple timekeepers and distributes current date and time information to both
clients and servers.

1.3.10 Robert G. Gallager. Principles of Digital Communication. Cambridge
University Press, 2008. ISBN 978–0–521–87907–1. 422 pages.

This intense textbook focuses on the theory that underlies the link layer of data

Saltzer & Kaashoek Ch. sr, p. 9 June 24, 2009 12:32 am

SR–10 Suggestions for Further Reading

communication networks. It is not for casual browsing or for those easily
intimidated by mathematics, but it is an excellent reference source for analysis.

1.3.11 Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer Systems: Design
and Evaluation. A. K. Peters Ltd., third edition, 1998. ISBN 978–1–56881–092–8.
927 pages.

This is probably the best comprehensive treatment of reliability that is available,
with well-explained theory and reprints of several case studies from recent literature.
Its only defect is a slight “academic” bias in that little judgment is expressed on
alternative methods, and some examples are without warning of systems that were
never really deployed. The first, 1982, edition, with the title The Theory and Practice
of Reliable System Design, contains an almost completely different (and much older)
set of case studies.

1.3.12 Bruce Schneier. Secrets & Lies/Digital Security in a Networked World. John
Wiley & Sons, 2000. ISBN 978–0–471–25311–2 (hardcover), 978
0–471–45380–2 (paperback) 432 pages.

This overview of security from a systems perspective provides much motivation,
many good war stories (though without citations), and a high-level outline of how
one achieves a secure system. Being an overview, it provides no specific guidance on
the mechanics, other than to rely on people who know what they are doing. This is
an excellent book, particularly for the manager who wants to go beyond the
buzzwords and get an idea of what achieving computer system security involves.

1.3.13 A[lfred] J. Menezes, Paul C. Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997. ISBN: 978–08493–8523–0. 816 pages.

This book is exactly what its title claims: a complete handbook on putting
cryptography to work. It lacks the background and perspective of reading 1.2.4,
and it is extremely technical, which makes parts of it inaccessible to less
mathematically inclined readers. But its precise definitions and careful explanations
make this by far the best reference book available on the subject.

1.3.14 Johannes A. Buchman. Introduction to Cryptography. Springer, 2nd edition,
2004. ISBN 978–0–387–21156–5 (hardcover), 978–0–387–20756–8 (paperback).
335 pages.

Buchman provides a nice, concise introduction to number theory for cryptography.

1.3.15 Simson Garfinkel and Gene [Eugene H.] Spafford. Practical UNIX and
Internet Security. O'Reilly & Associates, Sebastopol, California, third edition, 2003.
ISBN 978–59600323–4 (paperback). 986 pages.

This is a really comprehensive guide to how to run a network-attached UNIX system

Saltzer & Kaashoek Ch. sr, p. 10 June 24, 2009 12:32 am

Suggestions for Further Reading SR–11

with some confidence that it is relatively safe against casual intruders. In addition
to providing practical information for a system manager, it incidentally gives the
reader quite a bit of insight into the style of thinking and design needed to provide
security.

1.3.16 Simson Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates,
Sebastopol, California, 1995. ISBN: 978–1–56592–098–9 (paperback). 430 pages.

Nominally a user’s guide to the PGP encryption package developed by Phil
Zimmermann, this book starts out with six readable overview chapters on the
subject of encryption, its history, and the political and licensing environment that
surrounds encryption systems. Even the later chapters, which give details on how
to use PGP, are filled with interesting tidbits and advice applicable to all encryption
uses.

1.3.17 Warwick Ford and Michael S. Baum. Secure Electronic Commerce: Building
the Infrastructure for Digital Signatures and Encryption. Prentice Hall, second edition,
2000. ISBN: 978–0–13–027276–8. 640 pages.

Although the title implies more generality, this book is about public key
infrastructure: certificate authorities, certificates, and their legal status in practice.
The authors are a technologist (Ford) and a lawyer (Baum). The book provides
thorough coverage and is a good way to learn a lot about the subject. Because the
status of this topic changes rapidly, however, it should be considered a snapshot
rather than the latest word.

1.4 Ways of thinking about systems
Quite a few books try to generalize the study of systems. They tend to be so abstract,
however, that it is hard to see how they apply to anything, so none of them are listed
here. Instead, here are five old but surprisingly relevant papers that illustrate ways to
think about systems. The areas touched are allometry, aerodynamics, hierarchy, ecology,
and economics.

1.4.1 J[ohn] B[urdon] S[anderson] Haldane (1892–1964). On being the right size.
In Possible Worlds and Other Essays, pages 20–28. Harper and Brothers Publishers,
1928. Also published by Chatto & Windus, London, 1927, and recently reprinted in
John Maynard Smith, editor, On Being the Right Size and Other Essays, Oxford
University Press, 1985. ISBN: 0–19–286045–3 (paperback), pages 1–8.

This is the classic paper that explains why a mouse the size of an elephant would
collapse if it tried to stand up. It provides lessons on how to think about
incommensurate scaling in all kinds of systems.

Saltzer & Kaashoek Ch. sr, p. 11 June 24, 2009 12:32 am

SR–12 Suggestions for Further Reading

1.4.2 Alexander Graham Bell (1847–1922). The tetrahedral principle in kite
structure. National Geographic Magazine 14, 6 (June 1903), pages 219–251.

This classic paper demonstrates that arguments based on scale can be quite subtle.
This paper—written at a time when physicists were still debating the theoretical
possibility of building airplanes—describes the obvious scale argument against
heavier-than-air craft and then demonstrates that one can increase the scale of an
airfoil in different ways and that the obvious scale argument does not apply to all
those ways. (This paper is a rare example of unreviewed vanity publication of an
interesting engineering result. The National Geographic was—and still is—a Bell
family publication.)

1.4.3 Herbert A. Simon (1916–2001). The architecture of complexity. Proceedings of
the American Philosophical Society 106, 6 (December 1962), pages 467–482.
Republished as Chapter 4, pages 84–118, of The Sciences of the Artificial, M.I.T. Press,
Cambridge, Massachusetts, 1969. ISBN: 0–262–191051–6 (hardcover);
0–262–69023–3 (paperback).

This paper is a tour-de-force of how hierarchy is an organizing tool for complex
systems. The examples are breathtaking in their range and scope—from watch
making and biology through political empires. The style of thinking shown in this
paper suggests that it is not surprising that Simon later received the 1978 Nobel
Prize in economics.

1.4.4 LaMont C[ook] Cole (1916–1978). Man’s effect on nature. The Explorer:
Bulletin of the Cleveland Museum of Natural History 11, 3 (Fall 1969), pages 10–16.

This brief article looks at the Earth as an ecological system in which the actions of
humans lead both to surprises and to propagation of effects. It describes a classic
example of the propagation of effects: attempts to eliminate malaria in North
Borneo led to an increase in the plague and roofs caving in.

1.4.5 Garrett [James] Hardin (1915–). The tragedy of the commons. Science 162,
3859 (December 13, 1968), pages 1243–1248. Extensions of “the tragedy of the
commons”. Science 280, 5364 (May 1, 1998), pages 682–683.

This seminal paper explores a property of certain economic situations in which
Adam Smith's “invisible hand” works against everyone's interest. It is interesting for
its insight into how to predict things about otherwise hard-to-model systems. In
revisiting the subject 30 years later, Hardin suggested that the adjective
“unmanaged” should be placed in front of “commons”. Rightly or wrongly, the
Internet is often described as a system to which the tragedy of the (unmanaged)
commons applies.

Saltzer & Kaashoek Ch. sr, p. 12 June 24, 2009 12:32 am

Suggestions for Further Reading SR–13

1.5 Wisdom about system design
Before reading anything else on this topic, one should absorb the book by Brooks, The
Mythical Man-Month, reading 1.1.3 and the essay by Simon, “The architecture of com
plexity”, reading 1.4.3. The case studies on control of complexity in Section 1.9 also are
filled with wisdom.

1.5.1 Richard P. Gabriel. Worse is better. Excerpt from LISP: good news, bad news,
how to win BIG, AI Expert 6, 6 (June 1991), pages 33–35.

This paper explains why doing the thing expediently sometimes works out to be a
better idea than doing the thing right.

1.5.2 Henry Petroski. Engineering: History and failure. American Scientist 80, 6
(November–December 1992), pages 523–526.

Petroski provides insight along the lines that one primary way that engineering
makes progress is by making mistakes, studying them, and trying again. Petroski
also visits this theme in two books, the most recent being reading 1.2.3.

1.5.3 Fernando J. Corbató. On building systems that will fail. Communications of the
ACM 34, 9 (September 1991), pages 72–81. (Reprinted in the book by Johnson and
Nissenbaum, reading 1.3.6.)

The central idea in this 1991 Turing Award Lecture is that all ambitious systems will
have failures, but those that were designed with that expectation are more likely to
eventually succeed.

1.5.4 Butler W. Lampson. Hints for computer system design. Proceedings of the
Ninth ACM Symposium on Operating Systems Principles, in Operating Systems Review
17, 5 (October 1983), pages 33–48. Later republished, but with less satisfactory copy
editing, in IEEE Software 1, 1 (January 1984), pages 11–28.

This encapsulation of insights is expressed as principles that seem to apply to more
than one case. It is worth reading by all system designers.

1.5.5 Jon Bentley. The back of the envelope—programming pearls. Communications
of the ACM 27, 3 (March 1984), pages 180–184.

One of the most important tools of a system designer is the ability to make rough
but quick estimates of how big, how long, how fast, or how expensive a design will
be. This brief note extols the concept and gives several examples.

1.5.6 Jeffrey C. Mogul. Emergent (mis)behavior vs. complex software systems.
Proceedings of the First European Conference on Computer Systems (EuroSys 2006,
Leuven, Belgium), pages 293-304. ACM Press, 2006, ISBN 1-59593-322-0. Also in

Saltzer & Kaashoek Ch. sr, p. 13 June 24, 2009 12:32 am

SR–14 Suggestions for Further Reading

Operating Systems Review 40, 4 (October 2006).
This paper explores in depth the concept of emergent properties described in
Chapter 1, providing a nice collection of examples and tying together issues and
problems that arise throughout computer and network system design. It also
suggests a taxonomy of emergent properties, lays out suggestions for future
research, and includes a comprehensive and useful bibliography.

1.5.7 Pamela Samuelson, editor. Intellectual property for an information age.
Communications of the ACM 44, 2 (February 2001), pages 67–103.

This work is a special section comprising several papers about the challenges of
intellectual property in a digital world. Each of the individual articles is written by
a member of a new generation of specialists who understand both technology and
law well enough to contribute thoughtful insights to both domains.

1.5.8 Mark R. Chassin and Elise C. Becher. The wrong patient. Annals of Internal
Medicine 136 (June 2002),pages 826–833.

This paper is a good example, first, of how complex systems fail for complex reasons
and second, of the value of the “keep digging” principle. The case study presented
here centers on a medical system failure in which the wrong patient was operated
on. Rather than just identifying the most obvious reason, the case study concludes
that there were a dozen or more opportunities in which the error that led to the
failure should have been detected and corrected, but for various reasons all of those
opportunities were missed.

1.5.9 P[hillip] J. Plauger. Chocolate. Embedded Systems Programming 7, 3 (March
1994), pages 81–84.

This paper provides a remarkable insight based on the observation that many
failures in a bakery can be remedied by putting more chocolate into the mixture.
The author manages, with only a modest stretch, to convert this observation into a
more general technique of keeping recovery simple, so that it is likely to succeed.

1.6 Changing technology and its impact on systems

1.6.1 Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics 38, 8 (April 19, 1965), pages 114–117. Reprinted in Proceedings of the
IEEE 86, 1 (January 1998), pages 82–85.

This paper defined what we now call Moore’s law. The phenomena Moore describes
have driven the rate of technology improvement for more than four decades. This
paper articulates why and displays the first graph to plot Moore’s law, based on five
data points.

Saltzer & Kaashoek Ch. sr, p. 14 June 24, 2009 12:32 am

Suggestions for Further Reading SR–15

1.6.2 John L. Hennessy and Norman P. Jouppi. Computer technology and
architecture: An evolving interaction. IEEE Computer 24, 9 (September 1991), pages
19–29.

Although some of the technology examples are a bit of out of date, the systems
thinking and the paper’s insights remain relevant.

1.6.3 Ajanta Chakraborty and Mark R. Greenstreet. Efficient self-timed interfaces
for crossing clock domains. Proceedings of the Ninth International Symposium on
Asynchronous Circuits and Systems, IEEE Computer Society (May 2003), pages 78-88.
ISBN 0-7695-1898-2.

This paper addresses the challenge of having a fast, global clock on a chip by
organizing the resources on a chip as a number of synchronous islands connected
by asynchronous links. This design may pose problems for constructing perfect
arbiters (see Section 5.2.8).

1.6.4 Anant Agarwal and Markus Levy. The KILL rule for multicore. 44th
ACM/IEEE Conference on Design Automation (June 2007), pages 750-753. ISBN:
978-1-59593-627-1

This short paper looks ahead to multiprocessor chips that contain not just four or
eight, but thousands of processors. It articulates a rule for power-efficient designs:
Kill If Less than Linear. For example, the designer should increase the chip area
devoted to a resource such as a cache only if for every 1% increase in area there is at
least a 1% increase in chip performance. This rule focuses attention on those design
elements that make most effective use of the chip area and from back-of-the
envelope calculations favors increasing processor count (which the paper assumes
to provide linear improvement) over other alternatives.

1.6.5 Stephen P. Walborn et al. Quantum erasure. American Scientist 91, 4 (July-
August 2003), pages 336–343.

This paper was written by physicists and requires a prerequisite of undergraduate-
level modern physics, but it manages to avoid getting into graduate-level quantum
mechanics. The strength of the article is its clear identification of what is reasonably
well understood and what is still a mystery about these phenomena. That
identification seems to be of considerable value both to students of physics, who
may be inspired to tackle the parts that are not understood, and to students of
cryptography, because knowing what aspects of quantum cryptography are still
mysteries may be important in deciding how much reliance to place on it.

Saltzer & Kaashoek Ch. sr, p. 15 June 24, 2009 12:32 am

SR–16 Suggestions for Further Reading

1.7 Dramatic visions
Once in a while a paper comes along that either has a dramatic vision of what future sys
tems might do or takes a sweeping new look at some aspect of systems design that had
previously been considered to be settled. The ideas found in the papers listed in reading
Sections 1.7 and 1.8 often become part of the standard baggage of all future writers in
the area, but the reprises rarely do justice to the originals, which are worth reading if only
to see how the mind of a visionary (or revisionist) works.

1.7.1 Vannevar Bush. As we may think. Atlantic Monthly 176, 1 (July 1945), pages
101–108. Reprinted in Adele J. Goldberg, A History of Personal Workstations,
Addison-Wesley, 1988, pages 237–247 and also in Irene Greif, ed., Computer-
Supported Cooperative Work: A Book of Readings, Morgan Kaufman, 1988. ISBN
0–934613–57–5.

Bush looked at the (mostly analog) computers of 1945 and foresaw that they would
someday be used as information engines to augment the human intellect.

1.7.2 John G. Kemeny, with comments by Robert M. Fano and Gilbert W. King. A
library for 2000 A.D. In Martin Greenberger, editor, Management and the Computer
of the Future, M.I.T. Press and John Wiley, 1962, pages 134–178. (Out of print.)

It has taken 40 years for technology to advance far enough to make it possible to
implement Kemeny's vision of how the library might evolve when computers are
used in its support. Unfortunately, the engineering that is required still hasn’t been
done, so the vision has not yet been realized, but Google has stated a similar vision
and is making progress in realizing it; see reading 3.2.4.

1.7.3 [Alan C. Kay, with the] Learning Research Group. Personal Dynamic Media.
Xerox Palo Alto Research Center Systems Software Laboratory Technical Report
SSL–76–1 (undated, circa March 1976).

Alan Kay was imagining laptop computers and how they might be used long before
most people had figured out that desktop computers might be a good idea. He gave
many inspiring talks on the subject, but he rarely paused long enough to write
anything down. Fortunately, his colleagues captured some of his thoughts in this
technical report. An edited version of this report, with some pictures accidentally
omitted, appeared in a journal in the year following this technical report: Alan [C.]
Kay and Adele Goldberg. Personal dynamic media. IEEE Computer 10, 3 (March
1977), pages 31–41. This paper was reprinted with omitted pictures restored in
Adele J. Goldberg, A History of Personal Workstations, Addison-Wesley, 1988, pages
254–263. ISBN: 0–201–11259-0.

1.7.4 Doug[las] C. Engelbart. Augmenting Human Intellect: A Conceptual
Framework. Research Report AFOSR–3223, Stanford Research Institute, Menlo

Saltzer & Kaashoek Ch. sr, p. 16 June 24, 2009 12:32 am

Suggestions for Further Reading SR–17

Park, California, October 1962. Reprinted in Irene Greif, ed., Computer-Supported
Cooperative Work: A Book of Readings, Morgan Kaufman, 1988. ISBN
0–934613–57–5.

In the early 1960’s Engelbart saw that computer systems would someday be useful
in myriad ways as personal tools. Unfortunately, the technology of his time,
multimillion-dollar mainframes, was far too expensive to make his vision practical.
Today’s personal computers and engineering workstations have now incorporated
many of his ideas.

1.7.5 F[ernando] J. Corbató and V[ictor] A. Vyssotsky. Introduction and overview
of the Multics system. AFIPS 1965 Fall Joint Computer Conference 27, part I (1965),
pages 185–196.

Working from a few primitive examples of time-sharing systems, Corbató and his
associates escalated the vision to an all-encompassing computer utility. This paper
is the first in a set of six in the same proceedings, pages 185–247.

1.8 Sweeping new looks

1.8.1 Jack B. Dennis and Earl C. Van Horne. Programming semantics for
multiprogrammed computations. Communications of the ACM 9, 3 (March 1966),
pages 143–155.

This paper set the ground rules for thinking about concurrent activities, both the
vocabulary and the semantics.

1.8.2 J. S. Liptay. Structural aspects of the System/360 model 85: II. The cache. IBM
Systems Journal 7, 1 (1968), pages 15–21.

The idea of a cache, look-aside, or slave memory had been suggested independently
by Francis Lee and Maurice Wilkes some time around 1963, but it was not until
the advent of LSI technology that it became feasible to actually build one in
hardware. As a result, no one had seriously explored the design space options until
the designers of the IBM System/360 model 85 had to come up with a real
implementation. Once this paper appeared, a cache became a requirement for most
later computer architectures.

1.8.3 Claude E. Shannon. The communication theory of secrecy systems. Bell System
Technical Journal 28, 4 (October 1949), pages 656–715.

This paper provides the underpinnings of the theory of cryptography, in terms of
information theory.

1.8.4 Whitfield Diffie and Martin E. Hellman. Privacy and authentication: An

Saltzer & Kaashoek Ch. sr, p. 17 June 24, 2009 12:32 am

SR–18 Suggestions for Further Reading

introduction to cryptography. Proceedings of the IEEE 67, 3 (March 1979), pages
397–427.

This is the first really technically competent paper on cryptography since Shannon
in the unclassified literature, and it launched modern unclassified study. It includes
a complete and scholarly bibliography.

1.8.5 Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory IT–22, 6 (November 1976), pages
644–654.

Diffie and Hellman were the second inventors of public key cryptography (the first
inventor, James H. Ellis, was working on classified projects for the British
Government Communications Headquarters at the time, in 1970, and was not able
to publish his work until 1987). This is the paper that introduced the idea to the
unclassified world.

1.8.6 Charles T. Davies, Jr. Data processing spheres of control. IBM Systems Journal
17, 2 (1978), pages 179–198. Charles T. Davies, Jr. Recovery semantics for a DB/DC
system. 1973 ACM National Conference 28 (August 1973), pages 136–141.

This pair of papers—vague but thought-provoking—gives a high level discussion
of “spheres of control”, a notion closely related to atomicity. Everyone who writes
about transactions mentions that they found these two papers inspiring.

1.8.7 Butler W. Lampson and Howard Sturgis. Crash recovery in a distributed data
storage system. Working paper, Xerox Palo Alto Research Center, November 1976,
and April 1979. (Never published)

Jim Gray called the 1976 version of this paper “an underground classic.” The 1979
version presents the first good definition of models of failure. Both describe
algorithms for coordinating distributed updates; they are sufficiently different that
both are worth reading.

1.8.8 Leonard Kleinrock. Communication Nets: Stochastic Message Flow and Delay.
McGraw Hill, 1964. Republished by Dover, 2007. ISBN: 0-486-45880-6. 224
pages.

1.8.9 Paul Baran, S. Boehm, and J. W. Smith. On Distributed Communications. A
series of 11 memoranda of the RAND Corporation, Santa Monica, California,
August 1964.

Since the growth in the Internet’s popularity, there has been considerable discussion
about who first thought of packet switching. It appears that Leonard Kleinrock,
working in 1961 on his M.I.T. Ph.D. thesis on more effective ways of using wired
networks, and Paul Baran and his colleagues at Rand, working in 1961 on

Saltzer & Kaashoek Ch. sr, p. 18 June 24, 2009 12:32 am

Suggestions for Further Reading SR–19

survivable communications, independently proposed the idea of packet switching
at about the same time; both wrote internal memoranda in 1961 describing their
ideas. Neither one actually used the words “packet switching”, however; that was
left to Donald Davies of the National Physical Laboratory who coined that label
several years later.

1.8.10 Lawrence G. Roberts and Barry D. Wessler. Computer network development
to achieve resource sharing. AFIPS Spring Joint Computer Conference 36 (May 1970),
pages 543–549.

This paper and four others presented at the same conference session (pages
543–597) represent the first public description of the ARPANET, the first
successful packet-switching network and the prototype for the Internet. Two years
later, AFIPS Spring Joint Computer Conference 40 (1972), pages 243–298, presented
five additional, closely related papers. The discussion of priority concerning reading
1.8.8 and reading 1.8.9 is somewhat academic; it was Roberts’s sponsorship of the
ARPANET that demonstrated the workability of packet switching.

1.8.11 V[inton G.] Cerf et al. Delay-Tolerant Networking Architecture. Request For
Comments RFC 4838, Internet Engineering Task Force (April 1997).

This document describes an architecture that evolved from a vision for an
Interplanetary Internet, an Internet-like network for interplanetary distances. This
document introduces several interesting ideas and highlights some assumptions that
people make in designing networks without realizing it. NASA performed its first
successful tests of a prototype implementation of a delay-tolerant network.

1.8.12 Jim Gray et al. Terascale Sneakernet. Using Inexpensive Disks for Backup,
Archiving, and Data Exchange. Microsoft Technical Report MS-TR-02-54 (May
2002). http://arxiv.org/pdf/cs/0208011)

Sneakernet is a generic term for transporting data by physically delivering a storage
device rather than sending it over a wire. Sneakernets are attractive when data
volume is so large that electronic transport will take a long time or be too expensive,
and the latency until the first byte arrives is less important. Early sneakernets
exchanged programs and data using floppy disks. More recently, people have
exchanged data by burning CDs and carrying them. This paper proposes to build a
sneakernet by sending hard disks, encapsulated in a small, low-cost computer called
a storage brick. This approach allows one to transfer by mail terabytes of data across
the planet in a few days. By virtue of including a computer and operating system,
it minimizes compatibility problems that arise when transferring the data to
another computer.

Saltzer & Kaashoek Ch. sr, p. 19 June 24, 2009 12:32 am

http://arxiv.org/pdf/cs/0208011)

SR–20 Suggestions for Further Reading

Several other papers listed under specific topics also provide sweeping new looks or have
changed the way people that think about systems: Simon, The architecture of complex
ity, reading 1.4.3; Thompson, Reflections on trusting trust, reading 11.3.3; Lampson,
Hints for computer system design, reading 1.5.4; and Creasy’s VM/370 paper, reading
5.6.1

1.9 Keeping big systems under control:

1.9.1 F[ernando] J. Corbató and C[harles] T. Clingen. A managerial view of the
Multics system development. In Peter Wegner, Research Directions in Software
Technology, M.I.T. Press, Cambridge, Massachusetts, 1979, pages 139–158. ISBN:
0–262–23096–8.

1.9.2 W[illiam A.] Wulf, R[oy] Levin, and C. Pierson. Overview of the Hydra
operating system development. Proceedings of the Fifth ACM Symposium on Operating
Systems Principles, in Operating Systems Review 9, 5 (November 1975), pages
122–131.

1.9.3 Thomas R. Horsley and William C. Lynch. Pilot: A software engineering case
study. Fourth International Conference on Software Engineering (September 1979),
pages 94–99.

These three papers are early descriptions of the challenges of managing and
developing large systems. They are still relevant and easy to read, and provide
complementary insights.

1.9.4 Effy Oz. When professional standards are lax: The CONFIRM failure and its
lessons. Communications of the ACM 37, 10 (October 1994), pages 30–36.

CONFIRM is an airline/hotel/rental-car reservation system that never saw the light
of day despite four years of work and an investment of more than $100M. It is one
of many computer system developments that went out of control and finally were
discarded without ever having been placed in service. One sees news reports of
software disasters of similar magnitude a few times each year. It is difficult to obtain
solid facts about system development failures because no one wants to accept the
blame, especially when lawsuits are pending. This paper suffers from a shortage of
facts and an over-simplistic recommendation that better ethics are all that are
needed to solve the problem. (It seems likely that the ethics and management
problems simply delayed recognition of the inevitable.) Nevertheless, it provides a
sobering view of how badly things can go wrong.

1.9.5 Nancy G. Leveson and Clark S. Turner. An investigation of the Therac-25

Saltzer & Kaashoek Ch. sr, p. 20 June 24, 2009 12:32 am

Suggestions for Further Reading SR–21

accidents. Computer 26, 7 (July 1993), pages 18–41. (Reprinted in reading 1.3.6.)
This is another sobering view of how badly things can go wrong. In this case, the
software controller for a high-energy medical device was inadequately designed; the
device was placed in service, and lethal injuries ensued. This paper manages to
inquire quite deeply into the source of the problems. Unfortunately, similar
mistakes have been made since; see, for example, United States Nuclear Regulatory
Commission Information Notice 2001-8s1 (June 2001), which describes radiation
therapy overexposures in Panama.

1.9.6 Joe Morgenstern. City perils: The fifty-nine-story crisis. The New Yorker 71, 14
(May 29, 1995), pages 45–53.

This article discusses how an engineer responded to the realization that a skyscraper
he had designed was in danger of collapsing in a hurricane.

1.9.7 Eric S. Raymond. The cathedral and the bazaar. in The Cathedral and The
Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary, pages 19
64. O’Reilly Media Inc., 2001. ISBN: 978–0596001087, 241 pages.

The book is based on a white paper of the same title that compares two styles of
software development: the Cathedral model, which is used mostly by commercial
software companies and some open-source projects such as the BSD operating
system; and the Bazaar model, which is exemplified by development of the
GNU/Linux operating system. The work argues that the Bazaar model leads to
better software because the openness and independence of Bazaar allow anyone to
become a participant and to look at anything in the system that seems of interest:
“Given enough eyeballs, all bugs are shallow”.

1.9.8 Philip M Boffey. Investigators agree N. Y. blackout of 1977 could have been
avoided. Science 201, 4360 (September 15, 1978), pages 994–996.

This is a fascinating description of how the electrical generation and distribution
system of New York’s Consolidated Edison fell apart when two supposedly tolerable
faults occurred in close succession, recovery mechanisms did not work as expected,
attempts to recover manually got bogged down by the system’s complexity, and
finally things cascaded out of control.

2 Elements of Computer System Organization
To learn more about the basic abstractions of memory and interpreters, the book Com
puter Architecture by Patterson and Hennessy (reading 1.1.1) is one of the best sources.
Further information about the third basic abstraction, communication links, can be
found in the readings for Section 7.

Saltzer & Kaashoek Ch. sr, p. 21 June 24, 2009 12:32 am

SR–22 Suggestions for Further Reading

2.1 Naming systems

2.1.1 Bruce [G.] Lindsay. Object naming and catalog management for a distributed
database manager. Proceedings of the Second International Conference on Distributed
Computing Systems, Paris, France (April 1981), pages 31–40. Also IBM San Jose
Research Laboratory Technical Report RJ2914 (August 1980). 17 pages.

This paper a tutorial treatment of names as used in database systems, begins with a
better-than-average statement of requirements, and then demonstrates how those
requirements were met in the R* distributed database management system.

2.1.2 Yogen K. Dalal and Robert S. Printis. 48-bit absolute Internet and Ethernet
host numbers. Proceedings of the Seventh Data Communications Symposium, Mexico
City, Mexico (October 1981), pages 240–245. Also Xerox Office Products Division
Technical Report OPD–T8101 (July 1981), 14 pages.

This paper describes how hardware addresses are handled in the Ethernet local area
network.

2.1.3 Theodor Holm Nelson. Literary Machines, Ed. 87.1. Project Xanadu, San
Antonio, Texas, 1987. ISBN 0–89347–056–2 (paperback). Various pagings.

Project Xanadu is an ambitious vision of a future in which books are replaced by
information organized in the form of a naming network, in the form that today is
called “hypertext”. The book, being somewhat non-linear, is a primitive example of
what Nelson advocates.

2.2 The UNIX® system
The following readings and the book by Marshall McKusick et al., reading 1.3.4, are
excellent sources on the UNIX system to follow up the case study in Section 2.5. A good,
compact summary of its main features can be found in Tanenbaum’s operating systems
book, reading 1.2.1, which also covers Linux.

2.2.1 Dennis M. Ritchie and Ken [L.] Thompson. The UNIX time-sharing system.
Bell System Technical Journal 57, 6, part 2 (1978), pages 1905–1930.

This paper describes an influential operating system with low-key, but carefully
chosen and hard-to-discover, objectives. The system provides a hierarchical catalog
structure and succeeds in keeping naming completely distinct from file
management. An earlier version of this paper appeared in the Communications of the
ACM 17, 7 (July 1974), pages 365–375, after being presented at the Fourth ACM
Symposium on Operating Systems Principles. The UNIX system evolved rapidly
between 1973 and 1978, so the BSTJ version, though harder to find, contains
significant additions, both in insight and in technical content.

Saltzer & Kaashoek Ch. sr, p. 22 June 24, 2009 12:32 am

Suggestions for Further Reading SR–23

2.2.2 John Lions. Lions’ Commentary on UNIX 6th Edition with Source Code. Peer-to
peer communications, 1977. ISBN: 978–1–57398–013–7, 254 pages.

This book contains the source code for UNIX Version 6, with comments to explain
how it works. Although Version 6 is old, the book remains an excellent starting
point for understanding how the system works from the inside because both the
source code and the comments are short and succinct. For decades this book was
part of the underground literature from which designers learned about the UNIX

system but now it is available to the public.

3 The Design of Naming Schemes
Almost any system has a naming plan, and many of the interesting naming plans can be
found in papers that describe a larger system. Any reader interested in naming should
study the Domain Name System, reading 4.3, and the topic of Section 4.4.

3.1 Addressing architectures
Several early sources still contain some of the most accessible explanations of designs that
incorporate advanced naming features directly in hardware.

3.1.1 Jack B. Dennis. Segmentation and the design of multiprogrammed computer
systems. Journal of the ACM 12, 4 (October 1965), pages 589–602.

This is the original paper outlining the advantages of providing naming support in
hardware architecture.

3.1.2 R[obert] S. Fabry. Capability-based addressing. Communications of the ACM
17, 7 (July 1974), pages 403–412.

This is the first comprehensive treatment of capabilities, a mechanism introduced
to enforce modularity but actually more of a naming feature.

3.1.3 Elliott I. Organick. Computer System Organization, The B5700/B6700 Series.
Academic Press, 1973. ISBN: 0–12–528250–8, 132 pages.

The Burroughs Descriptor system explained in this book is apparently the only
example of a hardware-supported naming system actually implemented before the
advent of microprogramming.

3.1.4 Elliott I. Organick. The Multics System: An Examination of Its Structure. M.I.T.
Press, Cambridge, Massachusetts, 1972. ISBN: 0–262–15012–3. 392 pages.

This book explores every detail and ramification of the extensive naming
mechanisms of Multics, both in the addressing architecture and in the file system.

Saltzer & Kaashoek Ch. sr, p. 23 June 24, 2009 12:32 am

SR–24 Suggestions for Further Reading

3.1.5 R[oger] M. Needham and A[ndrew] D. Birrell. The CAP filing system.
Proceedings of the Sixth ACM Symposium on Operating Systems Principles, in Operating
Systems Review 11, 5 (November 1977), pages 11–16.

The CAP file system is one of the few implemented examples of a genuine naming
network.

3.2 Examples

3.2.1 Paul J. Leach, Bernard L. Stumpf, James A. Hamilton, and Paul H. Levine.
UIDs as internal names in a distributed file system. In ACM SIGACT–SIGOPS
Symposium on Principles of Distributed Computing, Ottawa, Ontario (August 18–20,
1982), pages 34–41.

The Apollo DOMAIN system supports a different model for distributed function. It
provides a shared primary memory called the Single Level Store, which extends
transparently across the network. It is also one of the few systems to make
substantial use of unstructured unique identifiers from a compact set as object
names. This paper focuses on this latter issue.

3.2.2 Rob Pike et al. Plan 9 from Bell Labs. Computing Systems 8, 3 (Summer 1995),
pages 221–254. An earlier version by Rob Pike, Dave Presotto, Ken Thompson, and
Howard Trickey appeared in Proceedings of the Summer 1990 UKUUG Conference
(1990), London, pages 1–9.

This paper describes a distributed operating system that takes the UNIX system idea
that every resource is a file one step further by using it also for network and window
system interactions. It also extends the file idea to a distributed system by defining
a single file system protocol for access to all resources, whether they are local or
remote. Processes can mount any remote resources into their name space, and to the
user these remote resources behave just like local resources. This design makes users
perceive the system as an easy-to-use time-sharing system that behaves like a single
powerful computer, instead of a collection of separate computers.

3.2.3 Tim Berners–Lee et al. The World Wide Web. Communications of the ACM
37,8 (August 1994), pages 76–82.

Many of the publications about the World Wide Web are available only on the Web,
with a good starting point being the home page of the World Wide Web
Consortium at <http://w3c.org/>.

3.2.4 Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Proceedings of the 7th WWW Conference, Brisbane, Australia (April

Saltzer & Kaashoek Ch. sr, p. 24 June 24, 2009 12:32 am

<http://w3c.org/>

Suggestions for Further Reading SR–25

1998). Also in Computer Networks 30 (1998), pages 107–117.

This paper describes an early version of Google’s search engine. It also introduces

the idea of page rank to sort the results to a query in order of importance. Search is

a dominant way in which users “name” Web pages.

3.2.5 Bryan Ford et al. Persistent personal names for globally connected mobile

devices. Proceedings of the Seventh USENIX Symposium on Operating Systems Design

and Implementation (November 2006), pages 233–248.

This paper describes a naming system for personal devices. Each device is a root of

its own naming network and can use short, convenient names for other devices

belonging to the same user or belonging to people in the user’s social network. The

implementation of the naming system allows devices to be disconnected from the

Internet and resolve names of devices that are reachable. The first five pages lay out

the basic naming plan. Later sections explain security properties and a security-

based implementation, which involves material of Chapter 11[on-line].

4 Enforcing Modularity with Clients and Services
Many systems are organized in a client/service style. A system that provides a good case
study is the Network File System (see Section 4.4). The following papers provide some
other examples.

4.1 Remote procedure call

4.1.1 Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure
calls. ACM Transactions on Computer Systems 2, 1 (February 1984), pages 39–59.

A well-written paper that shows first, the simplicity of the basic idea, second, the

complexity required to deal with real implementations, and third, the refinements

needed for high effectiveness.

4.1.2 Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network

objects. Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles,

in Operating Systems Review 27, 5 (December 1993), pages 217–230.

This paper describes a programming language for distributed applications based on

remote procedure calls, which hide most “distributedness” from the programmer.

4.1.3 Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for the

Java™ system. Computing Systems 9, 4 (1996), pages 265-290. Originally published

in Proceedings of the Second USENIX Conference on Object-Oriented Technologies

Saltzer & Kaashoek Ch. sr, p. 25 June 24, 2009 12:32 am

SR–26 Suggestions for Further Reading

Volume 2 (1996).
This paper presents a remote procedure call system for the Java programming
language. It provides a clear description of how an RPC system can be integrated
with an object-oriented programming language and the new exception types RPC
introduces.

4.2 Client/service systems

4.2.1 Daniel Swinehart, Gene McDaniel, and David [R.] Boggs. WFS: A simple
shared file system for a distributed environment. Proceedings of the Seventh ACM
Symposium on Operating Systems Principles, in Operating Systems Review 13, 5
(December 1979), pages 9–17.

This early version of a remote file system opens the door to the topic of distribution
of function across connected cooperating computers. The authors’ specific goal was
to keep things simple, thus, the relationship between mechanism and goal is much
clearer than in more modern, but more elaborate, systems.

4.2.2 Robert Scheifler and James Gettys. The X Window System. ACM Transactions
on Graphics 5, 2 (April 1986), pages 79–109.

The X Window System is the window system of choice on practically every
engineering workstation in the world. It provides a good example of using the
client/service model to achieve modularity. One of the main contributions of the X
Window System is that it remedied a defect that had crept into the UNIX system
when displays replaced typewriters: the display and keyboard were the only
hardware-dependent parts of the UNIX application programming interface. The X
Window System allowed display-oriented UNIX applications to be completely
independent of the underlying hardware. In addition, the X Window System
interposes an efficient network connection between the application and the display,
allowing configuration flexibility in a distributed system.

4.2.3 John H. Howard et al. Scale and performance in a distributed file system.
ACM Transactions on Computer Systems 6, 1 (February 1988), pages 51–81.

This paper describes experience with a prototype of the Andrew network file system
for a campus network and shows how the experience motivated changes in the
design. The Andrew file system had strong influence on version 4 of NFS.

4.3 Domain Name System (DNS)
The Domain Name System is one of the most interesting distributed systems in opera
tion. It is not only a building block in many distributed applications, but is itself an

Saltzer & Kaashoek Ch. sr, p. 26 June 24, 2009 12:32 am

Suggestions for Further Reading SR–27

interesting case study, offering many insights for anyone wanting to build a distributed
system or a naming system.

4.3.1 Paul V. Mockapetris and Kevin J. Dunlap. Development of the Domain Name
System, Proceedings of the SIGCOMM 1988 Symposium, pages 123–133. Also
published in ACM Computer Communications Review 18, 4 (August 1988), pages
123–133, and republished in ACM Computer Communications Review 25,1 (January
1995), pages 112–122.

4.3.2 Paul [V.] Mockapetris. Domain names—Concepts and facilities, Request for
Comments RFC 1034, Internet Engineering Task Force (November 1987).

4.3.3 Paul [V.] Mockapetris. Domain names—Implementation and specification,
Request for Comments RFC 1035, Internet Engineering Task Force (November 1987).

These three documents explain the DNS protocol.

4.3.4 	Paul Vixie. DNS Complexity. ACM Queue 5, 3 (April 2007), pages 24–29.
This paper uncovers many of the complexities of how DNS, described in the case
study in Section 4.4, works in practice. The protocol for DNS is simple and no
complete, precise specification of the system exists. The author argues that the
current descriptive specification of DNS is an advantage because it allows various
implementations to evolve to include new features as needed. The paper describes
many of these features and shows that DNS is one of the most interesting
distributed systems in use today.

5 Enforcing Modularity with Virtualization

5.1 Kernels
The readings on the UNIX system (see readings Section 2.2) are a good starting point for
studying kernels.

5.1.1 Per Brinch Hansen. The nucleus of a multiprogramming system.
Communications of the ACM 13, 4 (April 1970), pages 238–241.

The RC–4000 was the first, and may still be the best explained, system to use
messages as the primary thread coordination mechanism. It is also what would
today be called a microkernel design.

5.1.2 M. Frans Kaashoek et al. Application performance and flexibility on exokernel
systems. In Proceedings of the Sixteenth ACM Symposium on Operating Systems

Saltzer & Kaashoek Ch. sr, p. 27	 June 24, 2009 12:32 am

SR–28 Suggestions for Further Reading

Principles, in Operating Systems Review 31, 5 (December 1997), pages 52–65.
The exokernel provides an extreme version of separation of policy from mechanism,
sacrificing abstraction to expose (within protection constraints) all possible aspects
of the physical environment to the next higher layer, giving that higher layer
maximum flexibility in creating abstractions for its preferred programming
environment, or tailored to its preferred application.

5.2 Type extension as a modularity enforcement tool

5.2.1 Butler W. Lampson and Howard E. Sturgis. Reflections on an operating
system design. Communications of the ACM 19, 5 (May 1976), pages 251–265.

An operating system named CAL, designed at the University of California at
Berkeley, appears to be the first system to make explicit use of types in the interface
to the operating system. In addition to introducing this idea, Lampson and Sturgis
also give good insight into the pros and cons of various design decisions.
Documented late, the system was actually implemented in 1969.

5.2.2 Michael D. Schroeder, David D. Clark, and Jerome H. Saltzer. The Multics
kernel design project. Proceedings of the Sixth ACM Symposium on Operating Systems
Principles, in Operating Systems Review 11, 5 (November 1977), pages 43–56.

This paper addresses a wide range of issues encountered in applying type extension
(as well as microkernel thinking, though it wasn’t called that at the time) to Multics
in order to simplify its internal organization and reduce the size of its trusted base.
Many of these ideas were explored in even more depth in Philippe Janson’s Ph.D.
thesis, Using Type Extension to Organize Virtual Memory Mechanisms, M.I.T.
Department of Electrical Engineering and Computer Science, August 1976. That
thesis is also available as M.I.T. Laboratory for Computer Science Technical Report
TR–167, September 1976.

5.2.3 Galen C. Hunt and James R. Larus. Singularity: Rethinking the software stack.
Operating Systems Review 41, 2 (April 2007), pages 37–49.

Singularity is an operating system that uses type-safe languages to enforce
modularity between different software modules, instead of relying on virtual-
memory hardware. The kernel and all applications are written in a strongly-typed
programming language with automatic garbage collection. They run in a single
address space and are isolated from each other by the language runtime. They can
interact with each other only through communication channels that carry type-
checked messages.

Saltzer & Kaashoek Ch. sr, p. 28 June 24, 2009 12:32 am

Suggestions for Further Reading SR–29

5.3 Virtual Processors:Threads

5.3.1 Andrew D. Birrell. An introduction to programming with threads. Digital

Equipment Corporation Systems Research Center Technical Report #35, January

1989. 33 pages. (Also appears as Chapter 4 of Greg Nelson, editor, Systems

Programming with Modula–3, Prentice-Hall, 1991, pages 88–118.) A version for the

C# programming language appeared as Microsoft Research Report MSR-TR-2005

68.

This is an excellent tutorial, explaining the fundamental issues clearly and going on

to show the subtleties involved in exploiting threads correctly and effectively.

5.3.2 Thomas E. Anderson et al. Scheduler activations: Effective kernel support for

the user-level management of parallelism. ACM Transactions on Computer Systems 10,

1 (February 1992), pages 53–79. Originally published in Proceedings of the Thirteenth

ACM Symposium on Operating Systems Principles, in Operating Systems Review 25, 5

(December 1991), pages 95–109.

The distinction between user threads and kernel threads comes to the fore in this

paper, which offers a way of getting the advantages of both by having the right kind

of user/kernel thread interface. The paper also revisits the idea of a virtual processor,

but in a multiprocessor context.

5.3.3 David D. Clark. The structuring of systems using upcalls. Proceedings of the

Tenth ACM Symposium on Operating Systems Principles, in Operating Systems Review

19, 5 (December 1985), pages 171–180.

Attempts to impose modular structure by strict layering sometimes manage to

overlook the essence of what structure is most appropriate. This paper describes a

rather different intermodule organization that seems to be especially effective when

dealing with network implementations.

5.3.4 Jerome H. Saltzer. Traffic Control in a Multiplexed Computer System. Ph.D.

thesis, Massachusetts Institute of Technology, Department of Electrical Engineering,

June 1966. Also available as Project MAC Technical Report TR–30, 1966.

This work describes what is probably the first systematic virtual processor design

and thread package, the multiprocessor multiplexing scheme used in the Multics

system. Defines the coordination primitives BLOCK and WAKEUP, which are examples

of binary semaphores assigned one per thread.

5.3.5 Rob Pike et al. Processor sleep and wakeup on a shared-memory
multiprocessor. Proceedings of the EurOpen Conference (1991), pages 161–166.

This well-written paper does an excellent job of explaining how difficult it is to get

preemptive multiplexing, handling interrupts, and implementing coordination

Saltzer & Kaashoek Ch. sr, p. 29 June 24, 2009 12:32 am

SR–30 Suggestions for Further Reading

primitives correct on shared-memory multiprocessor.

5.4 Virtual Memory
There are few examples of papers that describe a simple, clean design. The older papers
(some can be found in reading Section 3.1) get bogged down in technology constraints;
the more recent papers (some of the them can be found in reading Section 6.1 on mul
tilevel memory management) often get bogged down in performance optimizations. The
case study on the evolution of enforcing modularity with the Intel x86 (see Section 5.7
of Chapter 5) describes virtual memory support in the most widely used processor and
shows how it evolved over time.

5.4.1 A[ndre] Bensoussan, C[harles] T. Clingen, and R[obert] C. Daley. The Multics
virtual memory: Concepts and design. Communications of the ACM 15, 5 (May
1972), pages 308–318.

This is a good description of a system that pioneered the use of high-powered
addressing architectures to support a sophisticated virtual memory system,
including memory-mapped files. The design was constrained and shaped by the
available hardware technology (0.3 MIPS processor with an 18-bit address space),
but the paper is a classic and easy to read.

5.5 Coordination
Every modern textbook covers the topic of coordination, but typically brushes past the
subtleties and also typically gives the various mechanisms more emphasis than they
deserve. These readings either explain the issues much more carefully or extend the basic
concepts in various directions.

5.5.1 E[dsger] W. Dijkstra. Co-operating sequential processes. In F. Genuys, editor,
Programming Languages, NATO Advanced Study Institute, Villard-de-Lans, 1966.
Academic Press, 1968, pages 43–112.

This paper introduces semaphores, the synchronizing primitive most often used in
academic exercises, and is notable for its careful, step-by-step development of the
requirements for mutual exclusion and its implementation. Many modern
treatments ignore the subtleties discussed here as if they were obvious. They aren’t,
and if you want to understand synchronization you should read this paper.

5.5.2 E[dsger] W. Dijkstra. Solution of a problem in concurrent programming
control. Communications of the ACM 8, 9 (September 1965), page 569.

In this brief paper, Dijkstra first reports Dekker’s observation that multiprocessor
locks can be implemented entirely in software, relying on the hardware to guarantee
only that read and write operations have before-or-after atomicity.

Saltzer & Kaashoek Ch. sr, p. 30 June 24, 2009 12:32 am

Suggestions for Further Reading SR–31

5.5.3 Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on
Computer Systems 5, 1 (February 1987), pages 1–11

This paper presents a fast version of a software-only implementation of locks and
gives an argument as to why this version is optimal.

5.5.4 David P. Reed and Rajendra K. Kanodia. Synchronization with eventcounts
and sequencers. Communications of the ACM 22, 2 (February 1979), pages 115–123.

This paper introduces an extremely simple coordination system that uses less
powerful primitives for sequencing than for mutual exclusion; a consequence is
simple correctness arguments.

5.5.5 Butler W. Lampson and David D. Redell. Experience with processes and
monitors in Mesa. Communications of the ACM 23, 2 (February 1980), pages
105–117.

This is a nice discussion of the pitfalls involved in integrating concurrent activity
coordination into a programming language.

5.5.6 Stefan Savage et al. Eraser: A dynamic data race detector for multi-threaded
programs. ACM Transactions on Computer Systems 15, 4 (November 1997), pages
391-411. Also in the Proceedings of the Sixteenth ACM Symposium on Operating
Systems Principles (October 1997).

This paper describes an interesting strategy for locating certain classes of locking
mistakes: instrument the program by patching its binary data references; then
watch those data references to see if the program violates the locking protocol.

5.5.7 Paul E. McKenney et al. Read-copy update. Proceedings of the Ottawa Linux
Symposium, 2002, pages 338–367.

This paper observes that locks can be an expensive mechanism for before-or-after
atomicity for data structures that are mostly read and infrequently modified. The
authors propose a new technique, read-copy update (RCU), which improves
performance and scalability. The Linux kernel uses this mechanism for many of its
data structures that processors mostly read.

5.5.8 Maurice Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems 11, 1 (January 1991), pages 124–149.

This paper introduces the goal of wait-free synchronization, now often called non-
blocking coordination, and gives non-blocking, concurrent implementations of
common data structures such as sets, lists, and queues.

5.5.9 Timothy L. Harris. A pragmatic implementation of non-blocking linked lists.
Proceedings of the fifteenth International Symposium on Distributed Computing

Saltzer & Kaashoek Ch. sr, p. 31 June 24, 2009 12:32 am

SR–32 Suggestions for Further Reading

(October 2001), pages 300-314.
This paper describes a practical implementation of a linked list in which threads can
insert concurrently without blocking.

See also reading 5.1.1, by Brinch Hansen, which uses messages as a coordination tech
nique, and reading 5.3.1, by Birrell, which describes a complete set of coordination
primitives for programming with threads.

5.6 Virtualization

5.6.1 Robert J. Creasy. The origin of the VM/370 time-sharing system. IBM Journal
of Research and Development 25, 5 (1981), pages 483–490.

This paper is an insightful retrospective about a mid-1960s project to virtualize the
IBM 360 computer architecture and the development that led to VM/370, which
in the 1970s became a popular virtual machine system. At the time, the unusual
feature of VM/370 was its creation of a strict, by-the-book, hardware virtual
machine, thus providing the ability to run any system/370 program in a controlled
environment. Because it was a pioneer project, the author explained things
particularly well, thus providing a good introduction to the concepts and problems
in implementing virtual machines.

5.6.2 Edouard Bugnion et al. Disco: running commodity operating systems on
scalable multiprocessors. ACM Transactions on Computer Systems 15, 14 (November
1997), pages 412–447.

This paper brought virtual machines back as a mainstream way of building systems.

5.6.3 Carl Waldspurger. Memory resource management in VMware ESX server.
Proceedings of the Fifth USENIX Symposium on Operating Systems Design and
Implementation (December 2002), pages 181–194.

This well-written paper introduces a nice trick (a balloon driver) to decide how
much physical memory to give to guest operating systems.

5.6.4 Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. Proceedings of the Twelfth Symposium on
Architectural Support for Programming Languages and Operating Systems (October
2006). Also in Operating Systems Review 40, 5 (December 2006), pages 2–13.

This paper describes how one can virtualize the Intel x86 instruction set to build a
high-performance virtual machine. It compares two implementation strategies: one
that uses software techniques such as binary rewriting to virtualize the instruction
set, and one that uses recent hardware additions to the x86 processor to make
virtualizing easier. The comparison provides insights about implementing modern

Saltzer & Kaashoek Ch. sr, p. 32 June 24, 2009 12:32 am

Suggestions for Further Reading SR–33

virtual machines and operating system support in modern x86 processors.

Also see the paper on the secure virtual machine monitor for the VAX machine, reading
11.3.5.

6 Performance

6.1 Multilevel memory management
An excellent discussion of memory hierarchies, with special attention paid to the design
space for caches, can be found in Chapter 5 of the book by Patterson and Hennessy,
reading 1.1.1. A lighter-weight treatment focused more on virtual memory, and includ
ing a discussion of stack algorithms, can be found in Chapter 3 of Tanenbaum's
computer systems book, reading 1.2.1.

6.1.1 R[obert] A. Frieburghouse. Register allocation via usage counts.
Communications of the ACM 17, 11 (November 1974), pages 638–642.

This paper shows that compiler code generators must do multilevel memory

management and that they have the same problems as do caches and paging

systems.

6.1.2 R[ichard] L. Mattson, J. Gecsei, D[onald] R. Slutz, and I[rving] L. Traiger.

Evaluation techniques for storage hierarchies. IBM Systems Journal 9, 2 (1970), pages

78–117.

The original reference on stack algorithms and their analysis, this paper is well

written and presents considerably more in-depth observations than the brief

summaries that appear in modern textbooks.

6.1.3 Richard Rashid et al. Machine-independent virtual memory management for

paged uniprocessor and multiprocessor architectures. IEEE Transactions on Computers

37, 8 (August 1988), pages 896–908. Originally published in Proceedings of the

Second International Conference on Architectural Support for Programming Languages

and Operating Systems (November 1987), pages 31–39.

This paper describes a design for a sophisticated virtual memory system that has

been adopted by several operating systems, including several BSD operating

systems and Apple’s OS X. The system supports large, sparse virtual address spaces,

copy-on-write copying of pages, and memory-mapped files.

6.1.4 Ted Kaehler and Glenn Krasner. LOOM: Large object-oriented memory for

Smalltalk–80 systems. In Glenn Krasner, editor, Smalltalk–80: Bits of History, Words

Saltzer & Kaashoek Ch. sr, p. 33 June 24, 2009 12:32 am

SR–34 Suggestions for Further Reading

of Advice. Addison-Wesley, 1983, pages 251–271. ISBN: 0–201–11669–3.
This paper describes the memory-management system used in Smalltalk, an
interactive programming system for desktop computers. A coherent virtual
memory language support system provides for lots of small objects while taking into
account address space allocation, multilevel memory management, and naming in
an integrated way.

The paper on the Woodstock File System, by Swinehart et al., reading 4.2.1, describes a
file system that is organized as a multilevel memory management system. Also see read
ing 10.1.8 for an interesting application (shared virtual memory) using multilevel
memory management.

6.2 Remote procedure call

6.2.1 Michael D. Schroeder and Michael Burrows. Performance of Firefly RPC.
ACM Transactions on Computer Systems 8, 1 (February 1990), pages 1–17. Originally
published in Proceedings of the Twelfth ACM Symposium on Operating Systems
Principles, in Operating Systems Review 23, 5 (December 1989), pages 102–113.

As a complement to the abstract discussion of remote procedure call in reading
4.1.1, this paper gives a concrete, blow-by-blow accounting of the steps required in
a particular implementation and then compares this accounting with overall time
measurements. In addition to providing insight into the intrinsic costs of remote
procedures, this work demonstrates that it is possible to do bottom-up performance
analysis that correlates well with top-down measurements.

6.2.2 Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M.
Levy. Lightweight remote procedure call. ACM Transactions on Computer Systems 8, 1
(February 1990), pages 37–55. Originally published in Proceedings of the Twelfth
ACM Symposium on Operating Systems Principles, in Operating Systems Review 23, 5
(December 1989), pages 102–113.

6.2.3 Jochen Liedtke. Improving IPC by kernel design. Proceedings of the Fourteenth
ACM Symposium on Operating Systems Principles, in Operating Systems Review 27, 5
(December 1993), pages 175–187.

These two papers develop techniques to allow local kernel-based client/service
modularity to look just like remote client/service modularity to the application
designer, while at the same time capturing the performance advantage that can
come from being local.

Saltzer & Kaashoek Ch. sr, p. 34 June 24, 2009 12:32 am

Suggestions for Further Reading SR–35

6.3 Storage

6.3.1 Chris Ruemmler and John Wilkes. An introduction to disk drive modeling.
Computer 27, 3 (March 1994), pages 17–28.

This paper is really two papers in one. The first five pages provide a wonderfully
accessible explanation of how disk drives and controllers actually work. The rest of
the paper, of interest primarily to performance modeling specialists, explores the
problem of accurately simulating a complex disk drive, with measurement data to
show the size of errors that arise from various modeling simplifications (or
oversimplifications).

6.3.2 Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry.
A fast file system for UNIX. ACM Transactions on Computer Systems 2, 3 (August
1984), pages 181–197.

The “fast file system” nicely demonstrates the trade-offs between performance and
complexity in adding several well-known performance enhancement techniques,
such as multiple block sizes and sector allocation based on adjacency, to a file system
that was originally designed as the epitome of simplicity.

6.3.3 Gregory R. Ganger and Yale N. Patt. Metadata update performance in file
systems. Proceedings of the First USENIX Symposium on Operating Systems Design and
Implementation (November 1994), pages 49–60.

This paper is an application to file systems of some recovery and consistency
concepts originally developed for database systems. It describes a few simple rules
(e.g., an inode should be written to the disk after writing the disk blocks to which
it points) that allow a system designer to implement a file system that is high
performance and always keeps its on-disk data structures consistent in the presence
of failures. As applications perform file operations, the rules create dependencies
between data blocks in the write-behind cache. A disk driver that knows about these
dependencies can write the cached blocks to disk in an order that maintains
consistency of on-disk data structures despite system crashes.

6.3.4 Andrew Birrell et al. A design for high-performance flash disks. ACM
Operating Systems Review 41, 2 (April 2007), pages 88–93. (Also appeared as
Microsoft Corporation technical report TR-2005-176.)

Flash (non-volatile) electronic memory organized to appear as a disk has emerged
as a more expensive but very low-latency alternative to magnetic disks for durable
storage. This short paper describes, in an easy-to-understand way, the challenges
associated with building a high-performance file system using flash disks and
proposes a design to address the challenges. This paper is a good start for readers
who want to explore flash-based storage systems.

Saltzer & Kaashoek Ch. sr, p. 35 June 24, 2009 12:32 am

SR–36 Suggestions for Further Reading

6.4 Other performance-related topics

6.4.1 Sharon E. Perl and Richard L. Sites. Studies of Windows NT performance
using dynamic execution traces, Proceedings of the Second USENIX Symposium on
Operating Systems Design and Implementation (October 1996). Also in Operating
System Review 30, SI (October 1996), pages 169–184.

This paper shows by example that any performance issue in computer systems can
be explained. The authors created a tool to collect complete traces of instructions
executed by the Windows NT operating system and applications. The authors
conclude that pin bandwidth limits the achievable execution speed of applications
and that locks inside the operating system can limit applications to scale to more
than a moderate number of processors. The paper also discusses the impact of
cache-coherence hardware (see Chapter 10[on-line]) on application performance.
All of these issues are increasingly important for multiprocessors on a single chip.

6.4.2 Jeffrey C. Mogul and K.K. Ramakrishnan. Eliminating receive livelock in an
interrupt-driven kernel. Transactions on Computer Systems 15, 3 (August 1997), pages
217–252.

This paper introduces the problem of receive livelock (described in Sidebar 6.7) and
presents a solution. Receive livelock is a possible undesirable situation when a
system is temporarily overloaded. It can arise if the server spends too much of its
time saying “I'm too busy” and as a result has not time left to serve any of the
requests.

6.4.3 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing
on large clusters. Proceedings of the Sixth USENIX Symposium on Operating Systems
Design and Implementation (December 2004), pages 137–150. Also in
Communications of the ACM 51, 1 (January 2008), pages 107-113.

This paper is a case study of aggregating arrays (reaching into the thousands) of
computers to perform parallel computations on large data sets (e.g., all the pages of
the Web). It uses a model that applies when a composition of two serial functions
(Map and Reduce) has no side-effects on the data sets. The charm of MapReduce
is that for computations that fit the model, the runtime uses concurrency but hides
it completely from the programmer. The runtime partitions the input data set,
executes the functions in parallel on different parts of the data set, and handles the
failures of individual computers.

Saltzer & Kaashoek Ch. sr, p. 36 June 24, 2009 12:32 am

Suggestions for Further Reading SR–37

7 The Network as a System and as a System Component
Proceedings of the IEEE 66, 11 (November 1978), a special issue of that journal devoted
to packet switching, contains several papers mentioned under various topics here. Col
lectively, they provide an extensive early bibliography on computer communications.

7.1 Networks
The book by Perlman on bridges and routers, reading 1.2.5, explains how the network
layer really works.

7.1.1 David D. Clark, Kenneth T. Pogran, and David P. Reed. An introduction to

local area networks. Proceedings of the IEEE 66, 11 (November 1978), pages

1497–1517.

This basic tutorial on local area network communications characterizes the various

modular components of a local area network, both interface and protocols, gives

specific examples, and explains how local area networks relate to larger,

interconnected networks. The specific examples are now out of date, but the rest of

the material is timeless.

7.1.2 Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet

switching for local computer networks. Communications of the ACM 19, 7 (July

1976), pages 395–404.

This paper provides the design of what has proven to be the most popular local area

network technology.

7.2 Protocols

7.2.1 Louis Pouzin and Hubert Zimmerman. A tutorial on protocols. Proceedings of
the IEEE 66, 11 (November 1978), pages 1346–1370.

This paper is well written and provides perspective along with the details. The fact

that it was written a long time ago turns out to be its major appeal. Because

networks were not widely understood at the time, it was necessary to fully explain

all of the assumptions and offer extensive analogies. This paper does an excellent job

of both, and as a consequence it provides a useful complement to modern texts.

While reading this paper, anyone who is familiar with current network technology

will frequently exclaim, “So that’s why the Internet works that way,” while reading

this paper.

7.2.2 Vinton G. Cerf and Peter T. Kirstein. Issues in packet-network

Saltzer & Kaashoek Ch. sr, p. 37 June 24, 2009 12:32 am

SR–38 Suggestions for Further Reading

interconnection. Proceedings of the IEEE 66, 11 (November 1978), pages 1386–1408.
At the time this paper was written, an emerging problem was the interconnection
of independently administered data communication networks. This paper explores
the issues in both breadth and depth, a combination that more recent papers do not
provide.

7.2.3 David D. Clark and David L. Tennenhouse. Architectural considerations for a
new generation of protocols. ACM SIGCOMM ’91 Conference: Communications
Architectures and Protocols, in Computer Communication Review 20, 4 (September
1990), pages 200–208.

This paper captures 20 years of experience in protocol design and implementation
and lays out the requirements for the next few rounds of protocol design. The basic
observation is that the performance requirements of future high-speed networks
and applications will require that the layers used for protocol description not
constrain implementations to be similarly layered. This paper is required reading
for anyone who is developing a new protocol or protocol suite.

7.2.4 Danny Cohen. On holy wars and a plea for peace. IEEE Computer 14, 10
(October 1981), pages 48–54.

This is an entertaining discussion of big-endian and little-endian arguments in
protocol design.

7.2.5 Danny Cohen. Flow control for real-time communication. Computer
Communication Review 10, 1–2 (January/April 1980), pages 41–47.

This brief item is the source of the “servant’s dilemma”, a parable that provides
helpful insight into why flow control decisions must involve the application.

7.2.6 Geoff Huston. Anatomy: A look inside network address translators. The
Internet Protocol Journal 7, 3 (September 2004), pages 2–32.

Network address translators (NATs) break down the universal connectivity
property of the Internet: when NATs are in use one, can no longer assume that every
computer in the Internet can communicate with every other computer in the
Internet. This paper discusses the motivation for NATs, how they work, and in
what ways they create havoc for some Internet applications.

7.2.7 Van Jacobson. Congestion avoidance and control. Proceedings of the Symposium
on Communications Architectures and Protocols (SIGCOMM '88), pages 314–329.
Also in Computer Communication Review 18, 4 (August 1988).

Sidebar 7.9 gives a simplified description of the congestion avoidance and control
mechanism of TCP, the most commonly used transport protocol in the Internet.
This paper explains those mechanisms in full detail. They are surprisingly simple

Saltzer & Kaashoek Ch. sr, p. 38 June 24, 2009 12:32 am

Suggestions for Further Reading SR–39

but have proven to be effective.

7.2.8 Jordan Ritter. Why Gnutella can’t scale. No, really. Unpublished grey
literature. <http://www.darkridge.com/~jpr5/doc/gnutella.html>.

This paper offers a simple performance model to explain why the Gnutella protocol

(see problem set 20) cannot support large networks of Gnutella peers. The problem

is incommensurate scaling of its bandwidth requirements.

7.2.9 David B. Johnson. Scalable support for transparent mobile host
internetworking. Wireless Networks 1, 3 (1995), pages 311–321.

Addressing a laptop computer that is connected to a network by a radio link and

that can move from place to place without disrupting network connections can be

a challenge. This paper proposes a systematic approach based on maintaining a

tunnel between the laptop computer’s current location and an agent located at its

usual home location. Variations of this paper (based on the author’s 1993 Ph.D.

thesis at Carnegie-Mellon University and available as CMU Computer Science

Technical Report CS–93–128) have appeared in several 1993 and 1994 workshops

and conferences, as well as in the book Mobile Computing, Tomasz Imielinski and

Henry F. Korth, editors, Kluwer Academic Publishers, c. 1996. ISBN:

079239697–9.

One popular protocol, remote procedure call, is covered in depth in reading 4.1.1 by Bir
rell and Nelson, as well as Section 10.3 of Tanenbaum’s Modern Operating Systems,
reading 1.2.1.

7.3 Organization for communication

7.3.1 Leonard Kleinrock. Principles and lessons in packet communications.

Proceedings of the IEEE 66, 11 (November 1978), pages 1320–1329.

7.3.2 Lawrence G. Roberts. The evolution of packet switching. Proceedings of the
IEEE 66, 11 (November 1978), pages 1307–1313.

These two papers discuss experience with the ARPANET. Anyone faced with the

need to design a network should look over these two papers, which focus on lessons

learned and the sources of surprise.

7.3.3 J[erome] H. Saltzer, D[avid]. P. Reed, and D[avid]. D. Clark. End-to-end

arguments in system design. ACM Transactions on Computer Systems 2, 4 (November

1984), pages 277–288. An earlier version appears in the Proceedings of the Second

International Conference on Distributed Computing Systems (April 1981), pages

Saltzer & Kaashoek Ch. sr, p. 39 June 24, 2009 12:32 am

<http://www.darkridge.com/~jpr5/doc/gnutella.html>

SR–40 Suggestions for Further Reading

504–512.
This paper proposes a design rationale for deciding which functions belong in
which layers of a layered network implementation. It is one of the few papers
available that provides a system design principle.

7.3.4 Leonard Kleinrock. The latency/bandwidth trade-off in gigabit networks.
IEEE Communications Magazine 30, 4 (April 1992), pages 36–40.

Technology has made gigabit/second data rates economically feasible over long
distances. But long distances and high data rates conspire to change some
fundamental properties of a packet network—latency becomes the dominant factor
that limits applications. This paper provides a good explanation of the problem.

7.4 Practical aspects
For the complete word on the Internet protocols, check out the following series of books.

7.4.1 W. Richard Stevens. TCP/IP Illustrated. Addison-Wesley; v. 1, 1994, ISBN
0–201–63346–9, 576 pages; v. 2 (with co-author Gary R. Wright) 1995, ISBN
0–201–63354–x, 1174 pages.; v. 3, 1996, ISBN 0–201–63495–3, 328 pages. Volume
1: The Protocols. Volume 2: The Implementation. Volume 3: TCP for Transactions,
HTTP, NNTP, and the UNIX® Domain Protocols.

These three volumes will tell you more than you wanted to know about how
TCP/IP is implemented, using the network implementation of the Berkeley System
Distribution for reference. The word “illustrated” refers more to computer
printouts—listings of packet traces and programs—than to diagrams. If you want
to know how some aspect of the Internet protocol suite is actually implemented,
this is the place to look—though it does not often explain why particular
implementation choices were made.

8 Fault Tolerance: Reliable Systems from Unreliable Components
A plan for some degree of fault tolerance shows up in many systems. For an example of
fault tolerance in distributed file systems, see the paper on Coda by Kistler and Satya
narayanan, reading 10.1.2. See also the paper on RAID by Katz et al., s.

8.1 Fault Tolerance
Chapter 3 of the book by Gray and Reuter, reading 1.1.5, provides a bedrock text on this
subject.

8.1.1 Jim [N.] Gray and Daniel P. Siewiorek. High-availability computer systems.

Saltzer & Kaashoek Ch. sr, p. 40 June 24, 2009 12:32 am

Suggestions for Further Reading SR–41

Computer 24, 9 (September 1991), pages 39–48.

This is a nice, easy-to-read overview of how high availability can be achieved.

8.1.2 Daniel P. Siewiorek. Architecture of fault-tolerant computers. Computer 17, 8
(August 1984), pages 9–18.

This paper provides an excellent taxonomy, as well as a good overview of several

architectural approaches to designing computers that continue running even when

a single hardware component fails.

8.2 Software errors

8.2.1 Dawson Engler et al. Bugs as deviant behavior: A general approach to inferring

errors in systems code. Proceedings of the Eighteenth ACM Symposium on Operating

Systems Principles, 2001, in Operating Systems Review 35, 5 (December 2001), pages

57–72.

This paper describes a method for finding possible programming faults in large

systems by looking for inconsistencies. For example, if in most cases an invocation

of a certain function is preceded by disabling interrupts but in a few cases it is not,

there is a good chance that a programming fault is present. The paper uses this

insight to create a tool for finding potential faults in large systems.

8.2.2 Michael M. Swift et al. Recovering device drivers. Proceedings of the Sixth

Symposium on Operating System Design and Implementation (December 2004), pages

1–16.

This paper observes that software faults in device drivers often lead to fatal errors

that cause operating systems to fail and thus require a reboot. It then describes how

virtual memory techniques can be used to enforce modularity between device

drivers and the rest of the operating system kernel, and how the operating system

can recover device drivers when they fail, reducing the number of reboots.

8.3 Disk failures

8.3.1 Bianca Schroeder and Garth A. Gibson. Disk failures in the real world: What

does an MTTF of 1,000,000 hours mean to you? Proceedings of the fifth USENIX

Conference on File and Storage Technologies (2007), pages 1–16.

As explained in Section 8.2, it is not uncommon that data sheets for disk drives

specify MTTFs of one hundred years or more, many times the actual observed

lifetimes of those drives in the field. This paper looks at disk replacement data for

100,000 disk drives and discusses what MTTF means for those disk drives.

Saltzer & Kaashoek Ch. sr, p. 41 June 24, 2009 12:32 am

SR–42 Suggestions for Further Reading

8.3.2 Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz Andre Barroso. Failure
trends in a large disk drive population. Proceedings of the fifth USENIX Conference on
File and Storage Technologies (2007), pages 17–28.

Recently, outfits such as Google have deployed large enough numbers of off-the
shelf disk drives for a long enough time that they can make their own evaluations
of disk drive failure rates and lifetimes, for comparison with the a priori reliability
models of the disk vendors. This paper reports data collected from such
observations. It analyzes the correlation between failures and several parameters that
are generally believed to impact the lifetime of disk and finds some surprises. For
example, it reports that temperature is less correlated with disk drive failure than
was previously reported, as long as the temperature is within a certain range and
stable.

9 Atomicity: All-or-Nothing and Before-or-After

9.1 Atomicity, Coordination, and Recovery
The best source on this topic is reading 1.1.5, but Gray and Reuter’s thousand-page book
can be a bit overwhelming.

9.1.1 Warren A. Montgomery. Robust Concurrency Control for a Distributed
Information System. Ph.D. thesis, Massachusetts Institute of Technology, Department
of Electrical Engineering and Computer Science, December 1978. Also available as
M.I.T. Laboratory for Computer Science Technical Report TR–207, January 1979.
197 pages.

This work describes alternative strategies that maximize concurrent activity while
achieving atomicity: maintaining multiple values for some variables, atomic
broadcast of messages to achieve proper sequence.

9.1.2 D. B. Lomet. Process structuring, synchronization, and recovery using atomic
actions. Proceedings of an ACM Conference on Language Design for Reliable Software
(March 1977), pages 128–137. Published as ACM SIGPLAN Notices 12, 3 (March
1977); Operating Systems Review 11, 2 (April 1977); and Software Engineering Notes
2, 2 (March 1977).

This is one of the first attempts to link atomicity to both recovery and coordination.
It is written from a language, rather than an implementation, perspective.

9.2 Databases

9.2.1 Jim [N.] Gray et al. The recovery manager of the System R database manager.

Saltzer & Kaashoek Ch. sr, p. 42 June 24, 2009 12:32 am

Suggestions for Further Reading SR–43

ACM Computing Surveys 13, 2 (June 1981), pages 223–242.
This paper is a case study of a sophisticated, real, high-performance logging and
locking system. It is one of the most interesting case studies of its type because it
shows the number of different, interacting mechanisms needed to construct a
system that performs well.

9.2.2 C. Mohan et al. ARIES: A transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead logging. ACM Transactions
on Database Systems 17, 1 (1992), pages 94-162.

This paper describes all the intricate design details of a fully featured, commercial-
quality database transaction system that uses write-ahead logging.

9.2.3 C. Mohan, Bruce Lindsey, and Ron Obermarck. Transaction management in
the R* distributed database management system. ACM Transactions on Database
Systems (TODS) 11, 4 (December 1986), pages 378–396.

This paper deals with transaction management for distributed databases, and
introduces two new protocols (Presumed Abort and Presumed Commit) that
optimize two-phase commit (see Section 9.6), resulting in fewer messages and log
writes. Presumed Abort is optimized for transactions that perform only read
operations, and Presumed Commit is optimized for transactions with updates that
involve several distributed databases.

9.2.4 Tom Barclay, Jim Gray, and Don Slutz. Microsoft TerraServer: A spatial data
warehouse. Microsoft Technical Report MS-TR-99-29. June 1999.

The authors report on building a popular Web site that hosts aerial, satellite, and
topographic images of Earth using off-the-shelf components, including a standard
database system for storing the terabytes of data.

9.2.5 Ben Vandiver et al. Tolerating byzantine faults in transaction processing
systems using commit barrier scheduling. Proceedings of the Twenty-first ACM
Symposium on Operating Systems Principles, in Operating Systems Review 41, 6
(December 2005), pages 59–79.

This paper describes a replication scheme for handling Byzantine faults in database
systems. It issues queries and updates to multiple replicas of unmodified, off-the
shelf database systems, and it compares their responses, thus creating a single
database that is Byzantine fault tolerant (see Section 8.6 for the definition of
Byzantine).

Saltzer & Kaashoek Ch. sr, p. 43 June 24, 2009 12:32 am

SR–44 Suggestions for Further Reading

9.3 Atomicity-related topics

9.3.1 Mendel Rosenblum and John K. Ousterhout. The design and implementation
of a log-structured file system. ACM Transactions on Computer Systems 10, 1 (February
1992), pages 26–52. Originally published in Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles, in Operating Systems Review 25, 5
(December 1991), pages 1–15.

Although it has long been suggested that one could in principle store the contents
of a file system on disk in the form of a finite log, this design is one of the few that
demonstrates the full implications of that design strategy. The paper also presents a
fine example of how to approach a system problem by carefully defining the
objective, measuring previous systems to obtain a benchmark, and then comparing
performance as well as functional aspects that cannot be measured.

9.3.2 H. T. Kung and John T. Robinson. On optimistic methods for concurrency
control. ACM Transactions on Database Systems 9, 4 (June 1981), pages 213–226.

This early paper introduced the idea of using optimistic approaches to controlling
updates to shared data. An optimistic scheme is one in which a transaction proceeds
in the hope that its updates are not conflicting with concurrent updates of another
transaction. At commit time, the transaction checks to see if the hope was justified.
If so, the transaction commits. If not, the transaction aborts and tries again.
Applications that use a database in which contention for particular records is
infrequent may run more efficiently with this optimistic scheme than with a scheme
that always acquires locks to coordinate updates.

See also the paper by Lampson and Sturgis, reading 1.8.7 and the paper by Ganger and
Patt, reading 6.3.3.

10 Consistency and Durable Storage

10.1 Consistency

10.1.1 J. R. Goodman. Using cache memory to reduce processor-memory traffic.
Proceedings of the 10th Annual International Symposium on Computer Architecture,
pages 124–132 (1983).

The paper that introduced a protocol for cache-coherent shared memory using
snoopy caches. The paper also sparked much research in more scalable designs for
cache-coherent shared memory.

10.1.2 James J. Kistler and M[ahadarev] Satyanarayanan. Disconnected operation in

Saltzer & Kaashoek Ch. sr, p. 44 June 24, 2009 12:32 am

Suggestions for Further Reading SR–45

the Coda file system. Proceedings of the Thirteenth ACM Symposium on Operating
Systems Principles, in Operating Systems Review 25, 5 (December 1991), pages
213–225.

Coda is a variation of the Andrew File System (AFS) that provides extra fault
tolerance features. It is notable for using the same underlying mechanism to deal
both with accidental disconnection due to network partition and the intentional
disconnection associated with portable computers. This paper is well written.

10.1.3 Jim Gray et al. The dangers of replication and a solution. Proceedings of the
1996 ACM SIGMOD International Conference on Management of Data, in ACM
SIGMOD Record 25, 2 (June 1996), pages 173–182.

This paper describes the challenges for replication protocols in situations where the
replicas are stored on mobile computers that are frequently disconnected. The paper
argues that trying to provide transactional semantics for an optimistic replication
protocol in this setting is unstable because there will be too many reconciliation
conflicts. It proposes a new two-tier protocol for reconciling disconnected replicas
that addresses this problem.

10.1.4 Leslie Lamport. Paxos made simple. Distributed computing (column), ACM
SIGACT News 32, 4 (Whole Number 121, December 2001), pages 51–58.

This paper describes an intricate protocol, Paxos, in a simple way. The Paxos
protocol allows several computers to agree on a value (e.g., the list of available
computers in a replicated service) in the face of network and computer failures. It
is an important building block in building fault tolerant services.

10.1.5 Fred Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys 22, 4 (1990), pages 299–319.

This paper provides a clear description of one of the most popular approaches for
building fault tolerant services, the replicated-state machine approach.

10.1.6 Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM 21, 7 (1978), pages 558–565.

This paper introduces an idea that is now known as Lamport clocks. A Lamport
clock provides a global, logical clock for a distributed system that respects the
physical clocks of the computers comprising the distributed system and the
communication between them. The paper also introduces the idea of replicated
state machines.

10.1.7 David K. Gifford. Weighted voting for replicated data. Proceedings of the
Seventh ACM Symposium on Operating Systems Principles, in Operating Systems Review
13, 5 (December 1979), pages 150–162. Also available as Xerox Palo Alto Research

Saltzer & Kaashoek Ch. sr, p. 45 June 24, 2009 12:32 am

SR–46 Suggestions for Further Reading

Center Technical Report CSL–79–14 (September 1979).
The work discusses a replicated data algorithm that allows the trade-off between
reliability and performance to be adjusted by assigning weights to each data copy
and requiring transactions to collect a quorum of those weights before reading or
writing.

10.1.8 Kai Li and Paul Hudak. Memory coherence in shared virtual memory
systems ACM Transactions on Computer System 7, 4 (November 1989), pages
321–359.

This paper describes a method to create a shared virtual memory across several
separated computers that can communicate only with messages. It uses hardware
support for virtual memory to cause the results of a write to a page to be observed
by readers of that page on other computers. The goal is to allow programmers to
write parallel applications on a distributed computer system in shared-memory
style instead of a message-passing style.

10.1.9 Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file
system. Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles
(October 2003), pages 29–43. Also in Operating Systems Review 37, 5 (December
2003).

This paper introduces a file system used in many of Google’s applications. It
aggregates the disks of thousands of computers in a cluster into a single storage
system with a simple file system interface. Its design is optimized for large files and
replicates files for fault tolerance. The Google File System is used in the storage
back-end of many of Google’s applications, including search.

10.1.10 F[ay] Chang et al. Bigtable: A distributed storage system for structured data.
ACM Transactions on Computer Systems 26, 2, article 4 (2008), pages 1–26.

This paper describes a database-like system for storing petabytes of structured data
on thousands of commodity servers.

10.2 Durable storage

10.2.1 Raymond A. Lorie. The long-term preservation of digital information.
Proceedings of the first ACM/IEEE Joint Conference on Digital Libraries (2001), pages
346–352.

This is a thoughtful discussion of the problems of archiving digital information
despite medium and technology obsolescence.

10.2.2 Randy H. Katz, Garth A. Gibson, and David A. Patterson. Disk system

Saltzer & Kaashoek Ch. sr, p. 46 June 24, 2009 12:32 am

Suggestions for Further Reading SR–47

architectures for high performance computing. Proceedings of the IEEE 77, 12
(December 1989), pages 1842–1857.

The first part of this reference paper on Redundant Arrays of Independent Disks
(RAID) reviews disk technology; the important material is the catalog of six
varieties of RAID organization.

10.2.3 Petros Maniatis et al. LOCKSS: A peer-to-peer digital preservation system.
ACM Transactions on Computer Systems 23, 1 (February 2005), pages 2–50.

This paper describes a peer-to-peer system for preserving access to journals and
other archival information published on the Web. Its design is based on the mantra
“lots of copies keep stuff safe” (LOCKSS). A large number of persistent Web caches
keep copies and cooperate to detect and repair damage to their copies using a new
voting scheme.

10.2.4 A[lan J.] Demers et al. Epidemic algorithms for replicated database
maintenance. Proceedings of the Sixth Symposium on Principles of Distributed
Computing (August 1987), pages 1-12. Also in Operating Systems Review 22, 1
(January 1988), pages 8-32.

This paper describes an epidemic protocol to update data that is replicated on many
machines. The essence of an epidemic protocol is that each computer periodically
gossips with some other, randomly chosen computer and exchanges information;
multiple computers thus learn about all updates in a viral fashion. Epidemic
protocols can be simple and robust, yet can spread updates relatively quickly.

10.3 Reconciliation

10.3.1 Douglas B. Terry et al. Managing update conflicts in Bayou, a weakly
connected replicated storage system. Proceedings of the Fifteenth Symposium on
Operating Systems Principles (December 1995), in Operating Systems Review 29, 5
(December 1995), pages 172–183.

This paper introduces a replication scheme for computers that share data but are
not always connected. For example, each computer may have a copy of a calendar,
which it can update optimistically. Bayou will propagate these updates, detect
conflicts, and attempt to resolve conflicts, if possible.

10.3.2 Trevor Jim, Benjamin C. Pierce, and Jérôme Vouillon. How to build a file
synchronizer. (A widely circulated piece of grey literature—dated February 22, 2002
but never published.)

This paper describes the nuts and bolts of Unison, a tool that efficiently
synchronizes the files stored on two computers. Unison is targeted to users who

Saltzer & Kaashoek Ch. sr, p. 47 June 24, 2009 12:32 am

SR–48 Suggestions for Further Reading

have their files stored in several places (e.g., on a server at work, a laptop to carry
while traveling, and a desktop at home) and would like to have all the files on the
different computers be the same.

11 Information Security

11.1 Privacy
The fundamental book about privacy is reading 1.1.6 by Alan Westin.

11.1.1 Arthur R. Miller. The Assault on Privacy. University of Michigan Press, Ann
Arbor, Michigan, 1971. ISBN: 0–47265500–0. 333 pages. (Out of print.)

This book articulately spells out the potential effect of computerized data-gathering
systems on privacy, and of possible approaches to improving legal protection. Part
of the latter is now out of date because of advances in legislation, but most of this
book is still of much interest.

11.1.2 Daniel J. Weitzner et al. Information accountability. Communications of the
ACM 51, 6 (June 2008), pages 82–87.

The paper suggests that in the modern world Westin's definition covers only a
subset of privacy. See sidebar 11.1 for a discussion of the paper’s proposed extended
definition.

11.2 Protection Architectures

11.2.1 Jerome H. Saltzer and Michael D. Schroeder. The protection of information
in computer systems. Proceedings of the IEEE 63, 9 (September 1975), pages
1278–1308.

After 30 years, this paper (an early version of the current Chapter 11) still provides
an effective treatment of protection mechanics in multiuser systems. Its emphasis
on protection inside a single system, rather than between systems connected to a
network, is one of its chief shortcomings, along with antique examples and
omission of newer techniques of certification such as authentication logic.

11.2.2 R[oger] M. Needham. Protection systems and protection implementations.
AFIPS Fall Joint Conference 41, Part I (December 1972), pages 571–578.

This paper is probably as clear an explanation of capability systems as one is likely
to find. For another important paper on capabilities, see Fabry, reading 3.1.2.

Saltzer & Kaashoek Ch. sr, p. 48 June 24, 2009 12:32 am

Suggestions for Further Reading SR–49

11.3 Certification,Trusted Computer Systems and Security Kernels

11.3.1 Butler [W.] Lampson, Martín Abadi, Michael Burrows, and Edward Wobber.

Authentication in distributed systems: Theory and practice. ACM Transactions on

Computer Systems 10, 4 (November 1992), pages 265–310.

This paper, one of a series on a logic that can be used to reason systematically about

authentication, provides a relatively complete explication of the theory and shows

how to apply it to the protocols of a distributed system.

11.3.2 Edward Wobber, Martín Abadi, Michael Burrows, and Butler W. Lampson.

Authentication in the Taos operating system. Proceedings of the Fourteenth ACM

Symposium on Operating Systems Principles, in Operating Systems Review 27, 5

(December 1993), pages 256–269.

This paper applies the authentication logic developed in reading 11.3.1 to an

experimental operating system. In addition to providing a concrete example, the

explanation of the authentication logic itself is a little more accessible than that in

the other paper.

11.3.3 Ken L. Thompson. Reflections on trusting trust. Communications of the ACM
27, 8 (August 1984), pages 761–763.

Anyone seriously interested in developing trusted computer systems should think

hard about the implications for verification that this paper raises. Thompson

demonstrates the ease with which a compiler expert can insert undetectable Trojan

Horses into a system. Reading 11.3.4 describes a way to detect a Trojan horse. [The

original idea that Thompson describes came from a paper whose identity he could

not recall at the time, and which is credited with a footnote asking for help locating

it. The paper was a technical report of the United States Air Force Electronic

Systems Division at Hanscom Air Force Base. Paul A. Karger and Roger R. Schell.

Multics Security Evaluation: Vulnerability Analysis. ESD–TR–74–193, Volume II
(June 1974), page 52.]

11.3.4 David A. Wheeler. countering trusting trust through diverse double-

compiling. Proceedings of the 21st Annual Computer Security Applications Conference

(2005), pages 28–40.

This paper proposes a solution that the author calls “diverse double compiling”, to

detect the attack discussed in Thompson’s paper on trusting trust (see reading

11.3.3). The idea is to recompile a new, untrusted compiler’s source code twice: first

using a trusted compiler, and second using the result of this compilation. If the

resulting binary for the compiler is bit-for-bit identical with the untrusted

compiler’s original binary, then the source code accurately represents the untrusted

binary, which is the first step in developing trust in the new compiler.

Saltzer & Kaashoek Ch. sr, p. 49 June 24, 2009 12:32 am

SR–50 Suggestions for Further Reading

11.3.5 Paul A. Karger et al. A VMM security kernel for the VAX architecture. 1990
IEEE Computer Society Symposium on Security and Privacy (May 1990), pages 2–19.

In the 1970s, the U.S. Department of Defense undertook a research effort to create
trusted computer systems for defense purposes and in the process created a large
body of literature on the subject. This paper distills most of the relevant ideas from
that literature into a single, readable case study, and it also provides pointers to other
key papers for those seeking more details on these ideas.

11.3.6 David D. Clark and David. R. Wilson. A comparison of commercial and
military computer security policies. 1987 IEEE Symposium on Security and Privacy
(April 1987), pages 184–194.

This thought-provoking paper outlines the requirements for security policy in
commercial settings and argues that the lattice model is often not applicable. It
suggests that these applications require a more object-oriented model in which data
may be modified only by trusted programs.

11.3.7 Jaap-Henk Hoepman and Bart Jacobs. Increased security through open
source. Communications of the ACM 50, 1 (January 2007), pages 79–83.

It has long been argued that the open design principle (see Section 11.1.4) is
important to designing secure systems. This paper extends that argument by
making the case that the availability of source code for a system is important in
ensuring the security of its implementation.

See also reading 1.3.15 by Garfinkel and Spafford, reading 5.2.1 by Lampson and Stur
gis, and reading 5.2.2 by Schroeder, Clark, and Saltzer.

11.4 Authentication

11.4.1 Robert [H.] Morris and Ken [L.] Thompson. Password security: A case
history. Communications of the ACM 22, 11 (November 1979), pages 594–597.

This paper is a model of how to explain something in an accessible way. With a
minimum of jargon and an historical development designed to simplify things for
the reader, it describes the UNIX password security mechanism.

11.4.2 Frank Stajano and Ross J. Anderson. The resurrecting duckling: Security
issues for ad-hoc wireless networks. Security Protocols Workshop 1999, pages 172–194.

This paper discusses the problem of how a new device (e.g., a surveillance camera)
can establish a secure relationship with the remote controller of the device’s owner,
instead of its neighbor’s or adversary’s. The paper’s solution is that a device will
recognize as its owner the first principal that sends it an authentication key. As soon
as the device receives a key, its status changes from newborn to imprinted, and it

Saltzer & Kaashoek Ch. sr, p. 50 June 24, 2009 12:32 am

Suggestions for Further Reading SR–51

stays faithful to that key until its death. The paper illustrates the problem and
solution, using a vivid analogy of how ducklings authenticate their mother (see
sidebar 11.5).

11.4.3 David Mazières. Self-certifying file system. Ph.D. thesis, Massachusetts
Institute of Technology Department of Electrical Engineering and Computer
Science (May 2000).

This thesis proposes a design for a cross-administrative domain file system that
separates the file system from the security mechanism using an idea called self-
certifying path names. Self-certifying names can be found in several other systems.

See also sidebar 11.6 on Kerberos and reading 3.2.5, which uses cryptographic tech
niques to secure a personal naming system.

11.5 Cryptographic techniques
The fundamental books about cryptography applied to computer systems are reading
1.2.4, by Bruce Schneier, and reading 1.3.13 by Alfred Menezes et al. In light of these
two books, the first few papers from the 1970s listed below are primarily of historical
interest. There is also a good, more elementary, treatment of cryptography in the book
by Simson Garfinkel, reading 1.3.15. Note that all of these books and papers focus on
the application of cryptography, not on crypto-mathematics, which is a distinct area of
specialization not covered in this reading list. An accessible crypto-mathematics reference
is reading 1.3.14.

11.5.1 R[onald] L. Rivest, A[di] Shamir, and L[en] Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communications of the
ACM 21, 2 (February 1978), pages 120–126.

This paper was the first to suggest a possibly workable public key system.

11.5.2 Whitfield Diffie and Martin E. Hellman. Exhaustive cryptanalysis of the
NBS Data Encryption Standard. Computer 10, 6 (June 1977), pages 74–84.

This is the unofficial analysis of how to break the DES by brute force—by building
special-purpose chips and arraying them in parallel. Twenty-five years later, brute
force still seems to be the only promising attack on DES, but the intervening
improvements in hardware technology make special chips unnecessary—an array of
personal computers on the Internet can do the job. The Advanced Encryption
Standard (AES) is DES’s successor (see Section 11.8.3.1).

11.5.3 Ross J. Anderson. Why cryptosystems fail. Communications of the ACM 37,
11 (November 1994), pages 32–40.

Saltzer & Kaashoek Ch. sr, p. 51 June 24, 2009 12:32 am

SR–52 Suggestions for Further Reading

Anderson presents a nice analysis of what goes wrong in real-world cryptosystems—
secure modules don’t necessary lead to secure systems—and the applicability of
systems thinking in their design. He points out that merely doing the best possible
design isn’t enough; a feedback loop that corrects errors in the design following
experience in the field is an equally important component that is sometimes
forgotten.

11.5.4 David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol.
Proceedings of the Second USENIX Workshop on Electronic Commerce, Volume 2
(November 1996), pages 29–40.

This paper is useful not only because it provides a careful analysis of the security of
the subject protocol, but it also explains how the protocol works in a form that is
more accessible than the protocol specification documents. The originally
published version was almost immediately revised with corrections. The revised
version is available on the World Wide Web at
<http://www.counterpane.com/ssl.html>.

11.5.5 M[ihir] Bellare, R[an] Canetti, and H[ugo] Krawczyk. Keying hash functions
for message authentication. Proceedings of the Sixteenth International Cryptograhy
Conference (August 1996), pages 1–15. (Also see H. Krawczyk, M. Bellare, and R.
Canetti, HMAC: Keyed-hashing for message authentication, Request for Comments
RFC 2104, Internet Engineering Task Force (February 1997).

This paper and the RFC introduce and define HMAC, a hash function used in
widely deployed protocols.

11.5.6 David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24, 2 (February 1981), pages 84–88.

This paper introduces a system design, named mixnet, that allows a sender of a
message to hide its true identity from a receiver but still allow the receiver to
respond.

11.6 Adversaries (the dark side)
Section 11.11 on war stories gives a wide range of examples of how adversaries can break
a system’s security. This section lists a few papers that provide a longer and more detailed
descriptions of attacks. This is a fast-moving area; as soon as designers fend off new
attacks, adversaries try to find new attacks. This arms race is reflected in some of the fol
lowing readings, and although some of the attacks described have become ineffective (or
will over time), these papers provide valuable insights. The proceedings of Usenix Security
and Computer and Communication Security often contain papers explaining current
attacks, and conferences run by the so-called “black hat” community document the
“progress” on the dark side.

Saltzer & Kaashoek Ch. sr, p. 52 June 24, 2009 12:32 am

<http://www.counterpane.com/ssl.html>

Suggestions for Further Reading SR–53

11.6.1 Eugene Spafford. Crisis and aftermath, Communications of the ACM 32, 6
(June 1989), pages 678–687.

This paper documents how the Morris worm works. It was one of the first worms,
as well as one of the most sophisticated.

11.6.2 Jonathan Pincus and Brandon Baker. Beyond stack smashing: Recent
advances in exploiting buffer overruns, IEEE Security and Privacy 2, 4 (August 2004),
pages 20–27.

This paper describes how buffer overrun attacks have evolved since the Morris
worm.

11.6.3 Abhishek Kumar, Vern Paxson, and Nicholas Weaver. Exploiting underlying
structure for detailed reconstruction of an Internet scale event. Proceedings of the ACM
Internet Measurement Conference (October 2005), pages 351-364.

This paper describes the Witty worm and how the authors were able to track down
its source. The work contains many interesting nuggets of information.

11.6.4 Vern Paxson. An analysis of using reflectors for distributed denial-of-service
attacks. Computer Communications Review 31, 3 (July 2001), pages 38-47.

This paper describes how an adversary can trick a large set of Internet servers to send
their combined replies to a victim and in that way launch a denial-of-service attack
on the victim. It speculates on several possible directions for defending against such
attacks.

11.6.5 Chris Kanich et al. Spamalytics: an empirical analysis of spam marketing
conversion. Proceedings of the ACM Conference on Computer and Communications
Security (CCS), Arlington, Virginia (October 2008), pages 3–14.

This paper describes the infrastructure that spammers use to send unsolicited e-mail
and tries to establish what the financial reward system is for spammers. This paper
has its shortcomings, but it is one of the few papers that tries to understand the
economics behind spam.

11.6.6 Tom Jagatic, Nathaniel Johnson, Markus Jakobsson, and Filippo Menczer.
Social phishing. Communications of the ACM 50, 10 (October 2007), pages 94–100.

This study investigates the success rate of individual phishing attacks.

Saltzer & Kaashoek Ch. sr, p. 53 June 24, 2009 12:32 am

SR–54 Suggestions for Further Reading

Saltzer & Kaashoek Ch. sr, p. 54 June 24, 2009 12:32 am

CHAPTERProblem Sets

TABLE OF CONTENTS
Introduction . PS–2

1 Bigger Files .PS–5
2 Ben’s Stickr .PS–7
3 Jill’s File System for Dummies. .PS–9
4 EZ-Park .PS–13
5 Goomble .PS–17
6 Course Swap. .PS–20
7 Banking on Local Remote Procedure Call .PS–25
8 The Bitdiddler .PS–28
9 Ben’s Kernel .PS–31

10 A Picokernel-Based Stock Ticker System .PS–37
11 Ben’s Web Service .PS–42
12 A Bounded Buffer with Semaphores .PS–46
13 The Single-Chip NC .PS–48
14 Toastac-25. .PS–49
15 BOOZE: Ben’s Object-Oriented Zoned Environment .PS–51
16 OutOfMoney.com. .PS–54
17 Quarria . PS–61
18 PigeonExpress!.com I . PS–65
19 Monitoring Ants . PS–69
20 Gnutella: Peer-to-Peer Networking. PS–74
21 The OttoNet . PS–79
22 The Wireless EnergyNet . PS–84
23 SureThing . PS–90
24 Sliding Window. PS–95
25 Geographic Routing . PS–97
26 Carl’s Satellite . PS–99
27 RaidCo . PS–103
28 ColdFusion. PS–105
29 AtomicPigeon!.com . PS–110
30 Sick Transit . PS–115
31 The Bank of Central Peoria, Limited . PS–119
32 Whisks . PS–125
33 ANTS: Advanced “Nonce-ensical” Transaction System . PS–127
34 KeyDB . PS–133
35 Alice’s Reliable Block Store . PS–135
36 Establishing Serializability . PS–138
37 Improved Bitdiddler . PS–142
38 Speedy Taxi Company . PS–150
39 Locking for Transactions. PS–153

PS–1

Saltzer & Kaashoek Ch. ps, p. 1 June 24, 2009 12:34 am

http:OutOfMoney.com

PS–2 Problem Sets

40 “Log”-ical Calendaring . PS–155
41 Ben’s Calendar . PS–161
42 Alice’s Replicas . PS–165
43 JailNet. PS–170
44 PigeonExpress!.com II . PS–175
45 WebTrust.com (OutOfMoney.com, Part II) . PS–177
46 More ByteStream Products . PS–183
47 Stamp Out Spam . PS–185
48 Confidential Bitdiddler . PS–190
49 Beyond Stack Smashing . PS–192

Introduction
These problem sets seek to make the student think carefully about how to apply the
concepts of the text to new problems. These problems are derived from examinations
given over the years while teaching the material in this textbook. Many of the problems
are multiple choice with several right answers. The reader should try to identify all right
options.

Some significant and interesting system concepts that are not mentioned in the main
text, and therefore at first read seem to be missing from the book, are actually to be found
within the exercises and problem sets. Definitions and discussion of these concepts can
be found in the text of the exercise or problem set in which they appear. Here is a list of
concepts that the exercises and problem sets introduce:

• action graph (problem set 36)
• ad hoc wireless network (problem sets 19 and 21)
• bang-bang protocol (exercise 7.13)
• blast protocol (exercise 7.25)
• commutative cryptographic transformation (exercise 11.4)
• condition variable (problem set 13)
• consistent hashing (problem set 23)
• convergent encryption (problem set 48)
• cookie (problem set 45)
• delayed authentication (exercise 11.10)
• delegation forwarding (exercise 2.1)
• event variable (problem set 11)
• fast start (exercise 7.12)
• flooding (problem set 20)
• follow-me forwarding (exercise 2.1)
• Information Management System atomicity (exercise 9.5)
• mobile host (exercise 7.24)
• lightweight remote procedure call (problem set 7)
• multiple register set processor (problem set 9)

Saltzer & Kaashoek Ch. ps, p. 2 June 24, 2009 12:34 am

Introduction PS–3

• object-oriented virtual memory (problem set 15)

• overlay network (problem set 20)

• pacing (exercise 7.16)
• peer-to-peer network (problem set 20)
• RAID 5, with rotating parity (exercise 8.10)
• restartable atomic region (problem set 9)
• self-describing storage (exercise 6.8)
• serializability (problem set 36)
• timed capability (exercise 11.8)

Exercises for Chapter 7 and above are in on-line chapters, and problem sets numbered
17 and higher are in the on-line book of problem sets.

Some of these problem sets span the topics of several different chapters. A parenthet
ical note at the beginning of each set indicates the primary chapters that it involves.
Following each exercise or problem set question is an identifier of the form
“1978–3–14”. This identifier reports the year, examination number, and problem num
ber of the examination in which some version of that problem first appeared. For those
problem sets not developed by one of the authors, a credit line appears in a footnote on
the first page of the problem set.

Saltzer & Kaashoek Ch. ps, p. 3 June 24, 2009 12:34 am

PS–4 Problem Sets

Saltzer & Kaashoek Ch. ps, p. 4 June 24, 2009 12:34 am

1 Bigger Files PS–5

1 Bigger Files*

(Chapter 2)

For his many past sins on previous exams, Ben Bitdiddle is assigned to spend eternity
maintaining a PDP-11 running version 7 of the UNIX operating system. Recently, one of
his user’s database applications failed after reaching the file size limit of 1,082,201,088
bytes (approximately 1 gigabyte). In an effort to solve the problem, he upgraded the
computer with an old 4-gigabyte (232 byte) drive; the disk controller hardware supports
32-bit sector addresses, and can address disks up to 2 terabytes in size. Unfortunately,
Ben is disappointed to find the file size limit unchanged after installing the new disk.

In this question, the term block number refers to the block pointers stored in inodes.
There are 512 bytes in a block. In addition, Ben’s version 7 UNIX system has a file system
that has been expanded from the one described in Section 2.5: its inodes are designed to
support larger disks. Each inode contains 13 block numbers of 4 bytes each; the first 10
block numbers point to the first 10 blocks of the file, and the remaining 3 are used for
the rest of the file. The 11th block number points to an indirect block, containing 128
block numbers, the 12th block number points to a double-indirect block, containing
128 indirect block numbers, and the 13th block number points to a triple-indirect block,
containing 128 double-indirect block numbers. Finally, the inode contains a four-byte
file size field.

Q 1.1 Which of the following adjustments will allow files larger than the current one
gigabyte limit to be stored?

A. Increase just the file size field in the inode from a 32-bit to a 64-bit value.
B. Increase just the number of bytes per block from 512 to 2048 bytes.
C. Reformat the disk to increase the number of inodes allocated in the inode table.
D. Replace one of the direct block numbers in each inode with an additional triple-indirect

block number.
2008–1–5

Ben observes that there are 52 bytes allocated to block numbers in each inode (13
block numbers at 4 bytes each), and 512 bytes allocated to block numbers in each indi
rect block (128 block numbers at 4 bytes each). He figures that he can keep the total
space allocated to block numbers the same, but change the size of each block number, to
increase the maximum supported file size. While the number of block numbers in inodes
and indirect blocks will change, Ben keeps exactly one indirect, one double-indirect and
one triple-indirect block number in each inode.

* Credit for developing this problem set goes to Lewis D. Girod.

Saltzer & Kaashoek Ch. ps, p. 5 June 24, 2009 12:21 am

PS–6 Problem Sets

Q 1.2 Which of the following adjustments (without any of the modifications in the
previous question), will allow files larger than the current approximately 1 gigabyte limit
to be stored?

A. Increasing the size of a block number from 4 bytes to 5 bytes.
B. Decreasing the size of a block number from 4 bytes to 3 bytes.
C. Decreasing the size of a block number from 4 bytes to 2 bytes.

2008–1–6

Saltzer & Kaashoek Ch. ps, p. 6 June 24, 2009 12:21 am

2 Ben’s Stickr PS–7

2 Ben’s Stickr*

(Chapter 4)

Ben is in charge of system design for Stickr, a new Web site for posting pictures of
bumper stickers and tagging them. Luckily for him, Alyssa had recently implemented a
Triplet Storage System (TSS), which stores and retrieves arbitrary triples of the form
{subject, relationship, object} according to the following specification:

procedure FIND (subject, relationship, object, start, count)

// returns OK + array of matching triples

procedure INSERT (subject, relationship, object)

// adds the triple to the TSS if it is not already there and returns OK

procedure DELETE (subject, relationship, object)

// removes the triple if it exists, returning TRUE, FALSE otherwise

Ben comes up with the following design:

User Web server Triplet Storage System
RPCHTTP

As shown in the figure, Ben uses an RPC interface to allow the Web server to interact
with the triplet storage system. Ben chooses at-least-once RPC semantics. Assume that the
triplet storage system never crashes, but the network between the Web server and triplet
storage system is unreliable and may drop messages.

Q 2.1 Suppose that only a single thread on Ben’s Web server is using the triplet storage
system and that this thread issues just one RPC at a time. What types of incorrect
behavior can the Web server observe?

A.	 The FIND RPC stub on the Web server sometimes returns no results, even though
matching triples exist in the triplet storage system.

B.	 The INSERT RPC stub on the Web server sometimes returns OK without inserting the
triple into the storage system.

C.	 The DELETE RPC stub on the Web server sometimes returns FALSE when it actually
deleted a triple.

D. The FIND RPC stub on the Web server sometimes returns triples that have been deleted.

Q 2.2 Suppose Ben switches to at-most-once RPC; if no reply is received after some
time, the RPC stub on the Web server gives up and returns a “timer expired” error code.
Assume again that only a single thread on Ben’s Web server is using the triple storage

* Credit for developing this problem set goes to Samuel R. Madden.

Saltzer & Kaashoek Ch. ps, p. 7	 June 24, 2009 12:21 am

PS–8 Problem Sets

system and that this thread issues just one RPC at a time. What types of incorrect
behavior can the Web server observe?

A.	 Assuming it does not time out, the FIND RPC stub on the Web server can sometimes
return no results when matching triples exist in the storage system.

B.	 Assuming it does not time out, the INSERT RPC stub on the Web server can sometimes
return OK without inserting the triple into the storage system.

C.	 Assuming it does not time out, the DELETE RPC stub on the Web server can sometimes
return FALSE when it actually deleted a triple.

D. Assuming it does not time out, the FIND RPC stub on the Web server can sometimes
return triples that have been deleted.

2007–1–5/6

Saltzer & Kaashoek Ch. ps, p. 8	 June 24, 2009 12:21 am

3 Jill’s File System for Dummies PS–9

3 	Jill’s File System for Dummies*

(Chapter 4)

Mystified by the complexity of NFS, Moon Microsystems guru Jill Boy decides to
implement a simple alternative she calls File System for Dummies, or FSD. She
implements FSD in two pieces:

1. 	An FSD server, implemented as a simple user application, which responds to FSD

requests. Each request corresponds exactly to a UNIX file system call (e.g. READ, WRITE,

OPEN, CLOSE, or CREATE) and returns just the information returned by that call (status,

integer file descriptor, data, etc.).

2. 	An FSD client library, which can be linked together with various applications to

substitute Jill’s FSD implementations of file system calls like OPEN, READ, and WRITE for

their UNIX counterparts. To avoid confusion, let’s refer to Jill’s FSD versions of these

procedures as FSD_OPEN, and so on.

Jill’s client library uses the standard UNIX calls to access local files but uses names of
the form

/fsd/hostname/apath

to refer to the file whose absolute path name is /apath on the host named hostname. Her
library procedures recognize operations involving remote files (e.g.

FSD_OPEN("/fsd/cse.pedantic.edu/foobar", READ_ONLY)

and translates them to RPC requests to the appropriate host, using the file name on that
host (e.g.

RPC("/fsd/cse.pedantic.edu/foobar", "OPEN", "/foobar", READ_ONLY).

The RPC call causes the corresponding UNIX call, for example,

OPEN("/foobar", READ_ONLY)

to be executed on the remote host and the results (e.g., a file descriptor) to be returned
as the result of the RPC call. Jill’s server code catches errors in the processing of each
request and returns ERROR from the RPC call on remote errors.

Figure PS.1 describes pseudocode for Version 1 of Jill’s FSD client library. The RPC
calls in the code relay simple RPC commands to the server, using exactly-once semantics.
Note that no data caching is done by either the server or the client library.

* Credit for developing this problem set goes to Stephen A. Ward.

Saltzer & Kaashoek Ch. ps, p. 9	 June 24, 2009 12:21 am

PS–10 Problem Sets

// Map FSD handles to host names, remote handles:
string handle_to_host_table[1000] // initialized to unused
integer handle_to_rhandle_table[1000] // handle translation table

procedure FSD_OPEN (string name, integer mode)
integer handle ← FIND_UNUSED_HANDLE ()
if name begins with "/fsd/" then

host ← EXTRACT_HOST_NAME (name)
filename ← EXTRACT_REMOTE_FILENAME (name) // returns remote file handle
rhandle ← RPC (host, "OPEN", filename, mode) // or ERROR

else
host ← ""
rhandle ← OPEN (name, mode)

if rhandle ← ERROR then return ERROR
handle_to_rhandle_table[handle] ← rhandle
handle_to_host_table[handle] ← host
return handle

procedure FSD_READ (integer handle, string buffer, integer nbytes)
host ← handle_to_host_table[handle]
rhandle ← handle_to_rhandle_table[handle]
if host = "" then return READ (rhandle, buffer, nbytes)
// The following call sets "result" to the return value from
// the read(...) on the remote host, and copies data read into buffer:
result, buffer ← RPC (host, "READ", rhandle, nbytes)
return result

procedure FSD_CLOSE (integer handle)
host ← handle_to_host_table[handle]
rhandle ← handle_to_rhandle_table[handle]
handle_to_rhandle_table[handle] ← UNUSED

if host = "" then return CLOSE (rhandle)
else return RPC (host, "CLOSE", rhandle)

FIGURE PS.1

Pseudocode for FSD client library, Version 1.

Q 3.1 What does the above code indicate via an empty string ("") in an entry of handle
to host table?

A. An unused entry of the table.
B. An open file on the client host machine.
C. An end-of-file condition on an open file.
D. An error condition.

Mini Malcode, an intern assigned to Jill, proposes that the above code be simplified by
eliminating the handle_to_rhandle_table and simply returning the untranslated handles
returned by OPEN on the remote or local machines. Mini implements her simplified client

Saltzer & Kaashoek Ch. ps, p. 10 June 24, 2009 12:21 am

3 Jill’s File System for Dummies PS–11

library, making appropriate changes to each FSD call, and tries it on several test programs.

Q 3.2 Which of the following test programs will continue to work after Mini’s
simplification?

A.	 A program that reads a single, local file.
B.	 A program that reads a single remote file.
C.	 A program that reads and writes many local files.
D. A program that reads and writes several files from a single remote FSD server.
E.	 A program that reads many files from different remote FSD servers.
F.	 A program that reads several local files as well as several files from a single remote FSD

server.

Jill rejects Mini’s suggestions, insisting on the Version 1 code shown above. Marketing
asks her for a comparison between FSD and NFS (see Section 4.5).

Q 3.3 Complete the following table comparing NFS to FSD by circling yes or no
under each of NFS and FSD for each statement:

Statement NFS FSD

remote handles include inode numbers Yes/No Yes/No

read and write calls are idempotent Yes/No Yes/No

can continue reading an open file after deletion (e.g., by program on
remote host)

Yes/No Yes/No

requires mounting remote file systems prior to use Yes/No Yes/No

Convinced by Moon’s networking experts that a much simpler RPC package promising
at-least-once rather than exactly-once semantics will save money, Jill substitutes the simpler
RPC framework and tries it out. Although the new (Version 2) FSD works most of the
time, Jill finds that an FSD_READ sometimes returns the wrong data; she asks you to help.
You trace the problem to multiple executions of a single RPC request by the server and
are considering

• 	A response cache on the client, sufficient to detect identical requests and
returning a cached result for duplicates without resending the request to the
server.

• 	A response cache on the server, sufficient to detect identical requests and
returning a cached result for duplicates without re-executing them.

• 	 A monotonically increasing sequence number (nonce) added to each RPC request,
making otherwise identical requests distinct.

Saltzer & Kaashoek Ch. ps, p. 11	 June 24, 2009 12:21 am

PS–12 Problem Sets

Q 3.4 Which of the following changes would you suggest to address the problem
introduced by the at-least-once RPC semantics?

A. Response cache on each client.
B. Response cache on server.
C. Sequence numbers in RPC requests.
D. Response cache on client AND sequence numbers.
E. Response cache on server AND sequence numbers.
F. Response caches on both client and server.

2007–2–7…10

Saltzer & Kaashoek Ch. ps, p. 12 June 24, 2009 12:21 am

4 EZ-Park PS–13

4 EZ-Park*

(Chapter 5 in Chapter 4 setting)

Finding a parking spot at Pedantic University is as hard as it gets. Ben Bitdiddle, deciding
that a little technology can help, sets about to design the EZ-Park client/server system.
He gets a machine to run an EZ-Park server in his dorm room. He manages to convince
Pedantic University parking to equip each car with a tiny computer running EZ-Park
client software. EZ-Park clients communicate with the server using remote procedure
calls (RPCs). A client makes requests to Ben’s server both to find an available spot (when
the car’s driver is looking for one) and to relinquish a spot (when the car’s driver is leaving
a spot). A car driver uses a parking spot if, and only if, EZ-Park allocates it to him or her.

In Ben’s initial design, the server software runs in one address space and spawns a new
thread for each client request. The server has two procedures: FIND_SPOT () and
RELINQUISH_SPOT (). Each of these threads is spawned in response to the corresponding
RPC request sent by a client. The server threads use a shared array, available[], of size
NSPOTS (the total number of parking spots). available[j] is set to TRUE if spot j is free, and
FALSE otherwise; it is initialized to TRUE, and there are no cars parked to begin with. The
NSPOTS parking spots are numbered from 0 through NSPOTS - 1. numcars is a global vari
able that counts the total number of cars parked; it is initialized to 0.

Ben implements the following pseudocode to run on the server. Each FIND_SPOT()
thread enters a while loop that terminates only when the car is allocated a spot:

1 procedure FIND_SPOT () // Called when a client car arrives
2 while TRUE do
3 for i ← 0 to NSPOTS do
4 if available[i] = TRUE then
5 available[i] ← FALSE

6 numcars ← numcars + 1
7 return i // Client gets spot i

8 procedure RELINQUISH_SPOT (spot) // Called when a client car leaves
9 available[spot] ← TRUE

10 numcars ← numcars - 1

Ben’s intended correct behavior for his server (the “correctness specification”) is as
follows:

A.	 FIND_SPOT() allocates any given spot in [0, …, NSPOTS - 1] to at most one car at a time,
even when cars are concurrently sending requests to the server requesting spots.

B.	 numcars must correctly maintain the number of parked cars.
C.	 If at any time (1) spots are available and no parked car ever leaves in the future, (2) there

are no outstanding FIND_SPOT() requests, and (3) exactly one client makes a FIND_SPOT

request, then the client should get a spot.

* Credit for developing this problem set goes to Hari Balakrishnan.

Saltzer & Kaashoek Ch. ps, p. 13	 June 24, 2009 12:21 am

PS–14 Problem Sets

Ben runs the server and finds that when there are no concurrent requests, EZ-Park
works correctly. However, when he deploys the system, he finds that sometimes multiple
cars are assigned the same spot, leading to collisions! His system does not meet the cor
rectness specification when there are concurrent requests.

Make the following assumptions:

1. 	The statements to update numcars are not atomic; each involves multiple instructions.

2. 	The server runs on a single processor with a preemptive thread scheduler.

3. 	The network delivers RPC messages reliably, and there are no network, server, or client
failures.

4. 	Cars arrive and leave at random.

5. 	ACQUIRE and RELEASE are as defined in Chapter 5.

Q 4.1 Which of these statements is true about the problems with Ben’s design?

A.	 There is a race condition in accesses to available[], which may violate one of the
correctness specifications when two FIND_SPOT() threads run.

B.	 There is a race condition in accesses to available[], which may violate correctness
specification A when one FIND_SPOT() thread and one RELINQUISH_SPOT() thread runs.

C.	 There is a race condition in accesses to numcars, which may violate one of the
correctness specifications when more than one thread updates numcars.

D. There is no race condition as long as the average time between client requests to find a
spot is larger than the average processing delay for a request.

Ben enlists Alyssa’s help to fix the problem with his server, and she tells him that he
needs to set some locks. She suggests adding calls to ACQUIRE and RELEASE as follows:

1 procedure FIND_SPOT () // Called when a client car wants a spot
2 while TRUE do
!→ ACQUIRE (avail_lock)
3 for i ← 0 to NSPOTS do
4 if available[i] = TRUE then
5 available[i] ← FALSE

6 numcars ← numcars + 1
!→ RELEASE (avail_lock)
7 return i // Allocate spot i to this client
!→ RELEASE (avail_lock)

8 procedure RELINQUISH_SPOT (spot) // Called when a client car is leaving spot
!→ ACQUIRE (avail_lock)
9 available[spot] ← TRUE

10 numcars ← numcars - 1
!→ RELEASE (avail_lock)

Q 4.2 Does Alyssa’s code solve the problem? Why or why not?

Q 4.3 Ben can’t see any good reason for the RELEASE (avail_lock) that Alyssa placed after
line 7, so he removes it. Does the program still meet its specifications? Why or why not?

Saltzer & Kaashoek Ch. ps, p. 14	 June 24, 2009 12:21 am

4 EZ-Park PS–15

Hoping to reduce competition for avail_lock, Ben rewrites the program as follows:

1 procedure FIND_SPOT () // Called when a client car wants a spot
2 while TRUE do
3 for i ← 0 to NSPOTS do
!→ ACQUIRE (avail_lock)
4 if available[i] = TRUE then
5 available[i] ← FALSE

6 numcars ← numcars + 1
!→ RELEASE (avail_lock)
7 return i // Allocate spot i to this client
!→ else RELEASE (avail_lock)

8 procedure RELINQUISH_SPOT (spot) // Called when a client car is leaving spot
!→ ACQUIRE (avail_lock)
9 available[spot] ← TRUE

10 numcars ← numcars - 1
!→ RELEASE (avail_lock)

Q 4.4 Does that program meet the specifications?

Now that Ben feels he understands locks better, he tries one more time, hoping that
by shortening the code he can really speed things up:

1 procedure FIND_SPOT () // Called when a client car wants a spot
2 while TRUE do
!→ ACQUIRE (avail_lock)
3 for i ← 0 to NSPOTS do
4 if available[i] = TRUE then
5 available[i] ← FALSE

6 numcars ← numcars + 1
7 return i // Allocate spot i to this client

8 procedure RELINQUISH_SPOT (spot) // Called when a client car is leaving spot
9 available[spot] ← TRUE

10 numcars ← numcars - 1
!→ RELEASE (avail_lock)

Q 4.5 Does Ben’s slimmed-down program meet the specifications?

Ben now decides to combat parking at a truly crowded location: Pedantic’s stadium,
where there are always cars looking for spots! He updates NSPOTS and deploys the system
during the first home game of the football season. Many clients complain that his server
is slow or unresponsive.

Q 4.6 If a client invokes the FIND_SPOT() RPC when the parking lot is full, how quickly
will it get a response, assuming that multiple cars may be making requests?

A. The client will not get a response until at least one car relinquishes a spot.
B. The client may never get a response even when other cars relinquish their spots.

Saltzer & Kaashoek Ch. ps, p. 15 June 24, 2009 12:21 am

PS–16 Problem Sets

Alyssa tells Ben to add a client-side timer to his RPC system that expires if the server
does not respond within 4 seconds. Upon a timer expiration, the car’s driver may retry
the request, or instead choose to leave the stadium to watch the game on TV. Alyssa
warns Ben that this change may cause the system to violate the correctness specification.

Q 4.7 When Ben adds the timer to his client, he finds some surprises. Which of the
following statements is true of Ben’s implementation?

A.	 The server may be running multiple active threads on behalf of the same client car at
any given time.

B.	 The server may assign the same spot to two cars making requests.
C.	 numcars may be smaller than the actual number of cars parked in the parking lot.
D. numcars may be larger than the actual number of cars parked in the parking lot.

Q 4.8 Alyssa thinks that the operating system running Ben’s server may be spending a
fair amount of time switching between threads when many RPC requests are being
processed concurrently. Which of these statements about the work required to perform
the switch is correct? Notation: PC = program counter; SP = stack pointer; PMAR = page-
map address register. Assume that the operating system behaves according to the
description in Chapter 5.

A.	 On any thread switch, the operating system saves the values of the PMAR, PC, SP, and
several registers.

B.	 On any thread switch, the operating system saves the values of the PC, SP, and several
registers.

C.	 On any thread switch between two RELINQUISH_SPOT() threads, the operating system
saves only the value of the PC, since RELINQUISH_SPOT() has no return value.

D. The number of instructions required to switch from one thread to another is
proportional to the number of bytes currently on the thread’s stack.

Saltzer & Kaashoek Ch. ps, p. 16	 June 24, 2009 12:21 am

5 Goomble PS–17

5 Goomble*

(Chapter 5)

Observing that US legal restrictions have curtailed the booming on-line gambling
industry, a group of laid-off programmers has launched a new venture called Goomble.
Goomble’s Web server allows customers to establish an account, deposit funds using a
credit card, and then play the Goomble game by clicking a button labeled I FEEL
LUCKY. Every such button click debits their account by $1, until it reaches zero.

Goomble lawyers have successfully defended their game against legal challenges by
arguing that there’s no gambling involved: the Goomble “service’’ is entirely
deterministic.

The initial implementation of the Goomble server uses a single thread, which causes
all customer requests to be executed in some serial order. Each click on the I FEEL
LUCKY button results in a procedure call to LUCKY (account), where account refers to a
data structure representing the user’s Goomble account. Among other data, the account
structure includes an unsigned 32-bit integer balance, representing the customer’s cur
rent balance in dollars.

The LUCKY procedure is coded as follows:

1
2
3

procedure LUCKY (account)
if account.balance > 0 then

account.balance ← account.balance - 1

The Goomble software quality control expert, Nellie Nervous, inspects the single-
threaded Goomble server code to check for race conditions.

Q 5.1 Should Nellie find any potential race conditions? Why or why not?

2007-1-8

The success of the Goomble site quickly swamps their single-threaded server, limiting
Goomble’s profits. Goomble hires a server performance expert, Threads Galore, to
improve server throughput.

Threads modifies the server as follows: Each I FEEL LUCKY click request spawns a
new thread, which calls LUCKY (account) and then exits. All other requests (e.g., setting up
an account, depositing, etc.) are served by a single thread. Threads argues that the bulk
of the server traffic consists of player’s clicking I FEEL LUCKY, so that his solution
addresses the main performance problem.

Unfortunately, Nellie doesn’t have time to inspect the multithreaded version of the
server. She is busy with development of a follow-on product: the Goomba, which simul
taneously cleans out your bank account and washes your kitchen floor.

* Credit for developing this problem set goes to Stephen A. Ward.

Saltzer & Kaashoek Ch. ps, p. 17 June 24, 2009 12:21 am

PS–18 Problem Sets

Q 5.2 Suppose Nellie had inspected Goomble’s multithreaded server. Should she have
found any potential race conditions? Why or why not?

2007-1-9

Willie Windfall, a compulsive Goomble player, has two computers and plays Goom
ble simultaneously on both (using the same Goomble account). He has mortgaged his
house, depleted his retirement fund and the money saved for his kid’s education, and his
Goomble account is nearly at zero. One morning, clicking furiously on I FEEL LUCKY
buttons on both screens, he notices that his Goomble balance has jumped to something
over four billion dollars.

Q 5.3 Explain a possible source of Willie’s good fortune. Give a simple scenario
involving two threads, T1 and T2, with interleaved execution of lines 2 and 3 in calls to
LUCKY (account), detailing the timing that could result in a huge account.balance. The first
step of the scenario is already filled in; fill as many subsequent steps as needed.

1. T1 evaluates “if account.balance > 0”, finds statement is true

2.

3.

4.

2007-1-10

Word of Willie’s big win spreads rapidly, and Goomble billionaires proliferate. In a
state of panic, the Goomble board calls you in as a consultant to review three possible
fixes to the server code to prevent further “gifts” to Goomble customers. Each of the fol
lowing three proposals involves adding a lock (either global or specific to an account) to
rule out the unfortunate race:

Proposal 1

procedure LUCKY (account)

ACQUIRE (global_lock)

if account.balance > 0 then

account.balance ← account.balance - 1

RELEASE (global_lock)

Proposal 2

procedure LUCKY (account)

ACQUIRE (account.lock)

temp ← account.balance

RELEASE (account.lock)

if temp > 0 then

ACQUIRE (account.lock)
account.balance ← account.balance - 1
RELEASE (account.lock)

Saltzer & Kaashoek Ch. ps, p. 18 June 24, 2009 12:21 am

5 Goomble PS–19

Proposal 3

procedure LUCKY (account)

ACQUIRE (account.lock)

if account.balance > 0 then

account.balance ← account.balance - 1

RELEASE (account.lock)

Q 5.4 Which of the three proposals have race conditions?

2007-1-11

Q 5.5 Which proposal would you recommend deploying, considering both
correctness and performance goals?

2007-1-12

Saltzer & Kaashoek Ch. ps, p. 19 June 24, 2009 12:21 am

PS–20 Problem Sets

6 Course Swap*

(Chapter 5 in Chapter 4 setting)

The Subliminal Sciences Department, in order to reduce the department head’s
workload, has installed a Web server to help assign lecturers to classes for the Fall teaching
term. There happen to be exactly as many courses as lecturers, and department policy is
that every lecturer teach exactly one course and every course have exactly one lecturer.
For each lecturer in the department, the server stores the name of the course currently
assigned to that lecturer. The server’s Web interface supports one request: to swap the
courses assigned to a pair of lecturers.

Version One of the server’s code looks like this:

// CODE VERSION ONE

assignments[] // an associative array of course names indexed by lecturer

procedure SERVER ()

do forever

m ← wait for a request message
value ← m.FUNCTION (m.arguments, …) // execute function in request message
send value to m.sender

procedure EXCHANGE (lecturer1, lecturer2)

temp ← assignments[lecturer1]

assignments[lecturer1] ← assignments[lecturer2]

assignments[lecturer2] ← temp

return “OK”

Because there is only one application thread on the server, the server can handle only
one request at a time. Requests comprise a function and its arguments (in this case
EXCHANGE (lecturer1, lecturer2)), which is executed by the m.FUNCTION (m.arguments, …)
call in the SERVER () procedure.

For all following questions, assume that there are no lost messages and no crashes.
The operating system buffers incoming messages. When the server program asks for a
message of a particular type (e.g., a request), the operating system gives it the oldest buff
ered message of that type.

Assume that network transmission times never exceed a fraction of a second and that
computation also takes a fraction of a second. There are no concurrent operations other
than those explicitly mentioned or implied by the pseudocode, and no other activity on
the server computers.

* Credit for developing this problem set goes to Robert T. Morris.

Saltzer & Kaashoek Ch. ps, p. 20 June 24, 2009 12:21 am

6 Course Swap PS–21

Suppose the server starts out with the following assignments:

assignments[“Herodotus”] = “Steganography”

assignments[“Augustine”] = “Numerology”

Q 6.1 Lecturers Herodotus and Augustine decide they wish to swap lectures, so that
Herodotus teaches Numerology and Augustine teaches Steganography. They each send
an EXCHANGE (“Herodotus”, “Augustine”) request to the server at the same time. If you
look a moment later at the server, which, if any, of the following states are possible?

A.
assignments[“Herodotus”] = “Numerology”

assignments[“Augustine”] = “Steganography”

B.
assignments[“Herodotus”] = “Steganography”

assignments[“Augustine”] = “Numerology”

C.
assignments[“Herodotus”] = “Steganography”

assignments[“Augustine”] = “Steganography”

D.
assignments[“Herodotus”] = “Numerology”

assignments[“Augustine”] = “Numerology”

The Department of Dialectic decides it wants its own lecturer assignment server. Ini
tially, it installs a completely independent server from that of the Subliminal Sciences
Department, with the same rules (an equal number of lecturers and courses, with a one-
to-one matching). Later, the two departments decide that they wish to allow their lectur
ers to teach courses in either department, so they extend the server software in the
following way. Lecturers can send either server a CROSSEXCHANGE request, asking to swap
courses between a lecturer in that server’s department and a lecturer in the other server’s
department. In order to implement CROSSEXCHANGE, the servers can send each other SET

AND-GET requests, which set a lecturer’s course and return the lecturer’s previous course.
Here’s Version Two of the server code, for both departments:

Saltzer & Kaashoek Ch. ps, p. 21 June 24, 2009 12:21 am

PS–22 Problem Sets

// CODE VERSION TWO

procedure SERVER () // same as in Version One
procedure EXCHANGE () // same as in Version One

procedure CROSSEXCHANGE (local-lecturer, remote-lecturer)
temp1 ← assignments[local-lecturer]
send {SET-AND-GET, remote-lecturer, temp1} to the other server
temp2 ← wait for response to SET-AND-GET

assignments[local-lecturer] ← temp2
return “OK”

procedure SET-AND-GET (lecturer, course) {

old ← assignments[lecturer]

assignments[lecturer] ← course

return old

Suppose the starting state on the Subliminal Sciences server is:
assignments[“Herodotus”] = “Steganography”
assignments[“Augustine”] = “Numerology”

And on the Department of Dialectic server:
assignments[“Socrates”] = “Epistemology”
assignments[“Descartes”] = “Reductionism”

Q 6.2 At the same time, lecturer Herodotus sends a CROSSEXCHANGE (“Herodotus”,
“Socrates”) request to the Subliminal Sciences server, and lecturer Descartes sends a
CROSSEXCHANGE (“Descartes”, “Augustine”) request to the Department of Dialectic server.
If you look a minute later at the Subliminal Sciences server, which, if any, of the following
states are possible?

A.
assignments[“Herodotus”] = “Steganography”
assignments[“Augustine”] = “Numerology”

B.
assignments[“Herodotus”] = “Epistemology”
assignments[“Augustine”] = “Reductionism”

C.
assignments[“Herodotus”] = “Epistemology”
assignments[“Augustine”] = “Numerology”

In a quest to increase performance, the two departments make their servers multi-
threaded: each server serves each request in a separate thread. Thus, if multiple requests
arrive at roughly the same time, the server may process them in parallel. Each server has
multiple processors. Here’s the threaded server code, Version Three:

Saltzer & Kaashoek Ch. ps, p. 22 June 24, 2009 12:21 am

6 Course Swap PS–23

// CODE VERSION THREE

procedure EXCHANGE () // same as in Version Two
procedure CROSSEXCHANGE () // same as in Version Two
procedure SET-AND-GET () // same as in Version Two

procedure SERVER ()
do forever

m ← wait for a request message

ALLOCATE_THREAD (DOIT, m) // create a new thread that runs DOIT (m)

procedure DOIT (m)
value ← m.FUNCTION(m.arguments, …)
send value to m.sender
EXIT () // terminate this thread

Q 6.3 With the same starting state as the previous question, but with the new version
of the code, lecturer Herodotus sends a CROSSEXCHANGE (“Herodotus”, “Socrates”) request
to the Subliminal Sciences server, and lecturer Descartes sends a
CROSSEXCHANGE (“Descartes”, “Augustine”) request to the Department of Dialectic server,
at the same time. If you look a minute later at the Subliminal Sciences server, which, if
any, of the following states are possible?

A.
assignments[“Herodotus”] = “Steganography”
assignments[“Augustine”] = “Numerology”

B.
assignments[“Herodotus”] = “Epistemology”
assignments[“Augustine”] = “Reductionism”

C.
assignments[“Herodotus”] = “Epistemology”
assignments[“Augustine”] = “Numerology”

An alert student notes that Version Three may be subject to race conditions. He
changes the code to have one lock per lecturer, stored in an array called locks[]. He
changes EXCHANGE CROSSEXCHANGE, and SET-AND-GET to ACQUIRE locks on the lecturer(s) they
affect. Here is the result, Version Four:

Saltzer & Kaashoek Ch. ps, p. 23 June 24, 2009 12:21 am

PS–24 Problem Sets

// CODE VERSION FOUR

procedure SERVER () // same as in Version Three
procedure DOIT () // same as in Version Three

procedure EXCHANGE (lecturer1, lecturer2)

ACQUIRE (locks[lecturer1])

ACQUIRE (locks[lecturer2])

temp ← assignments[lecturer1]

assignments[lecturer1] ← assignments[lecturer2]

assignments[lecturer2] ← temp

RELEASE (locks[lecturer1])

RELEASE (locks[lecturer2])

return “OK”

procedure CROSSEXCHANGE (local-lecturer, remote-lecturer)

ACQUIRE (locks[local-lecturer])

temp1 ← assignments[local-lecturer]

send SET-AND-GET, remote-lecturer, temp1 to other server

temp2 ← wait for response to SET-AND-GET

assignments[local-lecturer] ← temp2

RELEASE (locks[local-lecturer])

return “OK”

procedure SET-AND-GET (lecturer, course)

ACQUIRE (locks[lecturer])

old ← assignments[lecturer]

assignments[lecturer] ← course

RELEASE (locks[lecturer])

return old

Q 6.4 This code is subject to deadlock. Why?

Q 6.5 For each of the following situations, indicate whether deadlock can occur. In
each situation, there is no activity other than that mentioned.

A.	 Client A sends EXCHANGE (“Herodotus”, “Augustine”) at the same time that client B
sends EXCHANGE (“Herodotus”, “Augustine”), both to the Subliminal Sciences server.

B.	 Client A sends EXCHANGE (“Herodotus”, “Augustine”) at the same time that client B
sends EXCHANGE (“Augustine”, “Herodotus”), both to the Subliminal Sciences server.

C.	 Client A sends CROSSEXCHANGE (“Augustine”, “Socrates”) to the Subliminal Sciences
server at the same time that client B sends CROSSEXCHANGE (“Descartes”, “Herodotus”)
to the Department of Dialectic server.

D. Client A sends CROSSEXCHANGE (“Augustine”, “Socrates”) to the Subliminal Sciences
server at the same time that client B sends CROSSEXCHANGE (“Socrates”, “Augustine”)
to the Department of Dialectic server.

E.	 Client A sends CROSSEXCHANGE (“Augustine”, “Socrates”) to the Subliminal Sciences
server at the same time that client B sends CROSSEXCHANGE (“Descartes”, “Augustine”)
to the Department of Dialectic server.

Saltzer & Kaashoek Ch. ps, p. 24	 June 24, 2009 12:21 am

7 Banking on Local Remote Procedure Call PS–25

7 	Banking on Local Remote Procedure Call
(Chapter 5)

The bank president has asked Ben Bitdiddle to add enforced modularity to a large
banking application. Ben splits the program into two pieces: a client and a service. He
wants to use remote procedure calls to communicate between the client and service,
which both run on the same physical machine with one processor. Ben explores an
implementation, which the literature calls lightweight remote procedure call (LRPC).
Ben’s version of LRPC uses user-level gates. User gates can be bootstrapped using two
kernel gates—one gate that registers the name of a user gate and a second gate that
performs the actual transfer:

• 	 REGISTER_GATE (stack, address). It registers address address as an entry point, to

be executed on the stack stack. The kernel stores these addresses in an internal

table.

• 	 TRANSFER_TO_GATE (address). It transfers control to address address. A client uses

this call to transfer control to a service. The kernel must first check if address is

an address that is registered as a gate. If so, the kernel transfers control; otherwise

it returns an error to the caller.

We assume that a client and service each run in their own virtual address space. On
initialization, the service registers an entry point with REGISTER_GATE and allocates a block,
at address transfer. Both the client and service map the transfer block in each address
space with READ and WRITE permissions. The client and service use this shared transfer
page to communicate the arguments to and results of a remote procedure call. The client
and server each start with one thread. There are no user programs other than the client
and server running on the machine.

The following pseudocode summarizes the initialization:

Service	 Client

procedure INIT_SERVICE () procedure INIT_CLIENT ()
REGISTER_GATE (STACK, receive) MAP (my_id, transfer, shared_client)
ALLOCATE_BLOCK (transfer)
MAP (my_id, transfer, shared_server)
while TRUE do YIELD ()

When a client performs an LRPC, the client copies the arguments of the LRPC into
the transfer page. Then, it calls TRANSFER_TO_GATE to transfer control to the service address
space at the registered address receive. The client thread, which is now in the service’s
address space, performs the requested operation (the code for the procedure at the
address receive is not shown because it is not important for the questions). On returning
from the requested operation, the procedure at the address receive writes the result
parameters in the transfer block and transfers control back to the client’s address space
to the procedure RETURN_LRPC. Once back in the client address space in RETURN_LRPC, the

Saltzer & Kaashoek Ch. ps, p. 25	 June 24, 2009 12:21 am

PS–26 Problem Sets

client copies the results back to the caller. The following pseudocode summarizes the
implementation of LRPC:

1 procedure LRPC (id, request)

2 COPY (request, shared_client)

3 TRANSFER_TO_GATE (receive)

4 return

5

6 procedure RETURN_LRPC()

7 COPY (shared_client, reply)

8 return (reply)

Now that we know how to use the procedures REGISTER_GATE and TRANSFER_TO_GATE,
let’s turn our attention to the implementation of TRANSFER_TO_GATE (entrypoint is the
internal kernel table recording gate information):

1 procedure TRANSFER_TO_GATE (address)

2 if id exists such that entrypoint[id].entry = address then

3 R1 ← USER_TO_KERNEL (entrypoint[id].stack)

4 R2 ← address
5 STORE R2, R1 // put address on service’s stack
6 SP ← entrypoint[id].stack // set SP to service stack
7 SUB 4, SP // adjust stack
8 PMAR ← entrypoint[id].pmar // set page map address
9 USER ← ON // switch to user mode
10 return // returns to address
11 else
12 return (ERROR)

The procedure checks whether or not the service has registered address as an entry
point (line 2). Lines 4–7 push the entry address on the service’s stack and set the register
SP to point to the service’s stack. To be able to do so, the kernel must translate the address
for the stack in the service address space into an address in the kernel address space so
that the kernel can write the stack (line 3). Finally, the procedure stores the page-map
address register for the service into PMAR (line 8), sets the user-mode bit to ON (line 9),

and invokes the gate’s procedure by returning from TRANSFER_TO_GATE (line 10), which
loads address from the service’s stack into PC.

The implementation of this procedure is tricky because its switches address spaces,
and thus the implementation must be careful to ensure that it is referring to the appro
priate variable in the appropriate address space. For example, after line 8
TRANSFER_TO_GATE runs the next instruction (line 9) in the service’s address space. This
works only if the kernel is mapped in both the client and service’s address space at the
same address.

Q 7.1 The procedure INIT_SERVICE calls YIELD. In which address space or address spaces
is the code that implements the supervisor call YIELD located?

Saltzer & Kaashoek Ch. ps, p. 26 June 24, 2009 12:21 am

7 Banking on Local Remote Procedure Call PS–27

Q 7.2 For LRPC to work correctly, must the two virtual addresses transfer have the
same value in the client and service address space?

Q 7.3 During the execution of the procedure located at address receive how many
threads are running or are in a call to YIELD in the service address space?

Q 7.4 How many supervisor calls could the client perform in the procedure LRPC?

Q 7.5 Ben’s goal is to enforce modularity. Which of the following statements are true
statements about Ben’s LRPC implementation?

A.	 The client thread cannot transfer control to any address in the server address space.
B.	 The client thread cannot overwrite any physical memory that is mapped in the server’s

address space.
C.	 After the client has invoked TRANSFER_TO_GATE in LRPC, the server is guaranteed to

invoke RETURN_LRPC.
D. The procedure LRPC ought to be modified to check the response message and process

only valid responses.

Q 7.6 Assume that REGISTER_GATE and TRANSFER_TO_GATE are also used by other
programs. Which of the following statements is true about the implementations of
REGISTER_GATE and TRANSFER_TO_GATE?

A.	 The kernel might use an invalid address when writing the value address on the stack
passed in by a user program.

B.	 A user program might use an invalid address when entering the service address space.
C.	 The kernel transfers control to the server address space with the user-mode bit switched

OFF.
D. The kernel enters the server address space only at the registered address entry address.

Ben modifies the client to have multiple threads of execution. If one client thread calls
the server and the procedure at address receive calls YIELD, another client thread can run
on the processor.

Q 7.7 Which of the following statements is true about the implementation of LRPC

with multiple threads?

A.	 On a single-processor machine, there can be race conditions when multiple client
threads call LRPC, even if the kernel schedules the threads non-preemptively.

B.	 On a single-processor machine, there can be race conditions when multiple clients
threads call LRPC and the kernel schedules the threads preemptively.

C.	 On multiprocessor computer, there can be race conditions when multiple client threads
call LRPC.

D. It is impossible to have multiple threads if the computer doesn’t have multiple physical
processors.

2004–1–4…10

Saltzer & Kaashoek Ch. ps, p. 27	 June 24, 2009 12:21 am

PS–28 Problem Sets

8 The Bitdiddler*

(Chapter 5)

Ben Bitdiddle is designing a file system for a new handheld computer, the Bitdiddler,
which is designed to be especially simple for, as he likes to say, “people who are just
average, like me.”

In keeping with his theme of simplicity and ease of use for average people, Ben
decides to design a file system without directories. The disk is physically partitioned into
three regions: an inode list, a free list, and a collection of 4K data blocks, much like the
UNIX file system. Unlike in the UNIX file system, each inode contains the name of the file
it corresponds to, as well as a bit indicating whether or not the inode is in use. Like the
UNIX file system, the inode also contains a list of blocks that compose the file, as well as
metadata about the file, including permission bits, its length in bytes, and modification
and creation timestamps. The free list is a bitmap, with one bit per data block indicating
whether that block is free or in use. There are no indirect blocks in Ben’s file system. The
following figure illustrates the basic layout of the Bitdiddler file system:

Inodes Free list Data blocks

The file system provides six primary calls: CREATE, OPEN, READ, WRITE, CLOSE, and UNLINK.
Ben implements all six correctly and in a straightforward way, as shown in Figure PS.2.
All updates to the disk are synchronous; that is, when a call to write a block of data to
the disk returns, that block is definitely installed on the disk. Individual block writes are
atomic.

Q 8.1 Ben notices that if he pulls the batteries out of the Bitdiddler while running his
application and then replaces the batteries and reboots the machine, the file his
application created exists but contains unexpected data that he didn’t write into the file.

* Credit for developing this problem set goes to Samuel R. Madden.

Saltzer & Kaashoek Ch. ps, p. 28 June 24, 2009 12:21 am

8 The Bitdiddler PS–29

procedure CREATE (filename)
scan all non-free inodes to avoid duplicate filenames (return error if duplicate)
find a free inode in the inode list
update the inode with 0 data blocks, mark it as in use, write it to disk
update the free list to indicate the inode is in use, write free list to disk

procedure OPEN (filename) // returns a file handle
scan non-free inodes looking for filename
if found, allocate and return a file handle fh that refers to that inode

procedure WRITE (fh, buf, len)
look in file handle fh to determine inode of the file, read inode from disk
if there is free space in last block of file, write to it
determine number of new blocks needed, n
for i ← 1 to n

use free list to find a free block b
update free list to show b is in use, write free list to disk
add b to inode, write inode to disk
write appropriate data for block b to disk

procedure READ (fh, buf, len)
look in file handle fh to determine inode of the file, read inode from disk
read len bytes of data from the current location in file into buf

procedure CLOSE (fh)
remove fh from the file handle table

procedure UNLINK (filename)
scan non-free inodes looking for filename, mark that inode as free
write inode to disk
mark data blocks used by file as free in free list
write modified free list blocks to disk
Ben writes the following simple application for the Bitdiddler:
CREATE (filename)
fh ← OPEN (filename)
WRITE (fh, app_data, LENGTH (app_data)) // app_data is some data to be written
CLOSE (fh)

FIGURE PS.2

The Bitdidder file system.

Saltzer & Kaashoek Ch. ps, p. 29 June 24, 2009 12:21 am

PS–30 Problem Sets

Which of the following are possible explanations for this behavior? (Assume that the disk
controller never writes partial blocks.)

A.	 The free list entry for a data page allocated by the call to WRITE was written to disk, but
neither the inode nor the data page itself was written.

B.	 The inode allocated to Ben’s application previously contained a (since deleted) file with
the same name. If the system crashed during the call to CREATE, it may cause the old file
to reappear with its previous contents.

C.	 The free list entry for a data page allocated by the call to WRITE as well as a new copy of
the inode were written to disk, but the data page itself was not.

D. The free list entry for a data page allocated by the call to WRITE as well as the data page
itself were written to disk, but the new inode was not.

Q 8.2 Ben decides to fix inconsistencies in the Bitdiddler’s file system by scanning its
data structures on disk every time the Bitdiddler starts up. Which of the following
inconsistencies can be identified using this approach (without modifying the Bitdiddler
implementation)?

A.	 In-use blocks that are also on the free list.
B.	 Unused blocks that are not on the free list.
C.	 In-use blocks that contain data from previously unlinked files.
D. Blocks used in multiple files.

2007-3-6&7

Saltzer & Kaashoek Ch. ps, p. 30	 June 24, 2009 12:21 am

9 Ben’s Kernel PS–31

9 Ben’s Kernel

(Chapter 5)

Ben develops an operating system for a simple computer. The operating system has a
kernel that provides virtual address spaces, threads, and output to a console.

Each application has its own user-level address space and uses one thread. The kernel
program runs in the kernel address space but doesn’t have its own thread. (The kernel
program is described in more detail below.)

The computer has one processor, a memory, a timer chip (which will be introduced
later), a console device, and a bus connecting the devices. The processor has a user-mode
bit and is a multiple register set design, which means that it has two sets of program
counter (PC), stack pointer (SP), and page-map address registers (PMAR). One set is for user
space (the user-mode bit is set to ON): upc, usp, and upmar. The other set is for kernel
space (the user-mode bit is set to OFF): kpc, ksp, and kpmar. Only programs in kernel
mode are allowed to store to upmar, kpc, ksp, and kpmar—storing a value in these regis
ters is an illegal instruction in user mode.

The processor switches from user to kernel mode when one of three events occurs: an
application issues an illegal instruction, an application issues a supervisor call instruction
(with the SVC instruction), or the processor receives an interrupt in user mode. The pro
cessor switches from user to kernel mode by setting the user-mode bit OFF. When that
happens, the processor continues operation but using the current values in the kpc, ksp,
and kpmar. The user program counter, stack pointer, and page-map address values
remain in upc, usp, and upmar, respectively.

To return from kernel to user space, a kernel program executes the RTI instruction,
which sets the user-mode bit to ON, causing the processor to use upc, usp, and upmar. The
kpc, ksp, and kpmar values remain unchanged, awaiting the next SVC. In addition to these
registers, the processor has four general-purpose registers: ur0, ur1, kr0, and kr1. The ur0

and ur1 pair are active in user mode. The kr0 and kr1 pair are active in kernel mode.
Ben runs two user applications. Each executes the following set of programs:

integer t initially 1 // initial value for shared variable t

procedure MAIN ()

do forever
t ← t + t

PRINT (t)

YIELD ()

procedure YIELD

SVC 0

PRINT prints the value of t on the output console. The output console is an output-
only device and generates no interrupts.

Saltzer & Kaashoek Ch. ps, p. 31 June 24, 2009 12:21 am

PS–32 Problem Sets

The kernel runs each program in its own user-level address space. Each user address
space has one thread (with its own stack), which is managed by the kernel:

integer currentthread // index for the current user thread

structure thread[2] // Storage place for thread state when not running
integer sp // user stack pointer
integer pc // user program counter
integer pmar // user page-map address register
integer r0 // user register 0
integer r1 // user register 1

procedure DOYIELD ()
thread[currentthread].sp ← usp // save registers
thread[currentthread].pc ← upc
thread[currentthread].pmar ← upmar
thread[currentthread].r0 ← ur0
thread[currentthread].r1 ← ur1
currentthread ← (currentthread + 1) modulo 2 // select new thread
usp ← thread[currentthread].sp // restore registers
upc ← thread[currentthread].pc
upmar ← thread[currentthread].pmar
ur0 ← thread[currentthread].r0
ur1 ← thread[currentthread].r1

For simplicity, this non-preemptive thread manager is tailored for just the two user
threads that are running on Ben’s kernel. The system starts by executing the procedure
KERNEL. Here is its code:

procedure KERNEL ()
CREATE_THREAD (MAIN) // Set up Ben’s two threads
CREATE_THREAD (MAIN) //
usp ← thread[1].sp // initialize user registers for thread 1
upc ← thread[1].pc
upmar ← thread[1].pmar
ur0 ← thread[1].r0
ur1 ← thread[1].r1
do forever

RTI // Run a user thread until it issues an SVC
n ← ??? // See question Q 9.1
if n = 0 then DOYIELD()

Since the kernel passes control to the user with the RTI instruction, when the user exe
cutes an SVC, the processor continues execution in the kernel at the instruction following
the RTI.

Ben’s operating system sets up three page maps, one for each user program, and one
for the kernel program. Ben has carefully set up the page maps so that the three address
spaces don’t share any physical memory.

Q 9.1 Describe how the supervisor obtains the value of n, which is the identifier for
the SVC that the calling program has invoked.

Saltzer & Kaashoek Ch. ps, p. 32 June 24, 2009 12:21 am

9 Ben’s Kernel PS–33

Q 9.2 How can the current address space be switched?

A.	 By the kernel writing the kpmar register.
B.	 By the kernel writing the upmar register.
C.	 By the processor changing the user-mode bit.
D. By the application writing the kpmar or upmar registers.
E.	 By DOYIELD saving and restoring upmar.

Q 9.3 Ben runs the system for a while, watching it print several results, and then halts
the processor to examine its state. He finds that it is in the kernel, where it is just about
to execute the RTI instruction. In which procedure(s) could the user-level thread resume
when the kernel executes that RTI instruction?

A.	 in the procedure KERNEL.
B.	 in the procedure MAIN.
C.	 in the procedure YIELD.
D. in the procedure DOYIELD.

Q 9.4 In Ben’s design, what mechanisms play a role in enforcing modularity?

A.	 Separate address spaces because wild writes from one application cannot modify the
data of the other application.

B.	 User-mode bit because it disallows user programs to write to upmar and kpmar.
C.	 The kernel because it forces threads to give up the processor.
D. The application because it has few lines of code.

Ben reads about the timer chip in his hardware manual and decides to modify the ker
nel to take advantage of it. At initialization time, the kernel starts the timer chip, which
will generate an interrupt every 100 milliseconds. (Ben’s computer has no other sources
of interrupts.) Note that the interrupt-enable bit is OFF when executing in the kernel
address space; the processor checks for interrupts only before executing a user-mode
instruction. Thus, whenever the timer chip generates an interrupt while the processor is
in kernel mode, the interrupt will be delayed until the processor returns to user mode.
An interrupt in user mode causes an SVC -1 instruction to be inserted in the instruction
stream. Finally, Ben modifies the kernel by replacing the do forever loop and adding an
interrupt handler, as follows:

do forever
RTI // Run a user thread until it issues an SVC
n ← ??? // Assume answer to question Q 9.1
if n = 1 then DOINTERRUPT ()
if n = 0 then DOYIELD ()

procedure DOINTERRUPT ()
DOYIELD ()

Do not make any assumption about the speed of the processor.

Q 9.5 Ben again runs the system for a while, watching it print several results, and then
he halts the processor to examine its state. Once again, he finds that it is in the kernel,

Saltzer & Kaashoek Ch. ps, p. 33	 June 24, 2009 12:21 am

PS–34 Problem Sets

where it is just about to execute the RTI instruction. In which procedure(s) could the user-
level thread resume after the kernel executes the RTI instruction?

A.	 in the procedure DOINTERRUPT.
B.	 in the procedure KERNEL.
C.	 in the procedure MAIN.
D. in the procedure YIELD.
E.	 in the procedure DOYIELD.

Q 9.6 In Ben’s second design, what mechanisms play a role in enforcing modularity?

A.	 Separate address spaces because wild writes from one application cannot modify the
data of the other application.

B.	 User-mode bit because it disallows user programs to write to UPMAR and KPMAR.
C.	 The timer chip because it, in conjunction with the kernel, forces threads to give up the

processor.
D. The application because it has few lines of code.
Ben modifies the two user programs to share the variable t, by mapping t in the virtual

address space of both user programs at the same place in physical memory. Now both
threads read and write the same t.

Note that registers are not shared between threads: the scheduler saves and restores
the registers on a thread switch. Ben’s simple compiler translates the critical region of
code:

t ← t + t
into the processor instructions:

100 LOAD t, r0 // read t into register 0
104 LOAD t, r1 // read t into register 1
108 ADD r1, r0 // add registers 0 and 1, leave result in register 0
112 STORE r0, t // store register 0 into t

The numbers in the leftmost column in this code are the virtual addresses where the
instructions are stored in both virtual address spaces. Ben’s processor executes the
individual instructions atomically.

Q 9.7 What values can the applications print (don’t worry about overflows)?

A.	 Some odd number.
B.	 Some even number other than a power of two.
C.	 Some power of two.
D. 1
In a conference proceedings, Ben reads about an idea called restartable atomic

regions* and implements them. If a thread is interrupted in a critical region, the thread

* Brian N. Bershad, David D. Redell, and John R. Ellis. Fast mutual exclusion for uniprocessors. Fifth Inter
national Conference on Architectural Support for Programming Languages and Operating Systems (October 1992),
pages 223–233.

Saltzer & Kaashoek Ch. ps, p. 34	 June 24, 2009 12:21 am

9 Ben’s Kernel PS–35

manager restarts the thread at the beginning of the critical region when it resumes the
thread. Ben recodes the interrupt handler as follows:

procedure DOINTERRUPT ()
if upc ≥ 100 and upc ≤ 112 then// Were we in the critical region?

upc ← 100 // yes, restart critical region when resumed!
DOYIELD ()

The processor increments the program counter after interpreting an instruction and
before processing interrupts.

Q 9.8 Now, what values can the applications print (don’t worry about overflows)?

A.	 Some odd number.
B.	 Some even number other than a power of two.
C.	 Some power of two.
D. 1

Q 9.9 Can a second thread enter the region from virtual addresses 100 through 112
while the first thread is in it (i.e., the first thread’s upc contains a value in the range 100
through 112)?

A.	 Yes, because while the first thread is in the region, an interrupt may cause the processor
to switch to the second thread and the second thread might enter the region.

B.	 Yes, because the processor doesn’t execute the first three lines of code in DOINTERRUPT

atomically.
C.	 Yes, because the processor doesn’t execute DOYIELD atomically.
D. Yes, because MAIN calls YIELD.

Ben is exploring if he can put just any code in a restartable atomic region. He creates
a restartable atomic region that contains three instructions, which swap the content of
two variables a and b using a temporary x:

100 x ← a

104 a ← b

108 b ← x

Ben also modifies DOINTERRUPT, replacing 112 with 108:

procedure DOINTERRUPT ()

if upc ≥ 100 and upc ≤ 108 then// Were we in the critical region?

upc ← 100; // yes, restart critical region when resumed!

DOYIELD ()

Variables a and b start out with the values a = 1 and b = 2, and the timer chip is running.

Saltzer & Kaashoek Ch. ps, p. 35	 June 24, 2009 12:21 am

PS–36 Problem Sets

Q 9.10 What are some possible outcomes if a thread executes this restartable atomic
region and variables a, b, and x are not shared?

A. a = 2 and b = 1

B. a = 1 and b = 2

C. a = 2 and b = 2

D. a = 1 and b = 1

2003–1–5…13

Saltzer & Kaashoek Ch. ps, p. 36 June 24, 2009 12:21 am

10 	A Picokernel-Based Stock Ticker System PS–37

10 A Picokernel-Based Stock Ticker System
(Chapter 5)

Ben Bitdiddle decides to design a computer system based on a new kernel architecture
he calls picokernels and on a new hardware platform called simplePC. Ben has paid
attention to Section 1.1 and is going for extreme simplicity. The simplePC platform
contains one simple processor, a page-based virtual memory manager (which translates
the virtual addresses issued by the processor), a memory module, and an input and
output device. The processor has two special registers, a program counter (PC) and a stack
pointer (SP). The SP points to the value on the top of the stack.

The calling convention for the simplePC processor uses a simple stack model:

• 	 A call to a procedure pushes the address of the instruction after the call onto the

stack and then jumps to the procedure.

• 	 Return from a procedure pops the address from the top of the stack and jumps.

Programs on the simplePC don't use local variables. Arguments to procedures are
passed in registers, which are not saved and restored automatically. Therefore, the only
values on the stack are return addresses.

Ben develops a simple stock ticker system to track the stocks of the start-up he joined.
The program reads a message containing a single integer from the input device and prints
it on the output device:

101. boolean input_available

1. 	procedure READ_INPUT ()
2. do forever
3. while input_available = FALSE do nothing // idle loop
4. PRINT_MSG(quote)
5. input_available ← FALSE

200. boolean output_done
201. structure output_buffer at 71fff2hex // hardware address of output buffer
202. integer quote

12. procedure PRINT_MSG (m)
13. output_buffer.quote ← m
14. while output_done = FALSE do nothing // idle loop
15. output_done ← FALSE

17. procedure MAIN ()
18. READ_INPUT ()
19. halt	 // shutdown computer

In addition to the MAIN program, the program contains two procedures: READ_INPUT

and PRINT_MSG. The procedure READ_INPUT spin-waits until input_available is set to TRUE by
the input device (the stock reader). When the input device receives a stock quote, it
places the quote value into msg and sets input_available to TRUE.

Saltzer & Kaashoek Ch. ps, p. 37	 June 24, 2009 12:21 am

PS–38 Problem Sets

The procedure PRINT_MSG prints the message on an output device (a terminal in this
case); it writes the value stored in the message to the device and waits until it is printed;
the output device sets output_done to TRUE when it finishes printing.

The numbers on each line correspond to addresses as issued by the processor to read
and write instructions and data. Assume that each line of pseudocode compiles into one
machine instruction and that there is an implicit return at the end of each procedure.

Q 10.1 What do these numbers mentioned on each line of the program represent?

A. Virtual addresses.
B. Physical addresses.
C. Page numbers.
D. Offsets in a virtual page.

Ben runs the program directly on simplePC, starting in MAIN, and at some point he
observes the following values on the stack (remember, only the stock ticker program is
running):

 stack

19

5 ← stack pointer

Q 10.2 What is the meaning of the value 5 on the stack?

A. The return address for the next return instruction.
B. The return address for the previous return instruction.
C. The current value of PC.
D. The current value of SP.

Q 10.3 Which procedure is being executed by the processor?

A. READ_INPUT

B. PRINT_MSG

C. MAIN

Q 10.4 PRINT_MSG writes a value to quote, which is stored at the address 71ff2hex, with
the expectation that the value will end up on the terminal. What technique is used to
make this work?

A. Memory-mapped I/O.
B. Sequential I/O.
C. Streams.
D. Remote procedure call.

Ben wants to run multiple instances of his stock ticker program on the simplePC plat
form so that he can obtain more frequent updates to track more accurately his current

Saltzer & Kaashoek Ch. ps, p. 38 June 24, 2009 12:21 am

10 A Picokernel-Based Stock Ticker System PS–39

net worth. Ben buys another input and output device for the system, hooks them up, and
he implements a trivial thread manager:

300. integer threadtable[2]; // stores stack pointers of threads.
// first slot is threadtable[0]

302. integer current_thread initially 0;

21. procedure YIELD ()
22. threadtable[current_thread] ← SP // move value of SP into table
23. current_thread ← (current_thread + 1) modulo 2
24. SP ← threadtable[current_thread] // load value from table into SP

25. return

Each thread reads from and writes to its own device and has its own stack. Ben also
modifies READ_INPUT from page ps–37:

100. integer msg[2] // CHANGED to use array
102. boolean input_available[2] // CHANGED to use array

30. procedure READ_INPUT ()
31. do forever
32. while input_available[current_thread] = FALSE do // CHANGED
33. YIELD () // CHANGED
34. continue // CHANGED
35. PRINT_MSG (msg[current_thread]) // CHANGED to use array
36. input_available[current_thread] ← FALSE // CHANGED to use array

Ben powers up the simplePC platform and starts each thread running in MAIN. The
two threads switch back and forth correctly. Ben stops the program temporarily and
observes the following stacks:

stack of thread 0 stack of thread 1
19 19
36 ← stack pointer 34 ← stack pointer

Q 10.5 Thread 0 was running (i.e., current_thread = 0). Which instruction will the
processor be running after thread 0 executes the return instruction in YIELD the next time?

A. 34. continue
B. 19. halt
C. 35. PRINT_MSG (msg[current_thread]);
D. 36. input_available[current_thread] ← FALSE;

and which thread will be running?

Q 10.6 What address values can be on the stack of each thread?

A. Addresses of any instruction.
B. Addresses to which called procedures return.
C. Addresses of any data location.
D. Addresses of instructions and data locations.

Saltzer & Kaashoek Ch. ps, p. 39 June 24, 2009 12:21 am

PS–40 Problem Sets

Ben observes that each thread in the stock ticker program spends most of its time poll
ing its input variable. He introduces an explicit procedure that the devices can use to
notify the threads. He also rearranges the code for modularity:

400.integer state[2];

40. procedure SCHEDULE_AND_DISPATCH ()
41. threadtable[current_thread] ← SP

42. while (what should go here?) do // See question Q 10.7.
43. current_thread ← (current_thread + 1) modulo 2
45. SP ← threadtable[current_thread];
46. return

50. procedure YIELD()
51. state[current_thread] ← WAITING

52. SCHEDULE_AND_DISPATCH ()
53. return

60. procedure NOTIFY (n)
61. state[n] ← RUNNABLE

62. return

When the input device receives a new stock quote, the device interrupts the processor
and saves the PC of the currently running thread on the currently running thread's stack.
Then the processor runs the interrupt procedure. When the interrupt handler returns, it
pops the return address from the current stack, returning control to a thread. The
pseudocode for the interrupt handler is:

procedure DEVICE (n) // interrupt for input device n
push current thread's PC on stack pointed to by SP

while input_available[n] = TRUE do nothing; // wait until read_input is done
// with the last input

msg[n] ← stock quote
input_available[n] ← TRUE

NOTIFY (n) // notify thread n
return // i.e., pop PC

During the execution of the interrupt handler, interrupts are disabled. Thus, an interrupt
handler and the procedures that it calls (e.g., NOTIFY) cannot be interrupted. Interrupts
are reenabled when DEVICE returns.

Using the new thread manager, answer the following questions:

Q 10.7 What expression should be evaluated in the while at address 42 to ensure
correct operation of the thread package?

A. state[current_thread] = WAITING

B. state[current_thread] = RUNNABLE

C. threadtable[current_thread] = SP

D. FALSE

Saltzer & Kaashoek Ch. ps, p. 40 June 24, 2009 12:21 am

10 A Picokernel-Based Stock Ticker System PS–41

Q 10.8 Assume thread 0 is running and thread 1 is not running (i.e., it has called YIELD).
What event or events need to happen before thread 1 will run?

A.	 Thread 0 calls YIELD.
B.	 The interrupt procedure for input device 1 calls NOTIFY.
C.	 The interrupt procedure for input device 0 calls NOTIFY.
D. No events are necessary.

Q 10.9 What values can be on the stack of each thread?

A.	 Addresses of any instruction except those in the device driver interrupt procedure.
B.	 Addresses of all instructions, including those in the device driver interrupt procedure.
C.	 Addresses to which procedures return.
D. Addresses of instructions and data locations.

Q 10.10Under which scenario can thread 0 deadlock?

A.	 When device 0 interrupts thread 0 just before the first instruction of YIELD.
B.	 When device 0 interrupts just after thread 0 completed the first instruction of YIELD.
C.	 When device 0 interrupts thread 0 between instructions 35 and 36 in the READ_INPUT

procedure on page ps–37.
D. When device 0 interrupts when the processor is executing SCHEDULE_AND_DISPATCH and

thread 0 is in the WAITING state.
2000–1–7…16

Saltzer & Kaashoek Ch. ps, p. 41	 June 24, 2009 12:21 am

PS–42 Problem Sets

11 Ben’s Web Service
(Chapter 5)

Ben Bitdiddle is so excited about Amazing Computer Company's plans for a new
segment-based computer architecture that he takes the job the company offered him.

Amazing Computer Company has observed that using one address space per program
puts the text, data, stack, and system libraries in the same address space. For example, a
Web server has the program text (i.e., the binary instructions) for the Web server, its
internal data structures such as its cache of recently-accessed Web pages, the stack, and
a system library for sending and receiving messages all in a single address space. Amazing
Computer Company wants to explore how to enforce modularity even further by sepa
rating the text, data, stack, and system library using a new memory system.

The Amazing Computer Company has asked every designer in the company to come
up with a design to enforce modularity further. In a dusty book about the PDP 11/70,
Ben finds a description of a hardware gadget that sits between the processor and the phys
ical memory, translating virtual addresses to physical addresses. The PDP 11/70 used
that gadget to allow each program to have its own address space, starting at address 0.

The PDP 11/70 did this through having one segment per program. Conceptually,
each segment is a variable-sized, linear array of bytes starting at virtual address 0. Ben
bases his memory system on the PDP 11/70's scheme with the intention of implement
ing hard modularity. Ben defines a segment through a segment descriptor:

structure segmentDescriptor

physicalAddress physAddr

integer length

The physAddr field records the address in physical memory where the segment is located.
The length field records the length of the segment in bytes.

Ben's processor has addresses consisting of 34 bits: 18 bits to identify a segment and
16 bits to identify the byte within the segment:

segment_id index

18 bits 16 bits

A virtual address that addresses a byte outside a segment (i.e., an index greater than
the length of the segment) is illegal.

Ben's memory system stores the segment descriptors in a table, segmentTable, which
has one entry for each segment:

structure segmentDescriptor

segmentTable[NSEGMENT]

The segment table is indexed by segment_id. It is shared among all programs and stored
at physical address 0.

The processor used by Ben's computer is a simple RISC processor, which reads and
writes memory using LOAD and STORE instructions. The LOAD and STORE instructions take

Saltzer & Kaashoek Ch. ps, p. 42 June 24, 2009 12:21 am

11 Ben’s Web Service PS–43

a virtual address as their argument. Ben's computer has enough memory that all pro
grams fit in physical memory.

Ben ports a compiler that translates a source program to generate machine instruc
tions for his processor. The compiler translates into a position-independent machine
code: JUMP instructions specify an offset relative to the current value of the program
counter. To make a call into another segment, it supports the LONGJUMP instruction,
which takes a virtual address and jumps to it.

Ben's memory system translates a virtual address to a physical address with TRANSLATE:

1 procedure TRANSLATE (addr)
2 segment_id ← addr[0:17]
3 segment ← segmentTable[segment_id]
4 index ← addr[18:33]
5 if index < segment.length then return segment.physAddr + index
6 … // What should the program do here? (see question Q 11.4, below)

After successfully computing the physical address, Ben's memory management unit
retrieves the addressed data from physical memory and delivers it to the processor (on a
LOAD instruction) or stores the data in physical memory (on a STORE instruction).

Q 11.1 What is the maximum sensible value of NSEGMENT?

Q 11.2 Given the structure of a virtual address, what is the maximum size of a segment
in bytes?

Q 11.3 How many bits wide must a physical address be?

Q 11.4 The missing code on line 6 should

A.	 signal the processor that the instruction that issued the memory reference has caused an
illegal address fault

B.	 signal the processor that it should change to user mode
C.	 return index
D. signal the processor that the instruction that issues the memory reference is an interrupt

handler

Ben modifies his Web server to enforce modularity between the different parts of the
server. He allocates the text of the program in segment 1, a cache for recently used Web
pages in segment 2, the stack in segment 3, and the system library in segment 4. Segment
4 contains the text of the library program but no variables (i.e., the library program
doesn't store variables in its own segment).

Q 11.5 To translate the Web server the compiler has to do which of the following?

A.	 Compute the physical address for each virtual address.
B.	 Include the appropriate segment ID in the virtual address used by a LOAD instruction.
C.	 Generate LONGJUMP instructions for calls to procedures located in different segments.
D. Include the appropriate segment ID in the virtual address used by a STORE instruction.

Saltzer & Kaashoek Ch. ps, p. 43	 June 24, 2009 12:21 am

PS–44 Problem Sets

Ben runs the segment-based implementation of his Web server and to his surprise
observes that errors in the Web server program can cause the text of the system library to
be overwritten. He studies his design and realizes that the design is bad.

Q 11.6 What aspect of Ben's design is bad and can cause the observed behavior?

A.	 A STORE instruction can overwrite the segment ID of an address.
B.	 A LONGJMP instruction in the Web server program may jump to an address in the library

segment that is not the start of a procedure.
C.	 It doesn't allow for paging of infrequently used memory to a secondary storage device.
D. The Web server program may get into an endless loop.

Q 11.7 Which of the following extensions of Ben's design would address each of the
preceding problems?

A.	 The processor should have a protected user-mode bit, and there should be a separate
segment table for kernel and user programs

B.	 Each segment descriptor should have a protection bit, which specifies whether the
processor can write or only read from this segment

C.	 The LONGJMP instruction should be changed so that it can transfer control only to
designated entry points of a segment

D. Segments should all be the same size, just like pages in page-based virtual memory
systems

E.	 Change the operating system to use a preemptive scheduler

The system library for Ben's Web server contains code to send and receive messages. A
separate program, the network manager, manages the network card that sends and
receives messages. The Web server and the network manager each have one thread of
execution. Ben wants to understand why he needs eventcounts for sequence coordination
of the network manager and the Web server, so he decides to implement the coordination
twice, once using eventcounts and the second time using event variables.

Here are Ben’s two versions of the Web server:

Web server using eventcounts Web server using events

eventcount inCnt	 event input
integer doneCnt	 integer inCnt

integer doneCnt

procedure SERVE ()	 procedure SERVE ()
do forever do forever

AWAIT (inCnt, doneCnt); while inCnt ≤ doneCnt do // A
DO_REQUEST (); WAITEVENT (input); // B
doneCnt ← doneCnt + 1; DO_REQUEST (); // C

doneCnt ← doneCnt + 1; // D

Both versions use a thread manager as described in Chapter 5, except for the changes
to support eventcounts or events. The eventcount version is exactly the one described in

Saltzer & Kaashoek Ch. ps, p. 44	 June 24, 2009 12:21 am

11 Ben’s Web Service PS–45

Chapter 5. The AWAIT procedure has semantics for eventcounts: when the Web server
thread calls AWAIT, the thread manager puts the calling thread into the WAITING state unless
inCnt exceeds doneCnt.

The event-based version is almost identical to the eventcount one but has a few
changes. An event variable is a list of threads waiting for the event. The procedure WAIT

EVENT puts the current executing thread on the list for the event, records that the current
thread is in the WAITING state, and releases the processor by calling YIELD.

In both versions, when the Web server has completed processing a packet, it increases
doneCnt.

The two corresponding versions of the code for handling each packet arrival in the
network manager are:

Network manager using eventcounts Network manager using events

ADVANCE (inCnt) inCnt ← inCnt + 1 // E
NOTIFYEVENT (input) // F

The ADVANCE procedure wakes up the Web server thread if it is already asleep. The
NOTIFYEVENT procedure removes all threads from the list of the event and puts them into
the READY state. The shared variables are stored in a segment shared between the network
manager and the Web server.

Ben is a bit worried about writing code that involves coordinating multiple activities,
so he decides to test the code carefully. He buys a computer with one processor to run
both the Web server and the network manager using a preemptive thread scheduler. Ben
ensures that the two threads (the Web server and the network manager) never run inside
the thread manager at the same time by turning off interrupts when the processor is run
ning the thread manager's code (which includes ADVANCE, AWAIT, NOTIFYEVENT, and
WAITEVENT).

To test the code, Ben changes the thread manager to preempt threads frequently (i.e.,
each thread runs with a short time slice). Ben runs the old code with eventcounts and the
program behaves as expected, but the new code using events has the problem that the
Web server sometimes delays processing a packet until the next packet arrives.

Q 11.8 The program steps that might be causing the problem are marked with letters
in the code of the event-based solution above. Using those letters, give a sequence of steps
that creates the problem. (Some steps might have to appear more than once, and some
might not be necessary to create the problem.)

2002–1–4…11

Saltzer & Kaashoek Ch. ps, p. 45 June 24, 2009 12:21 am

PS–46 Problem Sets

12 A Bounded Buffer with Semaphores
(Chapter 5)

Using semaphores, DOWN and UP (see Sidebar 5.7), Ben implements an in-kernel
bounded buffer as shown in the pseudocode below. The kernel maintains an array of
port_infos. Each port_info contains a bounded buffer. The content of the message
structure is not important for this problem, other than that it has a field dest_port, which
specifies the destination port. When a message arrives from the network, it generates an
interrupt, and the network interrupt handler (INTERRUPT) puts the message in the
bounded buffer of the port specified in the message. If there is no space in that bounded
buffer, the interrupt handler throws the message away. A thread consumes a message by
calling RECEIVE_MESSAGE, which removes a message from the bounded buffer of the port it
is receiving from.

To coordinate the interrupt handler and a thread calling RECEIVE_MESSAGE, the imple
mentation uses a semaphore. For each port, the kernel keeps a semaphore n that counts
the number of messages in the port’s bounded buffer. If n reaches 0, the thread calling
DOWN in RECEIVE_MESSAGE will enter the WAITING state. When INTERRUPT adds a message to
the buffer, it calls UP on n, which will wake up the thread (i.e., set the thread’s state to
RUNNABLE).

The kernel schedules threads preemptively.

structure port_info
semaphore instance count initially 0
message instance buffer[NMSG] // an array of NMSG messages
long integer in initially 0
long integer out initially 0

procedure INTERRUPT (message instance m, port_info reference port)
// an interrupt announcing the arrival of message m
if port.in − port.out ≥ NMSG then // is there space?

return // No, ignore message

port.buffer[port.in modulo NMSG] ← m

port.in ← port.in + 1

UP(port.count)

procedure RECEIVE_MESSAGE (dest_port, port_info reference port)
1 ...

DOWN(port.count)
m ← port.buffer[port.out modulo NMSG]
port.out ← port.out + 1
return m

Saltzer & Kaashoek Ch. ps, p. 46 June 24, 2009 12:21 am

12 A Bounded Buffer with Semaphores PS–47

Q 12.1 Assume that there are no concurrent invocations of INTERRUPT and that there are
no concurrent invocations of RECEIVE_MESSAGE on the same port. Which of the following
statements is true about the implementation of INTERRUPT and RECEIVE_MESSAGE?

A.	 There are no race conditions between two threads that invoke RECEIVE_MESSAGE

concurrently on different ports.
B.	 The complete execution of UP in INTERRUPT will not be interleaved between the

statements labeled 15 and 16 in DOWN in Sidebar 5.7.
C.	 Because DOWN and UP are atomic, the processor instructions necessary for the

subtracting of sem in DOWN and adding to sem in UP will not be interleaved incorrectly.
D. Because in and out may be shared between the interrupt handler running INTERRUPT and

a thread calling RECEIVE_MESSAGE on the same port, it is possible for INTERRUPT to throw
away a message, even though there is space in the bounded buffer.

Alyssa claims that semaphores can also be used to make operations atomic. She proposes
the following addition to a port_info structure:

semaphore instance mutex initially ???? // see question below

and adds the following line to RECEIVE_MESSAGE on line 1 in the pseudocode above:

DOWN(port.mutex) // enter atomic section

Alyssa argues that these changes allow threads to concurrently invoke RECEIVE_MESSAGE on
the same port without race conditions, even if the kernel schedules threads preemptively.

Q 12.2 To what value can mutex be initialized (by replacing ???? with a number in the
semaphore declaration) to avoid race conditions and deadlocks when multiple threads
call RECEIVE_MESSAGE on the same port?

A.	 0
B.	 1
C.	 2
D. -1

2006–1–11&12

Saltzer & Kaashoek Ch. ps, p. 47	 June 24, 2009 12:21 am

PS–48 Problem Sets

13 The Single-Chip NC*

(Chapter 5)

Ben Bitdiddle plans to create a revolution in computing with his just-developed $15
single chip Network Computer, NC. In the NC network system the network interface
thread calls the procedure MESSAGE_ARRIVED when a message arrives. The procedure
WAIT_FOR_MESSAGE can be called by a thread to wait for a message. To coordinate the
sequences in which threads execute, Ben deploys another commonly used coordination
primitive: condition variables.

Part of the code in the NC is as follows:

1 lock instance m
2 boolean message_here
3 condition instance message_present
4
5 procedure MESSAGE_ARRIVED ()
6 message_here ← TRUE

7 NOTIFY_CONDITION (message_present) // notify threads waiting on this condition
8
9 procedure WAIT_FOR_MESSAGE ()
10 ACQUIRE (m)

11 while not message_here do

12 WAIT_CONDITION (message_present, m);// release m and wait

13 RELEASE (m)

The procedures ACQUIRE and RELEASE are the ones described in Chapter 5.
NOTIFY_CONDITION (condition) atomically wakes up all threads waiting for condition to
become TRUE. WAIT_CONDITION (condition, lock) does several things atomically: it tests con

dition; if TRUE it returns; otherwise it puts the calling thread on the waiting queue for
condition and releases lock. When NOTIFY_CONDITION wakens a thread, that thread becomes
runnable, and when the scheduler runs that thread, WAIT_CONDITION reacquires lock (wait
ing, if necessary, until it is available) before returning to its caller.

Assume there are no errors in the implementation of condition variables.

Q 13.1 It is possible that WAIT_FOR_MESSAGE will wait forever even if a message arrives
while it is spinning in the while loop. Give an execution ordering of the above statements
that would cause this problem. Your answer should be a simple list such as 1, 2, 3, 4.

Q 13.2 Write new version(s) of MESSAGE_ARRIVED and/or WAIT_FOR_MESSAGE to fix this
problem.

1998–1–3a/b

* Credit for developing this problem set goes to David K. Gifford.

Saltzer & Kaashoek Ch. ps, p. 48 June 24, 2009 12:21 am

14 Toastac-25 PS–49

14 Toastac-25*

(Chapters 5 and 7[on-line])

Louis P. Hacker bought a used Therac-25 (the medical irradation machine that was
involved in several accidents [Suggestions for Further Reading 1.9.5]) for $14.99 at a yard sale.
After some slight modifications, he has hooked it up to his home network as a computer-
controllable turbo-toaster, which can toast one slice in under 2 milliseconds. He decides
to use RPC to control the Toastac-25. Each toasting request starts a new thread on the
server, which cooks the toast, returns an acknowledgment (or perhaps a helpful error
code, such as “Malfunction 54”), and exits. Each server thread runs the following
procedure:

procedure SERVER ()

ACQUIRE (message_buffer_lock)

DECODE (message)

ACQUIRE (accelerator_buffer_lock)

RELEASE (message_buffer_lock)

COOK_TOAST ()

ACQUIRE (message_buffer_lock)

message ← "ack"

SEND (message)

RELEASE (accelerator_buffer_lock)

RELEASE (message_buffer_lock)

Q 14.1 To his surprise, the toaster stops cooking toast the first time it is heavily used!
What has gone wrong?

A.	 Two server threads might deadlock because one has message_buffer_lock and wants
accelerator_buffer_lock, while the other has accelerator_buffer_lock and wants
message_buffer_lock.

B.	 Two server threads might deadlock because one has accelerator_buffer_lock and
message_buffer_lock.

C.	 Toastac-25 deadlocks because COOK_TOAST is not an atomic operation.
D. Insufficient locking allows inappropriate interleaving of server threads.

Once Louis fixes the multithreaded server, the Toastac gets more use than ever. However,
when the Toastac has many simultaneous requests (i.e., there are many threads), he
notices that the system performance degrades badly—much more than he expected.
Performance analysis shows that competition for locks is not the problem.

Q 14.2 What is probably going wrong?

A.	 The Toastac system spends all its time context switching between threads.
B.	 The Toastac system spends all its time waiting for requests to arrive.
C.	 The Toastac gets hot, and therefore cooking toast takes longer.
D. The Toastac system spends all its time releasing locks.

* Credit for developing this problem set goes to Eddie Kohler.

Saltzer & Kaashoek Ch. ps, p. 49	 June 24, 2009 12:21 am

PS–50 Problem Sets

Q 14.3 An upgrade to a supercomputer fixes that problem, but it’s too late—Louis is
obsessed with performance. He switches from RPC to an asynchronous protocol, which
groups several requests into a single message if they are made within 2 milliseconds of
one another. On his network, which has a very high transit time, he notices that this
speeds up some workloads far more than others. Describe a workload that is sped up and
a workload that is not sped up. (An example of a possible workload would be one request
every 10 milliseconds.)

Q 14.4 As a design engineering consultant, you are called in to critique Louis’s decision
to move from RPC to asynchronous client/service. How do you feel about his decision?
Remember that the Toastac software sometimes fails with a “Malfunction 54” instead of
toasting properly.

1996–1–5c/d & 1999–1–12/13

Saltzer & Kaashoek Ch. ps, p. 50 June 24, 2009 12:21 am

15 BOOZE: Ben’s Object-Oriented Zoned Environment PS–51

15 BOOZE: Ben’s Object-Oriented Zoned Environment
(Chapters 5 and 6)

Ben Bitdiddle writes a large number of object-oriented programs. Objects come in
different sizes, but pages come in a fixed size. Ben is inspired to redesign his page-based
virtual memory system (PAGE) into an object memory system. PAGE is a page-based
virtual memory system like the one described in Chapter 5 with the extensions for
multilevel memory systems from Chapter 6. BOOZE is Ben’s object-based virtual
memory system.* Of course, he can run his programs on either system.

Each BOOZE object has a unique ID called a UID. A UID has three fields: a disk
address for the disk block that contains the object; an offset within that disk block where
the object starts; and the size of the object.

structure uid
integer blocknr // disk address for disk block
integer offset // offset within block blocknr
integer size // size of object

Applications running on BOOZE and PAGE have similar structure. The only difference
is that on PAGE, program refer to objects by their virtual address, while on BOOZE
programs refer to objects by UIDs.

The two levels of memory in BOOZE and PAGE are main memory and disk. The
disk is a linear array of fixed-size blocks of 4 kilobytes. A disk block is addressed by its
block number. In both systems, the transfer unit between the disk and main memory is
a 4-kilobyte block. Objects don’t cross disk block boundaries, are smaller than 4 kilo
bytes, and cannot change size. The page size in PAGE is equal to the disk block size;
therefore, when an application refers to an object, PAGE will bring in all objects on the
same page.

BOOZE keeps an object map in main memory. The object map contains entries that
map a UID to the memory address of the corresponding object.

structure mapentry
uid instance UID
integer addr

On all references to an object, BOOZE translates a UID to an address in main memory.
BOOZE uses the following procedure (implemented partially in hardware and partially

* Ben chose this name after reading a paper by Ted Kaehler, “Virtual memory for an object-oriented language”
[Suggestions for Further Reading 6.1.4]. In that paper, Kaehler describes a memory management system called
the Object-Oriented Zoned Environment, with the acronym OOZE.

Saltzer & Kaashoek Ch. ps, p. 51 June 24, 2009 12:21 am

PS–52 Problem Sets

in software) for translation:

procedure OBJECTTOADDRESS(UID) returns address
addr ← ISPRESENT(UID) // is UID present in object map?
if addr ≥ 0 then return addr // UID is present, return addr
addr ← FINDFREESPACE(UID.size) // allocate space to hold object
READOBJECT(addr, UID) // read object from disk & store at addr
ENTERINTOMAP(UID, addr) // enter UID in object map
return addr // return memory address of object

ISPRESENT looks up UID in the object map; if present, it returns the address of the
corresponding object; otherwise, it returns 1. FINDFREESPACE allocates free space for the
object; it might evict another object to make space available for this one. READOBJECT reads
the page that contains the object, and then copies the object to the allocated address.

Q 15.1 What does addr in the mapentry data structure denote?

A.	 The memory address at which the object map is located.
B.	 The disk address at which to find a given object.
C.	 The memory address at which to find a given object that is currently resident in

memory.
D. The memory address at which a given non-resident object would have to be loaded,

when an access is made to it.

Q 15.2 In what way is BOOZE better than PAGE?

A.	 Applications running on BOOZE generally use less main memory because BOOZE
stores only objects that are in use.

B.	 Applications running on BOOZE generally run faster because UIDs are smaller than
virtual addresses.

C.	 Applications running on BOOZE generally run faster because BOOZE transfers
objects from disk to main memory instead of complete pages.

D. Applications running on BOOZE generally run faster because typical applications will
exhibit better locality of reference.

When FINDFREESPACE cannot find enough space to hold the object, it needs to write
one or more objects back to the disk to create free space. FINDFREESPACE uses WRITEOBJECT

to write an object to the disk.
Ben is figuring out how to implement WRITEOBJECT. He is considering the following

options:

1.	 procedure WRITEOBJECT (addr, UID)

WRITE(addr, UID.blocknr, 4096)

2. 	procedure WRITEOBJECT(addr, UID)

READ(buffer, UID.blocknr, 4096)

COPY(addr, buffer + UID.offset, UID.size)

WRITE(buffer, UID.blocknr, 4096)

READ (mem_addr, disk_addr, 4096) and WRITE (mem_addr, disk_addr, 4096) read and write
a 4-kilobyte page from/to the disk. COPY (source, destination, size) copies size bytes from
a source address to a destination address in main memory.

Saltzer & Kaashoek Ch. ps, p. 52	 June 24, 2009 12:21 am

15 BOOZE: Ben’s Object-Oriented Zoned Environment PS–53

Q 15.3 Which implementation should Ben use?

A.	 Implementation 2, since implementation 1 is incorrect.
B.	 Implementation 1, since it is more efficient than implementation 2.
C.	 Implementation 1, since it is easier to understand.
D. Implementation 2, since it will result in better locality of reference.

Ben now turns his attention to optimizing the performance of BOOZE. In particular,
he wants to reduce the number of writes to the disk.

Q 15.4 Which of the following techniques will reduce the number of writes without
losing correctness?

A.	 Prefetching objects on a read.
B.	 Delaying writes to disk until the application finishes its computation.
C.	 Writing to disk only objects that have been modified.
D. Delaying a write of an object to disk until it is accessed again.

Ben decides that he wants even better performance, so he decides to modify
FINDFREESPACE. When FINDFREESPACE has to evict an object, it now tries not to write an
object modified in the last 30 seconds (in the belief that it may be used again soon). Ben
does this by setting the dirty flag when the object is modified. Every 30 seconds, BOOZE
calls a procedure WRITE_BEHIND that walks through the object map and writes out all
objects that are dirty. After an object has been written, WRITE_BEHIND clears its dirty flag.
When FINDFREESPACE needs to evict an object to make space for another, clean objects are
the only candidates for replacement.

When running his applications on the latest version of BOOZE, Ben observes once
in a while that BOOZE runs out of physical memory when calling OBJECTTOADDRESS for
a new object.

Q 15.5 Which of these strategies avoids the above problem?

A.	 When FINDFREESPACE cannot find any clean objects, it calls WRITE_BEHIND and then tries
to find clean objects again.

B.	 BOOZE could call WRITE_BEHIND every 1 second instead of every 30 seconds.
C.	 When FINDFREESPACE cannot find any clean objects, it picks one dirty object, writes the

block containing the object to the disk, clears the dirty flag, and then uses that address
for the new object.

D. All of the above strategies.
1999–1–7…11

Saltzer & Kaashoek Ch. ps, p. 53	 June 24, 2009 12:21 am

PS–54 Problem Sets

16 OutOfMoney.com
(Chapter 6, with a bit of Chapter 4)

OutOfMoney.com has decided it needs a real product, so it is laying off most of its
Marketing Department. To replace the marketing folks, and on the advice of a senior
computer expert, OutOfMoney.com hires a crew of 16-year-olds. The 16-year-olds get
together and decide to design and implement a video service that serves MPEG-1 video,
so that they can watch Britney Spears on their computers in living color.

Since time to market is crucial. Mark Bitdiddle—Ben’s 16-year-old kid brother, who
is working for OutOfMoney—surfs the Web to find some code from which they can
start. Mark finds some code that looks relevant, and he modifies it for OutOfMoney’s
video service:

procedure SERVICE ()

do forever

request ← RECEIVE_MESSAGE ()
file ← GET_FILE_FROM_DISK (request)
REPLY (file)

The SERVICE procedure waits for a message from a client to arrive on the network. The
message contains a request for a particular file. The procedure GET_FILE_FROM_DISK reads
the file from disk into the memory location file. The procedure REPLY sends the file from
memory in a message back to the client.

(In the pseudocode, undeclared variables are local variables of the procedure in which
they are used, and the variables are thus stored on the stack or in registers.)

Mark and his 16-year-old buddies also write code for a network driver to SEND and
RECEIVE network packets, a simple file system to PUT and GET files on a disk, and a loader
for booting a machine. They run their code on the bare hardware of an off-the-shelf per
sonal computer with one disk, one processor (a Pentium III), and one network interface
card (1 gigabit per second Ethernet). After the machine has booted, it starts one thread
running SERVICE.

The disk has an average seek time of 5 milliseconds, a complete rotation takes 6 mil
liseconds, and its throughput is 10 megabytes per second when no seeks are required.

All files are 1 gigabyte (roughly a half hour of MPEG-1 video). The file system in
which the files are stored has no cache, and it allocates data for a file in 8-kilobyte chunks.
It pays no attention to file layout when allocating a chunk; as a result, disk blocks of the
same file can be all over the disk. A 1-gigabyte file contains 131,072 8-kilobyte blocks.

Q 16.1 Assuming that the disk is the main bottleneck, how long does the service take
to serve a file?

Mark is shocked about the performance. Ben suggests that they should add a cache.
Mark, impressed by Ben’s knowledge, follows his advice and adds a 1-gigabyte cache,
which can hold one file completely:

Saltzer & Kaashoek Ch. ps, p. 54 June 24, 2009 12:21 am

16 OutOfMoney.com PS–55

cache [1073741824] // 1-gigabyte cache

procedure SERVICE ()

do forever

request ← RECEIVE_MESSAGE ()
file ← LOOK_IN_CACHE (request)
if file = NULL then

file ← GET_FILE_FROM_DISK (request)
ADD_TO_CACHE (request, file)

REPLY (file)

The procedure LOOK_IN_CACHE checks whether the file specified in the request is present
in the cache and returns it if present. The procedure ADD_TO_CACHE copies a file to the
cache.

Q 16.2 Mark tests the code by asking once for every video stored. Assuming that the
disk is the main bottleneck (serving a file from the cache takes 0 milliseconds), what is
now the average time for the service to serve a file?

Mark is happy that the test actually returns every video. He reports back to the only
person left in the Marketing Department that the prototype is ready to be evaluated. To
keep the investors happy, the marketing person decides to use the prototype to run Out-
OfMoney’s Web site. The one-person Marketing Department loads the machine up
with videos and launches the new Web site with a big PR campaign, blowing their
remaining funding.

Seconds after they launch the Web site, OutOfMoney’s support organization (also
staffed by 16-year-olds) receives e-mail from unhappy users saying that the service is not
responding to their requests. The support department measures the load on the service
CPU and also the service disk. They observe that the CPU load is low and the disk load
is high.

Q 16.3 What is the most likely reason for this observation?

A. The cache is too large.
B. The hit ratio for the cache is low.
C. The hit ratio for the cache is high.
D. The CPU is not fast enough.

The support department beeps Mark, who runs to his brother Ben for help. Ben sug
gests using the example thread package of Chapter 5. Mark augments the code to use the
thread package and after the system boots, it starts 100 threads, each running SERVICE:

for i from 1 to 100 do CREATE_THREAD (SERVICE)

In addition, Mark modifies RECEIVE_MESSAGE and GET_FILE_FROM_DISK to release the
processor by calling YIELD when waiting for a new message to arrive or waiting for the disk
to complete a disk read. In no other place does his code release the processor. The imple
mentation of the thread package is non-preemptive.

Saltzer & Kaashoek Ch. ps, p. 55 June 24, 2009 12:21 am

PS–56 Problem Sets

To take advantage of the threaded implementation, Mark modifies the code to read
blocks of a file instead of complete files. He also runs to the store and buys some more
memory so he can increase the cache size to 4 gigabytes. Here is his latest effort:

cache [4 x 1073741824] // The 4-gigabyte cache, shared by all threads.

procedure SERVICE ()

do forever

request ← RECEIVE_MESSAGE ()

file ← NULL

for k from 1 to 131072 do

block ← LOOK_IN_CACHE (request, k)
if block = NULL then

block ← GET_BLOCK_FROM_DISK (request, k)
ADD_TO_CACHE (request, block, k)

file ← file + block // + concatenates strings
REPLY (file)

The procedure LOOK_IN_CACHE (request, k) checks whether block k of the file specified in
request is present; if the block is present, it returns it. The procedure
GET_BLOCK_FROM_DISK reads block k of the file specified in request from the disk into
memory. The procedure ADD_TO_CACHE adds block k from the file specified in request to
the cache.

Mark loads up the service with one video. He retrieves the video successfully. Happy
with this result, Mark sends many requests for the single video in parallel to the service.
He observes no disk activity.

Q 16.4 Based on the information so far, what is the most likely explanation why Mark
observes no disk activity?

Happy with the progress, Mark makes the service ready for running in production
mode. He is worried that he may have to modify the code to deal with concurrency—

Saltzer & Kaashoek Ch. ps, p. 56 June 24, 2009 12:21 am

16 OutOfMoney.com PS–57

his past experience has suggested to him that he needs an education, so he is reading
Chapter 5. He considers protecting ADD_TO_CACHE with a lock:

lock instance cachelock// A lock for the cache

procedure SERVICE ()

do forever

request ← RECEIVE_MESSAGE ()

file ← NULL

for k from 1 to 131072 do

block ← LOOK_IN_CACHE (request, k)
if block = NULL then

block ← GET_BLOCK_FROM_DISK (request, k)

ACQUIRE (cachelock) // use the lock

ADD_TO_CACHE (request, block, k)

RELEASE (cachelock) // here, too

file ← file + block

REPLY (file)

Q 16.5 Ben argues that these modifications are not useful. Is Ben right?

Mark doesn’t like thinking, so he upgrades OutOfMoney’s Web site to use the mul
tithreaded code with locks. When the upgraded Web site goes live, Mark observes that
most users watch the same three videos, while a few are watching other videos.

Q 16.6 Mark observes a hit-ratio of 90% for blocks in the cache. Assuming that the disk
is the main bottleneck (serving blocks from the cache takes 0 milliseconds), what is the
average time for SERVICE to serve a single movie?

Q 16.7 Mark loads a new Britney Spears video onto the service and observes operation
as the first users start to view it. It is so popular that no users are viewing any other video.
Mark sees that the first batch of viewers all start watching the video at about the same
time. He observes that the service threads all read block 0 at about the same time, then
all read block 1 at about the same time, and so on. For this workload what is a good cache
replacement policy?

A. Least-recently used.
B. Most-recently used.
C. First-in, first-out.
D. Last-in, first-out.
E. The replacement policy doesn’t matter for this workload.

The Marketing Department is extremely happy with the progress. Ben raises another
round of money by selling his BMW and launches another PR campaign. The number
of users dramatically increases. Unfortunately, under high load the machine stops serving
requests and has to be restarted. As a result, some users have to restart their videos from
the beginning, and they call up the support department to complain. The problem
appears to be some interaction between the network driver and the service threads. The
driver and service threads share a fixed-sized input buffer that can hold 1,000 request

Saltzer & Kaashoek Ch. ps, p. 57 June 24, 2009 12:21 am

PS–58 Problem Sets

messages. If the buffer is full and a message arrives, the driver drops the message. When
the card receives data from the network, it issues an interrupt to the processor. This
interrupt causes the network driver to run immediately on the stack of the currently
running thread. The code for the driver and RECEIVE_MESSAGE is as follows:

buffer[1000]

lock instance bufferlock

procedure DRIVER ()
message ← READ_FROM_INTERFACE ()
ACQUIRE (bufferlock)
if SPACE_IN_BUFFER () then ADD_TO_BUFFER (message)
else DISCARD_MESSAGE (message)
RELEASE (bufferlock)

procedure RECEIVE_MESSAGE ()

while BUFFER_IS_EMPTY () do YIELD ()

ACQUIRE (bufferlock)

message ← REMOVE_FROM_BUFFER ()

RELEASE (bufferlock)

return message

procedure INTERRUPT ()

DRIVER ()

Q 16.8 Which of the following could happen under high load?

A. Deadlock when an arriving message interrupts DRIVER.
B. Deadlock when an arriving message interrupts a thread that is in RECEIVE_MESSAGE.
C. Deadlock when an arriving message interrupts a thread that is in REMOVE_FROM_BUFFER.
D. RECEIVE_MESSAGE misses a call to YIELD when the buffer is not empty because it can be

interrupted between the BUFFER_IS_EMPTY test and the call to YIELD.

Q 16.9 What fixes should Mark implement?

A. Delete all the code dealing with locks.
B. DRIVER should run as a separate thread, to be awakened by the interrupt.
C. INTERRUPT and DRIVER should use an eventcount for sequence coordination.
D. DRIVER shouldn’t drop packets when the buffer is full.

Saltzer & Kaashoek Ch. ps, p. 58 June 24, 2009 12:21 am

16 OutOfMoney.com PS–59

Mark eliminates the deadlock problems
and, to attract more users, announces the
availability of a new Britney Spears video.
The news spreads rapidly and an enormous
number of requests for this one video start
hitting the service. Mark measures the
throughput of the service as more and more
clients ask for the video. The resulting graph
is plotted at the right. The throughput first
increases while the number of clients

T
ot

al
 s

er
ve

r
th

ro
ug

hp
ut

0 5 10 15 20 25 30

increases, then reaches a maximum value, Number of clients
and finally drops off. (in thousands)

Q 16.10 Why does the throughput decrease with a large number of clients?

A. The processor spends most of its time taking interrupts.
B. The processor spends most of its time updating the cache.
C. The processor spends most of its time waiting for the disk accesses to complete.
D. The processor spends most of its time removing messages from the buffer.

2001–1–6…15

Saltzer & Kaashoek Ch. ps, p. 59 June 24, 2009 12:21 am

PS–60 Problem Sets

Saltzer & Kaashoek Ch. ps, p. 60 June 24, 2009 12:21 am

17 Quarria PS–61

17 Quarria*

(Chapters 4, 6, and 7[on-line])

Quarria is a new country formed on a 1 kilometer rock island in the middle of the Pacific
Ocean. The founders have organized the Quarria Stock Market in order to get the
economy rolling. The stock market is very simple, since there is only one stock to trade
(that of the Quarria Rock Company). Moreover, due to local religious convictions, the
price of the stock is always precisely the wind velocity at the highest point on the island.
Rocky, Quarria’s president, proposes that the stock market be entirely network based. He
suggests running the stock market from a server machine, and requiring each investor to
have a separate client machine which makes occasional requests to the server using a
simple RPC protocol. The two remote procedures Rocky proposes supporting are

• 	 BALANCE(): requests that the server return the cash balance of a client’s account.
This service is very fast, requiring a simple read of a memory location.

• 	 TRADE(nshares): requests that nshares be bought (assuming nshares is positive) or
nshares be sold (if nshares is negative) at the current market price. This service is
potentially slow, since it potentially involves network traffic in order to locate a
willing trade partner.

Quarria implements a simple RPC protocol in which a client sends the server a
request message with the following format:

structure Request
integer Client // Unique code for the client
integer Opcode // Code for operation requested
integer Argument // integer argument, if any
integer Result // integer return value, if any

The server replies by sending back the same message, with the Result field changed. We
assume that all messages fit in one packet, that link- and network-layer error checking
detect and discard garbled packets, and that Quarria investors are scrupulously honest;
thus any received message was actually sent by some client (although sent messages might
get lost).

Q 17.1 Is this RPC design appropriate for a connectionless network model, or is a
connection-based model assumed?

The client RPC stub blocks the client thread until a reply is received, but includes a
timer expiration allowing any client RPC operation to return with the error code
TIME_EXPIRED if no response is heard from the server after Q seconds.

Q 17.2 Give a reason for preferring returning a TIME_EXPIRED error code over simply
having the RPC operation block forever.

* Credit for developing this problem set goes to Stephen A. Ward.

Saltzer & Kaashoek Ch. ps, p. 61	 June 24, 2009 12:21 am

PS–62 Problem Sets

Q 17.3 Give a reason for preferring returning a TIME_EXPIRED error code over having the
RPC stub transparently retransmit the message.

Q 17.4 Suppose you can bound the time taken for a request, including network and
server time, at 3 seconds. What advantage is there to setting the expiration time, Q, to 4
seconds instead of 2 seconds?

Unfortunately, no such bound exists for Quarria’s network.

Q 17.5 What complication does client message retransmission introduce into the RPC
semantics, in the absence of a time bound?

Rocky’s initial implementation of the server is as follows:

integer Cash[1000] // Cash balance of each client
integer Shares[1000] // Stock owned by each client

procedure SERVER ()
Request instance req, rep // Pointer to request message
do forever // loop forever...

req ← GETNEXTREQUEST () // take next incoming request,
if req.Opcode = 1 then // …and dispatch on opcode.

rep ← BALANCE (req) // Request 1: return balance
SEND (rep)

if req.Opcode = 2 then // Request 2: buy/sell stock
rep ← TRADE (req);
SEND (rep)

// Process a BALANCE request...
procedure BALANCE (Request instance req)

client ← req.Client // Get client number from request
req.Result ← Cash[client] // Return his cash balance
return req // and return reply.

// Perform a trade: buy/sell Argument/-Argument shares of stock and
// return the total number of shares owned after trade.
procedure TRADE (Request instance req)

client ← req.Client // The client who is requesting
p ←STOCKPRICE () // Price, using network requests
nshares ← req.Argument// Number of shares to buy/sell
actual ← CONFIRMTRADE (req, p, nshares) // See how many shares we can trade
Cash[client]← Cash[client] + p x actual // Update our records
Shares[client] ← Shares[client] + actual
req.Result ← actual
return req

Note that CONFIRMTRADE uses network communication to check on available shares,
executes the trade, and returns the number of shares that have actually been bought or
sold.

Rocky tests this implementation on a single server machine by having clients scattered
around the island sending BALANCE requests as fast as they can. He discovers that after

Saltzer & Kaashoek Ch. ps, p. 62 June 24, 2009 12:21 am

17 Quarria PS–63

some point adding more clients doesn’t increase the throughput—the server throughput
tops out at 1000 requests per second.

Q 17.6 Rocky is concerned about performance, and hires you to recommend steps for
improvement. Which, if any, of the following steps might significantly improve Rocky’s
measured 1000 BALANCE requests per second?

A. Use faster client machines.
B. Use multiple client threads (each making Balance requests) on each client.
C. Use a faster server machine.
D. Use faster network technology.

Stone Galore, a local systems guru, has another suggestion to improve the perfor
mance generally. He proposes multithreading the server, replacing calls to service
procedures like

BALANCE (req) // Run BALANCE, to service request
with

CREATE_THREAD (BALANCE, req) // create thread to run BALANCE (req)

The CREATE_THREAD primitive creates a new thread, runs the supplied procedure (in this
case BALANCE) in that thread, and deactivates the thread on completion. Stone’s thread
implementation is preemptive.

Stone changes the appropriate three lines of the original code according to the above
model, and retries the experiment with BALANCE requests. He now measures a maximum
server throughput of 500 requests per second.

Q 17.7 Explain the performance degradation.

Q 17.8 Is there an advantage to the use of threads in other requests? Explain.

Q 17.9 Select the best advice for Rocky regarding server threads:

A. Don’t use threads; stick with your original design.
B. Don’t use threads for Balance requests, but use them for other requests.
C. Continue using them for all requests; the benefits outweigh the costs.

Independently of your advice, Stone is determined to stick with the multithreaded
implementation.

Q 17.10 Should the code for TRADE be changed to reflect the fact that it now operates in
a multithreaded server environment? Explain, suggesting explicit changes as necessary.

Q 17.11 What if the client is multithreaded and can have multiple request outstanding?
Should the code for TRADE be changed? Explain, suggesting explicit changes as necessary.

Rocky decides that multithreaded clients are complicated and abandons that idea. He
hasn’t read about RPC in Chapter 4, and isn’t sure whether his server requires at-most
once RPC semantics.

Q 17.12 Which of the requests require at-most-once RPC semantics? Explain.

Saltzer & Kaashoek Ch. ps, p. 63 June 24, 2009 12:21 am

PS–64 Problem Sets

Q 17.13 Suggest how one might modify Rocky’s implementation to guarantee at-most
once semantics. Ignore the possibility of crashes, but consider lost messages and
retransmissions.

1997–1–2a…m

Saltzer & Kaashoek Ch. ps, p. 64 June 24, 2009 12:21 am

18 PigeonExpress!.com I PS–65

18 PigeonExpress!.com I
(Chapter 7[on-line])

Ben Bitdiddle cannot believe the high valuations of some Internet companies, so he is
doing a startup, PigeonExpress!.com, which provides high-performance networking
using pigeons. Ben’s reasoning is that it is cheaper to build a network using pigeons than
it is to dig up streets to lay new cables. Although there is a standard for transmitting
Internet datagrams with avian carriers (see network RFC 1149) it is out of date, and Ben
has modernized it.

When sending a pigeon, Ben’s software prints out a little header on a sticky label and
also writes a compact disk (CD) containing the data. Someone sticks the label on the disk
and gives it to the pigeon. The header on the label contains the Global Positioning Sys
tem (GPS) coordinates of the destination and the source (the point where the pigeon is
taking off), a type field indicating the kind of message (REQUEST or ACKNOWLEDGMENT), and
a sequence number:

structure header
GPS source
GPS destination
integer type
integer sequence_no

The CD holds a maximum of 640 megabytes of data, so some messages will require
multiple CD’s. The pigeon reads the header and delivers the labeled CD to the
destination. The header and data are never corrupted and never separated. Even better,
for purposes of this problem, computers don’t fail. However, pigeons occasionally get
lost, in which case they never reach their destination.

To make life tolerable on the pigeon network, Ben designs a simple end-to-end pro
tocol (Ben’s End-to-End Protocol, BEEP) to ensure reliable delivery. Suppose that there
is a single sender and a single receiver. The sender’s computer executes the following
code:

Saltzer & Kaashoek Ch. ps, p. 65 June 24, 2009 12:21 am

http:PigeonExpress!.com

PS–66 Problem Sets

shared next_sequence initially 0 // a global sequence number, starting at 0.

procedure BEEP (destination, n, CD[]) // send n CDs to destination
header h // h is an instance of header.
nextCD ← 0
h.source ← MY_GPS // set source to my GPS coordinates
h.destination ← destination // set destination
h.type ← REQUEST // this is a request message
while nextCD < n do // send the CDs

h.sequence_no ← next_sequence // set seq number for this CD
send pigeon with h, CD[nextCD] // transmit
wait 2,000 seconds

Pending and incoming acknowledgments are processed only when the sender is waiting:
procedure PROCESS_ACK (h) // process acknowledgment

if h.sequence_no = sequence then // ack for current outstanding CD?
next_sequence ← next_sequence + 1
nextCD ← nextCD + 1 // allow next CD to be sent

The receiver’s computer executes the following code. The arrival of a request triggers
invocation of PROCESS_REQUEST:

procedure PROCESS_REQUEST (h, CD) // process request
PROCESS (CD) // process the data on the CD
h.destination ← h.source // send to where the pigeon came from
h.source ← MY_GPS
h.sequence_no ←h.sequence_no // unchanged
h.type ← ACKNOWLEDGMENT

send pigeon with h // send an acknowledgment back

Q 18.1 If a pigeon travels at 100 meters per second (these are express pigeons!) and
pigeons do not get lost, then what is the maximum data rate observed by the caller of
BEEP on a 50,000 meter (50 kilometer) long pigeon link? Assume that the processing
delay at the sender and receiver are negligible.

Q 18.2 Does at least one copy of each CD make it to the destination, even though some
pigeons are lost?

A.	 Yes, because nextCD and next_sequence are incremented only on the arrival of a
matching acknowledgment.

B.	 No, since there is no explicit loss-recovery procedure (such as a timer expiration
procedure).

C.	 No, since both request and acknowledgments can get lost.
D. Yes, since the next acknowledgment will trigger a retransmission.

Q 18.3 To guarantee that each CD arrives at most once, what is required?

A.	 We must assume that a pigeon for each CD has to arrive eventually.
B.	 We must assume that acknowledgment pigeons do not get lost and must arrive within

2,000 seconds after the corresponding request pigeon is dispatched.
C.	 We must assume request pigeons must never get lost.
D. Nothing. The protocol guarantees at-most-once delivery.

Saltzer & Kaashoek Ch. ps, p. 66	 June 24, 2009 12:21 am

18 PigeonExpress!.com I PS–67

Q 18.4 Ignoring possible duplicates, what is needed to guarantee that CDs arrive in
order?

A.	 We must assume that pigeons arrive in the order in which they were sent.
B.	 Nothing. The protocol guarantees that CDs arrive in order.
C.	 We must assume that request pigeons never get lost.
D. We must assume that acknowledgment pigeons never get lost.

To attract more users to PigeonExpress!, Ben improves throughput of the 50 kilome
ter long link by using a window-based flow-control scheme. He picks window (number
of CDs) as the window size and rewrites the code. The code to be executed on the
sender’s computer now is:

procedure BEEP (destination, n, CD[]) // send n CDs to destination
nextCD ← 0
window ← 10 // initial window size is 10 CDs
h.source ← MY_GPS // set source to my GPS coordinates
h.destination ← destination // set destination to the destination
h.type ← REQUEST // this is a request message
while nextCD < n do // send the CDs

CDsleft ← n - nextCD
temp ← FOO (CDsleft, window) // FOO computes how many pigeons to send
for k from 0 to (temp - 1) do

h.sequence_no ← next_sequence; // set seq number for this CD
send pigeon with h, CD[nextCD + k] // transmit

wait 2,000 seconds

The procedures PROCESS_ACK and PROCESS_REQUEST are unchanged.

Q 18.5 What should the procedure FOO compute in this code fragment?

A.	 minimum.
B.	 maximum.
C.	 sum.
D. absolute difference.

Q 18.6 Alyssa looks at the code and tells Ben it may lose a CD. Ben is shocked and
disappointed. What should Ben change to fix the problem?

A.	 Nothing. The protocol is fine; Alyssa is wrong.
B.	 Ben should modify PROCESS_REQUEST to accept and process CDs in the order of their

sequence numbers.
C.	 Ben should set the value of window to the delay × bandwidth product.
D. Ben should ensure that the sender sends at least one CD after waiting for 2,000

seconds.

Saltzer & Kaashoek Ch. ps, p. 67	 June 24, 2009 12:21 am

PS–68 Problem Sets

Q 18.7 Assume pigeons do not get lost. Under what assumptions is the observed data
rate for the window-based BEEP larger than the observed data rate for the previous BEEP

implementation?

A.	 The time to process and launch a request pigeon is less than 2,000 seconds;
B.	 The sender and receiver can process more than one request every 2,000 seconds;
C.	 The receiver can process less than one pigeon every 2,000 seconds;

After the initial success of PigeonExpress!, the pigeons have to travel farther and farther,
and Ben notices that more and more pigeons don’t make it to their destinations because
they are running out of food. To solve this problem, Ben calls up a number of his friends
in strategic locations and asks each of them to be a hub, where pigeons can reload on
food.

To keep the hub design simple, each hub can feed one pigeon per second and each
hub has space for 100 pigeons. Pigeons feed in first-in, first-out order at a hub. If a
pigeon arrives at a full hub, the pigeon gets lucky and retires from PigeonExpress!. The
hubs run a patented protocol to determine the best path that pigeons should travel from
the source to the destination.

Q 18.8 Which layer in the reference model of Chapter 7[on-line] provides functions
most similar to the system of hubs?

A.	 the end-to-end layer
B.	 the network layer
C.	 the link layer
D. network layer and end-to-end layer
E.	 the feeding layer

Q 18.9 Assume Ben is using the window-based BEEP implementation. What change can
Ben make to this BEEP implementation in order to make it respond gracefully to
congested hubs?

A.	 Start with a window size of 1 and increase it by 1 upon the arrival of each
acknowledgment.

B.	 Have PROCESS_REQUEST delay acknowledgments and have a single pigeon deliver
multiple acknowledgments.

C.	 Use a window size smaller than 100 CDs, since the hub can hold 100 pigeons.
D. Use multiplicative decrease and additive increase for the window size.

1999–2–7…15

Saltzer & Kaashoek Ch. ps, p. 68	 June 24, 2009 12:21 am

19 Monitoring Ants PS–69

19 Monitoring Ants
(Chapter 7[on-line] with a bit of Chapter 11[on-line])

Alice has learned that ants are a serious problem in the dorms. To monitor the ant
population she acquires a large shipment of motes. Motes are tiny self-powered
computers the size of a grain of sand, and they have wireless communication capability.
She spreads hundreds of motes in her dorm, planning to create an ad hoc wireless
network. Each mote can transmit a packet to another mote that is within its radio range.
Motes forward packets containing messages on behalf of other motes to form a network
that covers the whole dorm. The exact details of how this network of motes works are
our topic.

Each mote runs a small program that every 1 millisecond senses if there are ants
nearby. Each time the program senses ants, it increments a counter, called SensorCount.
Every 16 milliseconds the program sends a message containing the value of SensorCount

and the mote’s identifier to the mote connected to Alice’s desktop computer, which has
identifier A. After sending the message, the mote resets SensorCount. All messages are
small enough to fit into a single packet.

Only the radio consumes energy. The radio operates at a speed of 19.2 kilobits per
second (using a 916.5 megahertz transceiver). When transmitting the radio draws 12
milliamperes at 3 volts DC. Although receiving draws 4.5 millamperes, for the moment
assume that receiving is uses no power. The motes have a battery rated at 575 milliam
perehours (mAh).

Q 19.1 If a mote transmits continuously, about how long will it be until its battery runs
down?

Q 19.2 How much energy (voltage x current x time) does it take to transmit a single bit
(1 watt-second = 1 joule)?

Because the radio range of the motes is only ten meters, the motes must cooperate to
form a network that covers Alice’s dorm. Motes forward packets on behalf of other motes
to provide connectivity to Alice’s computer, A. To allow the motes to find paths and to
adapt to changes in the network (e.g., motes failing because their batteries run down),
the motes run a routing protocol. Alice has adopted the path-vector routing protocol
from Chapter 7. Each mote runs the following routing algorithm, which finds paths to
mote A:

Saltzer & Kaashoek Ch. ps, p. 69 June 24, 2009 12:21 am

PS–70 Problem Sets

n ← MYID

if n = A then path ← []

else path ← NULL

procedure ADVERTISE ()
if path ≠ NULL then TRANSMIT ({n, path}) // send marshaled message

procedure RECEIVE (p)
if n in p then return
else if (path = NULL) or (FIRST (p) = FIRST(path)) or (LENGTH (p) < LENGTH(path)

then path ← p

procedure TIMER ()
if HAVENOTHEARDFROMRECENTLY (FIRST (path)) then path ← NULL

When a mote starts it initializes its variables n and path. Each mode has a unique ID,
which the mote stores in the local variable n. Each mote stores its path to A into the path

variable. A path contains a list of mote IDs; the last element of this list is A. The first
element of the list (FIRST (path)) is the first mote on the path to A. When a mote starts it
sets path to NULL, except for Alice’s mote, which sets path to the empty path ([]).

Every t seconds a mote creates a path that contains its own ID concatenated with the
value of path, and transmits that path (see ADVERTISE) using its radio. Motes in radio range
may receive this packet. Motes outside radio range will not receive this packet. When a
mote receives a routing packet, it invokes the procedure RECEIVE with the argument set to
the path p stored in the routing packet. If p contains n, then this routing packet circled
back to n and the procedure RECEIVE just returns, rejecting the path. Otherwise, RECEIVE

updates path in three cases:

• 	 if path is NULL, because n doesn’t have any path to A yet.
• 	 if the first mote on path is the mote from which we are receiving p, because that

mote might have a new path to A.
• 	 if p is a shorter path to A than path. (Assume that shorter paths are better.)

A mote also has a timer. If the timer goes off, it invokes the procedure TIMER. If since
the last invocation of TIMER a mote hasn’t heard from the mote at the head of the path to
A, it resets path to NULL because apparently the first node on path is no longer reachable.

The forwarding protocol uses the paths found by the routing protocol to forward
reports from a mote to A. Since A may not be in radio range, a report packet may have
to be forwarded through several motes to reach A. This forwarding process works as
follows:

Saltzer & Kaashoek Ch. ps, p. 70	 June 24, 2009 12:21 am

19 Monitoring Ants PS–71

structure report
id
data

procedure SEND (counter)
report.id ← n
report.data ← counter
if path ≠ NULL then TRANSMIT (FIRST (path), report);

procedure FORWARD (nexthop, report)
if n ≠ nexthop then return
if n = A then DELIVER (report)
else TRANSMIT (FIRST (path), report)

The procedure SEND creates a report (the mote’s ID and its current counter value) and
transmits a report packet. The report packet contains the first hop on path, that is FIRST

(path), and the report:

nexthop source sensorcount

report

The nexthop field contains the ID of the mote to which this packet is directed. The
source field contains the ID of the mote that originated the packet. The sensorcount field
contains the sensor count. (If path is NULL, SEND has no mote to forward the report to
so the mote drops the packet.)

When a mote receives a report packet, it calls FORWARD. If a mote receives a report
packet for which it is not the next hop, it ignores the packet. If a report packet has
reached its final destination A, FORWARD delivers it to Alice’s computer. Otherwise, the
mote forwards the report by setting nexthop to the first mote on its path variable. This
process repeats until the report reaches A, and the packet is delivered.

Suppose we have the following arrangement of motes:

A

B C D

E

The circles represent motes with their node IDs. The edges connect motes that are in
radio range of one another. For example, when mote A transmits a packet, it may be
received by B and D, but not by C and E.

Packets may be lost and motes may also fail (e.g., if their batteries run down). If a
mote fails, it just stops sensing, transmitting, and receiving packets.

Saltzer & Kaashoek Ch. ps, p. 71 June 24, 2009 12:21 am

PS–72 Problem Sets

Q 19.3 If motes may fail and if packets may be lost, which of the following values could
the variable path at node E have?

A.	 NULL
B.	 [B, C]
C.	 [D, A]
D. [B, A]
E.	 [B, C, D, A]
F.	 [C, D, A]
G. [D, A, B, C, D, A]

Q 19.4 If no motes fail and packets are not lost, what properties hold for Alice’s routing
and forwarding protocols with the given arrangement of motes?

A.	 Every mote’s path variable will contain a path to A.
B.	 After the routing algorithm reaches a stable state, every mote’s path variable will contain

a shortest path (in hops) to A.
C.	 After the routing algorithm reaches a stable state, the routing algorithm may have

constructed a forwarding cycle.
D. After the routing algorithm reaches a stable state, the longest path is two hops.

Q 19.5 If packets may be lost but motes don’t fail, what properties hold for Alice’s
routing and forwarding protocols with the given arrangement of motes?

A.	 Every mote’s path variable will contain a path to A.
B.	 The routing algorithm may construct forwarding cycles.
C.	 The routing algorithm may never reach a stable state.
D. When a mote sends a report packet using send, the report may or may not reach A.

A report is 13 bits: an 8-bit node ID and a 5-bit counter. A report packet is 21 bits:
an 8-bit next hop and a report. Assume that your answer to question Q 19.2 (the energy
for transmitting one bit) is j joules. Further assume that to start the radio for transmission
takes s joules. Thus, transmitting a packet with r bits takes s + r x j joules.

Q 19.6 Assuming the routing algorithm reaches a stable state, no node and packet
failures, how much total energy does it take for every node to send one report to A

(ignoring routing packets)?

Q 19.7 Which of the following changes to the Alice’s system will reduce the amount of
energy needed for each node to send one report to A?

A.	 Add a nonce to a report so that Alice’s computer can detect duplicates.
B.	 Delay forwarding packets and piggyback them on a report packet from this mote.
C.	 Use 4-bit node IDs.
D. Use a stop-and-wait protocol to transmit each report reliably from one mote to the

next.

The following question is based on Chapter 11[on-line].

Saltzer & Kaashoek Ch. ps, p. 72	 June 24, 2009 12:21 am

19 Monitoring Ants PS–73

To be able to verify the integrity of the reports, Alice creates for each mote a public
key pair. She manually loads the private key for mote i into mote i, and keeps the corre
sponding public keys on her computer. A mote signs the contents of the report (the
counter and the source) with its private key and then transmits it.

Thus, a signed report consists of a 5-bit counter, a node ID, and a signature. When
Alice’s computer receives a signed report, it verifies the signed report and rejects the ones
that don’t check out.

Q 19.8 Assuming that the private keys on the motes are not compromised, and the SIGN

and VERIFY procedures are correctly implemented, which of the following properties hold
for Alice’s plan?

A.	 A mote that forwards a report is not able to read the report’s content.
B.	 A mote that forwards a report may be able to duplicate a report without Alice’s

computer rejecting the duplicated report.
C.	 A mote that forwards a report can use its private key to verify the report.
D. When Alice receives a report for which VERIFY returns ACCEPT, she knows that the report

was signed by the mote that is listed in the report and that the report is fresh.
2003–2–5…12

Saltzer & Kaashoek Ch. ps, p. 73	 June 24, 2009 12:21 am

PS–74 Problem Sets

20 Gnutella: Peer-to-Peer Networking
(Chapters 7[on-line] and 11[on-line])

Ben Bitdiddle is disappointed that the music industry is not publishing his CD, a rap
production based on this textbook. Ben is convinced there is a large audience for his
material. Having no alternative, he turns his CD into a set of MP3 files, the digital music
standard understood by music playing programs, and publishes the songs through
Gnutella.

Gnutella is a distributed file sharing application for the Internet. A user of Gnutella
starts a Gnutella node, which presents a user interface to query for songs, talks to other
nodes, and makes files from its local disk available to other remote users. The Gnutella
nodes form what is called an overlay network on top of the existing Internet. The nodes
in the overlay network are Gnutella nodes and the links between them are TCP connec
tions. When a node starts it makes a TCP connection to various other nodes, which are
connected through TCP connections to other nodes. When a node sends a message to
another node, the message travels over the connections established between the nodes.
Thus, a message from one node to another node travels through a number of intermedi
ate Gnutella nodes.

To find a file, the user interface on the node sends a query (e.g., “System Design
Rap”) through the overlay network to other nodes. While the search propagates through
the Gnutella network, nodes that have the desired file send a reply, and the user sees a
list filling with file names that match the query. Both the queries and their replies travel
through the overlay network. The user then selects one of the files to download and play.
The user’s node downloads the file directly from the node that has the file, instead of
through the Gnutella network.

The format of the header of a Gnutella message is:

MessageID Type TTL Hops Length

16 bytes	 1 byte 1 byte 1 byte 4 bytes

This header is followed by the payload, which is Length bytes long. The main mes
sage Types in the Gnutella protocol are:

• 	 PING: A node finds additional Gnutella nodes in the network using PING messages.
A node wants to be connected to more than one other Gnutella node to provide
a high degree of connectivity in the case of node failures. Gnutella nodes are not
very reliable because a user might turn off his machine running a Gnutella node
at any time. PING messages have no payload.

• 	 PONG: A node responds by sending a PONG message via the Gnutella network
whenever it receives a PING message. The PONG message has the same MessageID

as the corresponding PING message. The payload of the PONG message is the
Internet address of the node that is responding to the PING Message.

Saltzer & Kaashoek Ch. ps, p. 74	 June 24, 2009 12:21 am

20 Gnutella: Peer-to-Peer Networking PS–75

• 	 QUERY: Used to search the Gnutella network for files; its payload contains the
query string that the user typed.

• 	 QUERYHIT: A node responds by sending a QUERYHIT message via the Gnutella
network if it has a file that matches the query in a QUERY message it receives. The
payload contains the Internet address of the node that has the file, so that the
user’s node can connect directly to the node that has the song and download it.
The QUERYHIT message has the same MessageID as the corresponding QUERY

message.

(The Gnutella protocol also has a PUSH message to deal with firewalls and network
address translators, but we will ignore it.)

In order to join the Gnutella network, the user must discover and configure the local
node with the addresses of one or more existing nodes. The local node connects to those
nodes using TCP. Once connected, the node uses PING messages to find more nodes
(more detail below), and then directly connects to some subset of the nodes that the PING

message found.
For QUERY and PING messages, Gnutella uses a kind of broadcast protocol known as

flooding. Any node that receives a PING or a QUERY message forwards that message to all
the nodes it is connected to, except the one from which it received the message. A node
decrements the TTL field and increments the Hops field before forwarding the message.
If after decrementing the TTL field, the TTL field is zero, the node does not forward the
message at all. The Hops field is set to zero by the originating user’s node.

To limit flooding and to route PONG and QUERYHIT messages, a node maintains a mes
sage table, indexed by MessageID and Type, with an entry for each message seen recently.
The entry also contains the Internet address of the Gnutella node that forwarded the
message to it. The message table is used as follows:

• 	 If a PING or QUERY message arrives and there is an entry in the message table with
the same messageID and Type, then the node discards that message.

• 	 For a QUERYHIT or PONG message for which there is a corresponding QUERY or PONG

entry with the same messageID in the message table, then the node forwards the
QUERYHIT or PONG to the node from which the QUERY or PING was received.

• 	 If the corresponding QUERY or PING message doesn’t appear in the table, then the
node discards the QUERYHIT or PONG message.

• 	 Otherwise, the node makes a new entry in the table, and forwards the message to
all the nodes it is connected to, except the one from which it received the
message.

Q 20.1 Assume one doesn’t know the topology of the Gnutella network or the
propagation delays of messages. According to the protocol, a node should forward all
QUERYHIT messages for which it saw the corresponding QUERY message back to the node

Saltzer & Kaashoek Ch. ps, p. 75	 June 24, 2009 12:21 am

PS–76 Problem Sets

from which it received the QUERY message. If a node wants to guarantee that rule, when
can the node remove the QUERY entry from the message table?

A.	 Never, in principle, because a node doesn’t know if another QUERYHIT for the same
Query will arrive.

B.	 Whenever it feels like, since the table is not necessary for correctness. It is only a
performance optimization.

C.	 As soon as it has forwarded the corresponding QUERYHIT message.
D. As soon as the entry becomes the least recently used entry.

Both the Internet and the Gnutella network form graphs. For the Internet, the nodes are
routers and the edges are links between the routers. For the Gnutella network, the nodes
are Gnutella nodes and the edges are TCP connections between the nodes. The shortest
path in a graph between two nodes A and B is the path that connects A with B through
the fewest number of nodes.

Q 20.2 Assuming a stable Internet and Gnutella network, is the shortest path between
two nodes in the Gnutella overlay network always the shortest path between those two
nodes in the Internet?

A.	 Yes, because the Gnutella network uses the Internet to set up TCP connections between
its nodes.

B.	 No, because TCP is slower than UDP.
C.	 Yes, because the topology of the Gnutella network is identical to the topology of the

Internet.
D. No, because for node A to reach node B in the Gnutella network, it might have to go

through node C, even though there is a direct, Internet link between A and B.

Q 20.3 Which of the following relationships always hold? (TTL(i) and HOP(i) are the
values of TTL and Hop fields respectively after the message has traversed i hops)?

A.	 TTL(0) = HOPS(i) - TTL(i)
B.	 TTL(i) = TTL(i - 1) - 1, for i > 0
C.	 TTL(0) = TTL(i) + HOPS(i)
D. TTL(0) = TTL(i) x HOPS(i)

Q 20.4 Ben observes that both PING and QUERY messages have the same forwarding rules,
so he proposes to delete PING and PONG messages from the protocol and to use a QUERY

message with a null query (which requires a node to respond with a QUERYHIT message)
to replace PING messages. Is Ben’s modified protocol a good replacement for the Gnutella
protocol?

A.	 Yes, good question. Beats me why the Gnutella designers included both PING and QUERY

messages.
B.	 No, a PING message will typically have a lower value in the TTL field than a QUERY

message when it enters the network
C.	 No, because PONG and QUERYHIT messages have different forwarding rules.
D. No, because there is no way to find nodes using QUERY messages.

Saltzer & Kaashoek Ch. ps, p. 76	 June 24, 2009 12:21 am

20 Gnutella: Peer-to-Peer Networking PS–77

Q 20.5 Assume that only one node S stores the song “System Design Rap,” and that the
query enters the network at a node C. Further assume TTL is set to a value large enough
to explore the whole network. Gnutella can still find the song “System Design Rap”
despite the failures of some sets of nodes (either Gnutella nodes or Internet routers). On
the other hand, there are sets of nodes whose failure would prevent Gnutella from finding
the song. Which of the following are among the latter sets?

A.	 any set containing S
B.	 any set containing a single node on the shortest path from C to S
C.	 any set of nodes that collectively disconnects C from S in the Gnutella network
D. any set of nodes that collectively disconnects C from S in the Internet

The following questions are based on Chapter 11[on-line].

Q 20.6 To which of the following attacks is Gnutella vulnerable (i.e., an attacker can
implement the described attack)?

A.	 A single malicious node can always prevent a client from finding a file by dropping
QUERYHITs.

B.	 A malicious node can respond with a file that doesn’t match the query.
C.	 A malicious node can always change the contact information in a QUERYHIT message

that goes through the node, for example, misleading the client to connect to it.
D. A single malicious node can always split the network into two disconnected networks

by never forwarding PING and QUERY messages.
E.	 A single malicious node can always cause a QUERY message to circle forever in the

network by incrementing the TTL field (instead of decrementing it).

Q 20.7 Ben wants to protect the content of a song against eavesdroppers during
downloads. Ben thinks a node should send ENCRYPT (k, song), using a shared-secret
algorithm, as the download, but Alyssa thinks the node should send CSHA (song), where
CSHA is a cryptographically secure hash algorithm. Who is right?

A.	 Ben is right because no one can compute song from the output of CSHA (song), unless
they already have song.

B.	 Alyssa is right because even if one doesn’t know the shared-secret key k anyone can
compute the inverse of the output of ENCRYPT (k, song).

C.	 Alyssa is right because CSHA doesn’t require a key and therefore Ben doesn’t have to
design a protocol for key distribution.

D. Both are wrong because a public-key algorithm is the right choice, since encrypting
with a public key algorithm is computationally more expensive than either CSHA or a
shared-secret algorithm.

Ben is worried that an attacker might modify the “System Design Rap” song. He
proposes that every node that originates a message signs the payload of a message with
its private key. To discover the public keys of nodes, he modifies the PONG message to
contain the public key of the responding node along with its Internet address. When a
node is asked to serve a file it signs the response (including the file) with its private key.

Saltzer & Kaashoek Ch. ps, p. 77	 June 24, 2009 12:21 am

PS–78 Problem Sets

Q 20.8 Which attacks does this scheme prevent?

A.	 It prevents malicious nodes from claiming they have a copy of the “System Design Rap”
song and then serving music written by Bach.

B.	 It prevents malicious nodes from modifying QUERY messages that they forward.
C.	 It prevents malicious nodes from discarding QUERY messages.
D. It prevents nodes from impersonating other nodes and thus prevents them from forging

songs.
E.	 None. It doesn’t help.

2002–2–5…12

Saltzer & Kaashoek Ch. ps, p. 78	 June 24, 2009 12:21 am

21 The OttoNet PS–79

21 The OttoNet*

(Chapter 7[on-line], with a bit of Chapter 11[on-line])

Inspired by the recent political success of his Austrian compatriot, “Arnie,” in
Caleeforneea, Otto Pilot decides to emigrate to Boston. After several months, he finds
the local accent impenetrable, and the local politics extremely murky, but what really irks
him are the traffic nightmares and long driving delays in the area.

After some research, he concludes that the traffic problems can be alleviated if cars
were able to discover up-to-date information about traffic conditions at any specified
location, and use this information as input to software that can dynamically suggest good
paths to use to go from one place to another. He jettisons his fledgling political career to
start a company whose modest goal is to solve Boston’s traffic problems.

After talking to car manufacturers, Otto determines the following:

1. All cars have an on-board computer on which he can install his software. All cars
have a variety of sensors that can be processed in the car to provide traffic status, includ
ing current traffic speed, traffic density, evidence of accidents, construction delays, etc.

2. It is easy to equip a car with a Global Positioning System (GPS) receiver (in fact,
an increasing number of cars already have one built-in). With GPS, software in the car
can determine the car’s location in a well-known coordinate system. (Assume that the
location information is sufficiently precise for our purposes.)

3. Each car’s computer can be networked using an inexpensive 10 megabits per sec
ond radio. Each radio has a spherical range, R, of 250 meters; i.e., a radio transmission
from a car has a non-zero probability of directly reaching any other car within 250
meters, and no chance of directly reaching any car outside that range.

Otto sets out to design the OttoNet, a network system to provide traffic status
information to applications. OttoNet is an ad hoc wireless network formed by cars
communicating with each other using cheap radios, cooperatively forwarding packets for
one another.

Each car in OttoNet has a client application and a server application running on its
computer. OttoNet provides two procedures that run on every car, which the client and
server applications can use:

1. QUERY (location): When the client application running on a car calls QUERY (location),
OttoNet delivers a packet containing a query message to at least one car within distance
R (the radio range) of the specified location, according to a best-effort contract. A packet
containing a query is 1,000 bits in size.

2. RESPOND (status_info, query_packet): When the server application running on a car
receives a query message, it processes the query and calls RESPOND (status_info,
query_packet). RESPOND causes a packet containing a response message to be delivered to
the client that performed the query, again according to a best-effort contract. A response

* Credit for developing this problem set goes to Hari Balakrishnan.

Saltzer & Kaashoek Ch. ps, p. 79 June 24, 2009 12:21 am

PS–80 Problem Sets

message summarizes local traffic information (status_info) collected from the car’s sen
sors and is 10,000 bits in size.

For packets containing either query or response messages, the cars will forward the packet
cooperatively in best-effort fashion toward the desired destination location or car. Cars
may move arbitrarily, alternating between motion and rest. The maximum speed of a car
is 30 meters per second (108 kilometers per hour or 67.5 miles per hour).

Q 21.1 Which of the following properties is true of the OttoNet, as described thus far?

A.	 Because the OttoNet is “best-effort,” it will attempt to deliver query and response
messages between client and server cars, but messages may be lost and may arrive out
of order.

B.	 Because the OttoNet is “best-effort,” it will ensure that as long as there is some
uncongested path between the client and server cars, query and response messages will
be successfully delivered between them.

C.	 Because the OttoNet is “best-effort,” it makes no guarantees on the delay encountered
by a query or response message before it reaches the intended destination.

D. An OttoNet client may receive multiple responses to a query, even if no packet
retransmissions occur in the system.

Otto develops the following packet format for OttoNet (all fields except payload are part
of the packet header):

structure packet
GPS dst_loc // intended destination location
integer_128 dst_id // car’s 128-bit unique ID picked at random
GPS src_loc // location of car where packet originated
integer_128 src_id // unique ID of car where packet originated
integer hop_limit // number of hops remaining (initialized to 100)
integer type // query or response
integer size // size of packet
string payload // query request string or response status info

packet instance pkt; // pkt is an instance of the structure packet

Each car has a 128-bit unique ID, picked entirely at random. Each car’s current location
is given by its GPS coordinates. If the sender application does not know the intended
receiver’s unique ID, it sets the dst_id field to 0 (no valid car has an ID of 0).

The procedure FORWARD (pkt) runs in each car, and is called whenever a packet arrives
from the network or when a packet needs to be sent by the application. FORWARD main
tains a table of the cars within radio range and their locations, using broadcasts every
second to determine the locations of neighboring cars, and implements the following
steps:

F1. If the car’s ID is pkt.dst_id then deliver to application (using pkt.type to identify
whether the packet should be delivered to the client or server application), and stop for
warding the packet.

F2. If the car is within R of pkt.dst_id and pkt.type is QUERY, then deliver to server
application, and forward to any one neighbor that is even closer to dst_loc.

Saltzer & Kaashoek Ch. ps, p. 80	 June 24, 2009 12:21 am

21 The OttoNet PS–81

F3. Geographic forwarding step: If neither F1 nor F2 is applicable, then among the cars
that are closer to pkt.dst_loc, forward the packet to some car that is closer in distance to
pkt.dst_loc. If no such car exists, drop the packet.

The OttoNet’s QUERY (location) and RESPOND (status_info, query_packet) procedures have
the following pseudocode:

1 procedure QUERY (location)
2 pkt.dst_lock ← location
3 pkt.dst_id ← X // see question 21.2.
4 pkt.src_loc ← my_gps
5 pkt.src_id ← my_id
6 pkt.payload ← “What’s the traffic status near you?”
7 SEND (pkt)

8 procedure RESPOND (status_info, query_packet)
9 pkt.dst_loc ←query_packet.src_loc
10 pkt.dst_id ← Y // see question 21.2.
11 pkt.src_loc ← my_gps
12 pkt.src_id ← my_id
13 pkt.payload ← “My traffic status is: ” + status_info // “+” concatenates strings
14 SEND (pkt)

Q 21.2 What are suitable values for X and Y in lines 3 and 10, such that the pseudocode
conforms to the specification of QUERY and RESPOND?

Q 21.3 What kinds of names are the ID and the GPS location used in the OttoNet
packets? Are they addresses? Are they pure names? Are they unique identifiers?

Q 21.4 Otto outsources the implementation of the OttoNet according to these ideas
and finds that there are times when a QUERY gets no response, and times when a receiver
receives packets that are corrupted. Which of the following mechanisms is an example of
an application of an end-to-end technique to cope with these problems?

A.	 Upon not receiving a response for a QUERY, when a timer expires retry the QUERY from
the client.

B.	 If FORWARD fails to deliver a packet because no neighboring car is closer to the
destination, store the packet at that car and deliver it to a closer neighboring car a little
while later.

C.	 Implement a checksum in the client and server applications to verify if a message has
been corrupted.

D. Run distinct TCP connections between each pair of cars along the path between a client
and server to ensure reliable end-to-end packet delivery.

Otto decides to retry queries that don’t receive a response. The speed of the radio in each
car is 10 megabits per second, and the response and request sizes are 10,000 bits and
1,000 bits respectively. The car’s computer is involved in both processing the packet,
which takes 0.1 microsecond per bit, and in transmitting it out on the radio (i.e., there’s

Saltzer & Kaashoek Ch. ps, p. 81	 June 24, 2009 12:21 am

PS–82 Problem Sets

no pipelining of packet processing and transmission). Each car’s radio can transmit and
receive packets at the same time.

The maximum queue size is 4 packets in each car, the maximum radio range for a
single hop is 250 meters, and that the maximum possible number of hops in OttoNet is
100. Ignore media access protocol delays. The server application takes negligible time to
process a request and generate a response to be sent.

Q 21.5 What is the smallest “safe” timer expiration setting that ensures that the retry of
a query will happen only when the original query or response packet is guaranteed not
to still be in transit in the network?

Otto now proceeds to investigate why FORWARD sometimes has to drop a packet
between a client and server, even though it appears that there is a sequence of nodes
forming a path between them. The problem is that geographic forwarding does not
always work, in that a car may have to drop a packet (rule F3) even though there is some
path to the destination present in the network.

Q 21.6 In the figure below, suppose the car at F is successfully able to forward a packet
destined to location D using rule F3 via some neighbor, N. Assuming that neither F or
N has moved, clearly mark the region in the figure where N must be located.

DF

Q 21.7 Otto decides to modify the client software to make pipelined QUERY calls in quick
succession, sending a query before it gets a response to an earlier one. The client now
needs to match each response it receives with the corresponding query. Which of these
statements is correct?

A.	 As long as no two pipelined queries are addressed to the same destination location (the
dst_loc field in the OttoNet header), the client can correctly identify the specific query
that caused any given response it receives.

B.	 Suppose the OttoNet packet header includes a nonce set by the client, and the server
includes a copy of the nonce in its response, and the client maintains state to match

Saltzer & Kaashoek Ch. ps, p. 82	 June 24, 2009 12:21 am

21 The OttoNet PS–83

nonces to queries. This approach can always correctly match a response to a query,
including when two pipelined queries are sent to the same destination location.

C.	 Both the client and the server need to set nonces that the other side acknowledges (i.e.,
both sides need to implement the mechanism in choice B above), to ensure that a
response can always be correctly matched to the corresponding query.

D. None of the above.

Q 21.8 After running the OttoNet for a few days, Otto notices that network congestion
occasionally causes a congestion collapse because too many packets are sent into the
network, only to be dropped before reaching the eventual destination. These packets
consume valuable resources. Which of the following techniques is likely to reduce the
likelihood of a congestion collapse?

A.	 Increase the size of the queue in each car from 4 packets to 8 packets.
B.	 Use exponential backoff for the timer expiration when retrying queries.
C.	 If a query is not answered within the timer expiration interval, multiplicatively reduce

the maximum rate at which the client application sends OttoNet queries.
D. Use a flow control window at each receiver to prevent buffer overruns.

The following question is based on Chapter 11[on-line].

Q 21.9 The OttoNet is not a secure system. Otto has an idea—he observes that the 128
bit unique ID of a car can be set to be the public key of the car! He proposes the following
protocol. On a packet containing a query message, sign the packet with the client car’s
private key. On a packet containing a response, encrypt the packet with the client car’s
public key (that public key is in the packet that contained the query). To allow packets
containing responses to be forwarded through the network, the server does not encrypt
the destination location and ID fields of those packets. Assume that each car’s private key
is not compromised. Which of the following statements are true?

A.	 A car that just forwards a packet containing queries can read that packet’s payload and
verify it.

B.	 The only car in the network that can decrypt a response from a server is the car specified
in the destination field.

C.	 The client cannot always verify the message integrity of a response, even though it is
encrypted.

D. If every server at some queried location is honest and not compromised, the client can
be sure that an encrypted response it receives for a query actually contains the correct
traffic status information.

2004–2–5…13

Saltzer & Kaashoek Ch. ps, p. 83	 June 24, 2009 12:21 am

PS–84 Problem Sets

22 	The Wireless EnergyNet*

(Chapter 7[on-line] and a little bit of 8)

2005–2–7

Sara Brum, an undergraduate research assistant, is concerned about energy consumption
in the Computer Science building and decides to design the EnergyNet, a wireless
network of nodes with sensors to monitor the building. Each node has three sensors: a
power consumption sensor to monitor the power drawn at the power outlet to which it
is attached, a light sensor, and a temperature sensor. Sara plans to have these nodes
communicate with each other via radio, forwarding data via each other, to report
information to a central monitoring station. That station has a radio-equipped node
attached to it, called the sink.

There are two kinds of communication in EnergyNet:

A.	 Node-to-sink reports: A node sends a report to the sink via zero or more other nodes.
B.	 EnergyNet routing protocol: The nodes run a distributed routing protocol to

determine the next hop for each node to use to forward data to the sink. Each node’s
next hop en route to the sink is called its parent.

EnergyNet is a best-effort network. Sara remembers from reading Chapter that layering
is a good design principle for network protocols, and decides to adopt a three-layer design
similar to the Chapter 7[on-line] reference model. Our job is to help Sara design the
EnergyNet and its network protocols. We will first design the protocols needed for the
node-to-sink reports without worrying about how the routing protocol determines the
parent for each node.

To start, let’s assume that each node has an unchanging parent, every node has a path
to the sink, and nodes do not crash. Nodes may have hardware or software faults, and
packets could get corrupted or lost, though.

 Sara develops the following simple design for the three-layer EnergyNet stack:

Layer Header fields Trailer fields

E2E report
protocol

location
time

e2e_cksum (32-bit checksum)

Network dstaddr (16-bit network address
of destination)

Link recvid (32-bit unique ID of link-
layer destination)
sendid (32-bit unique ID of link-
layer sournce)

ll_cksum (32-bit checksum)

* Credit for developing this problem set goes to Hari Balakrishnan.

Saltzer & Kaashoek Ch. ps, p. 84	 June 24, 2009 12:21 am

22 The Wireless EnergyNet PS–85

In addition to these fields, each report packet has a payload that contains a report of
data observed by a node’s sensors. When sending a report packet, the end-to-end layer
at the reporting node sets the destination network-layer address to be a well-known 16
bit value, SINK_ADDR. The end-to-end layer at the sink node processes each report. Any
node in the network can send a report to the sink.

If a layer has a checksum, it covers that layer’s header and the data presented to that
layer by the higher layer. Each EnergyNet node has a first-in, first-out (FIFO) queue at
the network layer for packets waiting to be transmitted.

Q 22.1 What does an EnergyNet report frame look like when sent over the radio from
one node to another? Fill in the rectangle below to show the different header and trailer
fields in the correct order, starting with the first field on the left. Be sure to show the
payload as well. You do not need to show field sizes.

Start of frame

Q 22.2 Sara’s goal is to ensure that the end-to-end layer at the sink passes on (to the
application) only messages whose end-to-end header and payload are correct. Assume
that the implementation of the functions to set and verify the checksum are correct, and
that there are no faults when the end-to-end layer runs.

A.	 Will using just ll_cksum and not e2e_cksum achieve Sara’s goal?
B.	 Will using just e2e_cksum and not ll_cksum achieve Sara’s goal?
C.	 Must each node on the path from the reporting node to the sink recalculate e2e_cksum

in order to achieve Sara’s goal?

To recover lost frames, Sara decides to implement a link-layer retransmission scheme.
When a node receives a frame whose ll_cksum is correct, it sends an acknowledgment
(ACK) frame to the sendid of the frame. If a sender does not receive an ACK before a
timer expires, it retransmits the frame. A sender attempts at most three retransmissions
for a frame.

Q 22.3 Which of these statements is true of Sara’s link-layer retransmission scheme if no
node changes its parent?

A.	 Duplicate error-free frames may be received by a receiver.
B.	 Duplicate error-free frames may be received by a receiver even if the sending node’s

timeout is longer than the maximum possible round trip time between sender and
receiver.

C.	 If each new frame is sent on a link only after all link-layer retransmissions of previous
frames, then the sink may receive packets from a given node in a different order from
the way in which they were sent.

D. If Sara were to implement an end-to-end retransmission scheme in addition to this link-
layer scheme, the resulting design would violate an end-to-end argument.

Saltzer & Kaashoek Ch. ps, p. 85	 June 24, 2009 12:21 am

PS–86 Problem Sets

Q 22.4 EnergyNet’s radios use phase encoding with the Manchester code. Sara finds
that if the frequency of level transitions of voltage is set to 500 kilohertz, the link has an
acceptably low bit error rate when there is no radio channel interference, noise, or any
other concurrent radio transmissions. What is the data rate corresponding to this level
transition frequency (specify the correct units)?

Q 22.5 Consider the transmission of an error-free frame (that is, one that never needed
to be retransmitted) over one radio hop from node A to node B. Which of the delays in
the right column of the table below contribute to the time duration specified in the left
column? (There may be multiple contributors.)

1. Time lag between first bit leaving A and that bit reaching
B

A. Processing delay

2. Time lag between first bit reaching B and last bit
reaching B.

B. Propagation delay

3. Time lag between when the last bit of the packet was
received at A and the first bit of the same packet begins to
be sent by A’s link layer to B.

C. Queuing delay

D. Transmission delay

Q 22.6 Sara finds that EnergyNet often suffers from congestion. Which of the following
methods is likely to help reduce EnergyNet’s congestion?

A.	 If no link-layer ACK is received, the sender should use exponential backoff before
sending the next frame over the radio.

B.	 Provision the network-layer queue at each node to ensure that no packets ever get
dropped for lack of queue space.

C.	 On each link-layer ACK, piggyback information about how much queue space is
available at a parent, and slow down a node’s rate of transmission when its parent’s
queue occupancy is above some threshold.

Now, let’s assume that nodes may crash and each node’s parent may change with time.

Let us now turn to designing the routing protocol that EnergyNet nodes use to form
a routing tree rooted at the sink. Once each second, each node picks a parent by opti
mizing a ‘‘quality’’ metric and broadcasts a routing advertisement over its radio, as shown
in the BROADCAST_ADVERTISEMENT procedure. Each node that receives an advertisement pro
cesses it and incorporates some information in its routing table, as shown in the
HANDLE_ADVERTISEMENT procedure. These routing advertisements are not acknowledged by
their recipients.

An advertisement contains one field in its payload: quality, calculated as shown in the
pseudocode below. The quality of a path is a function of the success probability of frame

Saltzer & Kaashoek Ch. ps, p. 86	 June 24, 2009 12:21 am

22 The Wireless EnergyNet

delivery across each link on the path. The success probability of a link is the probability
that a frame is received at the receiver and its ACK received by the sender.

In the pseudocode below, quality_table is a table indexed by sendid and stores an
object with two fields: quality, the current estimate of the path quality to the parent via
the corresponding sendid, and lasttime, the last time at which an advertisement was
heard from the corresponding sendid.

procedure BROADCAST_ADVERTISEMENT () // runs once per second at each node
if quality_table = EMPTY and node != sink then return
REMOVE_OLD_ENTRIES (quality_table) // remove entries older than 5 seconds
if node = sink then

adv.quality ← 1.0
else

parent ← PICK_BEST(quality_table) // returns node with highest quality value
adv.quality ← quality_table[parent].quality

NETWORK_SEND (RTG_BCAST_ADDR, adv) // broadcasts adv over radio

procedure HANDLE_ADVERTISEMENT (sendid, adv)
quality_table[sendid].lasttime ← CURRENT_TIME ()
quality_table[sendid].quality ← adv.quality × SUCCESS_PROB (sendid)

When BROADCAST_ADVERTISEMENT runs (once per second), it first removes all entries older
than 5 seconds in quality_table. Then, it finds the best parent by picking the sendid with
maximum quality, and broadcasts an advertisement message out to the network-layer
address (RTG_BCAST_ADDR) that corresponds to all nodes within one network hop.

Whenever a node receives an advertisement from another node, sendid, it runs
HANDLE_ADVERTISEMENT (). This procedure updates quality_table[sendid]. It calculates the
path quality to reach the sink via sendid by multiplying the advertised quality with the
success probability to this sendid, SUCCESS_PROB (sendid). The implementation details of
SUCCESS_PROB () are not important here; just assume that all the link success probabilities
are estimated correctly.

Assume that no ‘‘link’’ is perfect; i.e., for all i, j, pij < 1 (strictly less) and that every
received advertisement is processed within 100 ms after it was broadcast.

Q 22.7 Ben Bitdiddle steps on and destroys the parent of node N at time t = 10 seconds.
Assuming that node N has a current entry for its parent in its quality_table, to the nearest
second, what are the earliest and latest times at which node N would remove the entry for
its parent from its quality_table?

See Figure PS.2. The picture shows the success probability for each pair of transmis
sions (only non-zero probabilities are shown). The number next to each radio link is the
link’s success probability, the probability of a frame being received by a receiver and its
ACK being received successfully by the sender.

Q 22.8 In Figure PS.2, suppose B is A’s parent and B fails. Louis Reasoner asserts that as
long as no routing advertisements are lost and there are no software or hardware bugs or
failures, a routing loop can never form in the network. As usual, Louis is wrong. Explain
why, giving a scenario or sequence of events that can create a routing loop.

PS–87

Saltzer & Kaashoek Ch. ps, p. 87 June 24, 2009 12:21 am

PS–88 Problem Sets

A B

S

C

FIGURE ps.2

pAB × pBA = 0.99

pBS × pSB = 0.99

pCS × pSC = 0.8

pAS × pSA = 0.33

pRC × pCR = 0.75

pRA × pAR = 0.99

R

Network topology for some EnergyNet questions.

Q 22.9 Describe a modification to EnergyNet’s routing advertisement that can prevent
routing loops from forming in any EnergyNet deployment.

Q 22.10 Suppose node B has been restored to service and the success probabilities are
as shown. Which path between R and S would be chosen by Sara’s routing protocol and
why? Name the path as a sequence of nodes starting with R and ending with S.

Q 22.11 Returning once again to Figure PS.2, recall that the nodes use link-layer
retransmissions for report packets. If you want to minimize the total expected number of
non-ACK radio transmissions needed to successfully deliver the packet from R to S, which
path should you choose? You may assume that frames are lost independently over each
link and that the link success probabilities are independent of each other. (Hint: If a coin
has a probability p of landing ‘‘heads’’, then the expected number of tosses before you see
‘‘heads’’ is 1/p.)

The remaining questions are on topics from Chapter 8.

Sara finds that each sensor’s reported data is noisy, and that to obtain the correct data
from a room, she needs to deploy k > 1 sensors in the room and take the average of the
k reported values. However, she also finds that sensor nodes may fail in fail-fast fashion.
Whenever there are fewer than k working sensors in a room, the room is considered to
have ‘‘failed’’, and its data is ‘‘unavailable’’. When that occurs, an administrator has to
go and replace the faulty sensors for the room to be ‘‘available’’ again, which takes time
Tr. Tr is smaller than the MTTF of each sensor, but non-zero.

Assume that the sensor nodes fail independently and that Sara is able to detect the
failure of a sensor node within a time much smaller than the node’s MTTF.

Sara deploys m > k sensors in each room. Sara comes up with three strategies to deploy
and replace sensors in a room:

Saltzer & Kaashoek Ch. ps, p. 88 June 24, 2009 12:21 am

22 The Wireless EnergyNet PS–89

A. Fix each faulty sensor as soon as it fails.
B. Fix the faulty sensors as soon as all but one fail.
C. Fix each faulty sensor as soon as data from the room becomes unavailable.

Q 22.12 Rank these strategies in the order of highest to lowest availability for the room’s
sensor data.

Q 22.13 Suppose that each sensor node’s failure process is memoryless and that sensors
fail independently. Sara picks strategy C from the choices in the previous question. What
is the resulting MTTF of the room?

Saltzer & Kaashoek Ch. ps, p. 89 June 24, 2009 12:21 am

PS–90 Problem Sets

23 SureThing*

(Chapter 7[on-line])

2006–2–7

Alyssa P. Hacker decides to offer her own content delivery system, named
SURETHING. A SURETHING system contains 1000 computers that communicate
via the Internet. Each computer has a unique numerical identifier ID#, and the
computers are thought of as (logically) being organized in a ring as in Figure PS.3. Each
computer has successors as shown in the figure. The ring wraps around: the immediate
successor of the computer with the highest ID# (computer N251 in the figure) is the
computer with the lowest ID# (computer N8).

Each content item also has a unique ID, c, and the content is stored at c’s immediate
successor: the first computer in the ring whose ID# exceeds the ID# of c. This scheme
is called consistent hashing.

Alyssa designs the system using two layers: a forwarding and routing layer (to find the
IP address of the computer that stores the content) and a content layer (to store or
retrieve the content).

Building a Forwarding and Routing Layer. Inspired by reading a paper on a system
named Chord† that uses consistent hashing, Alyssa decides that the routing step will
work as follows: Each computer has a local table, successors[i], that contains the ID and
IP address of its 4 successors (the 4 computers whose IDs follow this computer’s ID in
the ring); the entries are ordered as they appear in the ring. These tables are set up when
the system is initialized.

The forwarding and routing layer of each node provides a procedure GET_LOCATION

that can be called by the content layer to find the IP address of the immediate successor
of some content item c. This procedure checks its local successors table to see if it con
tains the immediate successor of the requested content; if not, it makes a remote
procedure call to the GET_LOCATION procedure on the most distant successor in its own suc

cessors table. That computer returns the immediate successor of c if it is known locally
in its successors table; otherwise that node returns its most distant successor, and the orig
inating computer continues the search there, iterating in this way until it locates c’s
immediate successor.

For example, if computer N232 is looking for the immediate successor of c = C165
in the system shown in Figure PS.3, it will first look in its local table; since this table
doesn’t contain the immediate successor of c, it will request information from computer
N36. Computer N36 also doesn’t have the immediate successor of C165 in its local suc

* Credit for developing this problem set goes to Barbara Liskov.

† Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications, Proceedings of the ACM SIGCOMM '01 Conference,
2001, August.

Saltzer & Kaashoek Ch. ps, p. 90 June 24, 2009 12:21 am

23 SureThing PS–91

N251 N8
• •

•

•

•

•

•
•

• •

•

•

•

•

•

successors[4]

successors[3]

successors[2]

successors[1] N21

N36

N48

N61

N88

N96

N156

N174

N205

N216

C165

C192

N232

C48

N129 N114

FIGURE PS.3

Arrangement of computers in a ring. Computer N232’s pointers to its 4 successors lead to com
puters N251, N8, N21, and N36. The content item C192 is stored at computer N205 because
#205 is the next larger computer ID# after C192’s ID#. Similarly, content item C48 is stored at
its immediate successor, computer N48; and item number C165 is stored at its immediate suc
cessor, computer N174.

cessors table, and therefore it returns the IP address of computer N96. Computer N96
does have the immediate successor (computer N174) in its local successors table and it
returns this information. This sequence of RPC requests and responses is shown in Fig
ure PS.4.

Saltzer & Kaashoek Ch. ps, p. 91 June 24, 2009 12:21 am

PS–92 Problem Sets

N251 N8
• •

•

•

•

•

•
•

••

•

•

•

•

•
N21

N36

N48

N61

N88

N96

N156

N174

N205

N216

•

•

•

C48

C165

C192

N232
C165?{No—try N96, IP96}

C165?
{found at N174, IP174}

N114N129

FIGURE PS.4

Sequence of RPCs and replies required for computer N232 to find the immediate successor of
the content item with ID C165.

Q 23.1 While testing SURETHING, Alyssa notices that when the Internet attempts to
deliver the RPC packets, they don’t always arrive at their destination. Which of the
following reasons might prevent a packet from arriving at its destination?

A. A router discards the packet.
B. The packet is corrupted in transit.
C. The payload of an RPC reply contains the wrong IP address.
D. The packet gets into a forwarding loop in the network.
For the next two questions, remember that computers don’t fail and that all tables are

initialized correctly.

Saltzer & Kaashoek Ch. ps, p. 92 June 24, 2009 12:21 am

23 SureThing PS–93

Q 23.2 Assume that c is an id whose immediate successor is not present in successors,
and n is the number of computers in the system. In the best case, how many remote
lookups are needed before GET_LOCATION (c) returns?

A. 0
B. 1
C. 2
D. O(log n)
E. O(n)
F. O(n2)

Q 23.3 Assume that c is an id whose immediate successor is not present in successors,
and n is the number of computers in the system. In the worst case, how many remote
lookups are needed before GET_LOCATION (c) returns?

A. 0
B. 1
C. 2
D. O(log n)
E. O(n)
F. O(n2)

Building the Content Layer. Having built the forwarding and routing layer, Alyssa
turns to building a content layer. At a high level, the system supports storing data that
has an ID associated with it. Specifically, it supports two operations:

A. PUT (c, content) stores content in the system with ID c.
B. GET (c) returns the content that was stored with ID c.

Content IDs are integers that can be used as arguments to GET_LOCATION. (In practice, one
can ensure that IDs are integers by using a hash function that maps human-readable
names to integers.)

Alyssa implements the content layer by using the forwarding and routing layer to
choose which computers to use to store the content. For reliability, she decides to store
every piece of content on two computers: the two immediate successors of the content’s
ID. She modifies GET_LOCATION to return both successors, calling the new version
GET_2LOCATIONS. For example, in Figure PS.3, if GET_2LOCATIONS is asked to find the con
tent item with ID C165, it returns the IP addresses of computers N174 and N205.

Once the correct computers are located using the forwarding and routing layer,
Alyssa’s implementation sends a PUT RPC to each of these computers to store the content
in a file in both places. (If one of the computers is the local computer, it does that store
with a local call to PUT rather than an RPC.)

To retrieve the content associated with a given ID, if either ID returned by
GET_2LOCATIONS is local it reads the file with a local GET. If not, it sends a GET RPC to the
computer with the first ID, requesting that the computer load the appropriate file from

Saltzer & Kaashoek Ch. ps, p. 93 June 24, 2009 12:21 am

PS–94 Problem Sets

disk, if it exists, and return its contents. If that RPC fails for some reason, it tries the sec
ond ID.

Q 23.4 Which of the following are the end-to-end properties of the content layer?
Assume that there are no failures of computers or disks while the system is running, that
all tables are initialized correctly, and that the network delivers every message correctly.

A.	 GET (c) always returns the same content that was stored with ID c.
B.	 PUT (c, content) stores the content at the two immediate successors of c.
C.	 GET returns the content from the immediate successor of c.
D. If the content has been stored on some computer, GET will find it.

Q 23.5 Now, suppose that individual computers may crash but the network continues
to deliver every message correctly. Which of the following properties of the content layer
are true?

A.	 One of the computers returned by GET_2LOCATIONS might not answer the GET or PUT

call.
B.	 PUT will sometimes be unable to store the content at the content’s two immediate

successors.
C.	 GET will successfully return the requested content, assuming it was stored previously.
D. If one of the two computers on which PUT stored the content has not crashed when GET

runs, GET will succeed in retrieving the content.

Improving Forwarding Performance. We now return to the forwarding and routing
layer and ignore the content layer.

Alyssa isn’t happy with the performance of the system, in particular GET_LOCATION. Her
friend Lem E. Tweakit suggests the following change: each computer maintains a
node_cache, which contains information about the IDs and IP addresses of computers
in the system. The node_cache table initially contains information about the computers
in successors.

For example, initially the node_cache at computer N232 contains entries for comput
ers N251, N8, N21, N36. But after computer N232 communicates with computer N36
and learns the ID and IP address of computer N96, N232’s node_cache would contain
entries for computers N251, N8, N21, N36, and N96.

Q 23.6 Assume that c is a content ID whose immediate successor is not one of the
computers listed in successors, and n is the number of computers in the system. In the
best case, how many remote lookups are needed before GET_LOCATION (c) returns?

A.	 0
B.	 1
C.	 2
D.	 O(log n)
E.	 O(n)
F.	 O(n2)

Saltzer & Kaashoek Ch. ps, p. 94	 June 24, 2009 12:21 am

24 Sliding Window PS–95

24 Sliding Window*

(Chapter 7[on-line])

2008–2–7

Consider the sliding window algorithm described in Chapter 7[on-line]. Assume the
topology in the figure below, where all links are duplex and have the same capacity and
delay in both directions. The capacities of the two links on the left are very large and can
be assumed infinite, while their propagation delays are negligible and can be assumed
zero. Both sources send to the same destination node.

Source 1

Capacity = infinite

1-way delay = 0 seconds

Destination

Capacity = 10 segments/second
R

1-way delay = 1 secondSource 2

Capacity = infinite

1-way delay = 0 seconds

Q 24.1 Assume the window size is fixed and only Source 1 is active. (Source 2 does not
send any traffic.) What is the smallest sliding window that allows Source 1 to achieve the
maximum throughput?

Source 1 does not know the bottleneck capacity and hence cannot compute the small
est window size that allows it to achieve the maximum throughput. Ben has an idea to
allow Source 1 to compute the bottleneck capacity. Source 1 transmits two data segments
back-to-back, i.e., as fast as possible. The destination sends an acknowledgment for each
data segment immediately.

Q 24.2 Assume that acks are significantly smaller than data segments, all data segments
are the same size, all acks are the same size, and only Source 1 has any traffic to transmit.
In this case, which option is the best way for Source 1 to compute the bottleneck
capacity?

A.	 Divide the size of a data segment by the interarrival time of two consecutive acks.
B.	 Divide the size of an ack by the interarrival time of two acks.
C.	 Sum the size of a data segment with an ack segment and divide the sum by the ack

interarrival time.

* Credit for developing this problem set goes to Dina Katabi.

Saltzer & Kaashoek Ch. ps, p. 95	 June 24, 2009 12:21 am

PS–96 Problem Sets

Now assume both Source 1 and Source 2 are active. Router R uses a large queue with
space for about 10 times the size of the sliding window of question 24.1. If a data seg
ment arrives at the router when the buffer is full, R discards that segment.

Source 2 uses standard TCP congestion control to control its window size. Source 1
also uses standard TCP, but hacks its congestion control algorithm to always use a fixed-
size window, set to the size calculated in question 24.1.

Q 24.3 Which of the following is true?

A. Source 1 will have a higher average throughput than Source 2.
B. Source 2 will have a higher average throughput than Source 1.
C. Both sources get the same average throughput.

Saltzer & Kaashoek Ch. ps, p. 96 June 24, 2009 12:21 am

25 Geographic Routing PS–97

25 	Geographic Routing*

(Chapter 7[on-line])

2008–2–3

Ben Bitdiddle is excited about a novel routing protocol that he came up with. Ben argues
that since Global Positioning System (GPS) receivers are getting very cheap, one can
equip every router with a GPS receiver so that the router can know its location and route
packets based on location information.

Assume that all nodes in a network are in the same plane and nodes never move. Each
node is identified by a tuple (x, y), where x and y are its GPS-derived coordinates, and no
two nodes have the same coordinates. Each node is joined by links to its neighbors, form
ing a connected network graph. A node informs its neighbors of its coordinates when it
joins the network and whenever it recovers after a failure.

When a source sends a packet, in place of a destination IP address, it puts the desti
nation coordinates in the packet header. (A sender can learn the coordinates of its
destination by asking Ben’s modified DNS, which he calls the Domain Name Location
Service.) When a router wants to forward a packet, it checks whether any of its neighbors
are closer to the destination in Euclidean distance than itself. If none of its neighbors is
closer, the router drops the packet. Otherwise the router forwards the packet to the
neighbor closest to the destination. Forwarding of a packet stops when that packet either
reaches a node that has the destination coordinates or is dropped.

Q 25.1 Which of these statements are true about the Ben’s geographic routing
algorithm?

A.	 If there are no failures, and no nodes join the network while packets are en route, no
packet will experience a routing loop.

B.	 If nodes fail while packets are en route, a packet may experience a routing loop.
C.	 If nodes join the network while packets are en route, a packet may experience a routing

loop.

Suppose that that there are no failures of either links or nodes, and also that no node
joins the network.

* Credit for developing this problem set goes to Dina Katabi.

Saltzer & Kaashoek Ch. ps, p. 97	 June 24, 2009 12:21 am

PS–98 Problem Sets

Q 25.2 Can Ben’s algorithm deliver packets between any source-destination pair in a
network? If yes, explain. If no, draw a counter example in the grid below, placing nodes
on grid intersections and making sure that links connect all nodes.

y

x

Q 25.3 For all packets that Ben’s algorithm delivers to their corresponding destinations,
does Ben’s algorithm use the same route as the path vector algorithm described in Section
7.4.2? If your answer is yes, then explain it. If your answer is no, then draw a counter
example.

y

x

Saltzer & Kaashoek Ch. ps, p. 98 June 24, 2009 12:21 am

26 Carl’s Satellite PS–99

26 Carl’s Satellite*

(Chapter 8[on-line])

Carl Coder decides to quit his job at an e-commerce start-up and go to graduate school.
He’s curious about the possibility of broadcasting data files through satellites, and decides
to build a prototype that does so.

Carl decides to start simple. He launches a satellite into a geosynchronous orbit, so
that the satellite is visible from all points in the United States. The satellite listens for
incoming bits on a radio up-channel, and instantly retransmits each bit on a separate
down-channel. Carl builds two ground stations, a sender and a receiver. The sending sta
tion sends on a radio to the satellite’s up-channel; the receiving station listens to the
satellite’s down-channel.

Carl’s test appli- procedure SENDER ()
cation is to send byte buffer[1024]
Associated Press do forever

read next AP story into buffer // may wait for next story(AP) news stories
SEND_BUFFER (buffer)

from a sending sta

tion, through the procedure SEND_BUFFER (byte buffer[1024])

satellite, to a receiv- for i from 0 to 1024 do

ing station; the SEND_8_BITS (buffer[i])

receiving station procedure RECEIVER ()

prints each story on byte buffer[1024]

a printer. AP stories do forever

always happen to ok ← RECV_BUFFER (buffer)

consist of 1024 char- if ok = TRUE then
print buffer on a printer

acters. Carl writes

the code at the left to procedure RECV_BUFFER (byte buffer[1024])

run on computers at for i from 0 to 1024 do

the sending and buffer[i] ← RECV_8_BITS ()

receiving stations
return (TRUE)

(Scheme 1).

The receiving radio hardware receives a bit if and only if the sending radio sends a bit.

This means the receiver receives the same number of bits that the sender sent. However,
the receiving radio may receive a bit incorrectly, due to interference from sources near
the receiver. The radio doesn’t detect such errors; it just hands the incorrect bit to the
computer at the receiving ground station with no warning. These incorrect bits are the
only potential faults in the system, other than (perhaps) flaws in Carl’s design. If the
computer tells the printer to print an unprintable character, the printer prints a question
mark instead.

* Credit for developing this problem set goes to Robert T. Morris.

Saltzer & Kaashoek Ch. ps, p. 99 June 24, 2009 12:21 am

PS–100 Problem Sets

After running the system for a while, Carl observes that it doesn’t always work cor
rectly. He compares the stories that are sent by the sender with the stories printed at the
receiver.

Q 26.1 What kind of errors might Carl see at the receiver’s printer?

A. Sometimes one or more characters in a printed story are incorrect.
B. Sometimes a story is repeated.
C. Sometimes stories are printed out of order.
D. Sometimes a story is entirely missing.

Q 26.2 The receiver radio manufacturer claims that the probability of receiving a bit
incorrectly is one in 105, and that such errors are independent. If these claims are true,
what fraction of stories is likely to be printed correctly?

Carl wants to make procedure SEND_BUFFER (byte buffer[1024])
his system more reli-	 byte sum ← 0 // byte is an eight-bit unsigned integer
able. He modifies his	 for i from 0 to 1024 do

sender code to calculate	 SEND_8_BITS (buffer[i])

sum ← sum + buffer[i]
the sum of the bytes in

SEND_8_BITS (sum)
each story, and append
the low 8 bits of that procedure RECV_BUFFER (byte buffer[1024])
sum to the story. He byte sum1, sum2

modifies the receiver to sum1 ← 0
for i from 0 to 1024 do

check whether the low	 buffer[i] ← RECV_8_BITS()
8 bits of the sum of the	 sum1 ← sum1 + buffer[i]
received bytes match	 sum2 ← RECV_8_BITS()

the received sum. His	 if sum1 = sum2 then return TRUE

else return FALSEnew code (Scheme 2) is

at the right.

Q 26.3 What kind of errors might Carl see at the receiver’s printer with this new system?

A. Sometimes one or more characters in a printed story are incorrect.
B. Sometimes a story is repeated.
C. Sometimes stories are printed out of order.
D. Sometimes a story is entirely missing.

Q 26.4 Suppose the sender sends 10,000 stories. Which scheme is likely to print a larger
number of these 10,000 stories correctly?

Carl decides his new system is good enough to test on a larger scale, and sets up 3 new
receive stations scattered around the country, for a total of 4. All of the stations can hear
the AP stories from his satellite. Users at each of the receivers call him up periodically
with a list of articles that don’t appear in their printer output so Carl can have the system
re-send them. Users can recognize which stories don’t appear because the Associated
Press includes a number in each story, and assigns numbers sequentially to successive
stories.

Saltzer & Kaashoek Ch. ps, p. 100	 June 24, 2009 12:21 am

26 Carl’s Satellite PS–101

Q 26.5 Carl visits the sites after the system has been in operation for a week, and looks
at the accumulated printouts (in the order they were printed) at each site. Carl notes that
the first and last stories were received by all sites and all sites have received all
retransmissions they have requested. What kind of errors might he see in these printouts?

A. Sometimes one or more characters in a printed story are incorrect.
B. Sometimes a story is repeated.
C. Sometimes stories are printed out of order.
D. Sometimes a story is entirely missing.

Q 26.6 Suppose Carl sends out four AP stories. Site 1 detects an error in just the first
story; site 2 detects an error in just the second story; site 3 detects an error in just the
third story; and site 4 receives all 4 stories correctly. How many stories will Carl have to
re-send? Assume any resent stories are received and printed correctly.

After hearing about RAID, Carl realizes he could improve his system even more. He
modifies his sender to send an extra “parity story” after every four AP stories; the parity
story consists of the exclusive or of the previous four real stories. If one of the four stories
is damaged, Carl’s new receiver reconstructs it as the exclusive or of the parity and the
other three stories.

His new pseudocode uses the checksumming versions of SEND_BUFFER () and
RECV_BUFFER () to detect damaged stories.

Saltzer & Kaashoek Ch. ps, p. 101 June 24, 2009 12:21 am

PS–102 Problem Sets

procedure SENDER ()

byte buffer[1024]

byte parity[1024]

do forever

clear parity[] to all zeroes
for i from 0 to 4 do

read next AP story into buffer
SEND_BUFFER (buffer)
parity ← parity ⊕ buffer // XOR’s the whole buffer

SEND_BUFFER (parity)

procedure RECEIVER ()
byte buffers[5][1024] // holds the 4 stories and the parity
boolean ok[5] // records which ones have been

// received correctly
integer n // count buffers received correctly
do forever

n ← 0
for i from 0 to 5 do

ok[i] ← RECV_BUFFER (buffers[i])
if ok[i] then n ← n + 1

for i from 0 to 4 do
if ok[i] then print buffers[i] // buffers[i] is correct
else if n = 4 then // reconstruct buffers[i]

clear buffers[i] to all zeroes
for j from 0 to 5 do

if i ≠ j then
buffers[i] ← buffers[i] ⊕ buffers[j] // XOR two buffers

print buffers[i]
// don’t print if you cannot reconstruct

Q 26.7 Suppose Carl sends out four AP stories with his new system, followed by a
parity story. Site 1 is just missing the first story; site 2 is just missing the second story;
site 3 is just missing the third story; and site 4 receives all stories correctly. How many
stories will Carl have to re-send? Assume any re-sent stories are received and printed
correctly.

Q 26.8 Carrie, Carl’s younger sister, points out that Carl is using two forms of
redundancy: the parity story and the checksum for each story. Carrie claims that Carl
could do just as well with the parity alone, and that the checksum serves no useful
function. Is Carrie right? Why or why not?

2001–3–6…13

Saltzer & Kaashoek Ch. ps, p. 102 June 24, 2009 12:21 am

27 RaidCo PS–103

27 RaidCo*

(Chapter 8[on-line])

2007–2–11

RaidCo is a company that makes pin-compatible hard disk replacements using tiny, chip-
sized hard disks (“microdrives”) that have become available cheaply. Each RaidCo
product behaves like a hard disk, supporting the operations:

• 	 error ← GET (nblocks, starting_block_number, buffer_address)
• 	 error ← PUT (nblocks, starting_block_number, buffer_address)

to get or put an integral number of consecutive blocks from or to the disk array. Each
operation returns a status value indicating whether an error has occurred.

RaidCo builds each of its disk products using twelve tiny, identical microdrives con
figured as a RAID system, as described in Section 2.1.1.4. A team of ace students
designed RaidCo’s system, and they did a flawless job of implementing six different
RaidCo disk models. Each model uses identical hardware (including a processor and the
twelve microdrives), but the models use different forms of RAID in their implementa
tions and offer varying block sizes and performance characteristics to the customer. Note
that the RAID systems’ block sizes are not necessarily the same as the sector size of the
component microdrives.

The models are as follows (they are described in the text at the places indicated in
parentheses):

• 	R0: sector-level striping across all twelve microdrives, no redundancy/error
correction (see Section 6.1.5)

• 	 R1: six pairs of two mirrored microdrives, no striping (see Section 8.5.4.6)
• 	R2:12-microdrive RAID 2, using bit-level striping, error detection, and error

correction); microdrive’s internal sector-level error detection is disabled.
• 	 R3: 12-microdrive RAID 3, using sector-level striping and error correction.
• 	 R4: 12-microdrive RAID 4, no striping, dedicated parity disk (see Figure 8.6)
• 	 R5: 12-microdrive RAID 5, no striping, distributed parity (see exercise 8.10)

‘

The microdrives each conform to the same read/write API sketched above, each
microdrive providing 100,000 sectors of 1,000 bytes each, and offering a uniform 10
millisecond seek time and a read/write bandwidth of 100 megabytes per second; thus the
entire 100 megabytes of data on a microdrive can be fetched using a single GET operation
in one second. The RaidCo products do no caching or buffering: each GET or PUT involves
actual data transfer to or from the involved microdrives. Since the microdrives have
uniform seek time, the RaidCo products do not need, and do not use, any seek
optimizations.

* Credit for developing this problem set goes to Stephen A. Ward.

Saltzer & Kaashoek Ch. ps, p. 103	 June 24, 2009 12:21 am

PS–104 Problem Sets

Q 27.1 As good as the students were at programming, they unfortunately left the
documentation unfinished. Your job is to complete the following table, showing certain
specifications for each model drive (i.e., the size and performance parameters of the API
supported by each RAID system). Entries assume error-free operation, and ignore
transfer times that are small compared to seek times encountered.

R0 R1 R2 R3 R4 R5

Block size
(kilobytes)
exposed to
GET/PUT

1 kB 1 kB 11 kB 1 kB

Capacity, in
blocks

1,100,000

Max time for a
single 100
megabyte GET

(seconds)

1/12 s 1 s 1 s

Time for a 1
block PUT

(milliseconds)

10 ms 10 ms 10 ms 20 ms

Typical number
of microdrives
involved in a
1-block GET

1 1

Typical number
of microdrives
involved in
2-block GET

2 1 1

Typical number
of microdrives
involved in
2-block PUT

2

Saltzer & Kaashoek Ch. ps, p. 104 June 24, 2009 12:21 am

28 ColdFusion PS–105

28 ColdFusion*

(Chapter 8[on-line], with a bit of Chapter 9[on-line])

Alyssa P. Hacker and Ben Bitdiddle are designing a hot new system, called ColdFusion,
whose goal is to allow users to back up their storage systems with copies stored in a
distributed network of ColdFusion servers. Users interact with ColdFusion using PUT and
GET operations.

• 	 PUT (data, fid) takes a data buffer and reliably stores it under a unique identifier
fid, a positive integer, on some subset of the servers. It returns SUCCESS if it was
successful in storing it on all the machines in the chosen subset, and FAILURE

otherwise.
• 	 GET (fid) returns the contents of the most recent successful PUT to the system for

the file identified by fid.

Because high availability is a key competitive advantage, Alyssa decides to replicate
user data on more than one server machine. But rather than replicate each file on every
server, she decides to be clever and use only a subset of the servers for each file. Thus, the
PUT of a file stores it on some number (A) of the servers, invoking a SERVER_PUT operation
on each server. server_put is atomic and is implemented by each server.

If PUT is unable to successfully store the file on A servers, it returns FAILURE.
When a client does a GET of the file, the GET software attempts to retrieve the file from

some subset of the servers and picks the version using an election algorithm. It chooses
B servers to read data from, using an atomic SERVER_GET operation implemented by each
server, following which it calls PICK_MAJORITY (). PICK_MAJORITY returns valid data corre
sponding to a version that is shared by more than 50% of the B copies retrieved, and NULL

otherwise. Even though the client may not know which specific servers hold the current
copy, the number of servers (A) in PUT and the number (B) in GET are chosen so that if a
client GET succeeds, it is certain to have received the most recent copy.

They write the following code for PUT and GET. There are S servers in all, and S > 2.
The particular ordering of the servers in the code below may be different at different cli
ents, but all clients have the same list. They hire you as a consultant to help them figure
out the missing parameters (A and B) and analyze the system for correctness.

* Credit for developing this problem set goes to Hari Balakrishnan.

Saltzer & Kaashoek Ch. ps, p. 105	 June 24, 2009 12:21 am

PS–106 Problem Sets

// Internet addresses of the S servers, S > 2
ip_address server[S] // each client may have a different ordering

procedure PUT (byte data[], integer fid)
integer ntried, nputs ← 0 // # of servers tried and # successfully put
for ntried from 0 to S do

// Put “data” into a file identified by fid at server[ntried]

status ← SERVER_PUT (data, fid, server[ntried])

if status = success then nputs ← nputs + 1

if nputs ≥ A then // yes! have SERVER_PUT () to A servers!

return SUCCESS;
return FAILURE // found < A servers to SERVER_PUT() to

procedure GET (integer fid, byte data[])
integer ntried, ngets ← 0 // # times tried and

// # times server_get returned success
byte files[S][MAX_FILE_LENGTH] // array of files; an entry is a copy from a server
integer index
byte data[]
for ntried from 0 to S do

// Get file fid into buffer files[ntried] from server[ntried]

status ← SERVER_GET (fid, files[ntried], server[ntried])

if status = success then ngets ← ngets + 1

if ngets ≥ B then // yes! have gotten data from B servers

// PICK_MAJORITY () takes the array of files and magically
// knows which ones are valid. It scans the ngets valid
// ones and returns an index in the files[] array for one
// of the good copies, which corresponds to a version returned
// by more than 50% of the servers. Otherwise, it returns –1.
// If ngets = 1, PICK_MAJORITY () simply returns an index to
// that version.
index ← PICK_MAJORITY (files, ngets);
if index ≠ –1 then

COPY (data, files[index]) // copy into data buffer
return SUCCESS

else return FAILURE

return failure // didn’t find B servers to SERVER_GET from

For questions Q 28.1 through Q 28.4, assume that operations execute serially (i.e., there
is no concurrency). Assume also that the end-to-end protocol correctly handles all packet
losses and delivers messages in to a recipient in the same order that the sender dispatched
them. In other words, no operations are prevented from completing because of lost or
reordered packets. However, servers may crash and subsequently recover.

Q 28.1 Which reliability technique is the best description of the one being attempted
by Alyssa and Ben?

A. Fail-safe design.
B. N-modular redundancy.
C. Pair-and-compare.
D. Temporal redundancy.

Saltzer & Kaashoek Ch. ps, p. 106 June 24, 2009 12:21 am

28 ColdFusion PS–107

Q 28.2 Which of the following combinations of A and B in the code above ensures that
GET returns the results of the last successful PUT, as long as no servers fail? (Here, x is
the largest integer ≤ x , and y is the smallest integer ≥ y. Thus 2.3 = 2 and

2.3 = 3 . Remember also that S > 2)

A. A = 1 B = S
B. A = S ⁄ 3 B = S
C. A = S ⁄ 2 B = S
D. A = (3S) ⁄ 4 B = S ⁄ 2 + 1
E. A = S B = 1

Q 28.3 Suppose that the number of servers S is an odd number larger than 2, and that
the number of servers used for PUT is A = S ⁄ 2 . If only PUT and no get operations
are done, how does the mean time to failure (MTTF) of the PUT operation change as S
increases? The PUT operation fails if the return value from PUT is FAILURE. Assume that the
process that causes servers to fail is memoryless, and that no repairs are done.

A.	 As S increases, there is more redundancy. So, the MTTF increases.
B.	 As S increases, one still needs about one-half of the servers to be accessible for a

successful PUT. So, the MTTF does not change with S.
C.	 As S increases the MTTF decreases even though we have more servers in the system.
D. The MTTF is not a monotonic function of S; it first decreases and then increases.

Q 28.4 Which of the following is true of ColdFusion’s PUT and GET operations, for
choices of A and B that guarantee that GET successfully returns the data from the last
successful PUT when no servers fail.

A.	 A PUT that fails because some server was unavailable to it, done after a successful PUT,
may cause subsequent GET attempts to fail, even if B servers are available.

B.	 A failed PUT attempt done after a successful PUT cannot cause subsequent GET attempts
to fail if B servers are available.

C.	 A failed PUT attempt done after a successful PUT always causes subsequent GET attempts
to fail, even if B servers are available.

D. None of the above.

ColdFusion unveils their system for use on the Internet with S = 15 servers, using
A = 2S/3 and B = 1 + 2S/3. However, they find that the specifications are not always
met—several times, GET does not return the data from the last PUT that returned SUCCESS.

In questions Q 28.5 through Q 28.8, assume that there may be concurrent
operations.

Saltzer & Kaashoek Ch. ps, p. 107	 June 24, 2009 12:21 am

PS–108 Problem Sets

Q 28.5 Under which of these scenarios does ColdFusion always meet its specification
(i.e., GET returns SUCCESS and the data corresponding to the last successful PUT)?

A.	 There is no scenario under which ColdFusion meets its specification for this choice of
A and B.

B.	 When a user PUT’s data to a file with some fid, and at about the same time someone else
PUT’s different data to the same fid.

C.	 When a user PUT’s a file successfully from her computer at home, drives to work and
attempts to GET the file an hour later. In the meantime, no one performs any PUT

operations to the same file, but three of the servers crash and are unavailable when she
does her GET.

D. When the PUT of a file succeeds at some point in time, but some subsequent PUT’s fail
because some servers are unavailable, and then a GET is done to that file, which returns
SUCCESS.

2000–3–12

You tell Ben to pay attention to multisite coordination, and he implements his ver
sion of the two-phase commit protocol. Here, each server maintains a log containing
READY (a new record he has invented), ABORT, and COMMIT records. The server always
returns the last COMMITed version of a file to a client.

In Ben’s protocol, when the client PUTs a file, the server returns SUCCESS or FAILURE as
before. If it returns SUCCESS, the server appends a READY entry for this fid in its log. If the
client sees that all the servers it asked returns SUCCESS, it sends a message asking them all
to COMMIT. When a server receives this message, it writes a COMMIT entry in its log together
with the file’s fid. On the other hand, if even one of the servers returns FAILURE, the client
sends a message to all the servers asking them to abort the operation, and each server
writes an ABORT entry in its log. Finally, if a server gets a server put request for some fid

that is in the READY state, it returns FAILURE to the requesting client.

Q 28.6 Under which of these scenarios does ColdFusion always meet its specification
(i.e., GET returns SUCCESS and the data corresponding to the last successful PUT)?

A.	 There is no scenario under which ColdFusion meets its specification for this choice of
A and B.

B.	 When a user PUT’s data to a file with some fid, and at about the same time someone else
PUT’s different data to the same fid.

C.	 When a user PUT’s a file successfully from her computer at home, drives to work and
attempts to GET the file an hour later. In the meantime, no one performs any PUT

operations to the same file, but three of the servers crash and are unavailable when she
does her GET.

D. When the PUT of a file succeeds at some point in time and the corresponding COMMIT

messages have reached the servers, but some subsequent PUTs fail because some servers
are unavailable, and then a GET is done to that file, which returns SUCCESS.

Q 28.7 When a server crashes and recovers, the original clients that initiated PUT’s may
be unreachable. This makes it hard for a server to know the status of its READY actions,

Saltzer & Kaashoek Ch. ps, p. 108	 June 24, 2009 12:21 am

28 	ColdFusion PS–109

since it cannot ask the clients that originated them. Assuming that no more than one
server is unavailable at any time in the system, which of the following strategies allows a
server to correctly learn the status of a past READY action when it recovers from a crash?

A.	 Contact any server that is up and running and call SERVER_GET with the file’s fid; if the

server responds, change READY to COMMIT in the log.

B.	 Ask all the other servers that are up and running using server GET() with the file’s fid; if

more than 50% of the other servers respond with identical data, just change READY to

COMMIT.

C.	 Pretend to be a client and invoke GET with the file’s fid; if GET is successful and the data

returned is the same as what is at this server, just change READY to COMMIT.

D. None of the above.

To accommodate the possibility of users operating on entire directories at once,
ColdFusion adds a two-phase locking protocol on individual files within a directory.
Alyssa and Ben find that although this sometimes works, deadlocks do occur when a GET

owns some locks that a PUT needs, and vice versa.

Q 28.8 Ben analyzes the problem and comes up with several “solutions” (as usual).
Which of his proposals will actually work, always preventing deadlocks from happening?

A.	 Ensure that the actions grab locks for individual files in increasing order of the fid of

the file.

B.	 Ensure that no two actions grab locks for individual files in the same order.
C.	 Assign an incrementing timestamp to each action when it starts. If action Ai needs a

lock owned by action Aj with a larger timestamp, abort action Ai and continue.

D. Assign an incrementing timestamp to each action when it starts. If action Ai needs a

lock owned by action Aj with a smaller timestamp, abort action Ai and continue.
2000–3–8…15

Saltzer & Kaashoek Ch. ps, p. 109	 June 24, 2009 12:21 am

PS–110 Problem Sets

29 AtomicPigeon!.com
(Chapter 9[on-line] but based on Chapter 7[on-line])

After selling PigeonExpress!.com and taking a trip around the world, Ben Bitdiddle is
planning his next start-up, AtomicPigeon!.com. AtomicPigeon improves over
PigeonExpress by offering an atomic data delivery system.

Recall from problem set 18 that when sending a pigeon, Ben’s software prints out a
little header and writes a CD, both of which are given to the pigeon. The header contains
the GPS coordinates of the sender and receiver, a type (REQUEST or ACKNOWLEDGMENT), and
a sequence number:

structure header

GPS source

GPS destination

integer type

integer sequence_no

Ben starts with the code for the simple end-to-end protocol (BEEP) for PigeonEx
press!.com. He makes a number of modifications to the sending and receiving code.

At the sender, Ben simplifies the code. The BEEP protocol transfers only a single CD:

shared next_sequence initially 0 // a globally shared sequence number.

procedure BEEP (target, CD[]) // send 1 CD to target
header h // h is an instance of header.
h.source ← MY_GPS // set source to my GPS coordinates
h.destination ← target // set destination
h.type ← REQUEST // this is a request message
h.sequence_no ← next_sequence // set seq number
// loop until we receive the corresponding ack, retransmitting if needed
while h.sequence_no = next_sequence do

send pigeon with h, CD // transmit
wait 2,000 seconds

As before, pending and incoming acknowledgments are processed only when the
sender is waiting:

procedure PROCESS_ACK (h) // process acknowledgment
if h.sequence_no = sequence then // ack for current outstanding CD?

next_sequence ← next_sequence + 1

Ben makes a small change to the code running on the receiving computer. He adds a
variable expected_sequence at the receiver, which is used by PROCESS_REQUEST to filter
duplicates:

Saltzer & Kaashoek Ch. ps, p. 110 June 24, 2009 12:21 am

http:AtomicPigeon!.com
http:press!.com

29 AtomicPigeon!.com PS–111

integer expected_sequence initially 0 // duplicate filter.

procedure PROCESS_REQUEST (h, CD) // process request
if h.sequence_no = expected_sequence then // the expected seq #?

PROCESS (CD) // yes, process data
expected_sequence ← expected_sequence + 1 // increase expectation

h.destination ← h.source // send to where the pigeon came from
h.source ← MY_GPS
h.sequence_no ← h.sequence_no // unchanged
h.type ← ACKNOWLEDGMENT;
send pigeon with h // send an acknowledgment back

The assumptions for the pigeon network are the same as in problem set 18:

• 	Some pigeons might get lost, but, if they arrive, they deliver data correctly
(uncorrupted)

• 	 The network has one sender and one receiver
• 	 The sender and the receiver are single-threaded

Q 29.1 Assume the sender and receiver do not fail (i.e., the only failures are that some
pigeons may get lost). Does PROCESS in PROCESS_REQUEST process the value of CD exactly
once?

A.	 Yes, since next_sequence is a nonce and the receiver processes data only when it sees a
new nonce.

B.	 No, since next_sequence and expected_sequence may get out of sync because the
receiver acknowledges requests even when it skips processing.

C.	 No, since if the acknowledgment isn’t received within 2,000 seconds, the sender will
send the same data again.

D. Yes, since pigeons with the same data are never retransmitted.

Ben’s new goal is to provide atomicity, even in the presence of sender or receiver fail
ures. The reason Ben is interested in providing atomicity is that he wants to use the
pigeon network to provide P-commerce (something similar to E-commerce). He would
like to write applications of the form:

procedure TRANSFER (amount, destination)

WRITE (amount, CD) // write amount on a CD

BEEP (destination, CD) // send amount

The amount always fits on a single CD.
If the sender or receiver fails, the failure is fail-fast. For now, let’s assume that if the

sender or receiver fails, it just stops and does not reboot; later, we will relax this
constraint.

Saltzer & Kaashoek Ch. ps, p. 111	 June 24, 2009 12:21 am

PS–112 Problem Sets

Q 29.2 Given the current implementation of the BEEP protocol and assuming that only
the sender may fail, what could happen during, say, the 100th call to TRANSFER?

A. That TRANSFER might never succeed.
B. That TRANSFER might succeed.
C. PROCESS in PROCESS_REQUEST might process amount more than once.
D. PROCESS in PROCESS_REQUEST might process amount exactly once.

Ben’s goal is to make transfer always succeed by allowing the sender to reboot and
finish failed transfers. That is, after the sender fails, it clears volatile memory (including
the nonce counter) and restarts the application. The application starts by running a
recovery procedure, named RECOVER_SENDER, which retries a failed transfer, if any.

To allow for restartable transfers, Ben supplies the sender and the receiver with dura
ble storage that never fails. On the durable storage, Ben stores a log, in which each entry
has the following form:

structure log_entry
integer type // STARTED or COMMITTED

integer sequence_no // a sequence number

The main objective of the sender’s log is to allow RECOVER_SENDER to restore the value
of next_sequence and to allow the application to restart an unfinished transfer, if any.

Ben edits TRANSFER to use the log:

1 procedure TRANSFER (amount, destination)
2 WRITE (amount, CD) // write amount on a CD
3 ADD_LOG (STARTED, next_sequence) // append STARTED record
4 BEEP (destination, CD) // send amount (BEEP increases next_sequence)
5 ADD_LOG (COMMITTED, next_sequence – 1) // append COMMITTED record

ADD_LOG atomically appends a record to the log on durable storage. If ADD_LOG returns,
the entry has been appended. Logs contain sufficient space for new records and they don’t
have to be garbage collected.

Q 29.3 Identify the line in this new version of TRANSFER that is the commit point.

Q 29.4 How can the sender discover that a failure caused the transfer not to complete?

A. The log contains a STARTED record with no corresponding COMMITTED record.
B. The log contains a STARTED record with a corresponding ABORTED record.
C. The log contains a STARTED record with a corresponding COMMITTED record.
D. The log contains a COMMITTED record with no corresponding STARTED record.

Ben tries to write RECOVER_SENDER recover next_sequence, but his editor crashes before
committing the final editing and the expression in the if-statement is missing, as indi-

Saltzer & Kaashoek Ch. ps, p. 112 June 24, 2009 12:21 am

29 AtomicPigeon!.com PS–113

cated by a “?” in the code below. Your job is to edit the code such that the correct
expression is evaluated.

procedure RECOVER_SENDER ()
next_sequence ← 0
starting at end of log…
for each entry in log do

if (?) then // What goes here? (See question 29.6)
next_sequence ← (sequence_no of entry) + 1
break // terminate scan of log

Q 29.5 After you edit RECOVER_SENDER for Ben, which of the following sequences could
appear in the log? (The log records are represented as <type sequence_no>.

A.	 …, <STARTED 1>, <COMMITTED 1>, <STARTED 2>, <COMMITTED 2>
B.	 …, <STARTED 1>, <STARTED 1>, <COMMITTED 1>
C.	 …, <STARTED 1>, <STARTED 1>, <STARTED 2>, <COMMITTED 1>, <STARTED 2>
D. …, <STARTED 1>, <COMMITTED 1>, <COMMITTED 1>

Q 29.6 What expression should replace the ? in the RECOVER_SENDER code above?

A.	 entry.type = COMMITTED

B.	 entry.type = STARTED

C.	 entry.type = ABORTED

D. FALSE

Q 29.7 Given the current implementation of the BEEP protocol what could happen, say,
during the 100th call to TRANSFER? (Remember only the sending computer may fail.)

A.	 If the sending computer keeps failing during recovery, that TRANSFER might never
succeed.

B.	 That TRANSFER might succeed.
C.	 PROCESS in PROCESS_REQUEST might process amount more than once.
D. PROCESS in PROCESS_REQUEST might process amount exactly once.

Ben’s next goal is to make PROCESS_REQUEST all-or-nothing. In the following questions,
assume that whenever the receiving computer fails, it reboots, calls RECOVER_RECEIVER, and
after RECOVER_RECEIVER is finished, it waits for messages and calls PROCESS_REQUEST on each
message.

To make expected_sequence all-or-nothing, Ben tries to change the receiver in a way
similar to the change he made to the sender. Again, his editor didn’t commit all the
changes in time. The missing code is marked by “?” and “#”. The missing expression

Saltzer & Kaashoek Ch. ps, p. 113	 June 24, 2009 12:21 am

PS–114 Problem Sets

marked by “?” evaluates the same expression as did the “?” in RECOVER_SENDER. The new
missing expressions are marked by “#” in PROCESS_REQUEST:

procedure RECOVER_RECEIVER ()

expected_sequence ← 0

starting at end of log…

for each entry in log do

if (?) then // The expression of question 29.6
expected_sequence ← sequence_no of entry + 1
break // terminate scan of log

1 procedure PROCESS_REQUEST (h, CD)
2 if h.sequence_no = expected_sequence then // the expected seq #?
3 ADD_LOG (#, #) // ? See question 29.8.
4 PROCESS (CD) // yes, process data
5 expected_sequence ← expected_sequence + 1// increase expectation
6 ADD_LOG (#, #) // ? See question 29.8.
7 h.destination ← source of h // send to where the pigeon came from
8 source of h.source ← MY_GPS
9 h.sequence_no ← h.sequence_no // unchanged
10 h.type ← ACKNOWLEDGMENT

11 send pigeon with h // send an acknowledgment back

As you can see from the code, Ben chose not to implement a write-ahead protocol
because PROCESS is implemented by a third party, for example, a bank: PROCESS might be
a call into the bank’s transaction database system.

Q 29.8 Complete the ADD_LOG calls on the lines 3 and 6 in PROCESS_REQUEST such that
expected_sequence will be all-or-nothing.

(3 ADD_LOG ,)

6 ADD_LOG (,)

Q 29.9 Can PROCESS in PROCESS_REQUEST be called multiple times for a particular call to
TRANSFER?

A.	 No, because expected_sequence is recovered and h.sequence_no is checked against it.
B.	 Yes, because failed transfers will be restarted and result in the acknowledgment being

retransmitted.
C.	 Yes, because after 2,000 seconds a request will be retransmitted.
D. Yes, because the receiver may fail after PROCESS, but before it commits.

Q 29.10 How should PROCESS, called by PROCESS_REQUEST, be implemented to guarantee
exactly-once semantics for transfers? (Remember that the sender is persistent.)

A.	 As a normal procedure call;
B.	 As a remote procedure call;
C.	 As a nested transaction;
D. As a top-level transaction.

1999–3–5…14

Saltzer & Kaashoek Ch. ps, p. 114	 June 24, 2009 12:21 am

30 Sick Transit PS–115

30 Sick Transit*

(Chapter 9[on-line])

Gloria Mundi, who stopped reading the text before getting to Chapter 9[on-line], is
undertaking to resurrect the failed London Ambulance Service as a new streamlined
company called Sick Transit. She has built a new computer she intends to use for
processing ST’s activities.

A key component in Gloria’s machine is a highly reliable sequential-access infinite
tape, which she plans to use as an append-only log. Records can be appended to the tape,
but once written are immutable and durable. Records on the tape can be read any num
ber of times, from front-to-back or from back-to-front. There is no disk in the ST
system; the tape is the only non-volatile storage.

Because of the high cost of the infinite tape, Gloria compromised on the quality of
more conventional components like RAM and CPU, which fail frequently but fortu
nately are fail-fast: every error causes an immediate system crash. Gloria plans to ensure
that, after a crash, a consistent state can be reconstructed from the log on the infinite
tape.

Gloria’s code uses transactions, each identified by a unique transaction ID. The visi
ble effect of a completed transaction is confined to changes in global variables whose
WRITE operations are logged. The log will contain entries recording the following
operations:

BEGIN (tid) // start a new transaction, whose unique ID is tid
COMMIT (tid) // commit a transaction
ABORT (tid) // abort a transaction
WRITE (tid, variable, old_value, new_value)

// write a global variable, specifying previous & new values.

To keep the system simple, Gloria plans to use the above forms as the application-code
interface, in addition to a READ (tid, variable) call which returns the current value of
variable. Each of the calls will perform the indicated operation and write a log entry as
appropriate. Reading an unwritten variable is to return ZERO.

Gloria begins by considering the single-threaded case (only one transaction is active
at any time). She stores values of global variables in a table in RAM. Gloria is now trying
to figure out how to reset variables to committed values following a crash, using the log
tape.

* Credit for developing this problem set goes to Stephen A. Ward.

Saltzer & Kaashoek Ch. ps, p. 115 June 24, 2009 12:21 am

PS–116 Problem Sets

Q 30.1 In the single-threaded case, what value should variable v be restored to following
a crash?

A.	 37
B.	 new_value from the last logged WRITE (tid, v, old_value, new_value) or ZERO if

unwritten.
C.	 new_value from the last logged WRITE (tid, v, old_value, new_value) that is not

followed by an ABORT (tid), or ZERO if unwritten.
D. new_value from the last logged WRITE (tid, v, old_value, new_value) that is followed

by a COMMIT (tid), or ZERO otherwise.
E.	 Either old_value or new_value from the last logged WRITE (tid, v, old_value,

new_value), depending on whether that WRITE is followed by a COMMIT on the same tid,
or ZERO if unwritten.

Gloria now tries running concurrent transactions on her system. Accesses to the log
are serialized by the sequential-access tape drive.

Her first trial involves concurrent execution of these two transactions:

BEGIN (t1) BEGIN (t2)
t1x ← READ (x) t2x ← READ (x)
t1y ← READ (y) t2y ← READ (y)
WRITE (t1, x, t1x, t1y + 1) WRITE (t2, y, t2y, t2x + 2)

COMMIT (t1)	 COMMIT (t2)

The initial values of x and y are ZERO, as are all uninitialized variables in her system. Here
the READ primitive simply returns the most recently written value of a variable from the
RAM table, ignoring COMMITs.

Q 30.2 In the absence of locks or other synchronization mechanism, will the result
necessarily correspond to some serial execution of the two transactions?

A.	 Yes.
B.	 No, since the execution might result in x = 3, y = 3.
C.	 No, since the execution might result in x = 1, y = 3.
D. No, since the execution might result in x = 1, y = 2.

Gloria is considering using locks, and automatically adding code to each transaction
to guarantee before-or-after atomicity. She would like to maximize concurrency; she is,
however anxious to avoid deadlocks. For each of the following proposals, decide whether
the approach (1) yields semantics consistent with before-or-after atomicity and (2) intro
duces potential deadlocks.

Q 30.3 A single, global lock which is ACQUIREd at the start of each transaction and
RELEASEd at COMMIT.

Q 30.4 A lock for each variable. Every READ or WRITE operation is immediately
surrounded by an ACQUIRE and RELEASE of that variable’s lock.

Saltzer & Kaashoek Ch. ps, p. 116	 June 24, 2009 12:21 am

30 	Sick Transit PS–117

Q 30.5 A lock for each variable that a transaction READS or WRITEs, acquired immediately
prior to the first reference to that variable in the transaction; all locks are released at
COMMIT.

Q 30.6 A lock for each variable that a transaction READS or WRITEs, acquired in
alphabetical order, immediately following the BEGIN. All locks are released at COMMIT.

Q 30.7 A lock for each variable a transaction WRITEs, acquired, in alphabetical order,
immediately following the BEGIN. All locks are released at COMMIT.

In the general case (concurrent transactions) Gloria would like to avoid having to read
the entire log during crash recovery. She proposes periodically adding a CHECKPOINT entry
to the log, and reading the log backwards from the end restoring committed values to
RAM. The backwards scan should end as soon as committed values have been restored
to all variables. Each CHECKPOINT entry in the log contains current values of all variables
and a list of uncommitted transactions at the time of the CHECKPOINT.

Q 30.8 What portion of the tape must be read to properly restore values committed at
the time of the crash?

A.	 All of the tape; checkpoints don’t help.
B.	 Enough to include the STARTED record from each transaction that was uncommitted at

the time of the crash.

C.	 Enough to include the last CHECKPOINT, as well as the STARTED record from each

transaction that was uncommitted at the time of the crash.

D. Enough to include the last CHECKPOINT, as well as the STARTED record from each

transaction that was uncommitted at the time of the last checkpoint.

Simplicity Winns, Gloria’s one-time classmate, observes that since global variable val
ues can be reconstructed from the log their storage in RAM is redundant. She proposes
eliminating the RAM as well as all of Gloria’s proposed locks, and implementing a READ

(tid, var) primitive which returns an appropriate value of var by examining the log.
Simplicity’s plan is to implement READ so that each transaction a “sees” the values of

global values at the time of BEGIN (a), as well as changes made within a. She quickly
sketches an implementation of READ which she claims gives appropriate atomicity
semantics:

procedure READ(tid, var)
winners ← EMPTY // winners is a list.
prior ← FALSE

for each entry in log do
if entry is STARTED (tid) then prior ← TRUE

if entry is COMMITTED (Etid) and prior = TRUE then add Etid to winners
if entry is WRITE (Etid, var, old_value, new_value) then

if Etid = tid then return new_value

if Etid is in winners then return new_value

return 0

Saltzer & Kaashoek Ch. ps, p. 117	 June 24, 2009 12:21 am

PS–118 Problem Sets

Gloria is a little dazed by Simplicity’s quick synopsis, but thinks that Simplicity is
likely correct. Gloria asks your help in figuring out what Simplicity’s algorithm actually
does.

Q 30.9 Suppose transaction t READs variable x but does not write it. Will each READ of x

in t see the same value? If so, concisely describe the value returned by each READ; if not,
explain.

Q 30.10 Does Simplicity’s scheme REALLY offer transaction semantics yet avoid
deadlocks?

A.	 Yup. Read it and weep, Gloria.
B.	 It doesn’t introduce deadlocks, but doesn’t guarantee before-or-after transaction

semantics either.
C.	 It gives before-or-after transactions, but introduces possible deadlocks.
D. Simplicity’s approach doesn’t work even when there’s no concurrency—it gives wrong

answers.

Q 30.11 The real motivation of the Sick Transit problem is a stupid pun. What does sic
transit gloria mundi actually mean?

A.	 Thus passes a glorious Monday.
B.	 Thus passes the glory of the world.
C.	 Gloria threw up on the T Monday.
D. This bus for First Class and Coach.
E.	 This is the last straw! If I wanted to take @#%!*% Latin, I’d have gone to Oxford.

1997–3–6…15

Saltzer & Kaashoek Ch. ps, p. 118	 June 24, 2009 12:21 am

31 The Bank of Central Peoria, Limited PS–119

31 The Bank of Central Peoria, Limited
(Chapter 9[on-line])

Ben Bitdiddle decides to go into business. He bids $1 at a Resolution Trust Corporation
auction and becomes the owner of the Bank of Central Peoria, Limited (BCPL).

When he arrives at BCPL, Ben is shocked to learn that the only programmer who
understood BCPL’s database has left the company to work on new animation techniques
for South Park. Hiring programmers is difficult in Peoria, so Ben decides to take over the
database code himself.

Ben learns that an account is represented as a structure with the following
information:

structure account
integer account_id // account identification number
integer balance // account balance

The BCPL system implements a standard transaction interface for accessing
accounts:

tid ← BEGIN () // Starts a new transaction that will be identified as number tid

balance ← READ (tid, account.account_id) // Returns the balance of an account

WRITE (tid, account.account_id, newbalance) // Updates the balance of an account

COMMIT (tid) // Makes the updates of transaction tid visible to other transactions

The BCPL system uses two disks, both accessed synchronously (i.e., GET and PUT oper
ations on the disks won’t return until the data is read from the disk or has safely been
written to the disk, respectively). One disk contains nothing but the account balances,
indexed by number. This disk is called the database disk. The other disk is called the log
disk and exclusively stores, in chronological order, a sequence of records of the form:

structure logrecord
integer op // WRITE, COMMIT, or END

integer tid // transaction number
integer account_id // account number
integer new_balance // new balance for account “account”

where the meaning of each record is given by the op field:

op = WRITE // Update of an account to a new balance by transaction tid
op = COMMITTED // Transaction tid’s updates are now visible to other transactions

and durable across crashes
op = END // Transaction tid’s writes have all been installed on the database disk

Saltzer & Kaashoek Ch. ps, p. 119 June 24, 2009 12:21 am

PS–120 Problem Sets

For each active transaction, the BCPL system keeps a list in volatile memory called
intentions containing pairs (account_id, new_balance). The implementation of READ is as
follows:

procedure READ (tid, account_id)
if account_id is in intentions of tid then

pair ← last pair containing account_id from intentions of tid
return pair.new_balance

else
GET account containing account_id from database
return account.balance

A. Recovery
For this section, assume that there are no concurrent transactions.
Ben asks whether the database computer has ever crashed and learns that it crashed

frequently due to intense sound vibrations from the jail next door. Ben decides he had
better understand how recovery works in the BCPL system. He examines the implemen
tation of the recovery procedure. He finds the following code:

1 procedure RECOVERY ()
2 winners ← NULL

3 reading the log from oldest to newest,
4 for each record in log do
5 if record.op = COMMITTED then add record.tid to winners
6 if record.op = END remove then record.tid from winners
7 again reading the log from oldest to newest,
8 for each record in log do
9 if record.op = WRITE and record.tid is in winners then
10 INSTALL (record.new_balance in database for record.account_id
11 for each tid in winners do
12 LOG {END, tid}

Q 31.1 What would happen if lines 11 and 12 were omitted?

A.	 The system might fail to recover correctly from the first crash that occurs.
B.	 The system would recover correctly from the first crash but the log would be corrupt

so the system might fail to recover correctly from the second crash.
C.	 The system would recover correctly from multiple crashes but would have to do more

work when recovering from the second and subsequent crashes.

Saltzer & Kaashoek Ch. ps, p. 120	 June 24, 2009 12:21 am

31 The Bank of Central Peoria, Limited PS–121

Q 31.2 For the RECOVERY and READ procedures to be correct, which of the following could
be correct implementations of the COMMIT procedure?

A.
procedure COMMIT (tid) {}

B.

procedure COMMIT (tid)

for each pair in tid.intentions do

INSTALL (pair.new_balance in database for pair.account_id)

tid.intentions ← NULL

LOG {COMMITTED, tid}
C.

procedure COMMIT (tid)

LOG {END, tid}

for each pair in tid.intentions do

INSTALL (pair.new_balance in database for pair.account_id)
tid.intentions ← NULL

LOG {COMMITTED, tid}
D.

procedure COMMIT (tid) {

LOG {COMMITTED, tid}

for each pair in tid.intentions do

INSTALL (pair.new_balance in database for pair.account_id)
tid.intentions ← NULL

LOG {END, tid}

Q 31.3 For the RECOVERY and READ procedures to be correct, which of the following could
be correct implementations of the WRITE procedure?

A.
procedure WRITE (tid, account_id, new_balance)

LOG {WRITE, tid, account_id, new_balance}

B.

procedure WRITE (tid, account_id, new_balance)

add the pair {account_id, new_balance} to tid.intentions

LOG {WRITE, tid, account_id, new_balance}

C.
procedure WRITE (tid, account_id, new_balance)

LOG {WRITE, tid, account_id, new_balance}

add the pair {account_id, new_balance} to tid.intentions

D.
procedure WRITE (tid, account_id, new_balance)

LOG {WRITE, tid, account_id, new_balance}

add the pair {account_id, new_balance} to tid.intentions

INSTALL new_balance in database for account_id

Ben is rather surprised to see there is no ABORT (tid) procedure that terminates a trans
action and erases its database updates. He calls up the database developer who says it
should be easy to add. Ben figures he might as well add the feature now, and adds a new
log record type ABORTED.

Saltzer & Kaashoek Ch. ps, p. 121 June 24, 2009 12:21 am

PS–122 Problem Sets

Q 31.4 Which of the following could be correct implementations of the ABORT

procedure? Assume that the RECOVERY procedure is changed correspondingly.

A.
procedure ABORT (tid)

tid.intentions ← NULL

B.
procedure ABORT (tid)

LOG {ABORTED, tid}

C.

procedure ABORT (tid)

LOG {ABORTED, tid}

tid.intentions ← NULL

D.
procedure ABORT (tid)

tid.intentions ← NULL

LOG {ABORTED, tid}

B. Buffer cache
BCPL is in intense competition with the nearby branch of Peoria Authorized Savings,

Credit and Loan. BCPL’s competitive edge is lower account fees. Ben decides to save the
cost of upgrading the computer system hardware by adding a volatile memory buffer
cache, which will make the database much more efficient on the current hardware. The
buffer cache is used for GETs and PUTs to the database disk only; GETs and PUTs to the log
disk remain write-through and synchronous.

The buffer cache uses an LRU replacement policy. Each account record on the data
base disk is cached or replaced separately. In other words, the cache block size, disk block
size, and account record sizes are all identical.

In section B, again assume that there are no concurrent transactions.

Q 31.5 Why will adding a buffer cache for the database disk make the system more
efficient?

A.	 It is faster to copy from the buffer cache than to GET from the disk.
B.	 If common access patterns can be identified, performance can be improved by

prefetching multiple account balances into the cache.
C.	 It reduces the total number of disk GETs when one transaction reads the same account

balance multiple times without updating it.
D. It reduces the total number of disk GETs when multiple consecutive transactions read

the same account balance.

Ben then makes a mistake. He reasons that the intentions list described in section A
is now unnecessary, since the list just keeps in-memory copies of database data, which is
the same thing done by the buffer cache. He deletes the intentions list code and modifies
PUT so it updates the copy of the account balance in the buffer cache. He also modifies
the system to delay writing the END record until all buffered accounts modified by that
transaction have been written back to the database disk. Much to his horror, the next

Saltzer & Kaashoek Ch. ps, p. 122	 June 24, 2009 12:21 am

31 The Bank of Central Peoria, Limited PS–123

time the inmates next door try an escape and the resulting commotion causes the BCPL
system to crash, the database does not recover to a consistent state.

Q 31.6 What might have caused recovery to fail?

A.	 The system crashed when only some of the modifications made by a committed

transaction had reached the database disk.

B.	 The LRU replacement policy updated the database disk with data modified by an

uncommitted transaction, which later committed before the crash.

C.	 The LRU replacement policy updated the database disk with data modified by an

uncommitted transaction, which failed to commit before the crash.

D. The LRU replacement policy updated the database disk with data modified by a

committed transaction, which later completed before the crash.

E.	 The LRU replacement policy updated the database disk with data modified by a

committed transaction, which did not complete before the crash.

C. Concurrency
Ben restores the intention-list code, deletes the buffer cache code and goes back to the

simpler system described in section A.
He is finally ready to investigate how the BCPL system manages concurrent transac

tions. He calls up the developer and she tells him that there is a lock stored in main
memory for each account in the database, used by the CONCURRENT_BEGIN and
CONCURRENT_COMMIT procedures. Since BCPL runs concurrent transactions, all its applica
tions actually use these two procedures rather than the lower-level BEGIN and COMMIT

procedures described earlier.
An application doing a concurrent transaction must declare the list of accounts it will

use as an argument to the CONCURRENT_BEGIN procedure.

procedure CONCURRENT_BEGIN (account_list)

do atomically

for each account in account_list do

ACQUIRE (account.lock)

tid ← BEGIN ()

tid.account_list ← account_list

return tid

procedure CONCURRENT_COMMIT (tid)

COMMIT (tid)

for each account in tid.account_list do

RELEASE (account.lock)

Ben runs two transactions concurrently. Both transactions update account number 2:

tida ← CONCURRENT_BEGIN (MAKELIST (2)) tidb ← CONCURRENT_BEGIN (MAKELIST (2))

tmpa ← READ (tida, 2) tmpb ← READ (tidb, 2)

WRITE (tida, 2, tmpa + 1) WRITE (tidb, 2, tmpb + 2)

CONCURRENT_COMMIT (tida) CONCURRENT_COMMIT (tidb)

MAKELIST creates a list from its arguments; in this case the list has just one element. The

Saltzer & Kaashoek Ch. ps, p. 123	 June 24, 2009 12:21 am

PS–124 Problem Sets

initial balance of account 2 before these transactions start is 0.

Q 31.7 What possible values can account 2 have after completing these two transactions
(assuming no crashes)?

A. 0
B. 1
C. 2
D. 3
E. 4

Ben is surprised by the order of the operations in CONCURRENT_COMMIT, since COMMIT is
expensive (requiring synchronous writes to the log disk). It would be faster to release the
locks first.

Q 31.8 If the initial balance of account 2 is zero, what possible values can account 2 have
after completing these two transactions (assuming no crashes) if the locks are released
before the call to COMMIT?

A. 0
B. 1
C. 2
D. 3
E. 4

1998–3–7…14

Saltzer & Kaashoek Ch. ps, p. 124 June 24, 2009 12:21 am

32 Whisks PS–125

32 Whisks*

(Chapter 9[on-line])

The Odd Disk Company (ODC) has just invented a new kind of non-volatile storage,
the Whisk. A Whisk is unlike a disk in the following ways:

• 	 Compared with disks, Whisks have very low read and write latencies.
• 	 On the other hand, the data rate when reading and writing a Whisk is much less

than that of a disk.
• 	 Whisks are associative. Where disks use sector addresses, a Whisk block is named

with a pair of items: an address and a tag. We write these pairs as A/t, where A is
the address and t is the tag. Thus, for example, there might be three blocks on
the Whisk with address 49, each with different tags: 49/1, 49/2, and 49/97.

The Whisk provides four important operations:

• 	 data ← GET (A/t): This is the normal read operation.
• 	 PUT (A/t, data): Just like a normal disk. If the system crashes during a WRITE, a

partially written block may result.
• 	 boolean ← EXISTS (A/t): Returns TRUE if block A/t exists on the Whisk.
• 	 CHANGE_TAG (A/m, n): Atomically changes the tag m of block A/m to n (deleting

any previous block A/n in the process). The atomicity includes both all-or
nothing atomicity and before-or-after atomicity.

Ben Bitdiddle is excited about the properties of Whisks. Help him develop different
storage systems using Whisks as the medium.

Q 32.1 At first, Ben emulates a normal disk by writing all blocks with tag 0. But now
he wants to add an ATOMIC_PUT operation. Design an ATOMIC_PUT for Ben’s Whisk, and
identify the step that is the commit point.

Ben has started work on a Whisk transaction system; he’d like you to help him finish
it. Looking through his notes, you see that Ben’s system will use no caches or logs: all
writes go straight to the Whisk. One sentence particularly catches your eye: a joyfully
scrawled “Transaction IDs Are Tags!!” Ben’s basic idea is this. The current state of the
database will be stored in blocks with tag 0. When a transaction t writes a block, the data
is stored in the separate block A/t until the transaction commits.

Ben has set aside a special disk address, ComRec, to hold commit records for all run
ning transactions. For a transaction t, the contents of ComRec/t is either committed,
aborted, or pending, depending on the state of transaction t.

* Credit for developing this problem set goes to Eddie Kohler.

Saltzer & Kaashoek Ch. ps, p. 125	 June 24, 2009 12:21 am

PS–126 Problem Sets

So far, three procedures have been implemented. In these programs, t is a transaction
ID, A is a Whisk block address, and data is a data block.

procedure AA_BEGIN (t) procedure AA_READ (t, A) procedure AA_WRITE (t, A, data)
PUT (ComRec/t, if EXISTS (A/t) then PUT (A/t, data)
PENDING) return GET (A/t)

else // uninitialized!
return GET (A/0)

The following questions are concerned only with all-or-nothing atomicity; there are
no concurrent transactions.

Q 32.2 Write pseudocode for AA_COMMIT (t) and AA_ABORT (t), and identify the commit
point in AA_COMMIT. Assume that the variable dirty, an array with num_dirty elements,
holds all the addresses to which t has written. (Don’t worry about any garbage an aborted
transaction might leave on disk, and assume transaction IDs are never reused.)

Q 32.3 Write the pseudocode for AA_RECOVER, the program that handles recovery after a
crash. Ben has already done some of the work: his code examines the ComRec blocks and
determines which transactions are COMMITTED, ABORTED, or PENDING. When your
pseudocode is called, he has already set 6 variables for you (you might not need them all):

num_committed // the number of committed transactions
committed[i] // an array holding the committed transactions’ IDs
num_aborted // the number of aborted transactions
aborted[i] // an array holding the aborted transactions’ IDs
num_pending // the number of transactions in progress
in_progress[i] // an array holding the in-progress transactions’ IDs

Whisk addresses run from 0 to N.
1996–3–4a…d

Saltzer & Kaashoek Ch. ps, p. 126 June 24, 2009 12:21 am

33 	ANTS: Advanced “Nonce-ensical” Transaction System PS–127

33 ANTS: Advanced “Nonce-ensical”Transaction System*

(Chapter 9[on-line])

Sara Bellum, forever searching for elegance, sets out to design a new transaction system
called ANTS, based on the idea of nonces. She observes that the locking schemes she
learned in Chapter 9[on-line] cause transactions to wait for locks held by other
transactions. She observes that it is possible for a transaction to simply abort and retry,
instead of waiting for a lock. A little bit more work convinces her that this idea may allow
her to design a system in which transactions don’t need to use locks for before-or-after
atomicity.

Sara sets out to write pseudocode for the following operations: BEGIN (), READ (),
WRITE (), COMMIT (), ABORT (), and RECOVER (). She intends that, together, these operations
will provide transaction semantics: before-or-after atomicity, all-or-nothing atomicity,
and durability. You may assume that once any of these operations starts, it runs to com
pletion without preemption or failure, and that no other thread is running any of the
procedures at the same time. The system may interleave the execution of multiple trans
actions, however.

Sara’s implementation assigns a transaction identifier (TID) to a transaction when it
calls BEGIN (). The TIDs are integers, and ANTS assigns them in numerically increasing
order. Sara’s plan for the transaction system’s storage is to maintain cell storage for vari
ables, and a write-ahead log for recovery. Sara implements both the cell storage and the
log using non-volatile storage. The log contains the following types of records:

• 	 STARTED TID
• 	 COMMITTED TID
• 	 ABORTED TID
• 	 UPDATED TID, Variable Name, Old Value

Sara implements BEGIN (), COMMIT (), ABORT (), and RECOVER () as follows:

• 	 BEGIN () allocates the next TID, appends a STARTED record to the log, and returns

the TID.

• 	 COMMIT () appends a COMMITTED record to the log and returns.
• 	 ABORT (TID) undoes all of transaction TID’s WRITE () operations by scanning the

log backwards and writing the old values from the transaction’s UPDATED records

back to the cell storage. After completing the undo, ABORT (TID) appends an

ABORTED entry to the log, and returns.

• 	 RECOVER () is called after a crash and restart, before starting any more transactions.

It scans the log backwards, undoing each WRITE record of each transaction that

had neither committed nor aborted at the time of the crash. RECOVER () appends

one ABORTED record to the log for each such transaction.

* Credit for developing this problem set goes to Hari Balakrishnan.

Saltzer & Kaashoek Ch. ps, p. 127	 June 24, 2009 12:21 am

PS–128 Problem Sets

Sara’s before-or-after intention is that the result of executing multiple transactions con
currently is the same as executing those same transactions one at a time, in increasing TID

order. Sara wants her READ () and WRITE () implementations to provide before-or-after ato
micity by adhering to the following rule:

Suppose a transaction with TID t executes READ (X). Let u be the highest TID < t that
calls WRITE (X) and commits. The READ (X) executed by t should return the value that u

writes.
Sara observes that this rule does not require her system to execute transactions in strict

TID order. For example, the fact that two transactions call READ () on the same variable
does not (by itself) constrain the order in which the transactions must execute.

To see how Sara intends ANTS to work, consider the following two transactions:

Transaction TA 	 Transaction TB

1 tida ← BEGIN () // returns 15

2 tidb ← BEGIN () //returns 16

3 va ← READ (tida, X)

4 va ← va + 1

5 vb ← READ (tida, X)

6 vb ← vb + 1

α WRITE (tida, X, va) WRITE (tidb, X, vb)

β COMMIT (tida) COMMIT (tidb)

Each transaction marks its start with a call to BEGIN, then reads the variable X from the
cell store and stores it in a local variable, then adds one to that local variable, then writes
the local variable to X in the cell store, and then commits. Each transaction passes its TID
(tida and tidb respectively) to the READ, WRITE, and COMMIT procedures.

These transactions both read and write the same piece of data, X. Suppose that TA
starts just before TB, and Sara’s BEGIN allocates TIDs 15 and 16 to TA and TB, respec
tively. Suppose that ANTS interleaves the execution of the transactions as shown
through line 6, but that ANTS has not yet executed lines α and β. No other transactions
are executing, and no failures occur.

Q 33.1 In this situation, which of the following actions can ANTS take in order to
ensure before-or-after atomicity?

A.	 Force just TA to abort, and let TB proceed.
B.	 Force just TB to abort, and let TA proceed.
C.	 Force neither TA nor TB to abort, and let both proceed.
D. Force both TA and TB to abort.

To help enforce the before-or-after intention, Sara’s implementation of ANTS main
tains the following two pieces of information for each variable:

• 	 ReadID — the TID of the highest-numbered transaction that has successfully
read this variable using READ.

Saltzer & Kaashoek Ch. ps, p. 128	 June 24, 2009 12:21 am

33 ANTS: Advanced “Nonce-ensical” Transaction System PS–129

• 	 WriteID — the TID of the highest-numbered transaction that has successfully
written this variable using WRITE.

Sara defines the following utility procedures in her implementation of ANTS:

• 	 INPROGRESS (TID) returns FALSE if TID has committed or aborted, and otherwise
TRUE. (All transactions interrupted by a crash are aborted by the RECOVER

procedure.)
• 	 EXIT () terminates the current thread immediately.
• 	 LOG () appends a record to the log and waits for the write to the log to complete.
• 	 READ_DATA (x) reads cell storage and returns the corresponding value.
• 	 WRITE_DATA (x, v) writes value v into cell storage x.

Sara now sets out to write pseudocode for READ and WRITE:

1 procedure READ (tid, x) // Return the value stored in cell x
2 if tid < x.WriteID then
3 ABORT (tid)
4 EXIT ()
5 if tid > x.WriteID and INPROGRESS (x.WriteID) then
6 ABORT (tid) // Last transaction to have written x is still in progress
7 EXIT ()
8 v ← READ_DATA (x) // In all other cases execute the read
9 x.ReadID ← MAX (tid, x.ReadID) // Update ReadID of x
10 return v

11 procedure WRITE (tid, x, v) // Store value v in cell storage x

12 if tid < x.ReadID then

13 ABORT (tid)

14 EXIT ()

15 else if tid < x.WriteID then

16 [Mystery Statement I] // See question 33.3

17 else if tid > x.WriteID and INPROGRESS(x.WriteID) then

18 ABORT (tid)

19 EXIT ()

20 LOG (WRITE, tid, x, READ_DATA (x))

21 WRITE_DATA (x, v)

22 [Mystery Statement II] // Now update ReadID of x (see question 33.5)

Help Sara complete the design above by answering the following questions.

Q 33.2 Consider lines 5–7 of READ. Sara is not sure if these lines are necessary. If lines
5–7 are removed, will the implementation preserve Sara’s before-or-after intention?

A.	 Yes, the lines can be removed. Because the previous WRITE to x, by the transaction
identified by x.WriteID, cannot be affected by transaction tid, READ_DATA (x) can safely
execute.

B.	 Yes, the lines can be removed. Suppose transaction T1 successfully executes WRITE (x),
and then transaction T2 executes READ (x) before T1 commits. After this, T1 cannot

Saltzer & Kaashoek Ch. ps, p. 129	 June 24, 2009 12:21 am

PS–130 Problem Sets

execute WRITE (x) successfully, so T2 would have correctly read the last written value of
x from T1.

C.	 No, the lines cannot be removed. One reason is: The only transaction that can correctly
execute READ_DATA (x) is the transaction with TID equal to x.WriteID. Therefore, the
condition on line 5 of READ should simply read: “if tid > x.WriteID”.

D. No, the lines cannot be removed. One reason is: before-or-after atomicity might not be
preserved when transactions abort.

Q 33.3 Consider Mystery Statement I on line 16 of WRITE. Which of the following
operations for this statement preserve Sara’s before-or-after intention?

A.	 ABORT (tid); EXIT ();
B.	 return (without aborting tid)
C.	 Find the higher-numbered transaction Th corresponding to x.WriteID; ABORT (Th) and

terminate the thread that was running Th; perform WRITE_DATA (x, v) in transaction tid;
and return.

D. All of the above choices.

Q 33.4 Consider lines 17–19 of WRITE. Sara is not sure if these lines are necessary. If lines
17–19 are removed, will Sara’s implementation preserve her before-or-after intention?
Why or why not?

A.	 Yes, the lines can be removed. We can always recover the correct values from the log.
B.	 Yes, the lines can be removed since this is the WRITE call; it’s only on a READ call that we

need to be worried about the partial results from a previous transaction being visible to
another running transaction.

C.	 No, the lines cannot be removed. One reason is: If transaction T1 writes to cell x and
then transaction T2 writes to cell x, then an abort of T2 followed by an abort of T1 may
leave x in an incorrect state.

D. No, the lines cannot be removed. One reason is: If transaction T1 writes to cell x and
then transaction T2 writes to cell x, then an abort of T1 followed by an abort of T2 may
leave x in an incorrect state.

Q 33.5 Which of these operations for Mystery Statement II on line 22 of WRITE preserves
Sara’s before-or-after intention?

A.	 (x.WriteID) ← tid
B.	 (x.WriteID) ← MIN(x.WriteID, tid)
C.	 (x.WriteID) ← MAX(x.WriteID, tid)
D. (x.WriteID) ← MAX(x.WriteID, x.ReadID)

Saltzer & Kaashoek Ch. ps, p. 130	 June 24, 2009 12:21 am

33 ANTS: Advanced “Nonce-ensical” Transaction System PS–131

Ben Bitdiddle looks at the READ and WRITE pseudocode shown before for Sara’s system
and concludes that her system is in fact nonsensical! To make his case, he constructs the
following concurrent transactions:

Transaction T1 Transaction T2

1
2
3
4
5
6
7
8

tid1 ← BEGIN ()

WRITE (tid1, A, v1)

v1 ← READ (tid1, B)
COMMIT (tid1)

tid2 ← BEGIN ()

v2 ← READ (tid2, A)
WRITE (tid2, B, v2)
COMMIT (tid2)

The two transactions are interleaved in the order shown above. Note that T1 begins
before T2. Ben argues that this leads to a deadlock.

Q 33.6 Why is Ben’s argument incorrect?

A. Both transactions will abort, but they can both retry if they like.
B. Only T2 will abort on line 4. So T1 can proceed.
C. Only T1 will abort on line 7. So T2 can proceed.
D. Sara’s system does not suffer from deadlocks, though concurrent transactions may

repeatedly abort and never commit.

Recall that Sara uses a write-ahead log for crash recovery.

Q 33.7 Which of these statements is true about log entries in Sara’s ANTS
implementation?

A. The order of STARTED entries in the log is in increasing TID order.
B. The order of COMMITTED entries in the log is in increasing TID order.
C. The order of ABORTED entries in the log is in increasing TID order.
D. The order of UPDATED entries in the log for any given variable is in increasing TID order.

Q 33.8 The WRITE procedure appends the UPDATED record to the log before it installs in
cell storage. Sara wants to improve performance by caching the non-volatile cell storage
in the volatile main memory. She changes READ_DATA to read the value from the cache if
it is there; if it isn’t, READ_DATA reads from non-volatile cell storage. She changes
WRITE_DATA to update just the cache; ANTS will install to non-volatile cell storage later.

Saltzer & Kaashoek Ch. ps, p. 131 June 24, 2009 12:21 am

PS–132 Problem Sets

Can ANTS delay the install to non-volatile cell storage until after the COMMITTED record
has been written to the log, and still ensure transaction semantics?

A.	 No, because if the system crashed between the COMMIT and the write to non-volatile
storage, RECOVER would not recover cell storage correctly.

B.	 Yes, because the log contains enough information to undo uncommitted transactions
after a crash.

C.	 Yes, because line 3 of READ won’t let another transaction read the data until after the
write to non-volatile storage completes.

D. None of the above.
2002–3–6…13

Saltzer & Kaashoek Ch. ps, p. 132	 June 24, 2009 12:21 am

34 KeyDB PS–133

34 	KeyDB*

(Chapter 9[on-line])

2005–3–13

Keys–R–Us has contracted with you to implement an in-memory key-value transactional
store named KeyDB. KeyDB provides a hash table interface to store key-value bindings
and to retrieve the value previously associated with a key.

You decide to use locks to provide before-or-after atomicity. Lock Lk is a lock for key
k, which corresponds to the entry KeyDB[k]. A single transaction may read or write mul
tiple KeyDB entries. Your goal is to achieve correct before-or-after atomicity for all
transactions that use KeyDB. Transactions may abort. ACQUIRE (Lk) is called before the
first READ or WRITE to KeyDB[k] and RELEASE (Lk) is called after the last access to KeyDB[k].

Q 34.1 For each of the following locking rules, is the rule is necessary, sufficient, or
neither necessary nor sufficient to always guarantee correct before-or-after atomicity
between any set of concurrent transactions?

A.	 An ACQUIRE (Lk) must be performed after the start of a transaction and before the first
READ or WRITE of KeyDB[k], and a RELEASE (Lk) must be performed some time after the
last READ or WRITE of KeyDB[k] and before the end of the transaction.

B.	 ACQUIREs of every needed lock must occur after the start of a transaction and before any
other operation, and there can be no RELEASE of a lock before COMMIT or ABORT if the
corresponding data item was modified by the thread.

C.	 ACQUIREs of every needed lock must occur after the start of a transaction and before the
first RELEASE, and there can be no RELEASE of a lock before COMMIT or ABORT if the
corresponding data item was modified by the thread.

D. All threads that ACQUIRE more than one lock must ACQUIRE the locks in the same order,
and there may be no RELEASEs of locks before COMMIT or ABORT.

E.	 ACQUIREs of every needed lock must occur after the start of a transaction and before the
first RELEASE, and a lock may be RELEASEd at at any time after the last READ or WRITE of
the corresponding data before COMMIT or ABORT.

* Credit for developing this problem set goes to Hari Balakrishnan.

Saltzer & Kaashoek Ch. ps, p. 133	 June 24, 2009 12:21 am

PS–134 Problem Sets

Q 34.2 Determine whether each of the following locking rules either avoids or is likely
(with probability approaching 1 as time goes to infinity) to eliminate permanent
deadlock between any set of concurrent transactions.

A.	 ACQUIREs of every needed lock must occur after the start of a transaction and before any
other operation, and there can be no RELEASE of a lock before COMMIT or ABORT.

B.	 ACQUIREs of every needed lock must occur after the start of a transaction and before the
first RELEASE, and there can be no RELEASE of a lock before COMMIT or ABORT.

C.	 All threads that ACQUIRE more than one lock must ACQUIRE the locks in the same order.
D. When a transaction begins, set a timer to a value longer than the transaction is expected

to take. If the timer expires, ABORT the transaction and try it again with a timer set to a
value chosen with random exponential backoff.

Saltzer & Kaashoek Ch. ps, p. 134	 June 24, 2009 12:21 am

35 Alice’s Reliable Block Store PS–135

35 Alice’s Reliable Block Store*

(Chapter 9)

2006–3–9

Alice has implemented a version of ALL_OR_NOTHING_PUT and ALL_OR_NOTHING_GET using
only two copies, based an idea she got by reading Section 9.7.1. Her implementation
appears below. In her implementation each virtual all-or-nothing sector x is stored at two
disk locations, x.D0 and x.D1, which are updated and read as follows:

// Write the bits in data at item x
1 procedure ALL_OR_NOTHING_PUT (data, x)
2 flag ← CAREFUL_GET (buffer, x.D0); // read into a temporary buffer
3 if flag = OK then
4 CAREFUL_PUT (data, x.D1);
5 CAREFUL_PUT (data, x.D0);
6 else
7 CAREFUL_PUT (data, x.D0);
8 CAREFUL_PUT (data, x.D1);

// Read the bits of item x and return them in data
1 procedure ALL_OR_NOTHING_GET (reference data, x)
2 flag ← CAREFUL_GET (data, x.D0);
3 if flag = ok then
4 return;
5 CAREFUL_GET (data, x.D1);

The CAREFUL_GET and CAREFUL_PUT procedures are as specified in Section 8.5.4.5 and Figure
8.12. The property of these two procedures that is relevant is that CAREFUL_GET can detect
cases when the original data is damaged by a system crash during CAREFUL_PUT.

Assume that the only failure to be considered is a fail-stop failure of the system during
the execution of ALL_OR_NOTHING_GET or ALL_OR_NOTHING_PUT. After a fail-stop failure the
system restarts.

Q 35.1 Which of the following statements are true and which are false for Alice’s
implementation of ALL_OR_NOTHING_PUT and ALL_OR_NOTHING_GET?

A. Her code obeys the rule ‘‘never overwrite the only copy’’.
B. ALL_OR_NOTHING_PUT and ALL_OR_NOTHING_GET ensure that if just one of the two copies

is good (i.e., CAREFUL_GET will succeed for one of the two copies), the caller of
ALL_OR_NOTHING_GET will see it.

C. ALL_OR_NOTHING_PUT and ALL_OR_NOTHING_GET ensure that the caller will always see the
result of the last ALL_OR_NOTHING_PUT that wrote at least one copy to disk.

Q 35.2 Suppose that when ALL_OR_NOTHING_PUT starts running, the copy at x.D0 is good.
Which statement’s completion is the commit point of ALL_OR_NOTHING_PUT?

* Credit for developing this problem set goes to Barbara Liskov.

Saltzer & Kaashoek Ch. ps, p. 135 June 24, 2009 12:21 am

PS–136 Problem Sets

Q 35.3 Suppose that when ALL_OR_NOTHING_PUT starts running, the copy at x.D0 is bad.
For this case, which statement’s completion is the commit point of ALL_OR_NOTHING_PUT?

Consider the following chart showing possible states that the data could be in prior
running ALL_OR_NOTHING_PUT:

State 1 State 2 State 3

x.D0 old old bad

x.D1 old bad old

For example, when the system is in state 2, x.D0 contains an old value and x.D1 con
tains a bad value, meaning that CAREFUL_GET will return an error if someone tries to read
x.D1.

Q 35.4 Assume that ALL_OR_NOTHING_PUT is attempting to store a new value into item x
and the system fails. Which of the following statements are true?

A.	 (x.D0 = new, x.D1 = new) is a potential outcome of ALL_OR_NOTHING_PUT, starting in
any of the three states.

B.	 Starting in state S1, a possible outcome is (x.D0 = bad, x.D1 = old).
C.	 Starting in state S2, a possible outcome is (x.D0 = bad, x.D1 = new).
D. Starting in state S3, a possible outcome is (x.D0 = old, x.D1 = new).
E.	 Starting in state S1, a possible outcome is (x.D0 = old, x.D1 = new).

Ben Bitdiddle proposes a simpler version of ALL_OR_NOTHING_PUT. His simpler version,
named SIMPLE_PUT, would be used with the existing ALL_OR_NOTHING_GET.

procedure SIMPLE_PUT (data, x)
CAREFUL_PUT (data, x.D0)
CAREFUL_PUT (data, x.D1)

Q 35.5 Will the system work correctly if Ben replaces ALL_OR_NOTHING_PUT with
SIMPLE_PUT? Explain.

Q 35.6 Now consider failures other than system failures while running the original
ALL_OR_NOTHING_PUT. Which of the following statements is true and which false?

A.	 Suppose x.D0 and x.D1 are stored on different disks. Then ALL_OR_NOTHING_PUT and
ALL_OR_NOTHING_GET also mask a single head crash (i.e., the disk head hits the surface
of a spinning platter), assuming no other failures.

B.	 Suppose x.D0 and x.D1 are stored as different sectors on the same track. Then
ALL_OR_NOTHING_PUT and ALL_OR_NOTHING_GET also mask a single head crash, assuming
no other failures.

C.	 Suppose that the failure is that the operating system overwrites the in-memory copy of
the data being written to disk by ALL_OR_NOTHING_PUT. Nevertheless,

Saltzer & Kaashoek Ch. ps, p. 136	 June 24, 2009 12:21 am

35 Alice’s Reliable Block Store PS–137

ALL_OR_NOTHING_PUT and ALL_OR_NOTHING_GET mask this failure, assuming no other
failures.

Now consider how to handle decay failures. The approach is to periodically correct
them by running a SALVAGE routine. This routine checks each replicated item periodically
and if one of the two copies is bad, it overwrites that copy with the good copy. The code
for SALVAGE is in Figure 9.38.

Assume that there is a decay interval D such that at least one copy of a duplicated sec
tor will probably still be good D seconds after the last execution of ALL_OR_NOTHING_PUT

or SALVAGE on that duplicated sector. Further assume that the system recovers from a fail
ure in less than F seconds, where F << D, and that system failures happen so infrequently
that it is unlikely that more than one will happen in a period of D seconds.

Q 35.7 Which of the following methods ensures that the approach handles decay
failures with very high probability?

A.	 SALVAGE runs only in a background thread that cycles through the disk with the
guarantee that each replicated sector is salvaged every P seconds, where P is less than
(D - F).

B.	 SALVAGE runs as the first step of ALL_OR_NOTHING_PUT, and only then.
C.	 SALVAGE runs as the first step of both ALL_OR_NOTHING_PUT and ALL_OR_NOTHING_GET,

and only in then.
D. SALVAGE runs on all duplicated sectors as part of recovering from a fail-stop failure and

only then.

Saltzer & Kaashoek Ch. ps, p. 137	 June 24, 2009 12:21 am

PS–138 Problem Sets

36 Establishing Serializability*

(Chapter 9[on-line])

2006–3–17

Chapter 9[on-line] explained that one technique of ensuring correctness is to serialize
concurrent transactions that act on shared variables, and it offered methods such as
version histories or two-phase locking to ensure serialization. Louis Reasoner has come
up with his own locking scheme that does not have an easy proof of correctness, and he
wants to know whether or not it actually leads to correct results. Louis implements his
locking scheme, runs a particular set of three transactions two different times, and
observes the order in which individual actions of the transactions occur. The observed
order is known as a schedule.

Here are Louis’s three transactions:

• T1: BEGIN (); WRITE (x); READ (y); WRITE (z); COMMIT ();
• T2: BEGIN (); READ (x); WRITE (z); COMMIT ();
• T3: BEGIN (); READ (z); WRITE (y); COMMIT ();

The records x, y and z are stored on disk. Louis’s first run produces schedule 1 and
his second run produces schedule 2:

Schedule 1 Schedule 2

1 T1: WRITE (x) T3: READ (z)
2 T2: READ (x) T2: READ (x)
3 T1: READ (y) T1: WRITE (x)
4 T3: READ (z) T3: WRITE (y)
5 T3: WRITE (y) T1: READ (y)
6 T2: WRITE (z) T2: WRITE (z)
7 T1: WRITE (z) T1: WRITE (z)

The question Louis needs to answer is whether or not these two schedules can be seri
alized. One way to establish serializability is to create what is called an action graph. An
action graph contains one node for each transaction and an arrow (directed edge) from
Ti to Tj if Ti and Tj both use the same record r in conflicting modes (that is, both trans
actions write r or one writes r before the other reads r) and Ti uses r first. If for a particular
schedule there is a cycle in its action graph, that schedule is not serializable. If there is no
cycle, then the arrows reveal a serialization of those transactions.

Q 36.1 The table below lists all of the possible arrows that might lead from one
transaction to another. For schedule 1, fill in the table, showing whether or not that

* Credit for developing this problem set goes to Barbara Liskov.

Saltzer & Kaashoek Ch. ps, p. 138 June 24, 2009 12:21 am

36 Establishing Serializability PS–139

arrow exists, and if so list the two steps that create that arrow. To get you started, one row

Arrow Exists? Steps

T1 → T2

T1 → T3

T2 → T1

T2 → T3

T3 → T1

T3 → T2 Yes 4 and 6

is filled in. And draw the arrows:

4 and 6
T1 T2 T3

Q 36.2 Is schedule 1 serializable? If not, explain briefly why not. If so, give a serial
schedule for it.

Q 36.3 Now fill in the table for schedule 2. This time you get to fill in the whole table
yourself.

Arrow Exists? Steps

T1 → T2

T1 → T3

T2 → T1

T2 → T3

T3 → T1

T3 → T2

Saltzer & Kaashoek Ch. ps, p. 139 June 24, 2009 12:21 am

PS–140 Problem Sets

T1 T2 T3

Q 36.4 Is schedule 2 serializable? If not, explain why not. If so, give a serial schedule for
it.

Q 36.5 Could schedule 2 have been produced by two-phase locking, in which a
transaction acquires a lock on an object as the first part of the step in which it first uses
that object? For example, step 3 of schedule 2 is the first time that transaction T1 uses
record x, so it would start that step by acquiring a lock for x. Explain.

Louis is also concerned about recovery. When he ran the three transactions and
obtained schedule 2, he found that the system generated the following log:

1 BEGIN (transaction: T1)

2 BEGIN (transaction: T2)

3 BEGIN (transaction: T3)

4 CHANGE (transaction: T1, record: x, undo: 1, redo: 2)

5 CHANGE (transaction: T3, record: y, undo: 1, redo: 2)

6 CHANGE (transaction: T2, record: z, undo: 1, redo: 2)

7 COMMIT (transaction: T3)

8 COMMIT (transaction: T2)

9 CHANGE (transaction: T1, record: z, undo: 2, redo: 3)

10 COMMIT (transaction: T1)

In a CHANGE record the undo field gives the old value before this change, and the redo
field gives the new value afterwards. For example, entry 4 indicates that the old value of
x was 1 and the new value is 2. The system uses the redo/undo recovery procedure of
Figure 9.23.

Q 36.6 Suppose the system crashed after record 7 of the log has made it to disk but
before record 8 is written. What states do x, y, and z have after recovery is complete?

Q 36.7 Suppose instead that the system crashed after record 9 of the log has made it to
disk but before record 10 is written. What states do x, y, and z have after recovery is
complete?

Louis’s database consists of a collection of integer objects stored on disk. Each WRITE

operation increments by 1 the object being modified. The system is using a write-ahead
logging protocol and there is an in-memory cache that the system periodically flushes to
disk, without checking to see if the cached objects belong to committed transactions.

Saltzer & Kaashoek Ch. ps, p. 140 June 24, 2009 12:21 am

36 Establishing Serializability PS–141

To save space in the log, Louis’s friend Ben Bitdiddle suggests that CHANGE records
could just indicate the operation that was performed. For example, log entry 4 would be:

4 CHANGE (transaction: T1, record: x, operation: increment)

When the recovery manager sees this entry, it performs the specified operation: incre
ment x by 1. Ben makes no other changes to the recovery protocol.

Q 36.8 All objects are initialized to 0. Louis tries Ben’s plan, but after the first system
crash and recovery he discovers that it doesn’t work. Explain why.

Saltzer & Kaashoek Ch. ps, p. 141 June 24, 2009 12:21 am

PS–142 Problem Sets

37 	Improved Bitdiddler*

(Chapter 9[on-line])

2007–3–8

Alyssa points out Ben’s Bitdiddler with synchronous block writes (see problem set 5)
doesn’t guarantee that file system calls (e.g., WRITE, CLOSE, etc.) provide all-or-nothing
atomicity. She suggests that Ben use a logging approach to help provide all-or-nothing
atomicity for each file system call.

She proposes that the file system synchronously write a log record before every CREATE,
WRITE, or UNLINK call. Each log record contains the type of operation performed, the name
of the file, and for writes the old and new values of the data as well as the offset where
the new data will be written. The system ensures that log record writes are atomic and it
places the log records in a separate log file on a separate disk.

Ben modifies the Bitdiddler code to perform these logging operations before doing
the create, write, or unlink operations themselves. He also implements a crash recovery
protocol that scans the log after a crash as part of a crash recovery protocol intended to
ensure all-or-nothing atomicity.

Q 37.1 Which of the following crash recovery protocols ensures that file system calls are
all-or-nothing (assuming there was at most one file system call running when the system
crashed)?

A.	 Scan the log from the beginning to the end; re-apply each logged operation to the
specified file in forward-scan order.

B.	 Scan the log from the end to the beginning; re-apply each logged operation to the
specified file in reverse-scan order.

C.	 Read the last log record and re-apply it.
D. Scan the log from the beginning to end and identify all the files that should have been

created but don’t exist (e.g., don’t have an inode and were not deleted). Then, scan the
log from beginning to end, re-doing CREATEs and WRITEs for those files in forward-scan
order.

E.	 Scan the log from the beginning to end and identify all the files that should have been
created but don’t exist (e.g., don’t have an inode and were not deleted). Then, scan the
log from the end to the beginning, re-doing CREATEs and WRITEs for those files in reverse-
scan order.

High-Performance Logging Bitdiddler. Ben observes that synchronous writes slow
down the performance of his file system. To improve performance with this logging
approach, Ben modifies the Bitdiddler to include a large file system cache. He arranges
that WRITE, CREATE, and UNLINK update blocks in the cache. To maximize performance, the
file system propagates these modified blocks to disk asynchronously, in an arbitrary
order, and at a time of its own choosing. Ben’s file system still writes log records synchro

* Credit for developing this problem set goes to Sam Madden.

Saltzer & Kaashoek Ch. ps, p. 142	 June 24, 2009 12:21 am

37 	Improved Bitdiddler PS–143

nously to ensure that these are on disk before executing the corresponding file system
operation.

Q 37.2 Which of the following crash recovery protocols ensures that file system calls are
all-or-nothing in this high performance version of the Bitdiddler (assuming there was at
most one file system call running when the system crashed)?

A.	 Scan the log from the beginning to the end; re-apply each logged operation to the

specified file in forward-scan order.

B.	 Scan the log from the end to the beginning; re-apply each logged operation to the

specified file in reverse-scan order.

C.	 Read the last log record and re-execute it.
D. Scan the log from the beginning to end and identify all the files that should have been

created but don’t exist (e.g., don’t have an inode and were not deleted). Then, scan the

log from beginning to end, re-doing CREATEs and WRITEs for those files in forward-scan

order.

E.	 Scan the log from the beginning to end and identify all the files that should have been

created but don’t exist (e.g., don’t have an inode and were not deleted). Then, scan the

log from the end to the beginning, re-doing CREATEs and WRITEs for those files in reverse-

scan order.

Q 37.3 Alyssa suggests that Ben might want to modify his system to periodically write
checkpoints to make recovery efficient. Which of the following checkpoint protocols will
allow Ben’s recovery code to start recovering from the latest checkpoint while still
ensuring all-or-nothing atomicity of each file system call in the high performance,
asynchronous Bitdiddler?

A.	 Complete any currently running file system operation (e.g., OPEN, WRITE, UNLINK, etc.),

stop processing new file system operations, write all modified blocks in the file system

cache to disk, and then write a checkpoint record to the log containing a list of open

files.

B.	 Complete any currently running file system operation, stop processing new file system

operations, write all modified blocks in the file system cache to disk, and then write a

checkpoint record to the log containing no additional information.

C.	 Write all modified blocks in the file system cache to disk without first completing

current file system operations, and then write a checkpoint record to the log containing

a list of open files.

D. Write a checkpoint record to the log (containing a list of open files), but do not write

all modified blocks to disk.

Transactional Bitdiddler. By now, Ben is really excited about his file system so he
decides to add some advanced features. From studying Chapter 9, he knows that trans
actions are a way to make multiple operations appear as though they are a single before-
or-after, all-or-nothing atomic action, and he decides he would like to make his file sys
tem transactional, so that programs can commit changes to several files as a part of one

Saltzer & Kaashoek Ch. ps, p. 143	 June 24, 2009 12:21 am

PS–144 Problem Sets

transaction, and so that concurrent users of the file system don’t ever see the effects of
others’ partially complete transactions. He adds three new procedures:

• tid ← BEGIN_TRANSACTION ()
• COMMIT (tid)
• ABORT (tid)

Ben renames his existing OPEN procedure to DO_OPEN so that he can insert a layer
named OPEN () that takes a tid parameter that specifies the transaction that this file access
will be a part of. Ben’s plan is that one transaction can OPEN, READ, and WRITE multiple
files, but those changes be visible to other transactions only after the originating transac
tion calls COMMIT. If the system crashes before a transaction COMMITs, its actions are undone
during recovery.

Ben decides to use locking to ensure before-or-after atomicity. He places a single
exclusive lock on each file, and programs OPEN to attempt to ACQUIRE that lock before
returning. If another transaction currently holds the lock, OPEN waits until the lock is free.

Here is the implementation of Ben’s new OPEN procedure:

procedure OPEN (tid, file_name)

integer locking_tid

do

locking_tid ← TEST_AND_ACQUIRE_LOCK (file_name, tid)
while locking_tid != tid
return DO_OPEN (file_name) // returns a file handle.

TEST_AND_ACQUIRE_LOCK () tests to see if the lock is currently acquired by some trans
action, and if it is, returns the id of the locking transaction. If the lock is not currently
acquired, it acquires the lock on behalf of tid, and returns tid.

Ben modifies his logging code so that each log record includes the tid of the transac
tion it belongs to and adds COMMIT and ABORT records to indicate the outcome of
transactions.

Ben is writing the code for the CLOSE and COMMIT functions, and is trying to figure out
when he should release the locks acquired by his transaction. His code is as follows:

procedure CLOSE (file_handle)

remove file_handle from file handle list

A:

procedure COMMIT (tid)

file_handles[] ← GET_FILES_LOCKED_BY (tid)

for each f in file_handles do

if IS_OPEN (f) then CLOSE (f)
B:
log a COMMIT record for tid // commit point
C:

Note that COMMIT first closes any open files, though files may also be closed before COMMIT

is called.

Saltzer & Kaashoek Ch. ps, p. 144 June 24, 2009 12:21 am

37 Improved Bitdiddler PS–145

Q 37.4 When can Ben’s code release a lock on a file (or all files) while still ensuring that
the locking protocol implements before-or-after atomicity?

A. At the line labeled A:
B. At the line labeled B:
C. At the line labeled C:

Ben begins running his new transactional file system on the Bitdiddler. The Bitdid
dler allows multiple programs to run concurrently, and Ben is concerned that he may
have a bug in his implementation because he finds that sometimes some of his applica
tions block forever waiting for a lock. Alyssa points out that he may have deadlocks.

 Ben hires you to help him figure out whether there is a bug in his code or if applica
tions are just deadlocking. He shows you several traces of file system calls from several
programs; your job is to figure out out for each trace whether the operations indicate a
deadlock, and if not, to report what apparent before-or-after order the transactions
shown in the trace appeared to have run.

At the end of each trace, assume that any uncommitted transactions issue no more
READ or OPEN calls but that each uncommitted transaction will go on to COMMIT if it has not
deadlocked.

Alyssa helps out by analyzing and commenting on the first trace for you. In these
traces, time goes down the page; so the first one shows that the first action is BEGIN (T1)
and the second action is BEGIN (T2):

Alyssa’s sample annoted program trace:

Transaction 1: Transaction 2:

BEGIN (T1)
BEGIN (T2)

fh ← OPEN (T1,’foo’)
fh2 ← OPEN (T2,’foo’) // blocks waiting for T1

WRITE (fh,’hi’)
CLOSE (fh)
COMMIT (T1)

WRITE (fh2,’hello’) // T2 can commit without deadlocking

The result is as if these transactions ran in the order T1, then T2.

Saltzer & Kaashoek Ch. ps, p. 145 June 24, 2009 12:21 am

PS–146 Problem Sets

Q 37.5 Trace 1: Does the following set of three transactions deadlock? If not, what serial
ordering of these transactions would produce the same result?

Transaction 1: Transaction 2: Transaction 3:

BEGIN (T1)
BEGIN (T2)

BEGIN (T3)
fh ← OPEN (T1,’foo’)

fh2 ← OPEN (T2,’bar’)
fh3 ← OPEN (T3,’baz’)

WRITE (T1,’hi’)
fh4 ← OPEN (T2,’baz’)

fh5 ← OPEN (T3,’foo’)
CLOSE (fh)
COMMIT (T1)

Q 37.6 Trace 2: Does the following set of four transactions deadlock? If not, what serial
ordering of these transactions would produce the same result?

Transaction 1: Transaction 2: Transaction 3: Transaction 4:

BEGIN (T1) BEGIN (T2)

fh ← OPEN (T1,’foo’)

WRITE (fh,’boo’)

fh2 ← OPEN (T2,’bar’)
WRITE (fh2,’car’)

CLOSE (fh)

COMMIT (T1)

BEGIN (T3)
BEGIN (T4)
fh3 ← OPEN (T4,’foo’)

fh4 ← OPEN (T3,’bar’)
fh5 ← OPEN (T2,’foo’)

fh6 ← OPEN (T4,’bar’)
...

Q 37.7 Trace 3: Does the following set of four transactions deadlock? If not, what serial
ordering of these transactions would produce the same result?

Saltzer & Kaashoek Ch. ps, p. 146 June 24, 2009 12:21 am

37 Improved Bitdiddler PS–147

Transaction 1: Transaction 2: Transaction 3: Transaction 4:

BEGIN (T1)
BEGIN (T2)

fh ← OPEN (T1,’foo’)
WRITE (fh,’boo’)

fh2 ← OPEN (T2,’bar’)
WRITE (fh2,’car’)

CLOSE(fh)
COMMIT (T1)

BEGIN (T3)
BEGIN (T4)
fh3 ← OPEN (T4,’ foo’)

fh4 ← OPEN (T3,’foo’)
fh5 ← OPEN (T2,’foo’)

fh6 ← OPEN (T4, ’baz’)
...

Transactional, Distributed Bitdiddler. Ben begins to get really carried away. He
decides that he wants the Bitdiddler to be able to access files of remote Bitdiddlers via a
networked file system protocol, but he wants to preserve the transactional behavior of his
system, such that one transaction can update files on several different computers. He
remembers that one way to provide atomicity when there are multiple participating sites
is to use the two-phase commit protocol.

The protocol works as follows: one site is appointed the coordinator. The program
that is reading and writing files runs on this machine, and issues requests to BEGIN and
COMMIT transactions and READ and WRITE files on both the local and remote file systems (the
‘‘workers’’).

When the coordinator is ready to commit, it uses the logging-based two-phase com
mit protocol, which works as follows: First, the coordinator sends a PREPARE message to
each of the workers. For each worker, if it is able to commit, it writes a log record indi
cating it is entering the PREPARED state and send a YES vote to the coordinator; otherwise
it votes NO. If all workers vote YES, the coordinator logs a COMMIT record and sends a COMMIT

outcome message to all workers, which in turn log a COMMIT record. If any worker votes
NO, the coordinator logs an ABORT record and sends an ABORT message to the workers,
which also log ABORT records. After they receive the transaction outcome, workers send
an ACKNOWLEDGMENT message to the coordinator. Once the coordinator has received an
acknowledgment from all of the workers, it logs an END record. Workers that have not
learned the outcome of a transaction periodically contact the coordinator asking for the
outcome. If the coordinator does not receive an ACKNOWLEDGMENT from some worker, after
a timer expiration it resends the outcome to that worker, persistently if necessary.

Saltzer & Kaashoek Ch. ps, p. 147 June 24, 2009 12:21 am

PS–148 Problem Sets

Figure PS.5 shows a coordinator node issuing requests to BEGIN a transaction and to
READ and WRITE files on two worker nodes.

BEGIN (T1)

Worker 2

read/writes

READ (T1, File 5, ...)

BEGIN (T1)

WRITE (T1, File 4, ...)

Coordinator Worker 1

File 1 File 3 File 5

File 2 File 4 File 6

File system 1 File system 2 File system 3

FIGURE PS.5

Coordinator issuing transactional READs and WRITEs to two workers in the two-phase com
mit based distributed file system for the Bitdiddler.

Ben is having a hard time figuring out what to do when one of the nodes crashes in
middle of the two phase commit protocol. When a worker node restarts and finds log
records for a transaction, it has several options:

• W1. Abort the transaction by writing an “abort” record
• W2. Commit the transaction by writing a “commit” record
• W3. Resend its vote to the server and ask it for transaction outcome

Similarly, the coordinator has several options when it recovers from a crash. It can:

• C1. Abort the transaction by writing an ‘‘abort’’ record
• C2. Do nothing
• C3. Send commit messages to the workers

Saltzer & Kaashoek Ch. ps, p. 148 June 24, 2009 12:21 am

37 Improved Bitdiddler PS–149

Q 37.8 For each of the following situations, of the above actions choose the best action
that a worker or coordinator should take.

A.	 The coordinator crashes, finds log records for a transaction but no COMMIT record
B.	 The coordinator crashes, finds a COMMIT record for a transaction but no END record

indicating the transaction is complete
C.	 A worker crashes, finds a PREPARE record for a transaction
D. A worker crashes, and finds log records for a transaction, but no PREPARE or COMMIT

records

Saltzer & Kaashoek Ch. ps, p. 149	 June 24, 2009 12:21 am

PS–150 Problem Sets

38 Speedy Taxi Company*

(Chapter 9[on-line])

2008–2–9

The Speedy Taxi company uses a computer to help its dispatcher, Arnie. Customers call
Arnie, each asking for a taxi to be sent to a particular address, which Arnie enters into
the computer. Arnie can also ask the computer to assign the next waiting address to an
idle taxi; the computer indicates the address and taxi number to Arnie, who informs that
taxi over his two-way radio.

Arnie’s computer stores the set of requested addresses and the current destination
address of each taxi (if not idle) in an in-memory database. To ensure that this informa
tion is not lost in a power failure, the database logs all updates to an on-disk log. Since
the database is kept in volatile memory only, the state must be completely reconstructed
after a power failure and restart, as in Figure 9.22. The database uses write-ahead logging
as in Chapter 9: it always appends each update to the log on disk, and waits for the disk
write to the log to complete before modifying the cell storage in main memory. The data
base processes only one transaction at a time (since Arnie is the only user, there is no
concurrency).

The database stores the list of addresses waiting to be assigned to taxis as a single vari
able; thus any change results in the system logging the entire new list. The database stores
each taxi’s current destination as a separate variable. A taxi is idle if it has no address
assigned to it.

Consider one action that uses the database: DISPATCH_ONE_TAXI. Arnie’s computer pre
sents a UI to him consisting of a button marked DISPATCH_ONE_TAXI. When Arnie presses
the button, and there are no failures, the computer takes one address from the list of
addresses waiting to be assigned, assigns it to an idle taxi, and displays the address and
taxi to Arnie.

Here is the code for DISPATCH_ONE_TAXI:

* Credit for developing this problem set goes to Robert T. Morris.

Saltzer & Kaashoek Ch. ps, p. 150 June 24, 2009 12:21 am

38 Speedy Taxi Company PS–151

1 procedure DISPATCH_ONE_TAXI ()
2 BEGIN_TRANSACTION

3 // read and delete the first address in list
4 list ← READ ()
5 if LENGTH (list) < 1 then
6 ABORT_TRANSACTION

7 address ← list[0]
8 DELETE (list[0])
9 WRITE (list)
10 // find first free taxi
11 taxi_index ← -1
12 for i from 0 until NUMBER_OF_TAXIS - 1
13 taxis[i] ← READ ()
14 if taxis[i] = NULL and taxi_index = -1 then
15 taxi_index ← i
16 if taxi_index = -1 then
17 ABORT_TRANSACTION

18 // record address as the taxi’s destination
19 taxis[taxi_index] ← address
20 WRITE (taxis[taxi_index])
21 COMMIT_TRANSACTION

22 display “DISPATCH TAXI ” + taxi_index + “ TO ” + address

When Arnie starts work, list contains exactly two addresses a1 and a2. There are two
taxis (taxis[0] and taxis[1]) and both are idle (NULL). Arnie pushes the DISPATCH_ONE_TAXI

button, but he sees no DISPATCH TAXI display, and the computer crashes, restarts,
and runs database recovery. Arnie pushes the button a second time, again sees no DIS
PATCH TAXI display, and again the computer crashes, restarts, and runs recovery.
There is no activity beyond that described or necessarily implied.

Q 38.1 If you were to look at last few entries of the database log at this point, which of
the following might you see, and which are not possible? Bx stands for a BEGIN record for
transaction ID x, Mx is a MODIFY (i.e. change) record for the indicated variable and new
value, and Cx is a COMMIT record.

A.	 No log records corresponding to Arnie’s actions.
B.	 B101; M101 list=a2; M101 taxis[0]=a1; C101; B102; M102 list=(empty); M102

taxis[1]=a2; C102
C.	 B101; M101 list=a2; M101 taxis[0]=a1; B102; M102 list=(empty); M102 taxis[1]=a2
D. B101; M101 list=a2; M101 taxis[0]=a1; C101; B102; M102 list=a2; M102 taxis[0]=a1
E.	 B101; M101 list=a2; M101 taxis[0]=a1; B102; M102 list=a2; M102 taxis[0]=a1

Suppose again the same starting state (the address list contains a1 and a2, both taxis
are idle). Arnie pushes the button, the system crashes without displaying a DISPATCH
TAXI message, the system reboots and runs recovery, and Arnie pushes button again.

Saltzer & Kaashoek Ch. ps, p. 151	 June 24, 2009 12:21 am

PS–152 Problem Sets

This time the system does display a DISPATCH TAXI message. Again, there is no activ
ity beyond that described or necessarily implied.

Q 38.2 Which of the following are possible messages?

A. DISPATCH TAXI 0 TO a1
B. DISPATCH TAXI 0 TO a2
C. DISPATCH TAXI 1 TO a1
D. DISPATCH TAXI 1 TO a2
Arnie questions whether it’s necessary to make the whole of DISPATCH_ONE_TAXI a single

transaction. He suggests that it would work equally well to split the program into two
transactions, the first comprising lines 2 through 9, and the other comprising lines 12
through 21. Arnie makes this change to the code.

Suppose again the same starting state and no other activity. Arnie pushes the button,
the system crashes without displaying a DISPATCH TAXI message, the system reboots
and runs recovery, and Arnie pushes button again. This time the system displays a DIS
PATCH TAXI message.

Q 38.3 Which of the following are possible messages?

A. DISPATCH TAXI 0 TO a1
B. DISPATCH TAXI 0 TO a2
C. DISPATCH TAXI 1 TO a1
D. DISPATCH TAXI 1 TO a2

Saltzer & Kaashoek Ch. ps, p. 152 June 24, 2009 12:21 am

39 Locking for Transactions PS–153

39 Locking for Transactions*

(Chapter 9[on-line])

2008–3–14

Alyssa has devised a database that uses logs as described in Section 9.3. The logging and
recovery works as shown in Figure 9.22 (the in-memory database with write-ahead
logging). Alyssa claims that if programmers insert ACQUIRE and RELEASE calls properly they
can have transactions with both before-or-after and all-or-nothing atomicity.

Alyssa has programmed the following transaction as a demonstration. As Alyssa
claims, it has both before-or-after and all-or-nothing atomicity.

T1:

BEGIN_TRANSACTION ()

ACQUIRE (X.lock)

ACQUIRE (Y.lock)

X ←X + 1

if X = 1 then

Y ← Y + 1

COMMIT_TRANSACTION()

RELEASE (X.lock)

RELEASE (Y.lock)

X and Y are the names of particular database fields, not parameters of the transaction.

Q 39.1 The database starts with contents X=0 and Y=0. Two instances of T1 are started
at about the same time. There are no crashes, and no other activity. After both
transactions have finished, which of the following are possible database contents?

A. X=1 Y=1
B. X=2 Y=0
C. X=2 Y=1
D. X=2 Y=2

Ben changes the code for T1 to RELEASE the locks earlier:

T1b:

BEGIN_TRANSACTION ()

ACQUIRE (X.lock)

ACQUIRE (Y.lock)

X ←X + 1

if X = 1 then

Y ← Y + 1

RELEASE (X.lock)

RELEASE (Y.lock)

COMMIT_TRANSACTION ()

With this change, Louis suspects that there may be a flaw in the program.

* Credit for developing this problem set goes to Robert T. Morris.

Saltzer & Kaashoek Ch. ps, p. 153 June 24, 2009 12:21 am

PS–154 Problem Sets

Q 39.2 The database starts with contents X=0 and Y=0. Two instances of T1b are started
at about the same time. There is a crash, a restart, and recovery. After recovery completes,
which of the following are possible database contents?

A. X=1 Y=1
B. X=2 Y=0
C. X=2 Y=1
D. X=2 Y=2

Ben and Louis devise the following three transactions. Beware: the locking in T2 is
flawed.

T2:

BEGIN_TRANSACTION ()

ACQUIRE (M.lock)

temp ← M

RELEASE (M.lock)

ACQUIRE (N.lock)

N ← N + temp

COMMIT_TRANSACTION ()

RELEASE (N.lock)

T3:

BEGIN_TRANSACTION ()

ACQUIRE (M.lock)

M ← 1

COMMIT_TRANSACTION ()

RELEASE (M.lock)

T4:

BEGIN_TRANSACTION ()

ACQUIRE (M.lock)

ACQUIRE (N.lock)

M ← 1

N ← 1

COMMIT_TRANSACTION ()

RELEASE (M.lock)

RELEASE (N.lock)

Q 39.3 The initial values of M and N in the database are M=2 and N=3. Two of the
above transactions are executed at about the same time. There are no crashes, and there
is no other activity. For each of the following pairs of transactions, decide whether
concurrent execution of that pair could result in an incorrect result. If the result is always
correct, give an argument why. If an incorrect result could occur, give an example of such
a result and describe a scenario that leads to that result.

A. T2 and T2:
B. T2 and T3:
C. T2 and T4:

Saltzer & Kaashoek Ch. ps, p. 154 June 24, 2009 12:21 am

40 “Log”-ical Calendaring PS–155

40 “Log”-ical Calendaring*

(Chapters 9[on-line] and 10[on-line])

Ally Fant is designing a calendar server to store her appointments. A calendar client
contacts the server using the following remote procedure calls (RPCs):

• 	 ADD (timeslot, descr): Adds the appointment description (descr) to the calendar

at time slot timeslot.

• 	 SHOW (timeslot): Reads the appointment at time slot timeslot from the calendar

and displays it to the user. (If there is no appointment, SHOW displays an empty

slot.)

The RPC between client and server runs over a transport protocol that provides “at
most-once” semantics.

The server runs on a separate computer and it stores appointments in an append-only
log on disk. The server implements ADD in response to the corresponding client request
by appending an appointment entry to the log. Each appointment entry has the follow
ing format:

structure appt_entry

integer id // unique id of action that created this entry

string timeslot // the timeslot for this appointment

string descr // description of this appointment

Ally would like to make the ADD action atomic. She realizes that she can use
ALL_OR_NOTHING_PUT (data, sector) and ALL_OR_NOTHING_GET (data, sector) as described in
Section 9.2.1. These procedures guarantee that a single all-or-nothing sector is written
either completely or not at all.

Each appointment entry is for one timeslot, which specifies the time interval of the
appointment (e.g., 1:30 pm–3:00 pm on May 20, 2005). Each appointment entry is
exactly as large as a single all-or-nothing sector (512 bytes). The first all-or-nothing sec
tor on disk, numbered 0, is the master_sector, which stores the all-or-nothing sector
number where the next log record will be written. The number stored in master_sector

is called the end of the log, end_of_log, and is initialized to 1.
Ally designs the following procedure:

1 procedure ADD (timeslot; descr)
2 id ← NEW_ACTION_ID () // returns a unique identifier
3 appt ← MAKE_NEW_APPT (id; timeslot; descr) // make and fill in an appt entry
4 if ALL_OR_NOTHING_GET (end_of_log; master_sector) ≠ OK then return
5 if ALL_OR_NOTHING_PUT (appt; end_of_log) ≠ OK then return
6 end_of_log ← end_of_log + 1
7 if ALL_OR_NOTHING_PUT (end_of_log; master_sector) ≠ OK then return

The procedure NEW_ACTION_ID returns a unique action identifier. The procedure

* Credit for developing this problem set goes to Hari Balakrishnan.

Saltzer & Kaashoek Ch. ps, p. 155	 June 24, 2009 12:21 am

PS–156 Problem Sets

MAKE_NEW_APPT allocates an appt_entry structure and fills it in, padding it to 512 bytes.
Ally implements SHOW as follows:

1. Use ALL_OR_NOTHING_GET to read the master sector to determine the end of the log.
2. Scan the log backwards starting from the last written all-or-nothing sector

(end_of_log – 1), using ALL_OR_NOTHING_GET on each sector, and stopping as soon as an
entry for the timeslot is found.

To help understand if her implementation of the calendar system is correct or not,
Ally defines the following properties that her calendar server should ensure:

P1: SHOW (timeslot) should display the appointment corresponding to the last com
mitted ADD to that timeslot, even if system crashes occur during calls to ADD.

P2: The calendar server must store the appointments corresponding to all committed
ADD actions for at least three years.

P3: If multiple ADD and SHOW actions run concurrently, their execution should be seri
alizable and property P1 should hold.

P4: No ADD should be committed if it has a time slot that overlaps with an existing
appointment.

Ally has learned a number of apparently relevant concepts: before-or-after atomicity,
all-or-nothing atomicity, constraint, durability, and transaction.

Q 40.1 Which of the apparently relevant concepts does ADD correctly implement?

Q 40.2 For each of the properties P2, P3, and P4, identify the apparently relevant
concept that best describes it.

Q 40.3 What is the earliest point in the execution of the ADD procedure that ensures that
a subsequent SHOW is guaranteed to observe the changes made by the ADD. (Assume that
the SHOW does not fail.)

A.	 The successful completion of ALL_OR_NOTHING_PUT in line 5 of ADD.
B.	 The successful completion of line 6.
C.	 The successful completion of ALL_OR_NOTHING_PUT in line 7.
D. The instant that ADD returns to its caller.

Q 40.4 Ally sometimes uses the calendar server concurrently from different client
machines. Which of these statements is true of properties P3 and P4? (Assume that no
failures occur, but that the server may be processing multiple RPCs concurrently.)

A.	 If exactly one ADD and several SHOW actions run concurrently on the server, then
property P3 is satisfied even if those actions are for the same timeslot.

B.	 If more than one ADD and exactly one SHOW run concurrently on the server, then
property P3 is satisfied as long as the actions are for different timeslots.

C.	 Suppose ADD (timeslot, descr) calls SHOW (timeslot) before line 7 and immediately
returns to its caller if the timeslot already has an appointment. If multiple ADD and SHOW

Saltzer & Kaashoek Ch. ps, p. 156	 June 24, 2009 12:21 am

40 “Log”-ical Calendaring PS–157

actions run concurrently on the server, then property P4 is satisfied whether or not
property P3 holds.

D. Suppose ADD (timeslot, descr) calls SHOW (timeslot) before line 7 and immediately

returns to its caller if the timeslot already has an appointment. If multiple ADD and SHOW

actions run concurrently on the server, then property P4 is satisfied as long as property

P3 holds.

Q 40.5 Ally finds two disks A and B whose conditional failure probabilities follow the
“bathtub curve”, shown below. She also learns that the disk manufacturers sell units that
have been “burned in,” but otherwise are unused.Which disk should she buy new to have
a higher likelihood of meeting property P2 for at least one year?

Multi-user calendar. Ally becomes president of Scholarly University and opens her server
calendar to the entire University community to add and show entries. People start
complaining that it takes a long time for them to SHOW Ally's appointments. Ally's new
provost, Lem E. Fixit, tells her that a single log makes reading slow.

Lem convinces Ally to use the log as a recovery log, and use a volatile in-memory
table, named table, to store the appointments to improve the performance of SHOW. The
table is indexed by the timeslot. SHOW is now a simple table lookup, keyed by the timeslot.

If the system crashes, the table is lost; when the system recovers, the recovery proce
dure reinstalls the table. Lem shows Ally how to modify the recovery log to include an
“undo” entry in it, as well as a “redo” entry. All the log writes are done using
ALL_OR_NOTHING_PUT.

Ally writes the following lines in her NEW_ADD pseudocode. (For now, the writes to the
log are only shown in COMMIT.)

Saltzer & Kaashoek Ch. ps, p. 157 June 24, 2009 12:21 am

PS–158 Problem Sets

1 procedure NEW_ADD (timeslot, descr)
2 id ← NEW_ACTION_ID ()
3 appt ← MAKE_NEW_APPT (id, timeslot, descr)
4 table[timeslot] ← appt
5 if OVERLAPPING (table, appt) then ABORT (id)
6 COMMIT (id)

7 procedure COMMIT (id)
8 if ALL_OR_NOTHING_GET (end_of_log, master_sector) ≠ OK then ABORT (id)
9 if ALL_OR_NOTHING_PUT (“COMMITTED”, id, end_of_log) ≠ OK then ABORT (id)
10 end_of_log ← end_of_log + 1
11 if ALL_OR_NOTHING_PUT (end_of_log, master_sector) ≠ OK then ABORT (id)

The procedure named OVERLAPPING checks table to see if appt overlaps with a previously
committed appointment (property P4). ABORT uses the log to undo any changes to table
made by NEW_ADD, releases any locks that NEW_ADD set, and then terminates the action.

Ally modifies SHOW to look up an appointment in table, instead of scanning the log.

Q 40.6 Which of the following statements is true for NEW_ADD with respect to property
P1? (Assume that there are no concurrent actions.)

A.	 If NEW_ADD writes the log entry corresponding to the table write just before line 4, then
P1 holds.

B.	 If NEW_ADD writes the log entry corresponding to the table write just before line 6, then
P1 holds.

C.	 Because table is in volatile memory, there is no need for ABORT to undo any changes
made by NEW_ADD in order for P1 to hold.

D. If Ally had designed table to be in non-volatile storage, and NEW_ADD inserts the log
entry just before line 4, then P1 holds.

Lem convinces Ally that using locks can be a good way to ensure property P3. Ally
uses two locks, λt and λg. λt protects table[timeslot] and λg protects accesses to the log.
She needs help to figure out where to place the lock ACQUIRE and RELEASE statements to
ensure that property P3 holds when multiple concurrent NEW_ADD and SHOW actions run.

Q 40.7 Which of the following placements of ACQUIRE and RELEASE statements in
NEW_ADD correctly ensures property P3? Assume that SHOW implements correct locking.

A.
ACQUIRE (λt) just before line 3,
RELEASE (λt) just after line 6,
ACQUIRE (λg) just before line 3,
RELEASE (λg) just after line 6.

B.
ACQUIRE (λt) just before line 4,
RELEASE (λt) just after line 5,
ACQUIRE (λg) just before line 6 but after RELEASE(λt),
RELEASE (λg) just after line 6.

C.	 None of the above.

Saltzer & Kaashoek Ch. ps, p. 158	 June 24, 2009 12:21 am

40 “Log”-ical Calendaring PS–159

Disconnected calendar. Ally Fant wants to use her calendar in disconnected operation,
for example, from her PDA, cell phone, and laptop. Ally modifies the client software as
follows. Just before a client disconnects, the client copies the log from the calendar server
atomically, and then reinstalls table locally. When the user (i.e., Ally) adds an item, the
client runs NEW_ADD on the client, updating the local copy of the log and table.

When the client can connect to the calendar server or any other client, it reconciles.
When reconciling, one of the two machines is the primary. If a client connects to the
calendar server, the server is the primary; if a client connects to another client, then one
of them is the primary. The client that is not the primary calls RECONCILE, which runs
locally on the client:

1 procedure RECONCILE (primary, client_log)
2 for each entry ∈ client_log do
3 if entry.state = COMMITTED then
4 invoke NEW_ADD(entry.timeslot, entry.descr) at primary
5 COPY (primary.log, client_log) // overwrite client_log
6 DELETE (table)
7 rebuild table from client_log // create new table

Assume that RECONCILE is atomic and that no crashes occur during reconciliation.
Assume also that between any pair of nodes there is at most one active RECONCILE at any
time.

Q 40.8 Which of the following statements is true about the implementation that
supports disconnected operation?

A.	 RECONCILE will resolve overlapping appointments in favor of appointments already
present on the primary.

B.	 Some appointments added on a disconnected client may not appear in the output of
SHOW after the reconciliation is completed.

C.	 The result of client C1 reconciling with client C2 (with C2 as the primary), and then
reconciling C2 with the calendar server, is the same as reconciling C2 with client C1
(with C1 as the primary), and then reconciling C1 with the calendar server.

D. Suppose Ally stops making changes, and then reconciles all clients with the server once.
After doing that, the logs on all machines will be the same.

Lem E. Fixit notices that the procedure RECONCILE is slow. To speed it up, Lem invents
a new kind of record, called the “RECONCILED” record. Each time RECONCILE runs, it appends
a RECONCILED record listing the client's unique identifier to the primary's log just before
line 5.

Saltzer & Kaashoek Ch. ps, p. 159	 June 24, 2009 12:21 am

PS–160 Problem Sets

Q 40.9 Which of the following uses of the RECONCILED record speeds up RECONCILE

correctly? (Assume that clients reconcile only with the calendar server.)

A.	 Modify line 2 to scan the client log backwards (from the end of the log), terminating
the scan if a RECONCILED record with the client's identifier is found, and then scan
forward until the end of the log calling NEW_ADD on the appointment entries in the log.

B.	 Modify line 2 to scan the client log forwards (from the beginning of the log) calling
NEW_ADD on the appointment entries in the log, but terminating the scan if a
RECONCILED record with the client's identifier is found.

C.	 Don't reinstall table from scratch at the end of reconciliation, but instead update it by
adding the entries in the primary log (which the client just copied) that are between the
previous RECONCILED record and the RECONCILED record from the current reconciliation.
If an entry in the log overlaps with an entry in the table, then replace the table entry
with the one in the log.

D. Assign Lem E. Fixit a different job. None of these optimizations maintains correctness.
2004–3–7…15

Saltzer & Kaashoek Ch. ps, p. 160	 June 24, 2009 12:21 am

41 Ben’s Calendar PS–161

41 Ben’s Calendar*

(Chapter 10[on-line])

Ben Bitdiddle has just been promoted to Engineering Manager. He quickly notices two
facts about his new job. First, keeping an accurate appointment calendar is crucial.
Second, he no longer has any programming responsibilities. He decides to address both
problems at once by building his own highly available replicated calendar system.

Ben runs a client user interface on his workstation. The client talks over the network
to one of three replicated servers. Ben places the three servers, called S1, S2, and S3, in
three different cities to try to ensure independent failure. Ben only runs one client at a
time.

Each server keeps a simple database of Ben’s appointments. The database holds a
string for every hour of every day, describing the appointment for that hour. The string
for each hour starts out empty. A server can perform just two operations on its own
database:

• 	 DBREAD (day, hour) returns the appointments for a particular day and hour. The
argument day indicates the desired day, where 0 means January 1st, 2000. The
argument hour is an integer between 0 and 23, inclusive.

• 	 DBWRITE (day, hour, string) changes the string for the hour hour. Writing an
empty string to an hour effectively deletes any existing appointment for that
hour.

Each server allows Ben’s client to invoke these operations by RPC. The RPC system
uses a powerful checksum that detects all errors and discards any corrupted message. If
the RPC client implementation doesn’t receive a response from the server within a few
seconds, it times out, sets the variable rpc_OK to false, and returns NIL. If the client does
receive a reply from the server, the RPC implementation sets rpc_OK to true and returns
the result from the server, if any. The RPC system does not resend requests. Thus, for
example, if the network discards or corrupts the request or response message, the RPC
call returns with rpc_OK set to false.

Ben’s client user interface can display the appointments for a day and also change an
appointment. To support these operations, Ben writes client software based on this
pseudocode (the notation S[i].F indicates an RPC call to procedure F on server i):

* Credit for developing this problem set goes to Robert T. Morris.

Saltzer & Kaashoek Ch. ps, p. 161	 June 24, 2009 12:21 am

PS–162 Problem Sets

procedure CLIENTREAD (day, hour)
string s
for i from 1 to 4 do // try each server one by one

s ← S[i].DBREAD (day, hour)
if rpc_OK then return s // return with the first reply

return “Error”

procedure CLIENTWRITE (day, hour, what)
for i from 1 to 4 do // write to all three servers

boolean done ← FALSE

while done = FALSE do
S[i].DBWRITE (day, hour, what)
if rpc_OK then done ← TRUE

Q 41.1 Suppose the network connecting Ben’s client to servers S1 and S2 is fast and
reliable, but the network between the client and S3 often stops working for a few minutes
at a time. How will Ben’s system behave in this situation?

A. CLIENTWRITE will often take a few minutes or more to complete.
B. CLIENTREAD will often take a few minutes or more to complete.
C. CLIENTWRITE will often fail to update all of the servers.
D. CLIENTREAD will often fail, returning “Error”.

Ben tests his system by reading and writing the entry for January 1st, 2000, 10 a.m.:
he calls:

CLIENTWRITE (0, 10, "Staff Meeting")

CLIENTWRITE (0, 10, "Breakfast")

CLIENTREAD (0, 10)

Q 41.2 Suppose there are no faults. What string will the CLIENTREAD call return?

Just to be sure, Ben tries a different test, involving moving a meeting from 10 a.m. to
11 a.m., and scheduling breakfast:

CLIENTWRITE (0, 10, "Free at 10")

CLIENTWRITE (0, 11, "Free at 11")

CLIENTWRITE (0, 10, "Talk to Frans at 10")

CLIENTWRITE (0, 11, "Talk to Frans at 11")

CLIENTWRITE (0, 10, "Breakfast at 10")

Ben starts the test, but trips over the power cord of his client computer while the test
is running, causing the client to reboot. The client forgets that it was executing the test
after the reboot; it doesn’t re-start or continue the test. After the reboot Ben calls CLIEN

TREAD (0, 10) and CLIENTREAD(0, 11). Other than the mentioned client reboot, the only
faults that might occur during the test are lost messages (and thus RPC failures).

Saltzer & Kaashoek Ch. ps, p. 162 June 24, 2009 12:21 am

41 Ben’s Calendar PS–163

Q 41.3 Which of the following results might Ben see?

A. Breakfast at 10, Talk to Frans at 11
B. Talk to Frans at 10, Talk to Frans at 11
C. Breakfast at 10, Free at 11
D. Free at 10, Talk to Frans at 11

Q 41.4 Ben is getting a little paranoid, so he calls ClientRead(0, 10) twice, to see how
consistent his database is. Which of the following results might Ben see?

A. Breakfast at 10, Breakfast at 10
B. Talk to Frans at 10, Talk to Frans at 10
C. Free at 10, Breakfast at 10
D. Talk to Frans at 10, Free at 10

Ben feels this behavior is acceptable. Before he starts to use the system, however, his
younger brother Mark points out that Ben’s system won’t be able to complete updates if
one of the servers is down. Mark says that if a server is down, a DBWRITE RPC to that
server will time out, so CLIENTWRITE will have higher availability if it ignores RPC timer
expirations. Mark suggests the following changed CLIENTWRITE:

procedure CLIENTWRITE (day, hour, what)
for i from 1 to 4 do

S[i].DBWRITE (day, hour, what)

// Ignore RPC failure

Ben adopts this change, and starts using the system to keep his appointments. How
ever, his co-workers start to complain that he is missing meetings. Suspicious of Mark’s
change, Ben tests the system by manually clearing all database entries on all servers to
empty strings, then executing the following code on his client:

CLIENTWRITE (0, 10, "X")

v1 ← CLIENTREAD (0, 10)

CLIENTWRITE (0, 10, "Y")

v2 ← CLIENTREAD (0, 10)

CLIENTWRITE (0, 10, "Z")

v3 ← CLIENTREAD (0, 10)

Assume that the only possible faults are losses of RPC messages, and that RPC mes
sages are delivered instantly.

Q 41.5 With Mark’s change, which of the following sequences of v1, v2, and v3 are
possible?

A. X, Y, Z
B. X, Z, Y
C. X, X, Z
D. X, Y, X

Saltzer & Kaashoek Ch. ps, p. 163 June 24, 2009 12:21 am

PS–164 Problem Sets

Q 41.6 In Ben’s original system, what sequences of v1, v2, and v3 would have been
possible?

A. X, Y, Z
B. X, Z, Y
C. X, X, Z
D. X, Y, X

2001–3–14…19

Saltzer & Kaashoek Ch. ps, p. 164 June 24, 2009 12:21 am

42 	Alice’s Replicas PS–165

42 Alice’s Replicas
(Chapter 10[on-line])

After reading Chapter 10 and the end-to-end argument, Alice explores designing an
application for reconciling UNIX file systems. Her program, RECONCILE, takes as input the
names of two directory trees and attempts to reconcile the differences between the two
trees. The typical scenario for RECONCILE is that one of the directory trees is on a file
service. The other one is a replica of that same directory tree, located on Alice’s laptop.

When Alice is disconnected from the service, she modifies files on her laptop while
her friends may modify files on the service When Alice reconnects to the service, she runs
RECONCILE to reconcile the differences between the directory tree on her laptop and the
service so that they are identical again. For example, if a file has changed on her laptop,
but not on the service, RECONCILE copies the file from the laptop to the service. If the file
has changed on both the laptop and server, then RECONCILE requires guidance to resolve
conflicting changes.

The RECONCILE program maintains on each host a database named fsinfo, which is
stored outside the directory tree being reconciled. This database is indexed by path name,
and it stores:

character pathname[1024] // path name of this file

integer160 hash // cryptographic hash of the content of the file

On disk a UNIX file consists of metadata (the inode) and content (the data blocks).
The cryptographic hash is computed using only the file’s content. Path names are less
than 1024 bytes. For this problem, ignore the details of reconciling directories, and
assume that Alice has permission to read and write everything in both directory trees.

The RECONCILE program operates in 4 phases:

• 	 Phase 1: Compute the set of changes on the laptop since the last reconciliation
and the set of changes on the server since the last reconciliation.

• 	 Phase 2: The laptop retrieves the set of changes from the service. Using the two
change sets, the laptop computes a set of actions that must be taken to reconcile
the two directory trees. In this phase, reconcile might decide that some files
cannot be reconciled because of conflicting changes.

• 	 Phase 3: The laptop carries out the actions determined in phase 2. The laptop
updates the files and directories in its local directory tree, and retrieves files,
sends files, and sends instructions to the server to update its directory tree.

• 	 Phase 4: Both the laptop and the service update the fsinfo they used to reflect the
new content of files that were successfully reconciled on this run.

Assume that RECONCILE runs to completion before starting again. Furthermore, assume
that when reconcile runs no concurrent threads are allowed to modify the file system.
Also assume that initially the fsinfo databases are identical in content and computed cor
rectly, and that after reconciliation they also end up in an identical state.

Saltzer & Kaashoek Ch. ps, p. 165	 June 24, 2009 12:21 am

PS–166 Problem Sets

The first phase of reconcile runs the procedure COMPUTEMODIFICATIONS on both the lap
top and the service. On each machine COMPUTEMODIFICATIONS produces two sets: a set of
files that changed on that machine and a set of files that were deleted on that machine.

set changeset, deleteset;

procedure COMPUTEMODIFICATIONS (path, fsinfo)

changeset ← NULL

deleteset ← NULL

COMPUTECHANGESET (path, fsinfo)

COMPUTEDELETESET (fsinfo)

procedure COMPUTECHANGESET (path, fsinfo)

info ← LOOKUP (path, fsinfo)

if info = NULL then ADD (path, changeset)

else if ISDIRECTORY (path) then

for each file in path do COMPUTECHANGESET (path/file, fsinfo)
else if CSHA (CONTENT (path) ≠ info.hash then ADD (path, changeset)

procedure COMPUTEDELETESET (fsinfo)
for each entry in fsinfo do

if not (EXIST (entry.pathname)) then ADD (pathname, deleteset)

The COMPUTEMODIFICATIONS procedure takes as arguments the path name of the directory
tree to be reconciled and the fsinfo database. The procedure COMPUTECHANGESET walks the
directory tree and checks every file to see if it was created or changed since the last time
RECONCILE ran. CSHA is a cryptographic hash function, which has the property that it is
computationally infeasible to find two different inputs i and j such that

CSHA (i) = CSHA (j)

The COMPUTEDELETESET procedure checks for each entry in the database whether the
corresponding file still exists; if not, it adds it to the set of files that have been deleted
since the last run of RECONCILE.

Q 42.1 What files will RECONCILE add to changeset or deleteset?

A. Files whose content has decayed.
B. Files whose content has been modified.
C. Files that have been created.
D. Files whose inode have been modified.
E. Files that have been deleted.
F. Files that have been deleted but recreated with identical content.
G. Files that have been renamed.

The second phase of reconcile compares the two changesets and the two deletesets to
compute a set of actions for reconciling the two directory trees. To avoid confusion we
call changeset on the laptop changeLeft, and changeset on the service changeRight. Sim
ilarly, deleteset on the laptop is deleteLeft and deleteset on the service is deleteRight. The
second phase consists of running the procedure COMPUTEACTIONS with the 4 sets as input.
COMPUTEACTIONS produces 5 sets:

Saltzer & Kaashoek Ch. ps, p. 166 June 24, 2009 12:21 am

42 Alice’s Replicas PS–167

• additionsLeft: files that must be copied from server to the laptop
• additionsRight: files that must be copied from laptop to the service
• removeLeft: file that must be removed from laptop
• removeRight: file that must be removed from service
• conflicts: files that have conflicting changes

In the following code fragment, the notation A - B indicates all elements of the set A

after removing the elements that also occur in the set B. With this notation, the 5 sets are
computed as follows:

conflicts ← NULL;

procedure COMPUTEACTIONS (changeLeft, changeRight, deleteLeft, deleteRight)
for each file ∈ changeLeft do

if file ∈ (changeRight ∪ deleteRight) then ADD (file, conflicts)
for each file ∈ (deleteLeft) do

if file ∈ (changeRight) then ADD (file, conflicts)
additionsRight ← changeLeft - conflicts
additionsLeft ← changeRight - conflicts
removeRight ← deleteLeft - conflicts
removeLeft ← deleteRight - conflicts

Q 42.2 What files end up in the set additionsRight?

A. Files created on the laptop that don’t exist on the service.
B. Files that have been removed on the server but not changed on the laptop.
C. Files that have been removed on the laptop but not on the service.
D. Files that have been modified on the laptop but not on the service.
E. Files that have been modified on the laptop and on the service.

Q 42.3 What files end up in the set conflicts?

A. Files that have been modified on the laptop and on the service.
B. Files that have been removed on the laptop but that exist unmodified on the service.
C. Files that have been removed on the laptop and on the service.
D. Files that have been modified on the service but not on the laptop.
E. Files that have been created on the laptop and on the service but with different content.
F. Files that have been created on the laptop and on the service with the same content.

Phase 3 of the reconcile executes the actions: deleting files, transferring files, and
resolving conflicts. All conflicts are resolved by asking the user.

We focus on transferring files from laptop to service. Alice wants to ensure that trans
fers of files are atomic. Assume that all file system calls execute atomically. The RECONCILE

program transfers files from additionsRight by invoking the remote procedure RECEIVE on
the service:

Saltzer & Kaashoek Ch. ps, p. 167 June 24, 2009 12:21 am

PS–168 Problem Sets

procedure RECEIVE (data, size, path)

tname ← UNIQUENAME ()

fd ← CREATE_FILE (tname)

if fd ≥ 0 then

n ← WRITE (fd, data, size)

CLOSE (fd)

if n = size then RENAME (tname, path)

else DELETE (tname)

return (n = size) // boolean result tells success or failure

else return (FALSE)

The RECEIVE procedure takes as arguments the new content of the file (data and size) and
the name (path) of the file to be updated or created. As its first step, RECEIVE creates a
temporary file with a unique name (tname) and writes the data into in it. After the write
is successful, receive renames the temporary file to its real name (path), which
incidentally removes any existing old version of path; otherwise, it cleans up and deletes
the temporary file. Assume that RENAME always executes successfully.

Q 42.4 Where is the commit point in the procedure RECEIVE?

A. right after RENAME completes
B. right after CLOSE completes
C. right after CREATE_FILE completes
D. right after DELETE completes
E. right after WRITE completes
F. none of the above

After the server or laptop fails, it calls a recovery procedure to back out or roll forward
a RECEIVE operation that was in progress when the host failed.

Q 42.5 What must this recovery procedure do?

A. Remove any temporary files left by receive.
B. Nothing.
C. Send a message to the sender to restart the file transfer.
D. Rename any temporary files left by receive to their corresponding path name.

Q 42.6 Which advantages does this version of RECONCILE have over the reconciliation
procedure described in Chapter 10?

A. This RECONCILE repairs files that decay.
B. This RECONCILE doesn’t require changes to the underlying file system implementation.
C. This version of RECONCILE doesn’t require a log on the laptop.
D. This RECONCILE propagates changes from the laptop to the service, and vice versa.
E. This RECONCILE will run much faster on big files.

Alice wonders if her code extends to reconciling more than two file systems. Consider
3 hosts (A, B, and C) that all have an identical copy of a file f, and the following sequence
of events:

Saltzer & Kaashoek Ch. ps, p. 168 June 24, 2009 12:21 am

42 Alice’s Replicas PS–169

• 	 at noon B modifies file f
• 	 at 1 pm B reconciles with A
• 	 at 2 pm C modifies f
• 	 at 3 pm B reconciles with C
• 	 at 4 pm A modifies f
• 	 at 5 pm B reconciles with A

Assume that B has two distinct fsinfo databases, one used for reconciling with A and one
for reconciling with C.

Q 42.7 Which of the following statements are correct, given this sequence of events and
Alice’s implementation of RECONCILE?

A.	 If the conflict at 3 pm is reconciled in favor of B’s copy, then RECONCILE will not report

a conflict at 5 pm.

B.	 If the conflict at 3 pm is reconciled in favor of C’s copy, then RECONCILE will report a

conflict at 5 pm.

C.	 If the conflict at 3 pm is resolved by a modification to f that merges B’s and C’s versions,

then reconcile will report a conflict at 5 pm.

D. If the conflict at 3 pm is resolved by removing f from B and C, then RECONCILE will not

report a conflict at 5 pm.

2003–3–6…12

Saltzer & Kaashoek Ch. ps, p. 169	 June 24, 2009 12:21 am

PS–170 Problem Sets

43 JailNet*

(Some Chapter 7[on-line], but mostly Chapter 11[on-line])

The Computer Crimes Correction Facility, a federal prison for perpetrators of
information-related crimes, has observed curious behavior among their inmates.
Prisoners have discovered that they can broadcast arbitrary binary strings to each other
by banging cell bars with either the tops or bottoms of their tin cups, making distinct
sounds for “0” and “1”. Since such sounds made in any cell can typically be heard in
every other cell, they have devised an Ethernet-like scheme for communicating varying-
length packets among themselves.

The basic communication scheme was devised by Annette Laire, a CCCF lifer con
victed of illegal exportation of restricted information when the GIF she e-mailed to her
cousin in El Salvador was found to have some bits in common with a competent cryp
tographic algorithm.

Annette defined the following basic communication primitive:

procedure SEND (message, from, to)
BANG (ALLONES) // Start with a byte of eight 1’s
BANG (to) // destination inmate number
BANG (from) // source inmate number
BANG (message) // the message data
BANG (CHECKSUM ({to, from, message})) // Checksum of whole message

where the operation BANG (data) is executed by banging one’s tin cup to signal the
sequence of bits corresponding to the specified null-terminated character string,
including the zero byte at its end. The special string ALLONES sent initially has a single byte
of (eight) 1 bits (followed by the terminating null byte). The high-order bit of each 8-bit
character (in to, from, message, and the result of CHECKSUM) is zero.

Annette specified that the to and from strings be the unique numbers printed on every
inmate’s uniform, since all of the nerd-inmates quickly learn the numbers of each of their
colleagues. Each inmate listens more or less continuously for packets addressed to him,
ignoring those whose to field don’t match his number or whose checksums are invalid.

Q 43.1 What function(s) are served by sending the initial byte of all 1s?

A. Bit framing.
B. Byte (character) framing.
C. Packet framing.
D. Packet Reassembly.
E. None of the above.

Typical higher-level protocols involve sequences of packets exchanged between
inmates, for example:

* Credit for developing this problem set goes to Stephen A. Ward.

Saltzer & Kaashoek Ch. ps, p. 170 June 24, 2009 12:21 am

43 JailNet PS–171

Annette ⇒ Ty: SEND (“I thought the lobster bisque was good tonight”, ANNETTE, TY);

Ty ⇒ Annette: SEND (“Yes, but the filet was a bit underdone”, TY, ANNETTE);

where the symbols ANNETTE and TY are bound to character strings containing the uniform
numbers of Annette and Ty, respectively.

Of course, prison guards quickly catch on to the communication scheme, listen in on
the conversations, and sometimes even inject messages of their own, typically with false
source addresses:

Guard: SEND (“Yeah? Then it’s dog food for you tomorrow!”, JIMMIETHEGEEK, ANNETTE);

Such experiences motivate Ty Debole, the inmate in charge of cleaning, to add secu
rity measures to the JailNet protocols. Ty reads up on public-key cryptography and
decides to use it as the basis for JailNet security. He chooses a public-key algorithm and
asks each inmate to generate a public/private key pair and tell him the public key.

• 	 KEY represents the inmate’s public key. Since Ty runs the CCCF laundry, he
prints the numbers on inmate’s uniforms. He replaces each inmate’s assigned
number with a representation of KEY;

• 	 $KEY is the inmate’s private key. This key is known only to the inmate whose
uniform bears KEY.

Ty assures each inmate that so long as they don’t reveal their private $KEY, nobody else—
inmates or guards—will be able to determine it. Inmates continue to address each other
by the numbers on their uniforms, which now specify their public Keys.

Q 43.2 What is an assumption on which Ty bases the security of the secret $KEY?

A.	 $KEY is theoretically impossible to compute from KEY.
B.	 $KEY takes an intractably long time to compute from KEY.
C.	 $KEY takes at least as long to compute from KEY as the generation of the KEY, $KEY pair.
D. There is a reasonably efficient way to compute $KEY, but it’s not generally known by

guards and inmates.
Ty then teaches inmates the 4 security primitives for messages of up to 1,500 bytes:

• 	 ENCRYPT (plaintext, KEY) // returns a message string
• 	 DECRYPT (ciphertext, $KEY) // returns a message string
• 	 SIGN (message, $KEY) // returns an authentication tag
• 	 VERIFY (message, KEY, signature) // returns ACCEPT or REJECT

These primitives have the properties described in Chapter 11[on-line].
Ty proposes improving the security of communications by replacing calls to SEND

with calls like:

SEND (TYCODE (message, from, to), from, to);

where TYCODE is defined as

procedure TYCODE (message, from, to)

return ENCRYPT (message, to)

Saltzer & Kaashoek Ch. ps, p. 171	 June 24, 2009 12:21 am

PS–172 Problem Sets

Ty and Annette are smugly confident that although the guards might hear their con
versation, they won’t be able to understand it since the encrypted message appears as
gibberish until properly decoded.

The first use of TYCODE involves the following message, received by Annette:

SEND (TYCODE (“Meet by the wall at ten for the escape”, TY, ANNETTE), TY, ANNETTE)

Q 43.3 What computation did Annette perform to decode Ty’s message? Assume
rmessage is the message as received, message is to be the decoded plaintext, and that
$Annette and $Ty contain the secret keys of Annette and Ty, respectively.

A.	 message ← VERIFY (rmessage, Ty, $Annette);
B.	 message ← ENCRYPT (rmessage, $Ty);
C.	 message ← ENCRYPT (rmessage, Ty);
D. message ← DECRYPT (rmessage, $Annette);
E.	 message ← SIGN (rmessage, $Ty);
F.	 message ← DECRYPT (rmessage, Annette);

After receiving the message, Annette sneaks out at ten to meet Ty who she expects
will help her climb over the prison wall. Unfortunately Ty never shows up, and Annette
gets caught by a giggling guard and is punished severely (early bed, no dessert). When
she talks to Ty the next day, she learns that he never sent the message. She concludes that
it must have been sent by a guard, but is puzzled since the cryptography is secure.

Q 43.4 What is the most likely explanation?

A.	 Annette’s secret key was compromised during a search of her cell.
B.	 Some other message Ty sent was garbled in transmission, and accidentally came out

“Meet me by the wall at ten for the escape”.
C.	 Annette’s secret key was broken by a dictionary attack.
D. Ty’s secret key was broken by a dictionary attack.
E.	 Annette was victimized by a replay attack.

Annette’s friend Cert Defy, on hearing this story, comes up with a new cryptographic
procedure:

procedure CERT (message, A)

signature ← SIGN (message, A)

return {message, signature}

Unfortunately, Cert is placed in solitary confinement before fully explaining how to
use this procedure, though he did state that sending a message with

SEND (CERT (message, A), from, to)

can assure the receiver of the integrity of the message body and the authenticity of the
sender’s identity. So the inmates need some help from you.

Saltzer & Kaashoek Ch. ps, p. 172	 June 24, 2009 12:21 am

43 JailNet PS–173

Q 43.5 When Ty sends a message to Annette what value should he supply for A?

A. ENCRYPT (Annette, $Ty)
B. Ty
C. $Ty
D. Annette
E. $Annette

After Ty determinines the answer to question 43.5, Annette receives a packet pur
portedly from Ty. She splits the received packet into message and signature, and VERIFY

(message, TY, signature) returns ACCEPT.

Q 43.6 Which of the following can Annette conclude about message?

A. message was initially sent by Ty.
B. The packet was sent by Ty.
C. message was initially sent to Annette.
D. Only Annette and Ty know the contents of message.
E. If Ty sent message to Annette and Annette only, then only they know its contents.
F. message was not corrupted in transmission.

Annette, intrigued by Cert’s contribution, decides to combine SEND, TYCODE, and CERT

to achieve both authentication and confidentiality. She proposes to use NEWSEND, com
bining both features:

procedure NEWSEND (message, A, from, to)

SEND (TYCODE (CERT (message, A), from, to), from, to)

Annette engages in the following conversation:

Ty ⇒ Annette: NEWSEND (“Let’s escape tonight at ten”, TY, ANNETTE);

Ty ⇒ Annette:NEWSEND (“Not tonight, Survivor is on”, ANNETTE, TY);

The following night, Annette gets the message

Ty ⇒ Annette: NEWSEND (“Let’s escape tonight at ten”, TY, ANNETTE);

Once again Annette goes to meet Ty at ten, but Ty never shows up. Eventually
Annette gets bored and returns. Ty subsequently disclaims having sent the message.
Again, Annette is puzzled by the failure of her allegedly secure system. She suspects that
a guard has figured out how to break the system.

Q 43.7 Explain why this happened, yet no guard showed up at the wall to punish
Annette for plotting to escape. Suggest a change that Ty could have made that would have
eliminated the problem.

Pete O’Fender, who has been in and out of CCCF at regular intervals, wants to
extend the security protocols to deal with JailNet key distribution. Whenever he’s jailed,
Pete is placed directly into solitary confinement where he has no contact with inmates
(except via bar banging), and where the TV gets only 3 channels. The problem is com
plicated by the facts that (a) Everyone (including Pete) forgets Pete’s uniform number as
soon as he leaves, so when he returns he can’t just re-use the old key; (b) Pete may not

Saltzer & Kaashoek Ch. ps, p. 173 June 24, 2009 12:21 am

PS–174 Problem Sets

even remember the key for Ty or other trusted long-term inmates; (c) Pete is issued an
unnumbered uniform while in solitary, and (d) guards often pose as newly-jailed solitary
occupants to learn inmate secrets. Pete asks you to devise JailNet key distribution proto
cols to address these problems.

Q 43.8 Which of the following are true of the best protocol you can devise, given the
assumptions stated about ENCRYPT, DECRYPT, SIGN, and VERIFY?:

A.	 Assuming Pete is thrust into Solitary remembering no keys, he can devise a new
Key/$Key pair and broadcast Key. Using this Key, Ty can be assured that messages he
sends to Pete are confidential.

B.	 Assuming Pete is thrust into Solitary remembering no keys, he can’t convince inmates
that they aren’t communicating with a guard.

C.	 If Pete remembers Ty’s uniform number and trusts Ty, an authenticated broadcast
message from Ty could be used to remind Pete of other inmates’ uniform numbers
without danger of deluding Pete.

D. Even if Pete remembers a trusted inmate’s uniform number, any communication from
Pete can be understood by guards.

E.	 Even if Pete remembers a trusted inmate’s uniform number, any communication to Pete
might have been forged by guards.

1998–2–7…14

Saltzer & Kaashoek Ch. ps, p. 174	 June 24, 2009 12:21 am

44 PigeonExpress!.com II PS–175

44 PigeonExpress!.com II
(More pigeons, Chapter 11[on-line])

To drive up the stock value of PigeonExpress!.com at the planned Initial Public Offering
(IPO), Ben needs to make the pigeon net secure. To focus on just security issues, assume
for this problem that pigeons never get lost.

First, Ben goes for achieving confidentiality. Ben generates 20 CDs (KCD[0] through
KCD[19]) filled with random numbers, makes two copies of each CD and mails the cop
ies through a secure channel to the sender and receiver. He plans to use the CDs as a one
time pad.

Ben slightly modifies the original BEEP code (which appeared just before question Q
18.1) to use the key CDs. The sender’s computer runs these two procedures:

shared next_sequence initially 0 // a global sequence number, starting at 0.

shared nextKCD initially 0 // index in the array of key CDs.

procedure SECURE_BEEP (destination, n, CD[])// send n CDs to destination

header h // h is an instance of header.

nextCD ← 0

h.source ← MY_GPS // set source to my GPS coordinates

h.destination ← destination // set destination

h.type ← REQUEST // this is a request message

while nextCD < n do // send the CDs

h.sequence_no ← next_sequence // set seq number for this CD
send pigeon with {h, (CD[nextCD] ⊕ KCD[nextKCD])} // send encrypted
wait 2,000 seconds

procedure SECURE_PROCESS_ACK (h) // process acknowledgment
if h.sequence_no = sequence then // ack for current oustanding CD?

next_sequence ← next_sequence + 1

nextCD ← nextCD + 1 // allow next CD to be sent

nextKCD ← (nextKCD + 1) modulo 20 // increment with wrap-around

Ben also modifies the procedures running on the receiver’s computer to match:

integer nextkcd initially 0// index in array of KCDs.

procedure SECURE_PROCESS_REQUEST (h, CD)

PROCESS (CD ⊕ KCD[nextKCD]) // decrypt and process the data on the CD

nextKCD ← (nextKCD + 1) modulo 20 // increment with wrap-around

h.destination ← h.source // send to where the pigeon came from

h.source ← MY_GPS

h.sequence_no ← h.sequence_no // unchanged

h.type ← ACKNOWLEDGMENT

send pigeon with h // send an acknowledgment back

Saltzer & Kaashoek Ch. ps, p. 175 June 24, 2009 12:21 am

PS–176 Problem Sets

Q 44.1 Do SECURE_BEEP, SECURE_PROCESS_ACK, and SECURE_PROCESS_REQUEST provide
confidentiality of the data on the CDs?

A.	 No, since acknowledgments are not signed;
B.	 No, since the KCDs are reused, SECURE_BEEP is vulnerable to a known plaintext attack;
C.	 Yes, since one-time pads are unbreakable;
D. No, since one can invert XOR.

To make the system more practical, Ben decides to switch to a short key and to
exchange the key over the pigeon net itself instead of using an outside secure channel.
Every principal has a key pair for a public-key system. He designs the following key-dis
tribution protocol:

 Alice ⇒ Bob: “I propose we use key k” (signed with Alice’s private key)
 Bob ⇒ Alice: “OK, key k is fine” (signed with Bob’s private key)

The two key-distribution messages are written on a CD and sent with BEEP (not
SECURE_BEEP). From key k the sender and receiver generate a bit string using a well-known
pseudorandom number generator, and employ the bit string in SECURE_BEEP and
SECURE_PROCESS_REQUEST to encrypt and decrypt CDs.

Q 44.2 Which statements are true of the above protocol?

A.	 It is insecure because key k travels in the clear and therefore an intruder can find out
key k and listen in on future SECURE_BEEPs.

B.	 It is secure because only Bob can verify the message from Alice.
C.	 It is insecure because Alice’s public key is widely known.
D. It is secure, since the messages are signed and key k is only used as a seed to a

pseudorandom number generator.
1999–2–16/17

Saltzer & Kaashoek Ch. ps, p. 176	 June 24, 2009 12:21 am

45 WebTrust.com (OutOfMoney.com, Part II) PS–177

45 WebTrust.com (OutOfMoney.com, Part II)
(Chapter 11[on-line])

After their disastrous experience with OutOfMoney.com, the 16-year-old kids regroup.
They rethink their business plan and switch from being a service provider to a technology
provider. Reading many war stories about security has convinced the kid wizards that
there should be a market for a secure client authentication product for Web services. The
kids re-incorporate as WebTrust.com. The kids study up on how the Web works. They
discover that HTTP 1.0 is a simple protocol whose essence consists of two remote
procedure calls:

GET (document) // returns a document

POST (document, form) // sends a form and returns a document

The GET procedure gets the document identified by the Uniform Resource Locator
(URL) document from a Web service. The POST procedure sends back to the service the
entries that the user filled out on a form that was in a previously retrieved document. The
POST procedure also gets a document. The browser invokes the POST procedure when the
user hits the submit button on the form.

These remote procedure calls are sent over a reliable transport protocol, TCP. A Web
browser opens a TCP connection, calls a procedure (GET or POST), and waits for a result
from the service. The Web service waits for a TCP connection request, accepts the con
nection, and waits for a GET or POST call. Once a call arrives, the service executes it, sends
the result over the connection, and closes the connection. The browser displays the
response and closes the connection on its side. Thus, a new connection must be set up
for each request.

Simple URLs are of the form:

http://www.WebTrust.com/index.html

Q 45.1 “www.WebTrust.com” in the above URL is

A. a DNS name
B. a protocol name
C. a path name for a file
D. an Internet address

The objective of WebTrust.com’s product is to authenticate users of on-line services.
The intended use is for a user to login once per session and to allow only logged-in users
access to the rest of the site. The product consists of a collection of Web pages and some
server software. The company employs its own product to authenticate customers of the
company’s Web site.

To allow Internet users to create an account, WebTrust.com has a Web form in
which a user types in a user name and two copies of a proposed password. When the user
types the password, the browser doesn’t echo it, but instead displays a “•” for each typed

Saltzer & Kaashoek Ch. ps, p. 177 June 24, 2009 12:21 am

http:(OutOfMoney.com
http:(OutOfMoney.com
http:OutOfMoney.com
http:WebTrust.com
http://www.WebTrust.com/index.html

PS–178 Problem Sets

character. When the user hits the submit button, the user’s browser calls the POST proce
dure to send the form to the server.

When the server receives a CREATE_ACCOUNT request, it makes sure that the two copies
of the password match and makes sure that the proposed user name hasn’t already been
taken by someone else. If these conditions are true, then it creates an entry in its local
password file. If either of the conditions is false, the server returns an error.

The form to create an account is stored in the document “create.html” on WebT
rust’s Web site. Another document on the server contains:

Create an account

Q 45.2 What is the source of the context reference that identifies the context in which
the name “create.html” will be resolved?

A.	 The browser derives a default context reference from the URL of the document that
contains the relative URL.

B.	 It is configured in the Web browser when the browser is installed.
C.	 The server derives it from information it remembers about previous documents it sent

to this client.
D. The user types it into the browser.

Q 45.3 Why does the form for creating an account ask a user to type in the password
twice?

A.	 To allow a password not to be echoed on the screen while enabling users to catch typos.
B.	 To detect transmission errors between the keyboard and the browser.
C.	 To reduce the probability that a packet with a password has to be retransmitted if the

network deletes the packet.
D. To make it harder for users to create fake accounts.

Q 45.4 In this system, to what attacks is creating an account vulnerable? (Assume an
active attacker.)

A.	 An attacker can learn the password for a user by eavesdropping
B.	 An attacker can modify the password
C.	 An attacker can overwhelm the service by creating many accounts
D. An attacker can run a service that pretends to be “www.WebTrust.com”

To login, the user visits the Web page “login.html”, which asks the user for a user
name and password. When the user hits the submit button, the browser invokes the POST

procedure, which sends the user name and password to the service. The service checks
the stored password against the password in the login request. If they match, the user is
allowed to access the service; otherwise, the service returns an error.

Saltzer & Kaashoek Ch. ps, p. 178	 June 24, 2009 12:21 am

45 WebTrust.com (OutOfMoney.com, Part II) PS–179

Q 45.5 To what attacks is the login procedure vulnerable? (Assume an active attacker.)

A. An attacker can login by replaying a recorded POST from a legitimate login
B. An attacker can login as any user by replaying a single recorded POST for login
C. An attacker can impersonate WebTrust.com to any registered user
D. An attacker can impersonate WebTrust.com to an unregistered user

To authenticate subsequent Web requests from a user after logging in, WebT
rust.com exploits a Web mechanism called cookies. A service can install some state (called
a cookie) in the Web browser. The service installs this state by including in a response a
SET_COOKIE directive containing data to be stored in the cookie. WebTrust.com’s use of

browser
Web
server

Login procedure

Subsequent requests

{username, password}

{cookie}

{post/get, document, cookie}

{document}

cookies is summarized in the figure. The document containing the response to a login
request comes with the directive:

POST (webtrustcookie)

The browser stores the cookie in memory. (In practice, there may be many cookies,
so they are named, but for this problem, assume that there is only one and no name is
needed.) On subsequent calls (i.e., GET or POST) to the service that installed the cookie,
the browser sends the installed cookie along with the other arguments to GET or POST

Thus, once WebTrust.com has set a cookie in a browser, it will see that cookie on every
subsequent request from that browser.

The service requires that the browser send the cookie along with all GETs, and also all
POSTs except those posting a CREATE or LOGIN form. If the cookie is missing (for example,
the browser has lost the cookie because the client computer crashed, or an attacker is leav-

Saltzer & Kaashoek Ch. ps, p. 179 June 24, 2009 12:21 am

http:(OutOfMoney.com

PS–180 Problem Sets

ing the cookie out on purpose), the service will return an error to the browser and ask
the user to login again.

An important issue is to determine suitable contents for webtrustcookie. WebT
rust.com offers a number of alternatives.

The first option is to compute the cookie as follows:

cookie ← {expiration_time}key

using a MAC with a shared-secret key. The key is known only to the service, which
remembers it for just 24 hours. All cookies in that period use the same key. All cookies
expire at 5 a.m., at which time the service changes to a new key.

When the server receives the cookie, it checks it for authenticity and expiration using:

procedure CHECK (cookie)
if VERIFY (cookie, key) = ACCEPT then

if cookie.expiration_time ≤ CURRENT_TIME () then
return ACCEPT

return REJECT

The procedure VERIFY recomputes and checks the MAC. If the MAC is valid, then the
service checks whether cookie is still fresh (i.e., if the expiration time is later than the cur
rent time). If it is, then CHECK returns ACCEPT; the server can now execute the request. In
all other cases, CHECK returns REJECT and the server returns an error to the browser.

Q 45.6 What is the role of the MAC in this protocol?

A. To help detect transmission errors
B. To privately communicate key from the server to the browser
C. To privately communicate expiration-time from the server to the browser.
D. To help detect a forged cookie.

Q 45.7 Which of these attacks does this protocol prevent?

A. Replayed cookies
B. Forged expiration times
C. Forged cookies
D. Dictionary attacks on passwords

Another option supported by webtrust.com is to compute cookie as follows:

cookie ← {expiration_time, username}key

The server uses for username the name of the user in the login request. The usage of this
cookie is similar to before and the checking procedure is unchanged.

Saltzer & Kaashoek Ch. ps, p. 180 June 24, 2009 12:21 am

45 WebTrust.com (OutOfMoney.com, Part II) PS–181

Q 45.8 If the service receives a cookie with “Alice” as username and CHECK returns ACCEPT,
what does the service know? (Assume active attacks.)

A.	 No one modified the cookie
B.	 The server accepted a login from “Alice” recently
C.	 The cookie was generated recently
D. The browser of the user “Alice” sent this cookie recently

Q 45.9 Assume temporarily that all of Alice’s Web requests are sent over a single TCP
connection that is encrypted and authenticated, and that the setup all has been done
appropriately (i.e., only the browser and server know the encryption and authentication
keys). After Alice has logged in over this connection, the server has received a cookie with
“Alice” as the username over this connection, and has verified it successfully (i.e., VERIFY

returns ACCEPT), what does the server know? (Assume active attacks.)

A.	 No one but the server and the browser of the user “Alice” knows the cookie
B.	 The server accepted a login from “Alice” recently
C.	 The cookie was generated recently
D. The browser of the user “Alice” sent this cookie recently

Q 45.10 Is there any additional security risk with storing cookies durably (i.e., the
browser stores them in a file on the local operating system) instead of in the run-time
memory of the browser? (Assume the operating system is a multi-user operating system
such as Linux or Windows, including a virtual memory system.)

A.	 Yes, because the file with cookies might be accessible to other users.
B.	 Yes, because the next user to login to the client machine might have access to the file

with cookies.

C.	 Yes, because it expands the trusted computing base to include the local operating system
D. Yes, because it expands the trusted computing base to include the hard disk

Q 45.11 For what applications is WebTrust’s product (without the encrypting and
authenticating TCP connection) appropriate (i.e., usable without grave risk)?

A.	 For protecting access to bank accounts of an electronic bank
B.	 For restricting access to electronic news articles to clients that have subscription service
C.	 For protecting access to student data on a university’s on-line student services
D. For electronic shopping, say, at amazon.com
E.	 None of the above
Mark Bitdiddle—Ben’s 16-year kid brother—proposes to change the protocol

slightly. Instead of computing cookie as:

cookie ← {expiration_time, username}key

Mark suggests that the code be simplified to:

cookie ← {{expiration_time}key, username}

He also suggests the corresponding change for the procedure VERIFY. The protocol, as
originally, runs over an ordinary unencrypted and unauthenticated TCP connection.

Saltzer & Kaashoek Ch. ps, p. 181	 June 24, 2009 12:21 am

http:(OutOfMoney.com

PS–182 Problem Sets

Q 45.12 Describe one attack that this change opens up and illustrate the attack by
describing a scenario (e.g., “Lucifer can now … by …”).

2001–2–6…17

Saltzer & Kaashoek Ch. ps, p. 182 June 24, 2009 12:21 am

46 	More ByteStream Products PS–183

46 	More ByteStream Products
(Chapter 11[on-line])

Observing recent interest in security in the popular press, ByteStream Inc. decides to
extend the function of its products to obtain confidentiality by encryption. ByteStream
decides to use the simple shared-secret system shown below:

Pseudorandom

number generator

Pseudorandom

number generator

text cipher text text

⊕ ⊕

Shared-secret key	 Shared-secret key

ByteStream uses the exclusive-OR (XOR, shown as ⊕) function. The pseudorandom
number generator (PRNG) generates a stream of hard-to-predict bits, using the shared-
secret key as a seed. Whenever it is seeded with the same key, it will generate the same
bit stream. Messages are encrypted by computing the XOR of the message and the bit
stream produced by the generator. The resulting ciphertext is decrypted by computing
the XOR of the ciphertext and the bit stream produced by the PRNG, seeded with some
key. The code for the PRNG is publicly available.

To check the implementation, ByteStream Inc. hires a tiger team that include Eve S.
Dropper and Lucy Fer. The tiger team verifies that the code for computing the XOR is
bug-free and the PRNG does not contain cryptographic weaknesses. The tiger team sub
sequently studies the following scenario. Alice shares a 200-bit key K with Bob. Alice
encrypts a message with K and sends the resulting ciphertext to Bob. Bob decrypts this
message with K. The result after decryption is Alice’s message. Assume that every message
is equally likely (i.e., Alice’s message contains no redundancy whatever).

Q 46.1 Given that Eve sees only the cipher text, can she cryptanalyze Alice’s message?

A.	 No, since only Alice and Bob know the key, and the PRNG generates a 0 or 1 with
equal probability, Eve has no way of telling what the content of Alice’s message is.

B.	 Yes, since with a supercomputer Eve could try out all possible combinations of 0s and
1s for K and check whether they match the cipher text.

C.	 No, since it is hard to compute the XOR of two bit streams.
D. Yes, since XOR is a simple function, Eve can just compute the inverse of XOR.

Saltzer & Kaashoek Ch. ps, p. 183	 June 24, 2009 12:21 am

PS–184 Problem Sets

Q 46.2 Alice and Bob switch to a new shared key. Lucy mounts an active attack by
tricking Alice into sending a message that begins with 500 one’s, followed by Alice’s
original message. Given the ciphertext can Lucy cryptanalyze Alice’s message?

A.	 Yes, since the key is smaller than 500 bits.
B.	 Maybe, but with probability so low that it is negligible.
C.	 No, since only Alice and Bob know the key and the PRNG generates a 0 or 1 with equal

probability, Lucy cannot extract Alice’s message.
D. No, since it is hard to compute the XOR of two bits.

ByteStream is interested in a product that supports two-way communication.
ByteStream implements two-way communication by having one stream for requests and
another stream for replies. ByteStream seeds both streams with the same key. Since
ByteStream worries that using the same key in both directions might be a weakness, it
asks the tiger team to check the implementation.

The tiger team studies the following scenario. Alice seeds the PRNG for the request
stream with K and sends Bob a message. Upon receiving Alice’s message, Bob seeds the
PRNG for the reply stream with K, and sends a response to Alice. Again, assume that
every request and response is equally likely.

Q 46.3 What can Eve deduce about the content of the messages?

A.	 Nothing.
B.	 The content of the request, but not the reply.
C.	 The XOR of the request and the reply.
D. The content of both the request and the reply.

1997–2–3a…c

Saltzer & Kaashoek Ch. ps, p. 184	 June 24, 2009 12:21 am

47 Stamp Out Spam PS–185

47 	Stamp Out Spam*

(Chapter 11)

2005–3–6

Spam, defined as unsolicited messages sent in large quantities, now forms the majority of
all e-mail and short message service (SMS) traffic worldwide. Studies in 2005 estimated
that about 100 billion (100 × 109) e-mails and SMS messages were sent per day, two-
thirds of which were spam. Alyssa P. Hacker realizes that spam is a problem because it
costs virtually nothing to send e-mail, which makes it attractive for a spammer to send a
large number of messages every day.

Alyssa starts designing a spam control system called SOS, which uses the following
approach:

A.	 Allocation. Every sender is given some number of stamps in exchange for payment. A
newly issued stamp is fresh, while one that has been used can be cancelled to ensure that
it is used only once.

B.	 Sending. The sender (an outgoing mail server) attaches a fresh stamp to each e-mail
message.

C.	 Receiving. The receiver (an incoming mail server) tests the incoming stamp for
freshness by contacting a quota enforcer that runs on a trusted server using a
TEST_AND_CANCEL remote procedure call (RPC), which is described below. If the stamp
is fresh, then the receiver delivers the message to the human user. If the stamp is found
to be cancelled, then the receiver discards the message as spam.

D. Quota enforcement. The quota enforcer implements the TEST_AND_CANCEL RPC
interface for receivers to use. If the stamp was not already cancelled, the quota enforcer
cancels it in this procedure by storing cancellations in a database.

Alyssa’s hope is that allocating reasonable quotas to everyone and then enforcing
those quotas would cripple spammers (because it would cost them a lot), while leaving
legitimate users largely unaffected (because it would cost them little).

Like postage stamps, SOS’s stamps need to be unforgeable, for which cryptography
can help. SOS relies on a central trusted stamp authority, SA, with a well-known public
key, SApub, and a corresponding private key, SApriv. Each sender S generates a pub
lic/private key pair, (Spub, Spriv), and presents Spub to SA along with some payment. In
return, the stamp authority SA gives sender S a certificate (CS) and allocates it a stamp
quota.

CS = {Spub, expiration_time, daily_quota}SApriv

The notation {msg}k stands for the marshaling of msg and the signature (signed with key
k) of msg into a buffer. We assume that signing the same message with the same key
always generates the same bit string. In the certificate, expiration_time is set to a time one

* Credit for developing this problem set goes to Hari Balakrishnan.

Saltzer & Kaashoek Ch. ps, p. 185	 June 24, 2009 12:21 am

PS–186 Problem Sets

year from the time that SA issued the certificate, and daily_quota is a positive integer that
specifies the maximum number of messages per day that S can send.

S is allowed to make up to daily_quota stamps, each with a unique integer id between
1 and daily_quota, and the current date. To send a message, S constructs and attaches a
stamp with the following format:

stamp = {CS, {id, date}Spriv
}

When a receiver gets a stamp, it first checks that the stamp is valid by running
CHECK_STAMP_VALIDITY (stamp). This procedure verifies that CS is a properly signed,
unexpired certificate, and that the contents of the stamp have not been altered. It also
checks that the id is in the range specified in CS, and that the date is either yesterday’s
date or today’s date (thus a stamp has a two-day validity period).

If any check fails the receiver assumes that the message is spam and discards it. If all
the checks pass, then the stamp is considered valid. The receiver calls TEST_AND_CANCEL on
valid stamps.

Unless otherwise mentioned, assume that:

A.	 No entity’s private key is compromised.
B.	 All of the cryptographic algorithms are computationally secure.
C.	 SA is trusted by all participants and no aspect of its operation is compromised.
D. Senders may be malicious. A malicious sender will attempt to exceed his quota; for

example, he may attempt to send many messages with the same stamp, or steal another
sender’s unused stamps.

E.	 Receivers may be malicious; for example, a malicious receiver may attempt to cancel
stamps belonging to other senders that it has not seen.

F.	 Most receivers cancel stamps that they have seen, especially those attached to spam
messages.

G.	 Each message has exactly one recipient (don’t worry about messages sent to mailing
lists).

H. Spammers and other unsavory parties may mount denial-of-service and other resource
exhaustion attacks on the quota enforcer, which SOS should protect against.

Alyssa implements TEST_AND_CANCEL as shown in Figure PS.6. Because spammers have
an incentive to reuse stamps, she wants to keep track of the total number of
TEST_AND_CANCEL requests done on each stamp. num_uses is a hash table keyed by stamp

that keeps track of this number. The hash table supports two interfaces:

A.	 PUT (table, key, value) inserts the (key, value) pair into table.
B.	 GET (table, key) returns the value associated with key in table, if one was previously PUT,

and 0 otherwise. A value of 0 is never PUT.

Q 47.1 Louis Reasoner looks at the TEST_AND_CANCEL procedure and declares, ‘‘Alyssa, the
client would already have checked that the stamp is valid, so you don’t need to call
CHECK_STAMP_VALIDITY again.” Alyssa thinks about it, and decides to keep the check. Why?

Saltzer & Kaashoek Ch. ps, p. 186	 June 24, 2009 12:21 am

47 Stamp Out Spam PS–187

1 procedure TEST_AND_CANCEL (stamp, client)
2 // assume that client is not a spoofed network address
3 if CHECK_STAMP_VALIDITY (stamp) ≠ VALID then return
4 u ← GET (num_uses, stamp)
5 if u > 0 then status ← CANCELLED
6 else status ← FRESH
7 u ← u + 1
8 PUT(num_uses, stamp, u)
9 SEND(client, status); // assume reliable data delivery

FIGURE PS.6

Alyssa’s TEST_AND_CANCEL procedure.

Q 47.2 Suppose that a recipient R gets an e-mail message that includes a valid stamp
belonging to S. Then, which of the following assertions is true?

A.	 R can be certain that the e-mail message came from S.
B.	 R can be certain of both the data integrity and the origin integrity of the certificate in

the stamp.
C.	 R may be able to use the information in this stamp to cancel another stamp belonging

to S with a different id.
D. If an attacker breaks into a computer that has fresh stamps on it, he may be able to use

those stamps for his own messages, even though the stamps were signed by another
entity.

E.	 S can tell whether or not R received an e-mail message by calling TEST_AND_CANCEL to
see if the stamp attached to that message has been cancelled at the quota enforcer.

F.	 If S has encrypted the e-mail message with Rpub, then no entity other than S or R could
have read the contents of the message without S or R knowing.

The United Nations Privacy Organization looks at Alyssa’s proposal and throws a fit,
arguing that SOS compromises the privacy of sender-receiver e-mail communication
because the stamp authority, which also runs the quota enforcer, may be able to guess
that a given sender communicated with a given receiver. Alyssa decides that the SOS pro
tocol should be amended to meet two goals:

• 	G1. It should be computationally infeasible for the stamp authority (quota
enforcer) to associate cancelled stamps with a sender-receiver pair.

• 	 G2. It should still be possible for a receiver to call TEST_AND_CANCEL and correctly
determine a stamp’s freshness.

Alyssa considers several alternatives to achieve this task. Louis proposes using an
encryption method he calls DETERMINISTIC_ENCRYPT (msg, k), which always produces the
same output string for the same (msg, k) input. A second scheme involves an off-the-shelf
ENCRYPT (msg, k) that, because it adds a timestamp to the plaintext message, always pro
duces different output for the same (msg, k) input. A third alternative uses HASH (msg),

Saltzer & Kaashoek Ch. ps, p. 187	 June 24, 2009 12:21 am

PS–188 Problem Sets

a cryptographically secure one-way hash function of msg. Alyssa removes line 3 of
TEST_AND_CANCEL so that it no longer calls CHECK_STAMP_VALIDITY and she checks to make
sure that TEST_AND_CANCEL will accept any bit-string as its first argument. Spub is S’s public
key (from the certificate in the stamp) and Rpub is R’s public key.

Q 47.3 Which of these methods achieves goals G1? Which achieves G2?

A.	 The receiving client R extracts u = {CS, {id, date}Spriv} from the stamp, and computes
e1 = DETERMINISTIC_ENCRYPT (u, Spub). It then calls TEST_AND_CANCEL (e1, R).

B.	 The receiving client R extracts u = {CS, {id, date}Spriv} from the stamp, and computes
e2 = ENCRYPT (u, Rpub). It then calls TEST_AND_CANCEL (e2, R).

C.	 The receiving client R extracts u = {CS, {id, date}Spriv} from the stamp, and computes
h = HASH (u). It then calls TEST_AND_CANCEL (h, R).

Alyssa realizes that if SOS is to be widely used she will need several computers to run
the quota enforcer to handle the daily TEST_AND_CANCEL load. Alyssa finds that storing the
num_uses hash table used by TEST_AND_CANCEL on disk gives poor performance because
the accesses to the hash table are random. When Alyssa stores this hash table in RAM,
she finds that one computer can handle 50,000 TEST_AND_CANCEL RPCs per second on a
realistic input workload, including the work required to find the machine storing the key
(compared to ≈100 RPCs per second for a disk-based hash table implementation). The
network connecting clients to the quota enforcer servers has extra capacity and is thus
not the bottleneck.

The space required to store stamps in Alyssa’s current design is rather large. She
decides to save space by storing HASH (stamp) rather than the much larger stamp. With
this optimization, storing each cancellation in the num_uses hash table consumes 20
bytes of space. Assume that num_uses stores only stamps that are from today or yester
day. Alyssa purchases computers that each have one gigabyte of RAM available for stamp
storage.

Q 47.4 Alyssa finds that the peak TEST_AND_CANCEL request rate is 10 times the average.
Estimate the number of servers that Alyssa needs for SOS in order to handle 100 billion
TEST_AND_CANCEL operations per day. (Use the approximation that there are 105 seconds
in one day.) Be sure to consider all of the potential bottlenecks.

Alyssa builds a prototype SOS system with multiple servers. She runs multiple
TEST_AND_CANCEL threads on each server. Alyssa wants each thread to be recoverable and
for all cancelled stamps to be durable for at least two days. She also wants the different
concurrent threads to be isolated from one another.

Alyssa decides that a good way to implement the quota enforcer is to use transactions.
She inserts a call to BEGIN_TRANSACTION at the beginning of TEST_AND_CANCEL and a call to
COMMIT just before the call to SEND. She implements a disk-based undo/redo log of updates
to the num_uses hash table using the write-ahead log protocol (each disk sector write is
recoverable). She uses locks for isolation.

Because all stamp cancellations are stored in RAM, Alyssa finds that a server crash
loses the entire in-RAM hash table of previously cancelled stamps. A thread could also

Saltzer & Kaashoek Ch. ps, p. 188	 June 24, 2009 12:21 am

47 	Stamp Out Spam PS–189

ABORT at any time before it COMMITs (for example, the operating system could decide to
ABORT a thread that is running too long).

Q 47.5 Which of these statements about SOS’s recoverability and durability is true?

A.	 When a thread ABORTs, under some circumstances, the ABORT procedure must undo

some operations from the log.

B.	 When a thread ABORTs, under some circumstances, the ABORT procedure must redo some

operations from the log.

C.	 The failure recovery process, under some circumstances, must undo some operations

from the log.

D. The failure recovery process, under some circumstances, must redo some operations

from the log.

E.	 When the failure recovery process is recovering from the log after a failure, there is no

need for it to ACQUIRE any locks as long as no new threads run until recovery completes.

Q 47.6 Recall that an important goal in SOS is to detect if any stamp is used more than
once. Louis Reasoner asserts, ‘‘Alyssa, any reuse of stamps will be caught even if you don’t
worry about before-or-after atomicity between TEST_AND_CANCEL threads.” Give an
example to show why before-or-after atomicity is necessary.

 Satisfied that her prototype works and that it can handle global message volumes,
Alyssa turns to the problem of pricing stamps. Her goal is ‘‘modest’’: to reduce spam by
a factor of 10. She realizes that her answer depends on a number of assumptions and is
only a first-cut approximation.

Q 47.7 Alyssa reads various surveys and concludes that spammers would be willing to
spend at most US $11 million per day on sending spam. She also concludes that 66%
(two-thirds) of the 100 billion daily messages sent today are spam. Under these
assumptions, what should the price of each stamp be in order to reduce the number of
spam messages by at least a factor of 10?

Saltzer & Kaashoek Ch. ps, p. 189	 June 24, 2009 12:21 am

PS–190 Problem Sets

48 	Confidential Bitdiddler*

(Chapter 11)

2007–3–16

Ben uses the original Bitdiddler with synchronous writes from Problem set 5. Ben stores
many files in the file system on his handheld computer, and runs out of disk space
quickly. He looks at the blocks on the disk and discovers that many blocks have the same
content. To reduce space consumption he augments the file system implementation as
follows:

A.	 The file system keeps a table in memory that records for each allocated block a 32-bit
non-cryptographic hash of that block. (When the file system starts, it computes this
table from the on-disk state.) Ben talks to a hashing expert, who tells Ben to use the b-
bit (here b=32) non-cryptographic hash function

H(block) = block modulo P

where P is a large b-bit prime number that yields a uniform distribution of hash
values throughout the interval [0...2b-1].

B.	 When the file system writes a block b for a file, it checks if the table contains a block
number d whose block content on disk has the same hash value as the hash value for
block b. If so, the file system frees b and inserts d into the file’s inode. If there is no block
d, the file system writes b to the disk, and puts b’s block number and its hash in the
table.

To keep things simple, let’s ignore what happens when a user unlinks a file.

Q 48.1 Occasionally, Ben finds that his system has files with incorrect contents. He
suspects hash collisions are to blame. These might be caused by:

A.	 Accidental collisions: different data blocks hash to the same 32-bit value.
B.	 Engineered collisions: adversaries can fabricate blocks that hash to the same 32 bit

value.
C.	 A block whose hash is the same as its block number.

Q 48.2 For each of the following proposed fixes, list which of the problem causes listed
in Question 48.1 (A, B, or C) it is likely to fix:

A.	 Use a b=160-bit non-cryptographic hash in step A of the algorithm.
B.	 Use a 160-bit cryptographic hash such as SHA-1 in step A of the algorithm.
C.	 Modify step B of the algorithm so that when a matching hash is found, it compares the

contents of the stored block to the data block and treats the blocks as different unless
their contents match.

* Credit for developing this problem set goes to Sam Madden.

Saltzer & Kaashoek Ch. ps, p. 190	 June 24, 2009 12:21 am

48 Confidential Bitdiddler PS–191

Ben decides he wants to encrypt the contents of the files on disk so that if someone
steals his handheld computer, they cannot read the files stored on it. Ben considers two
encryption plans:

• 	 User-key encryption: One plan is to give each user a different key and use a secure
block encryption scheme with no cryptographic vulnerabilities to encrypt the
user’s files. Ben implements this by storing a table of (user name, key) pairs, which
the system stores securely on disk.

• 	 Convergent encryption: One problem with user-key encryption is that it doesn’t
provide the space saving if blocks in different files of different users have the same
content. To address this problem, Ben proposes to use convergent encryption (also
called “content hash keying”), which encrypts a block using a cryptographic hash
of the content of that block as a shared-secret key (that is,
ENCRYPT (block, HASH (block)). Ben reasons that since the output of the
cryptographic hash is pseudorandom, this is just as good as choosing a fresh
random key. Ben implements this scheme by modifying the file system to use the
table of hash values as before, but now the file system writes encrypted blocks to
the disk instead of plaintext ones. This way blocks are encrypted but, because
duplicate blocks have the same hash and thus encrypt to the same ciphertext, Ben
still gets the space savings for blocks with the same content. The file system
maintains a secure table of block hash values so that it can decrypt blocks when an
authorized user requests a read operation.

Q 48.3 Which of the following statements are true of convergent encryption?

A.	 If Alyssa can guess the contents of a block (by enumerating all possibilities, or by
guessing based on the file metadata, etc), it is easy for her to verify whether her guess of
a block’s data is correct.

B.	 If Alyssa can discover the 32-bit block numbers referenced by inodes in the file system,
she can learn something about the contents of Ben’s files.

C.	 The file system can detect when an adversary changes the content of a block on disk.

Q 48.4 Which of the following statements are true of user-key encryption?

A.	 If Alyssa can guess the contents of a block but doesn’t know Ben’s key, it is easy for her
to verify whether her guess of a block’s data is correct.

B.	 If Alyssa can discover the 32-bit block numbers referenced by inodes in the file system,
she can learn something about the contents of Ben’s files.

C.	 The file system can detect when an adversary changes the content of a block on disk.

Saltzer & Kaashoek Ch. ps, p. 191	 June 24, 2009 12:21 am

PS–192 Problem Sets

49 Beyond Stack Smashing*

(Chapter 11)

2008–3-8

You are hired by a well-known OS vendor to help them defend their products against
buffer overrun attacks of the kind described in Sidebar 11.4. Their team presents several
proposed strategies to foil buffer exploits:

• 	 Random stack: Place the stack in an area of memory randomly chosen for each
new process, rather than at the same address for every process.

• 	 Non-executable stack: Set the permissions on the virtual memory containing the
stack to allow reading and writing but not execution as a program. Set the
permissions on the memory containing the program instructions to read and
execute but not write.

• 	 Bounds checking: Use a language such as Java or Scheme that checks that all
array/buffer indices are valid.

You are aware of several buffer overrun attacks, including the following:

• 	 Simple buffer overrun: The victim program has an array on the stack as follows:

procedure VICTIM (data, length)
integer buffer[100]
COPY (buffer, data, length)// overruns array buffer if length > 100
//

The attacker supplies a length > 100 together with an array data that includes some
new instructions and places the address of the first instruction in the position
where the procedure return is stored. When VICTIM reaches its return, it returns to
the attacker’s code in the stack rather than the program that originally called VICTIM.

• 	 Trampoline: The victim program has an array on the stack as in the code fragment
above, but the attacker cannot predict its address, so replacing the procedure return
address with the address of the attacker’s code won’t work. However, the attacker
knows that subroutine VICTIM () leaves an address in some register (say R5) that
points to a known, fixed offset within the array. The other thing that is needed is
an instruction anywhere in memory at a known address x that jumps to wherever
R5 is pointing. The attacker overruns the array with his new instructions and
overwrites the procedure return address with the address x. When VICTIM reaches its
return, it returns to address x, which jumps to the address in R5, which transfers
control to the attacker’s code.

* Credit for developing this problem set goes to Lewis D. Girod. This problem set was inspired by a paper by
Jonathan Pincus and Brandon Baker, “Beyond stack smashing: recent advances in exploiting buffer overruns,”
IEEE Security & Privacy 2, 4 (July/August 2004) pages 20–27. Further details and explanations can be found
in that paper.

Saltzer & Kaashoek Ch. ps, p. 192	 June 24, 2009 12:21 am

49 Beyond Stack Smashing PS–193

• 	 Arc injection (return-to-library): Taking advantage again of knowledge that VICTIM

leaves the address of a fixed offset within the array in register R5, the attacker
provides some carefully selected data at that offset and also overruns the buffer
with a new procedure return address. The new procedure return address is chosen
to be in some system or library program known to reside elsewhere in the current
address space, preferably to a place within that library program after it has checked
the validity of its parameters, and is about to do something using the contents of
register R5 as the address of one of its parameters. A particularly good library
program to jump into is one that calls a procedure whose string name is supplied
as an argument. The attacker’s carefully selected data is chosen to be the string
name of an existing program that the attacker would like to execute.

In the following questions, an attack is considered prevented if the attacker can no
longer execute the intended malicious code, even if an overflow can still overwrite data
or crash or disrupt the program.

Q 49.1 Which of the following attack methods are prevented by the use of the random
stack technique?

A.	 Simple buffer overrun
B.	 Trampoline
C.	 Arc injection (return-to-library)

Q 49.2 Which of the following attack methods are prevented by the use of the non
executable stack technique?

A.	 Simple buffer overrun
B.	 Trampoline
C.	 Arc injection (return-to-library)

Q 49.3 Which of the following attack methods are prevented by the use of the bounds
checking technique?

A.	 Simple buffer overrun
B.	 Trampoline
C.	 Arc injection (return-to-library)

Saltzer & Kaashoek Ch. ps, p. 193	 June 24, 2009 12:21 am

PS–194 Problem Sets

Saltzer & Kaashoek Ch. ps, p. 194 June 24, 2009 12:21 am

CHAPTERGlossary

abort—Upon deciding that an all-or-nothing action cannot or should not commit, to
undo all of the changes previously made by that all-or-nothing action. After aborting,
the state of the system, as viewed by anyone above the layer that implements the all-or
nothing action, is as if the all-or-nothing action never existed. Compare with commit.
[Ch. 9]

absolute path name—In a naming hierarchy, a path name that a name resolver resolves by
using a universal context known as the root context. [Ch. 2]

abstraction—The separation of the interface specification of a module from its internal
implementation so that one can understand and make use of that module with no need
to know how it is implemented internally. [Ch. 1]

access control list (ACL)—A list of principals authorized to have access to some object.
[Ch. 11]

acknowledgment (ACK)—A status report from the recipient of a communication to the
originator. Depending on the protocol, an acknowledgment may imply or explicitly state
any of several things, for example, that the communication was received, that its
checksum verified correctly, that delivery to a higher level was successful, or that buffer
space is available for another communication. Compare with negative acknowledgment.
[Ch. 2]

action—An operation performed by an interpreter. Examples include a microcode step, a
machine instruction, a higher-level language instruction, a procedure invocation, a shell
command line, a response to a gesture at a graphical interface, or a database update. [Ch.
 9]

active fault—A fault that is currently causing an error. Compare with latent fault. [Ch. 8]

adaptive routing—A method for setting up forwarding tables so that they change
automatically when links are added to and deleted from the network or when congestion
makes a path less desirable. Compare with static routing. [Ch. 7]

address—A name that is overloaded with information useful for locating the named object.
In a computer system, an address is usually of fixed length and resolved by hardware into
a physical location by mapping to geometric coordinates. Examples of addresses include
the names for a byte of memory and for a disk track. Also see network address. [Ch. 2]

address resolution protocol (ARP)—A protocol used when a broadcast network is a
component of a packet-forwarding network. The protocol dynamically constructs tables
that map station identifiers of the broadcast network to network attachment point
identifiers of the packet-forwarding network. [Ch. 7]

address space—The name space of a location-addressed memory, usually a set of
contiguous integers (0, 1, 2,…). [Ch. 2]

GL–1

Saltzer & Kaashoek Ch. gl, p. 1 June 24, 2009 12:21 am

GL–2 Glossary

adversary—An entity that intentionally tries to defeat the security measures of a computer
system. The entity may be malicious, out for profit, or just a hacker. A friendly adversary
is one that tests the security of a computer system. [Ch. 11]

advertise—In a network-layer routing protocol, for a participant to tell other participants
which network addresses it knows how to reach. [Ch. 7]

alias—One of multiple names that map to the same value; another term for synonym.
(Beware: some operating systems define alias to mean an indirect name.) [Ch. 2]

all-or-nothing atomicity—A property of a multistep action that if an anticipated failure
occurs during the steps of the action, the effect of the action from the point of view of
its invoker is either never to have started or else to have been accomplished completely.
Compare with before-or-after atomicity and atomic. [Ch. 9]

any-to-any connection—A desirable property of a communication network, that any node
be able to communicate with any other. [Ch. 7]

archive—A record, usually kept in the form of a log, of old data values, for auditing,
recovery from application mistakes, or historical interest. [Ch. 9]

asynchronous (From Greek roots meaning “not timed”)—1. Describes concurrent
activities that are not coordinated by a common clock and thus may make progress at
different rates. For example, multiple processors are usually asynchronous, and I/O
operations are typically performed by an I/O channel processor that is asynchronous
with respect to the processor that initiated the I/O. [Ch. 2] 2. In a communication
network, describes a communication link over which data is sent in frames whose timing
relative to other frames is unpredictable and whose lengths may not be uniform.
Compare with isochronous. [Ch. 7]

at-least-once—A protocol assurance that the intended operation or message delivery was
performed at least one time. It may have been performed several times. [Ch. 4]

at-most-once—A protocol assurance that the intended operation or message delivery was
performed no more than one time. It may not have been performed at all. [Ch. 4]

atomic (adj.); atomicity (n.)—A property of a multistep action that there be no evidence
that it is composite above the layer that implements it. An atomic action can be before-
or-after, which means that its effect is as if it occurred either completely before or
completely after any other before-or-after action. An atomic action can also be all-or
nothing, which means that if an anticipated failure occurs during the action, the effect
of the action as seen by higher layers is either never to have started or else to have
completed successfully. An atomic action that is both all-or-nothing and before-or-after
is known as a transaction. [Ch. 9]

atomic storage—Cell storage for which a multicell PUT can have only two possible
outcomes: (1) it stores all data successfully, or (2) it does not change the previous data at
all. In consequence, either a concurrent thread or (following a failure) a later thread
doing a GET will always read either all old data or all new data. Computer architectures
in which multicell PUTs are not atomic are said to be subject to write tearing. [Ch. 9]

Saltzer & Kaashoek Ch. gl, p. 2 June 24, 2009 12:21 am

Glossary GL–3

authentication—Verifying the identity of a principal or the authenticity of a message. [Ch.
 11]

authentication tag—A cryptographically computed string, associated with a message, that
allows a receiver to verify the authenticity of the message. [Ch. 11]

automatic rate adaptation—A technique by which a sender automatically adjusts the rate
at which it introduces packets into a network to match the maximum rate that the
narrowest bottleneck can handle. [Ch. 7]

authorization—A decision made by an authority to grant a principal permission to
perform some operation, such as reading certain information. [Ch. 11]

availability—A measure of the time that a system was actually usable, as a fraction of the
time that it was intended to be usable. Compare with its complement, down time. [Ch.
 8]

backup copy—Of a set of replicas that is not written or updated synchronously, one that
is written later. Compare with primary copy and mirror. [Ch. 10]

backward error correction—A technique for correcting errors in which the source of the
data or control signal applies enough redundancy to allow errors to be detected and, if
an error does occur, that source is asked to redo the calculation or repeat the
transmission. Compare with forward error correction. [Ch. 8]

bad-news diode—An undesirable tendency of people in organizations that design and
implement systems: good news, for example, that a module is ready for delivery ahead of
schedule, tends to be passed immediately throughout the organization, but bad news, for
example, that a module did not pass its acceptance tests, tends to be held locally until
either the problem can be fixed or it cannot be concealed any longer. [Ch. 1]

bandwidth—A measure of analog spectrum spacefor a communication channel. The
bandwidth, the acceptable signal power, and the noise level of a channel together
determine the maximum possible data rate for that channel. In digital systems, this term
is so often misused as a synonym for maximum data rate that it has now entered the
vocabulary of digital designers with that additional meaning. Analog engineers, however,
still cringe at that usage. [Ch. 7]

batching—A technique to improve performance by combining several operations into a
single operation to reduce setup overhead. [Ch. 6]

before-or-after atomicity—A property of concurrent actions: Concurrent actions are
before-or-after actions if their effect from the point of view of their invokers is the same
as if the actions occurred either completely before or completely after one another. One
consequence is that concurrent before-or-after software actions cannot discover the
composite nature of one another (that is, one action cannot tell that another has multiple
steps). A consequence in the case of hardware is that concurrent before-or-after WRITEs to
the same memory cell will be performed in some order, so there is no danger that the cell
will end up containing, for example, the OR of several WRITE values. The database
literature uses the words “isolation” and “serializable”, the operating system literature

Saltzer & Kaashoek Ch. gl, p. 3 June 24, 2009 12:21 am

GL–4 Glossary

uses the words “mutual exclusion” and “critical section”, and the computer architecture
literature uses the unqualified word “atomicity” for this concept. [Ch. 5] Compare with
all-or-nothing atomicity and atomic. [Ch. 9]

best-effort contract—The promise given by a forwarding network when it accepts a
packet: it will use its best effort to deliver the packet, but the time to delivery is not fixed,
the order of delivery relative to other packets sent to the same destination is
unpredictable, and the packet may be duplicated or lost. [Ch. 7]

binding (n.); bind (v.)—As used in naming, a mapping from a specified name to a
particular value in a specified context. When a binding exists, the name is said to be
bound. Binding may occur at any time up to and including the instant that a name is
resolved. The term is also used more generally, meaning to choose a specific lower-layer
implementation for some higher-layer feature. [Ch. 2]

bit error rate—In a digital transmission system, the rate at which bits that have incorrect
values arrive at the receiver, expressed as a fraction of the bits transmitted, for example,
one in 1010. [Ch. 7]

bit stuffing—The technique of inserting a bit pattern as a marker in a stream of bits and
then inserting bits elsewhere in the stream to ensure that payload data never matches the
marker bit pattern. [Ch. 7]

blind write—An update to a data value X by a transaction that did not previously read X.
[Ch. 9]

bootstrapping—A systematic approach to solving a general problem, consisting of a
method for reducing the general problem to a specialized instance of the same problem
and a method for solving the specialized instance. [Ch. 5]

bottleneck—The stage in a multistage pipeline that takes longer to perform its task than
any of the other stages. [Ch. 6]

broadcast—To send a packet that is intended to be received by many (ideally, all) of the
stations of a broadcast link (link-layer broadcast), or all the destination addresses of a
network (network-layer broadcast). [Ch. 7]

burst—A batch of related bits that is irregular in size and timing relative to other such
batches. Bursts of data are the usual content of messages and the usual payload of
packets. One can also have bursts of noise and bursts of packets. [Ch. 7]

Byzantine fault—A fault that generates inconsistent errors (perhaps maliciously) that can
confuse or disrupt fault tolerance or security mechanisms. [Ch. 8]

cache—A performance-enhancing module that remembers the result of an expensive
computation on the chance that the result may soon be needed again. [Ch. 2]

cache coherence—Read/write coherence for a multilevel memory system that has a cache.
It is a specification that the cache provide strict consistency at its interface. [Ch. 10]

capability—In a computer system, an unforgeable ticket, which when presented is taken
as incontestable proof that the presenter is authorized to have access to the object named

Saltzer & Kaashoek Ch. gl, p. 4 June 24, 2009 12:21 am

Glossary GL–5

in the ticket. [Ch. 11]

capacity—Any consistent measure of the size or amount of a resource. [Ch. 6]

cell storage—Storage in which a WRITE or PUT operates by overwriting, thus destroying
previously stored information. Many physical storage devices, including magnetic disk
and CMOS random access memory, implement cell storage. Compare with journal
storage. [Ch. 9]

certificate—A message that attests the binding of a principal identifier to a cryptographic
key. [Ch. 11]

certificate authority (CA)—A principal that issues and signs certificates. [Ch. 11]

certify—To check the accuracy, correctness, and completeness of a security mechanism.
[Ch. 11]

checkpoint—1. (n.) Information written to non-volatile storage that is intended to speed
up recovery from a crash. 2 (v.) To write a checkpoint. [Ch. 9]

checksum—A stylized error-detection code in which the data is unchanged from its
uncoded form and additional, redundant data is placed in a distinct, separately
architected field. [Ch. 7]

cipher—Synonym for a cryptographic transformation. [Ch. 11]

ciphertext—The result of encryption. Compare with plaintext. [Ch. 11]

circuit switch—A device with many electrical circuits coming in to it that can connect any
circuit to any other circuit; it may be able to perform many such connections
simultaneously. Historically, telephone systems were constructed of circuit switches.
[Ch. 7]

cleartext—Synonym for plaintext. [Ch. 11]

client—A module that initiates actions, such as sending a request to a service. [Ch. 4] At
the end-to-end layer of a network, the end that initiates actions. Compare with service.
[Ch. 7]

client/service organization—An organization that enforces modularity among modules of
a computer system by limiting the interaction among the modules to messages. [Ch. 4]

close-to-open consistency—A consistency model for file operations. When a thread opens
a file and performs several write operations, all of the modifications weill be visible to
concurrent threads only after the first thread closes the file. [Ch. 4]

closure—In a programming language, an object that consists of a reference to the text of a
procedure and a reference to the context in which the program interpreter is to resolve
the variables of the procedure. [Ch. 2]

coheerence—See read/write coherence or cache coherence.

collision—1. In naming, a particular kind of name conflict in which an algorithmic name
generator accidentally generates the same name more than once in what is intended to
be a unique identifier name space. [Ch. 3] 2. In networks, an event when two stations

Saltzer & Kaashoek Ch. gl, p. 5 June 24, 2009 12:21 am

GL–6 Glossary

attempt to send a message over the same physical medium at the same time. See also
Ethernet. [Ch. 7]

commit—To renounce the ability to abandon an all-or-nothing action unilaterally. One
usually commits an all-or-nothing action before making its results available to
concurrent or later all-or-nothing actions. Before committing, the all-or-nothing action
can be abandoned and one can pretend that it had never been undertaken. After
committing, the all-or-nothing action must be able to complete. A committed all-or
nothing action cannot be abandoned; if it can be determined precisely how far its results
have propagated, it may be possible to reverse some or all of its effects by compensation.
Commitment also usually includes an expectation that the results preserve any
appropriate invariants and will be durable to the extent that the application requires
those properties. Compare with compensate and abort. [Ch. 9]

communication link—a data communication path between physically separated
components. [Ch. 2]

compensate (adj.); compensation (n.)—To perform an action that reverses the effect of
some previously committed action. Compensation is intrinsically application
dependent; it is easier to reverse an incorrect accounting entry than it is to undrill an
unwanted hole. [Ch. 9]

complexity—A loosely defined notion that a system has so many components,
interconnections, and irregularities that it is difficult to understand, implement, and
maintain. [Ch. 1]

confidentiality—Limiting information access to authorized principals. Secrecy is a
synonym. [Ch. 11]

confinement—Allowing a potentially untrusted program to have access to data, while
ensuring that the program cannot release information. [Ch. 11]

congestion—Overload of a resource that persists for significantly longer than the average
service time of the resource. (Since significance is in the eye of the beholder, the concept
is not a precise one.) [Ch. 7]

congestion collapse—When an increase in offered load causes a catastrophic decrease in
useful work accomplished. [Ch. 7]

connection—A communication path that requires maintaining state between successive
messages. See set up and tear down. [Ch. 7]

connectionless—Describes a communication path that does not require coordinated state
and can be used without set up or tear down. See connection. [Ch. 7]

consensus—Agreement at separated sites on a data value despite communication failures.
[Ch. 10]

consistency—A particular constraint on the memory model of a storage system that allows
concurrency and uses replicas: that all readers see the same result. Also used in some
professional literature as a synonym for coherence. [Ch. 10]

Saltzer & Kaashoek Ch. gl, p. 6 June 24, 2009 12:21 am

Glossary GL–7

constraint—An application-defined invariant on a set of data values or externally visible
actions. Example: a requirement that the balances of all the accounts of a bank sum to
zero, or a requirement that a majority of the copies of a set of data be identical. [Ch. 10]

context—One of the inputs required by a name-mapping algorithm in order to resolve a
name. A common form for a context is a set of name-to-value bindings. [Ch. 2]

context reference—The name of a context. [Ch. 2]

continuous operation—An availability goal, that a system be capable of running
indefinitely. The primary requirement of continuous operation is that it must be possible
to perform repair and maintenance without stopping the system. [Ch. 8]

control point—An entity that can adjust the capacity of a limited resource or change the
load that a source offers. [Ch. 7]

cooperative scheduling—A style of thread scheduling in which each thread on its own
initiative releases the processor periodically to allow other threads to run. [Ch. 5]

covert channel—In a flow-control security system, a way of leaking information into or
out of a secure area. For example, a program with access to a secret might touch several
shared but normally unused virtual memory pages in a pattern to bring them into real
memory; a conspirator outside the secure area may be able to detect the pattern by
measuring the time required to read those same shared pages. [Ch. 11]

cryptographic hash function—A cryptographic function that maps messages to short
values in such a way that it is difficult to (1) reconstruct a message from its hash value;
and (2) construct two different messages having the same value. [Ch. 11]

cryptographic key—The easily changeable component of a key-driven cryptographic
transformation. A cryptographic key is a string of bits. The bits may be generated
randomly, or they may be a transformed version of a password. The cryptographic key,
or at least part of it, usually must be kept secret, while all other components of the
transformation can be made public. [Ch. 11]

cryptographic transformation—Mathematical transformation used as a building block
for implementing security primitives. Such building blocks include functions for
implementing encryption and decryption, creating and verifying authentication tags,
cryptographic hashes, and pseudorandom number generators. [Ch. 11]

cryptography—A discipline of theoretical computer science that specializes in the study of
cryptographic transformations and protocols. [Ch. 11]

cut-through—A forwarding technique in which transmission of a packet or frame on an
outgoing link begins while the packet or frame is still being received on the incoming
link. [Ch. 7]

dallying—A technique to improve performance by delaying a request on the chance that
the operation won’t be needed, or to create more opportunities for batching. [Ch. 6]

dangling reference—Use of a name that has outlived the binding of that name. [Ch. 3]

data integrity—Authenticity of the apparent content of a message or file. [Ch. 11] In a

Saltzer & Kaashoek Ch. gl, p. 7 June 24, 2009 12:21 am

GL–8 Glossary

network, a transport protocol assurance that the data delivered to the recipient is
identical to the original data the sender provided. Compare with origin authenticity. [Ch.
 7]

data rate—The rate, usually measured in bits per second, at which bits are sent over a
communication link. When talking of the data rate of an asynchronous communication
link, the term is often used to mean the maximum data rate that the link allows. [Ch. 7]

deadlock—Undesirable interaction among a group of threads in which each thread is
waiting for some other thread in the group to make progress. [Ch. 5]

decay—Unintended loss of stored state with the passage of time. [Ch. 2]

decay set—A set of storage blocks, words, tracks, or other physical groupings, in which all
members of the set may spontaneously fail together, but independently of any other
decay set. [Ch. 8]

decrypt—To perform a reverse cryptographic transformation on a previously encrypted
message to obtain the plaintext. Compare with encrypt. [Ch. 11]

default context reference—A context reference chosen by the name resolver rather than
specified as part of the name or by the object that used the name. Compare with explicit
context reference. [Ch. 2]

demand paging—A class of page-movement algorithm that moves pages into the primary
device only at the instant that they are used. Compare with prepaging. [Ch. 6]

destination—The network attachment point to which the payload of a packet is to be
delivered. Sometimes used as shorthand for destination address. [Ch. 7]

destination address—An identifier of the destination of a packet, usually carried as a field
in the header of the packet. [Ch. 7]

detectable error—An error or class of errors for which a reliable detection plan can be
devised. An error that is not detectable usually leads to a failure, unless some mechanism
that is intended to mask some other error accidentally happens to mask the undetectable
error. Compare with maskable error and tolerated error. [Ch. 8]

digital signature—An authentication tag computed with public-key cryptography. [Ch.
 11]

directory—In a file system, an object consisting of a table of bindings between symbolic
file names and some description (e.g., a file number or a file map) of the corresponding
file. Other terms used for this concept include catalog and folder. A directory is an
example of a context. [Ch. 2]

discretionary access control—A property of an access control system. In a discretionary
access control system, the owner of an object has the authority to decide which principals
have access to that object. Compare with non-discretionary access control. [Ch. 11]

do action—(n.) Term used in some systems for a redo action. [Ch. 9]

domain—A range of addresses to which a thread has access. It is the abstraction that
enforces modularity within a memory, separating modules and allowing for controlled

Saltzer & Kaashoek Ch. gl, p. 8 June 24, 2009 12:21 am

Glossary GL–9

sharing. [Ch. 5]

down time—A measure of the time that a system was not usable, as a fraction of the time
that it was intended to be usable. Compare with its complement, availability. [Ch. 8]

duplex—Describes a link or connection between two stations that can be used in both
directions. Compare with simplex, half-duplex, and full-duplex. [Ch. 7]

duplicate suppression—A transport protocol mechanism for achieving at-most-once
delivery assurance, by identifying and discarding extra copies of packets or messages.
[Ch. 7]

durability—A property of a storage medium that, once written, it can be read for as long
as the application requires. Compare with stability and persistence, terms that have
different technical definitions as explained in Sidebar 2.7. [Ch. 2]

durable storage—Storage with the property that it (ideally) is decay-free, so it never fails
to return on a GET the data that was stored by a previously successful PUT. Since that ideal
is impossibly strict, in practice, storage is considered durable when the probability of
failure is sufficiently low that the application can tolerate it. Durability is thus an
application-defined specification of how long the results of an action, once completed,
must be preserved. Durable is distinct from non-volatile, which describes storage that
maintains its memory while the power is off, but may still have an intolerable probability
of decay. The term persistent is sometimes used as a synonym for durable, as explained in
Sidebar 2.7, but to minimize confusion this text avoids that usage. [Ch. 8]

dynamic scope—An example of a default context, used to resolve names of program
variables in some programming languages. The name resolver searches backward in the
call stack for a binding, starting with the stack frame of the procedure that used the
name, then the stack of its caller, then the caller’s caller, and so on. Compare with static
scope. [Ch. 2]

earliest deadline first scheduling policy—A scheduling policy for real-time systems that
gives priority to the thread with the earliest deadline. [Ch. 6]

early drop—A predictive strategy for managing an overloaded resource: the system refuses
service to some customers before the queue is full. [Ch. 7]

emergent property—A property of an assemblage of components that would not be
predicted by examining the components individually. Emergent properties are a surprise
when first encountered. [Ch. 1]

emulation—Faithfully simulating some physical hardware so that the simulated hardware
can run any software that the physical hardware can. [Ch. 5]

encrypt—To perform a cryptographic transformation on a message with the objective of
achieving confidentiality. The cryptographic transformation is usually key-driven.
Compare with the inverse operation, decrypt, which can recover the original message.
[Ch. 11]

end-to-end—Describes communication between network attachment points, as
contrasted with communication between points within the network or across a single

Saltzer & Kaashoek Ch. gl, p. 9 June 24, 2009 12:21 am

GL–10 Glossary

link. [Ch. 7]

end-to-end layer—The communication system layer that manages end-to-end
communications. [Ch. 7]

enforced modularity—Modularity that prevents accidental errors from propagating from
one module to another. Compare with soft modularity. [Ch. 4]

enumerate—To generate a list of all the names that can currently be resolved (that is, that
have bindings) in a particular context. [Ch. 2]

environment—1. In a discussion of systems, everything surrounding a system that is not
viewed as part of that system. The distinction between a system and its environment is a
choice based on the purpose, ease of description, and minimization of interconnections.
[Ch. 1] 2. In an interpreter, the state on which the interpreter should perform the
actions directed by program instructions. [Ch. 2]

environment reference—The component of an interpreter that tells the interpreter where
to find its environment. [Ch. 2]

erasure—An error in a string of bits, bytes, or groups of bits in which an identified bit, byte,
or group of bits is missing or has indeterminate value. [Ch. 8]

ergodic—A property of some time-dependent probabilistic processes: that the (usually
easier to measure) ensemble average of some parameter measured over a set of elements
subject to the process is the same as the time average of that parameter of any single
element of the ensemble. [Ch. 8]

error—Informally, a label for an incorrect data value or control signal caused by an active
fault. If there is a complete formal specification for the internal design of a module, an
error is a violation of some assertion or invariant of the specification. An error in a
module is not identical to a failure of that module, but if an error is not masked, it may
lead to a failure of the module. [Ch. 8]

error containment—Limiting how far the effects of an error propagate. A module is
normally designed to contain errors in such a way that the effects of an error appear in a
predictable way at the module’s interface. [Ch. 8]

error correction—A scheme to set to the correct value a data value or control signal that is
in error. Compare with error detection. [Ch. 8]

error-correction code—a method of encoding stored or transmitted data with a modest
amount of redundancy, in such a way that any errors during storage or transmission will,
with high probability, lead to a decoding that is identical to the original data. See also the
general definition of error correction. Compare with error-detection code. [Ch. 7]

error detection—A scheme to discover that a data value or control signal is in error.
Compare with error correction. [Ch. 8]

error-detection code—a method of encoding stored or transmitted data with a small
amount of redundancy, in such a way that any errors during storage or transmission will,
with high probability, lead to a decoding that is obviously wrong. Compare with error-

Saltzer & Kaashoek Ch. gl, p. 10 June 24, 2009 12:21 am

Glossary GL–11

correction code and checksum. See also the general definition of error detection. Compare
with error-correction code and checksum. [Ch. 7]

Ethernet—A widely used broadcast network in which all participants share a common wire
and can hear one another transmit. Ethernet is characterized by a transmit protocol in
which a station wishing to send data first listens to ensure that no one else is sending, and
then continues to monitor the network during its own transmission to see if some other
station has tried to transmit at the same time, an error known as a collision. This
protocol is named Carrier Sense Multiple Access with Collision Detection,
abbreviated CSMA/CD. [Ch. 7]

eventcount—A special type of shared variable used for sequence coordination. It supports
two primary operations: AWAIT and ADVANCE. An eventcount is a counter that is
incremented atomically, using ADVANCE, while other threads wait for the counter to reach
a certain value using AWAIT. Eventcounts are often used in combination with sequencers.
[Ch. 5]

eventual consistency—A requirement that at some unspecified time following an update to
a collection of data, if there are no more updates, the memory model for that collection
will hold. [Ch. 10]

exactly-once—A protocol assurance that the intended operation or message delivery was
performed both at-least-once and at-most-once. [Ch. 4]

exception—An interrupt event that pertains to the thread that a processor is currently
running. [Ch. 5]

explicit context reference—For a name or an object, an associated reference to the context
in which that name, or all names contained in that object, are to be resolved. Compare
with default context reference. [Ch. 2]

explicitness—A property of a message in a security protocol: if a message is explicit, then
the message contains all the information necessary for a receiver to reliably determine
that the message is part of a particular run of the protocol with a specific function and
set of participants. [Ch. 11]

exponential backoff—An adaptive procedure used to set a timer, for example, to wait for
congestion to dissipate. Each time the timer setting proves to be too small, the action
doubles (or, more generally, multiplies by a constant greater than one) the length of its
next timer setting. The intent is obtain a suitable timer value as quickly as possible. See
also exponential random backoff. [Ch. 7]

exponential random backoff—A form of exponential backoff in which an action that
repeatedly encounters interference repeatedly doubles (or, more generally, multiplies by
a constant greater than one) the size of an interval from which it randomly chooses its
next delay before retrying. The intent is that by randomly changing the timing relative
to other, interfering actions, the interference will not recur. [Ch. 9]

export—In naming, to provide a name for an object that other objects can use. [Ch. 2]

fail-fast—Describes a system or module design that contains detected errors by reporting

Saltzer & Kaashoek Ch. gl, p. 11 June 24, 2009 12:21 am

GL–12 Glossary

at its interface that its output may be incorrect. Compare with fail-stop. [Ch. 8]

fail-safe—Describes a system design that detects incorrect data values or control signals and
forces them to values that, even if not correct, are known to allow the system to continue
operating safely. [Ch. 8]

fail-secure—Describes an application of fail-safe design to information protection: a failure
is guaranteed not to allow unauthorized access to protected information. In early work
on fault tolerance, this term was also occasionally used as a synonym for fail-fast. [Ch. 8]

fail-soft—Describes a design in which the system specification allows errors to be masked
by degrading performance or disabling some functions in a predictable manner. [Ch. 8]

fail-stop—Describes a system or module design that contains detected errors by stopping
the system or module as soon as possible. Compare with fail-fast, which does not require
other modules to take additional action, such as setting a timer, to detect the failure.
[Ch. 8]

fail-vote—Describes an N-modular redundancy system with a majority voter. [Ch. 8]

failure—The outcome when a component or system does not produce the intended result
at its interface. Compare with fault. [Ch. 8]

failure tolerance—A measure of the ability of a system to mask active faults and continue
operating correctly. A typical measure counts the number of contained components that
can fail without causing the system to fail. [Ch. 8]

fault—A defect in materials, design, or implementation that may (or may not) cause an
error and lead to a failure. (Compare with failure.) [Ch. 8]

fault avoidance—A strategy to design and implement a component with a probability of
faults that is so low that it can be neglected. When applied to software, fault avoidance
is sometimes called valid construction. [Ch. 8]

fault tolerance—A set of techniques that involve noticing active faults and lower-level
subsystem failures and masking them, rather than allowing the resulting errors to
propagate. [Ch. 8]

file—A popular memory abstraction to durably store and retrieve data. A typical interface
for a file consists of procedures to OPEN the file, to READ and WRITE regions of the file, and
to CLOSE the file. [Ch. 2]

fingerprint—Another term for a witness. [Ch. 10]

first-come, first-served (FCFS) scheduling policy—A scheduling policy in which requests
are processed in the order in which they arrive. [Ch. 6]

first-in, first-out (FIFO) policy—A particular page-removal policy for a multilevel
memory system. FIFO chooses to remove the page that has been in the primary device
the longest. [Ch. 6]

flow control—1. In networks, an end-to-end protocol between a fast sender and a slow
recipient, a mechanism that limits the sender’s data rate so that the recipient does not
receive data faster than it can handle. [Ch. 7] 2. In security, a system that allows

Saltzer & Kaashoek Ch. gl, p. 12 June 24, 2009 12:21 am

Glossary GL–13

untrusted programs to work with sensitive data but confines all program outputs to
prevent unauthorized disclosure. [Ch. 11]

force—(v.) When output may be buffered, to ensure that a previous output value has
actually been written to durable storage or sent as a message. Caches that are not write-
through usually have a feature that allows the invoker to force some or all of their
contents to the secondary storage medium. [Ch. 9]

forward error correction—A technique for controlling errors in which enough
redundancy to correct anticipated errors is applied before an error occurs. Forward error
correction is particularly applicable when the original source of the data value or control
signal will not be available to recalculate or resend it. Compare with backward error
correction. [Ch. 8]

forward secrecy—A property of a security protocol. A protocol has forward secrecy if
information, such as an encryption key, deduced from a previous transcript doesn’t allow
an adversary to decrypt future messages. [Ch. 11]

forwarding table—A table that tells the network layer which link to use to forward a
packet, based on its destination address. [Ch. 7]

fragment—1. (v.) In network protocols, to divide the payload of a packet so that it can fit
into smaller packets for carriage across a link with a small maximum transmission unit.
2. (n.) The resulting pieces of payload. [Ch. 7]

frame—1. (n.) The unit of transmission in the link layer. Compare with packet, segment,
and message. 2. (v.) To delimit the beginning and end of a bit, byte, frame (n.), packet,
segment, or message within a stream. [Ch. 7]

freshness—A property of a message in a security protocol: if the message is fresh, it is
assured not to be a replay. [Ch. 11]

full-duplex—Describes a duplex link or connection between two stations that can be used
in both directions at the same time. Compare with simplex, duplex, and half-duplex. [Ch.
 7]

gate—A predefined protected entry point into a domain. [Ch. 5]

generated name—A name created algorithmically, rather than chosen by a person. [Ch. 3]

global name—In a layered naming scheme, a name that is bound only in the outermost
context layer, and thus has the same meaning to all users. [Ch. 2]

half-duplex—Describes a duplex link or connection between two stations that can be used
in only one direction at a time. Compare with simplex, duplex, and full-duplex. [Ch. 7]

Hamming distance—in an encoding system, the number of bits in an element of a code
that would have to change to transform it into a different element of the code. The
Hamming distance of a code is the minimum Hamming distance between any pair of
elements of the code. [Ch. 8]

hard real-time scheduling policy—A real-time scheduler in which missing a deadline may
result in a disaster. [Ch. 6]

Saltzer & Kaashoek Ch. gl, p. 13 June 24, 2009 12:21 am

GL–14 Glossary

hash function—A function that algorithmically derives a relatively short, fixed-length string
of bits from an arbitrarily-large block of data. The resulting short string is known as a
hash. See also cryptographic hash function. [Ch. 3]

header—Information that a protocol layer adds to the front of a packet. [Ch. 7]

hierarchical routing—A routing system that takes advantage of hierarchically assigned
network destination addresses to reduce the size of its routing tables. [Ch. 7]

hierarchy—A technique of organizing systems that contain many components: group
small numbers of components into self-contained and stable subsystems that then
become components of larger self-contained and stable subsystems, and so on. [Ch. 1]

hit ratio—In a multilevel memory, the fraction of references satisfied by the primary
memory device. [Ch. 6]

hop limit—A network-layer protocol field that acts as a safety net to prevent packets from
endlessly circulating in a network that has inconsistent forwarding tables. [Ch. 7]

hot swap—To replace modules in a system while the system continues to provide service.
[Ch. 8]

idempotent—Describes an action that can be interrupted and restarted from the beginning
any number of times and still produce the same result as if the action had run to
completion without interruption. The essential feature of an idempotent action is that if
there is any question about whether or not it completed, it is safe to do it again.
“Idempotent” is correctly pronounced with the accent on the second syllable, not on the
first and third. [Ch. 4]

identifier—A synonym for name, sometimes used to avoid an implication that the name
might be meaningful to a person rather than to a machine. [Ch. 3]

illegal instruction—An instruction that an interpreter is not equipped to execute because
it is not in the interpreter’s instruction repertoire or it has an out-of-range operand (for
example, an attempt to divide by zero). An illegal instruction typically causes an
interrupt. [Ch. 2]

incommensurate scaling—A property of most systems, that as the system grows (or
shrinks) in size, not all parts grow (or shrink) at the same rate, thus stressing the system
design. [Ch. 1]

incremental backup—A backup copy that contains only data that has changed since
making the previous backup copy. [Ch. 10]

indirect name—A name that is bound to another name in the same name space. “Symbolic
link”, “soft link”, and “shortcut” are other words used for this concept. Some operating
systems also define the term alias to have this meaning rather than its more general
meaning of synonym. [Ch. 2]

indirection—Decoupling a connection from one object to another by interposing a name
with the goal of delaying the choice of (or allowing a later change about) which object
the name refers to. Indirection makes it possible to delay the choice of or change which

Saltzer & Kaashoek Ch. gl, p. 14 June 24, 2009 12:21 am

Glossary GL–15

object is used without the need to change the object that uses it. Using a name is
sometimes described as “inserting a level of indirection”. [Ch. 1]

install—In a system that uses logs to achieve all-or-nothing atomicity, to write data to cell
storage. [Ch. 9]

instruction reference—A characteristic component of an interpreter: the place from which
it will take its next instruction. [Ch. 2]

intended load—The amount of a shared resource that a set of users would attempt to
utilize if the resource had unlimited capacity. In systems that have no provision for
congestion control, the intended load is equal to the offered load. The goal of congestion
control is to make the offered load smaller than the intended load. Compare with offered
load. [Ch. 7]

interleaving—A technique to improve performance by distributing apparently sequential
requests to several instances of a device, so that the requests may actually be processed
concurrently. [Ch. 6]

intermittent fault—A persistent fault that is active only occasionally. Compare with
transient fault. [Ch. 8]

International Organization for Standardization (ISO)—An international non
governmental body that sets many technical and manufacturing standards including the
(frequently ignored) Open Systems Interconnect (OSI) reference model for data
communication networks. The short name ISO is not an acronym, it is the Greek word
for “equal”, chosen to be the same in all languages and always spelled in all capital letters.
[Ch. 7]

interpreter—The abstraction that models the active mechanism performing computations.
An interpreter comprises three components: an instruction reference, a context
reference, and an instruction repertoire. [Ch. 2]

interrupt—An event that causes an interpreter to transfer control to the first instruction of
a different procedure, an interrupt handler, instead of executing the next instruction.
[Ch. 2]

invalidate—In a cache, to mark “do not use” or completely remove a cache entry because
some event has occurred that may make the value associated with that entry incorrect.
[Ch. 10]

isochronous (From Greek roots meaning “equal” and “time”)—Describes a
communication link over which data is sent in frames whose length is fixed in advance
and whose timing relative to other frames is precisely predictable. Compare with
asynchronous. [Ch. 7]

jitter—In real-time applications, variability in the delivery times of successive data
elements. [Ch. 7]

job—The unit of granularity on which threads are scheduled. A job corresponds to the
burst of activity of a thread between two idle periods. [Ch. 6]

Saltzer & Kaashoek Ch. gl, p. 15 June 24, 2009 12:21 am

GL–16 Glossary

journal storage—Storage in which a WRITE or PUT appends a new value, rather than
overwriting a previously stored value. Compare with cell storage. [Ch. 9]

kernel—A trusted intermediary that virtualizes resources for mutually distrustful modules
running on the same computer. Kernel modules typically run with kernel mode enabled.
[Ch. 5]

kernel mode—A feature of a processor that when set allows threads to use special processor
features (e.g., the page-map address register) that are disallowed to threads that run with
kernel mode disabled. Compare with user mode. [Ch. 5]

key-based cryptographic transformation—A cryptographic transformation for which
successfully meeting the cryptographic goals depends on the secrecy of some component
of the transformation. That component is called a cryptographic key, and a usual design
is to make that key a small, modular, separable, and easily changeable component. [Ch.
 11]

key distribution center (KDC)—A principal that authenticates other principals to one
another and also provides one or more temporary cryptographic keys for communication
between other principals. [Ch. 11]

latency—The delay between a change at the input to a system and the corresponding
change at its output. [Ch. 2] As used in reliability, the time between when a fault
becomes active and when the module in which the fault occurred either fails or detects
the resulting error. [Ch. 8]

latent fault—A fault that is not currently causing an error. Compare with active fault. [Ch.
 8]

layering—A technique of organizing systems in which the designer builds on an interface
that is already complete (a lower layer), to create a different complete interface (an upper
layer). [Ch. 1]

least-recently-used (LRU) policy—A popular page-removal policy for a multilevel
memory system. LRU chooses to remove the page that has not been used the longest.
[Ch. 6]

lexical scope—Another term for static scope. [Ch. 2]

limited name space—A name space in which a limited number of names can be expressed
and therefore names must be allocated, deallocated, and reused. [Ch. 3]

link—1 (n.) Another term for a synonym (usually called a hard link) or an indirect name
(usually called a soft or symbolic link). 2 (v.) Another term for bind. [Ch. 2] 3. (n.) In
data communication, a communication path between two points. [Ch. 7]

link layer—The communication system layer that moves data directly from one physical
point to another. [Ch. 7]

list system—A design for an access control mechanism in which each protected object is
associated with a list of authorized principals. [Ch. 11]

livelock—An undesirable interaction among a group of threads in which each thread

Saltzer & Kaashoek Ch. gl, p. 16 June 24, 2009 12:21 am

Glossary GL–17

begins a sequence of actions, discovers that it cannot complete the sequence because
actions of other threads have interfered, and begins again, endlessly. [Ch. 5]

locality of reference—A property of most programs that memory references tend to be
clustered in both time and address space. [Ch. 6]

lock—A flag associated with a data object, set by a thread to warn concurrent threads that
the object is in use and that it may be a mistake for other threads to read or write it. Locks
are one technique used to achieve before-or-after atomicity. [Ch. 5]

lock point—In a system that provides before-or-after atomicity by locking, the first instant
in a before-or-after action when every lock that will ever be in its lock set has been
acquired. [Ch. 9]

lock set—The collection of all locks acquired during the execution of a before-or-after
action. [Ch. 9]

lock-step protocol—In networking, any transport protocol that requires acknowledgment
of the previously sent message, segment, packet, or frame before sending another
message, segment, packet, or frame to the same destination. Sometimes called a stop and
wait protocol. Compare with pipeline. [Ch. 7]

log—1. (n.) A specialized use of journal storage to maintain an append-only record of some
application activity. Logs are used to implement all-or-nothing actions, for performance
enhancement, for archiving, and for reconciliation. 2. (v.) To append a record to a log.
[Ch. 9]

logical copy—A replica that is organized in a form determined by a higher layer. An
example is a replica of a file system that is made by copying one file at a time. Analogous
to logical locking. Compare with physical copy. [Ch. 10]

logical locking—Locking of higher-layer data objects such as records or fields of a database.
Compare with physical locking. [Ch. 9]

Manchester code—A particular type of phase encoding in which each bit is represented by
two bits of opposite value. [Ch. 7]

margin—The amount by which a specification is better than necessary for correct
operation. The purpose of designing with margins is to mask some errors. [Ch. 8]

mark point—1. (adj.) An atomicity-assuring discipline in which each newly created action
n must wait to begin reading shared data objects until action (n – 1) has marked all of
the variables it intends to modify. 2. (n.) The instant at which an action has marked all
of the variables it intends to modify. [Ch. 9]

marshal/unmarshal—To marshal is to transform the internal representation of one or
more pieces of data into a form that is more suitable for transmission or storage. The
opposite action, to unmarshal, is to parse marshaled data into its constituent data pieces
and transform those pieces into a suitable internal representation. [Ch. 4]

maskable error—An error or class of errors that is detectable and for which a systematic
recovery strategy can in principle be devised. Compare with detectable error and tolerated

Saltzer & Kaashoek Ch. gl, p. 17 June 24, 2009 12:21 am

GL–18 Glossary

error. [Ch. 8]

masking—As used in reliability, containing an error within a module in such a way that
the module meets its specifications as if the error had not occurred. [Ch. 8]

master—In a multiple-site replication scheme, the site to which updates are directed.
Compare with slave. [Ch. 10]

maximum transmission unit (MTU)—A limit on the size of a packet, imposed to control
the time commitment involved in transmitting the packet, to control the amount of loss
if congestion causes the packet to be discarded, and to keep low the probability of a
transmission error. [Ch. 7]

mean time between failures (MTBF)—The sum of MTTF and MTTR for the same
component or system. [Ch. 8]

mean time to failure (MTTF)—The expected time that a component or system will
operate continuously without failing. “Time” is sometimes measured in cycles of
operation. [Ch. 8]

mean time to repair (MTTR)—The expected time to replace or repair a component or
system that has failed. The term is sometimes written as “mean time to restore service”,
but it is still abbreviated MTTR. [Ch. 8]

mediation—Before a service performs a requested operation, determining which principal
is associated with the request and whether the principal is authorized to request the
operation. [Ch. 11]

memory—The abstraction for remembering data values, using READ and WRITE operations.
The WRITE operation specifies a value to be remembered and a name by which that value
can be recalled in the future. See also storage. [Ch. 2]

memoryless—A property of some time-dependent probabilistic processes, that the
probability of what happens next does not depend on what has happened before. [Ch.
 8]

memory manager—A device located between a processor and memory that translates
virtual to physical addresses and checks that memory references by the thread running
on the processor are in the thread’s domain(s). [Ch. 5]

memory-mapped I/O—An interface that allows an interpreter to communicate with an
I/O module using LOAD and STORE instructions that have ordinary memory addresses.
[Ch. 2]

message—The unit of communication at the application level. The length of a message is
determined by the application that sends it. Since a network may have a maximum size
for its unit of transmission, the end-to-end layer divides a message into one or more
segments, each of which is carried in a separate packet. Compare with frame (n.),
segment, and packet. [Ch. 7]

message authentication—The verification of the integrity of the origin and the data of a
message. [Ch. 11]

Saltzer & Kaashoek Ch. gl, p. 18 June 24, 2009 12:21 am

Glossary GL–19

message authentication code (MAC)—An authentication tag computed with shared-
secret cryptography. MAC is sometimes used as a verb in security jargon, as in “Just to
be careful, let’s MAC the address field of that message.” [Ch. 11]

metadata—Information about an object that is not part of the object itself. Examples are
the name of the object, the identity of its owner, the date it was last modified, and the
location in which it is stored. [Ch. 3]

microkernel—A kernel organization in which most operating system comonents run in
separate, user-mode address spaces. [Ch. 5]

mirror—(n.) One of a set of replicas that is created or updated synchronously. Compare
with primary copy and backup copy. Sometimes used as a verb, as in “Let’s mirror that data
by making three replicas.” [Ch. 8]

missing-page exception—The event when an addressed page is not present in the primary
device and the virtual memory manager has to move the page in from a secondary device.
The literature also uses the term page fault. [Ch. 6]

modular sharing—Sharing of an object without the need to know details of the
implementation of the shared object. With respect to naming, modular sharing is sharing
without the need to know the names that the shared object uses to refer to its
components. [Ch. 3]

module—A system component that can be separately designed, implemented, managed,
and replaced. [Ch. 1]

monolithic kernel—A kernel organization in which most operating system components
run in a single, kernel-mode address space. [Ch. 5]

most-recently-used (MRU) policy—A page-removal policy for a multilevel memory
system. MRU chooses for removal the most recently used page in the primary device.
[Ch. 6]

MTU discovery—A procedure that systematically discovers the smallest maximum
transmission unit along the path between two network attachment points. [Ch. 7]

multihomed—Describes a single physical interface between the network layer and the end-
to-end layer that is associated with more than one network attachment point, each with
its own network-layer address. [Ch. 7]

multilevel memory—Memory built out of two or more different memory devices that
have significantly different latencies and cost per bit. [Ch. 6]

multiple lookup—A name-mapping algorithm that tries several contexts in sequence,
looking for the first one that can successfully resolve a presented name. [Ch. 2]

multiplexing—Sharing a communication link among several, usually independent,
simultaneous communications. The term is also used in layered protocol design when
several different higher-layer protocols share the same lower-layer protocol. [Ch. 7]

multipoint—Describes communication that involves more than two parties. A multipoint
link is a single physical medium that connects several parties. A multipoint protocol

Saltzer & Kaashoek Ch. gl, p. 19 June 24, 2009 12:21 am

GL–20 Glossary

coordinates the activities of three or more participants. [Ch. 7]

N + 1 redundancy—When a load can be handled by sharing it among N equivalent
modules, the technique of installing N + 1 or more of the modules, so that if one fails
the remaining modules can continue to handle the full load while the one that failed is
being repaired. [Ch. 8]

N-modular redundancy (NMR)—A redundancy technique that involves supplying
identical inputs to N equivalent modules and connecting the outputs to one or more
voters. [Ch. 8]

N-version programming—The software version of N-modular redundancy. N different
teams each independently write a program from its specifications. The programs then
run in parallel, and voters compare their outputs. [Ch. 8]

name—A designator or an identifier of an object or value. A name is an element of a name
space. [Ch. 2]

name conflict—An occurrence when, for some reason, it seems necessary to bind the same
name to two different values at the same time in the same context. Usually, a result of
encountering a preexisting name in a naming scheme that does not provide modular
sharing. When names are algorithmically generated, name conflicts are called collisions.
[Ch. 3]

name-mapping algorithm—See naming scheme. [Ch. 2]

name space—The set of all possible names of a particular naming scheme. A name space
is defined by a set of symbols from some alphabet together with a set of syntax rules that
define which names are members of the name space. [Ch. 2]

name-to-key binding—A binding between a principal identifier and a cryptographic key.
[Ch. 11]

naming hierarchy—A naming network that is constrained to a tree-structured form. The
root used for interpretation of absolute path names (which in a naming hierarchy are
sometimes called “tree names”) is normally the base of the tree. [Ch. 2]

naming network—A naming scheme in which contexts are named objects and any context
may contain a binding for any other context, as well as for any non-context object. An
object in a naming network is identified by a multicomponent path name that traces a
path through the naming network from some starting point, which may be either a
default context or a root. [Ch. 2]

naming scheme—A particular combination of a name space, a universe of values (which
may include physical objects) that can be named, and a name-mapping algorithm that
provides a partial mapping from the name space to the universe of values. [Ch. 2]

negative acknowledgment (NAK or NACK)—A status report from a recipient to a sender
asserting that some previous communication was not received or was received
incorrectly. The usual reason for sending a negative acknowledgment is to avoid the delay
that would be incurred by waiting for a timer to expire. Compare with acknowledgment.
[Ch. 7]

Saltzer & Kaashoek Ch. gl, p. 20 June 24, 2009 12:21 am

Glossary GL–21

network—A communication system that interconnects more than two things. [Ch. 7]

network address—In a network, the identifier of the source or destination of a packet.
[Ch. 7]

network attachment point—The place at which the network layer accepts or delivers
payload data to and from the end-to-end layer. Each network attachment point has an
identifier, its address, that is unique within that network. A network attachment point is
sometimes called an access point, and in ISO terminology, a Network Services Access Point
(NSAP). [Ch. 7]

network layer—The communication system layer that forwards data through intermediate
links to carry it to its intended destination. [Ch. 7]

non-discretionary access control—A property of an access control system. In a non
discretionary access control system, some principal other than the owner has the
authority to decide which principals have to access the object. Compare with
discretionary access control. [Ch. 11]

non-preemptive scheduling—A scheduling policy in which threads run until they
explicitly yield or wait. [Ch. 5]

non-volatile memory—A kind of memory that does not require a continuous source of
power, so it retains its content when its power supply is off. The phrase “stable storage”
is a common synonym. Compare with volatile memory. [Ch. 2]

nonce—A unique identifier that should never be reused. [Ch. 7]

object—As used in naming, any software or hardware structure that can have a distinct
name. [Ch. 2]

offered load—The amount of a shared service that a set of users attempt to utilize. Presented
load is an occasionally encountered synonym. [Ch. 6]

opaque name—In a modular system, a name that, from the point of view of the current
module, carries no overloading that the module knows how to interpret. [Ch. 3]

operating system—A collection of programs that provide services such as abstraction and
management of hardware devices and features such as libraries of commonly needed
procedures, all of which are intended to make it easier to write application programs.
[Ch. 2]

optimal (OPT) page-removal policy—An unrealizable page-removal policy for a
multilevel memory system. The optimal policy removes from primary memory the page
that will not be used for the longest time. Because identifying that page requires knowing
the future, the optimal policy is not implementable in practice. Its utility is that after any
particular reference string has been observed, one can then simulate the operation of that
reference string with the optimal policy, to compare the number of missing-page
exceptions with the number obtained when using other, realizable policies. [Ch. 6]

optimistic concurrency control—A concurrency control scheme that allows concurrent
threads to proceed even though a risk exists that they will interfere with each other, with

Saltzer & Kaashoek Ch. gl, p. 21 June 24, 2009 12:21 am

GL–22 Glossary

the plan of detecting whether there actually is interference and, if necessary, forcing one
of the threads to abort and retry. Optimistic concurrency control is an effective
technique in situations where interference is possible but not likely. Compare with
pessimistic concurrency control. [Ch. 9]

origin authenticity—Authenticity of the claimed origin of a message. Compare with data
integrity. [Ch. 11]

overload—When offered load exceeds the capacity of a service for a specified period of
time. [Ch. 6]

overloaded name—A name that does more than simply identify an object; it also carries
other information, such as the type of the object, the date it was modified, or how to
locate it. Overloading is commonly encountered when a system has not made suitable
provision to handle metadata. Contrast with pure name. [Ch. 3]

packet—The unit of transmission of the network layer. A packet consists of a segment of
payload data, accompanied by guidance information that allows the network to forward
it to the network attachment point that is intended to receive the data carried in the
packet. Compare with frame (n.), segment, and message. [Ch. 7]

packet forwarding—In the network layer, upon receiving a packet that is not destined for
the local end layer, to send it out again along some link with the intention of moving the
packet closer to its destination. [Ch. 7]

packet switch—A specialized computer that forwards packets in a data communication
network. Sometimes called a packet forwarder or, if it also implements an adaptive
routing algorithm, a router. [Ch. 7]

page—In a page-based virtual memory system, the unit of translation between virtual
addresses and physical addresses. [Ch. 5]

page fault—See missing-page exception.

page map—Data structure employed by the virtual memory manager to map virtual
addresses to physical addresses. [Ch. 5]

page-map address register—A processor register maintained by the thread manager. It
contains a pointer to the page map used by the currently active thread, and it can be
changed only when the processor is in kernel mode. [Ch. 5]

page-removal policy—A policy for deciding which page to move from the primary to the
secondary device to make a space to bring in a new page. [Ch. 6]

page table—A particular form of a page map, in which the map is organized as an array
indexed by page number. [Ch. 5]

pair-and-compare—A method for constructing fail-fast modules from modules that do
not have that property, by connecting the inputs of two replicas of the module together
and connecting their outputs to a comparator. When one repairs a failed pair-and
compare module by replacing the entire two-replica module with a spare, rather than
identifying and replacing the replica that failed, the method is called pair-and-spare.

Saltzer & Kaashoek Ch. gl, p. 22 June 24, 2009 12:21 am

Glossary GL–23

[Ch. 8]

pair-and-spare—See pair-and-compare.

parallel transmission—A scheme for increasing the data rate between two modules by
sending data over several parallel lines that are coordinated by the same clock. [Ch. 7]

partition—To divide a job up and assign it to different physical devices, with the intent
that a failure of one device does not prevent the entire job from being done. [Ch. 8]

password—A secret character string used to authenticate the claimed identity of an
individual. [Ch. 11]

path name—A name with internal structure that traces a path through a naming network.
Any prefix of a path name can be thought of as the explicit context reference to use for
resolution of the remainder of the path name. See also absolute path name and relative
path name. [Ch. 2]

path selection—In a network-layer routing protocol, when a participant updates its own
routing information with new information learned from an exchange with its neighbors.
[Ch. 7]

payload—In a layered description of a communication system, the data that a higher layer
has asked a lower layer to send; used to distinguish that data from the headers and trailers
that the lower layer adds. (This term seems to have been borrowed from the
transportation industry, where it is used frequently in aerospace applications.) [Ch. 7]

pending—A state of an all-or-nothing action, when that action has not yet either
committed or aborted. Also used to describe the value of a variable that was set or
changed by a still-pending all-or-nothing action. [Ch. 9]

persistence—A property of an active agent such as an interpreter that, when it detects it
has failed, it keeps trying until it succeeds. Compare with stability and durability, terms
that have different technical definitions as explained in Sidebar 2.7. The adjective
“persistent” is used in some contexts as a synonym for stable and sometimes also in the
sense of immutable. [Ch. 2]

persistent fault—A fault that cannot be masked by retry. Compare with transient fault and
intermittent fault. [Ch. 8]

persistent sender—A transport protocol participant that, by sending the same message
repeatedly, tries to ensure that at least one copy of the message gets delivered. [Ch. 7]

pessimistic concurrency control—A concurrency control scheme that forces a thread to
wait if there is any chance that by proceeding it may interfere with another, concurrent,
thread. Pessimistic concurrency control is an effective technique in situations where
interference between concurrent threads has a high probability. Compare with optimistic
concurrency control. [Ch. 9]

phase encoding—A method of encoding data for digital transmission in which at least one
level transition is associated with each transmitted bit, to simplify framing and recovery
of the sender’s clock. [Ch. 7]

Saltzer & Kaashoek Ch. gl, p. 23 June 24, 2009 12:21 am

GL–24 Glossary

physical address—An address that is translated geometrically to read or write data stored
on a device. Compare with virtual address. [Ch. 5]

physical copy—A replica that is organized in a form determined by a lower layer. An
example is a replica of a disk that is made by copying it sector by sector. Analogous to
physical locking. Compare with logical copy. [Ch. 10]

physical locking—Locking of lower-layer data objects, typically chunks of data whose
extent is determined by the physical layout of a storage medium. Examples of such
chunks are disk sectors or even an entire disk. Compare with logical locking. [Ch. 9]

piggybacking—In an end-to-end protocol, a technique for reducing the number of packets
sent back and forth by including acknowledgments and other protocol state information
in the header of the next packet that goes to the other end. [Ch. 7]

pipeline—In networking, a transport protocol design that allows sending a packet before
receiving an acknowledgment of the packet previously sent to the same destination.
Contrast with lock-step protocol. [Ch. 7]

plaintext—The result of decryption. Also sometimes used to describe data that has not
been encrypted, as in “The mistake was sending that message as plaintext.” Compare
with ciphertext. [Ch. 11]

point-to-point—Describes a communication link between two stations, as contrasted with
a broadcast or multipoint link. [Ch. 7]

polling—A style of interaction between threads or between a processor and a device in
which one periodically checks whether the other needs attention. [Ch. 5]

port—In an end-to-end transport protocol, the multiplexing identifier that tells which of
several end-to-end applications or application instances should receive the payload. [Ch.
 7]

preemptive scheduling—A scheduling policy in which a thread manager can interrupt and
reschedule a running thread at any time. [Ch. 5]

prepaging—An optimization for a multilevel memory manager in which the manager
predicts which pages might be needed and brings them into the primary memory before
the application demands them. Compare with demand algorithm. [Ch. 6]

prepared—In a layered or multiple-site all-or-nothing action, a state of a component action
that has announced that it can, on command, either commit or abort. Having reached
this state, it awaits a decision from the higher-layer coordinator of the action. [Ch. 9]

presentation protocol—A protocol that translates semantics and data of the network to
match those of the local programming environment. [Ch. 7]

presented load—See offered load.

preventive maintenance—Active intervention intended to increase the mean time to
failure of a module or system and thus improve its reliability and availability. [Ch. 8]

primary copy—Of a set of replicas that are not written or updated synchronously, the one
that is considered authoritative and, usually, written or updated first. (Compare with

Saltzer & Kaashoek Ch. gl, p. 24 June 24, 2009 12:21 am

Glossary GL–25

mirror and backup copy.) [Ch. 10]

primary device—In a multilevel memory system, the memory device that is faster and
usually more expensive and thus smaller. Compare with secondary device. [Ch. 6]

principal—The representation inside a computer system of an agent (a person, a computer,
a thread) that makes requests to the security system. A principal is the entity in a
computer system to which authorizations are granted; thus, it is the unit of
accountability and responsibility in a computer system. [Ch. 11]

priority scheduling policy—A scheduling policy in which some jobs have priority over
other jobs. [Ch. 6]

privacy—A socially defined ability of an individual (or organization) to determine if, when,
and to whom personal (or organizational) information is to be released and also what
limitations should apply to use of released information. [Ch. 11]

private key—In public-key cryptography, the cryptographic key that must be kept secret.
Compare with public key. [Ch. 11]

processing delay—In a communication network, that component of the overall delay
contributed by computation that takes place in various protocol layers. [Ch. 7]

program counter—A processor register that holds the reference to the current or next
instruction that the processor is to execute. [Ch. 2]

progress—A desirable guarantee provided by an atomicity-assuring mechanism: that
despite potential interference from concurrency some useful work will be done. An
example of such a guarantee is that the atomicity-assuring mechanism will not abort at
least one member of the set of concurrent actions. In practice, lack of a progress
guarantee can sometimes be repaired by using exponential random backoff. In formal
analysis of systems, progress is one component of a property known as “liveness”.
Progress is an assurance that the system will move toward some specified goal, whereas
liveness is an assurance that the system will eventually reach that goal. [Ch. 9]

propagation delay—In a communication network, the component of overall delay
contributed by the velocity of propagation of the physical medium used for
communication. [Ch. 7]

propagation of effects—A property of most systems: a change in one part of the system
causes effects in areas of the system that are far removed from the changed part. A good
system design tends to minimize propagation of effects. [Ch. 1]

protection—1. Synonym for security. 2. Sometimes used in a narrower sense to denote
mechanisms and techniques that control the access of executing programs to
information. [Ch. 11]

protection group—A principal that is shared by more than one user. [Ch. 11]

protocol—An agreement between two communicating parties, for example on the
messasges and format of data that they intend to exchange. [Ch. 7]

public key—In public-key cryptography, the key that can be published (i.e., the one that

Saltzer & Kaashoek Ch. gl, p. 25 June 24, 2009 12:21 am

GL–26 Glossary

doesn’t have to be kept secret). Compare with private key. [Ch. 11]

public-key cryptography—A key-based cryptographic transformation that can provide
both confidentiality and authenticity of messages without the need to share a secret
between sender and recipient. Public-key systems use two cryptographic keys, one of
which must be kept secret but does not need to be shared. [Ch. 11]

publish/subscribe—A communication style using a trusted intermediary. Clients push or
pull messages to or from an intermediary. The intermediary determines who actually
receives a message and if a message should be fanned out to multiple recipients. [Ch. 4]

pure name—A name that is not overloaded in any way. The only operations that apply to
a pure name are COMPARE, RESOLVE, BIND, and UNBIND. Contrast with overloaded name. [Ch.
 3]

purging—A technique used in some N-modular redundancy designs, in which the voter
ignores the output of any replica that, at some time in the past, disagreed with several
others. [Ch. 8]

qualified name—A name that includes an explicit context reference. [Ch. 2]

quench—(n.) An administrative message sent by a packet forwarder to another forwarder
or to an end-to-end-layer sender asking that the forwarder or sender stop sending data
or reduce its rate of sending data. [Ch. 7]

queuing delay—In a communication network, the component of overall delay that is
caused by waiting for a resource such as a link to become available. [Ch. 7]

quorum—A partial set of replicas intended to improve availability. One defines a read
quorum and a write quorum that intersect, with the goal that for correctness it is
sufficient to read from a read quorum and write to a write quorum. [Ch. 10]

race condition—A timing-dependent error in thread coordination that may result in
threads computing incorrect results (for example, multiple threads simultaneously try to
update a shared variable that they should have updated one at a time). [Ch. 5]

RAID—An acronym for Redundant Array of Independent (or Inexpensive) Disks, a set of
techniques that use a controller and multiple disk drives configured to improve some
combination of storage performance or durability. A RAID system usually has an
interface that is electrically and programmatically identical to a single disk, thus allowing
it to transparently replace a single disk. [Ch. 2]

random access memory—A memory device for which the latency for memory cells chosen
at random is approximately the same as the latency obtained by choosing cells in the
pattern best suited for that memory device. [Ch. 2]

random drop—A strategy for managing an overloaded resource: the system refuses service
to a queue member chosen at random. [Ch. 7]

random early detection (RED)—A combination of random drop and early drop. [Ch. 7]

rate monotonic scheduling policy—A policy that schedules periodic jobs for a real-time
system. Each job receives in advance a priority that is proportional to the frequency of

Saltzer & Kaashoek Ch. gl, p. 26 June 24, 2009 12:21 am

Glossary GL–27

the occurrence of that job. The scheduler always runs the highest priority job,
preempting a running job, if necessary. [Ch. 6]

Read and Set Memory (RSM)—A hardware or software function used primarily for
implementing locks. RSM loads a value from a memory location into a register and stores
another value in the same memory location. The important property of RSM is that no
other loads and stores by concurrent threads can come between the load and the store of
an RSM. RSM is nearly always implemented as a hardware instruction. [Ch. 5]

read/write coherence—A property of a memory, that a READ always returns the result of the
most recent WRITE. [Ch. 2]

ready/acknowledge protocol—A data transmission protocol in which each transmission is
framed by a ready signal from the sender and an acknowledge signal from the receiver.
[Ch. 7]

real time—1. (adj.) Describes a system that requires delivery of results before some
deadline. 2. (n.) The wall-clock sequence that an all-seeing observer would associate with
a series of actions. [Ch. 6]

real-time scheduling policy—A scheduler that attempts to schedule jobs in such a way
that all jobs complete before their deadlines. [Ch. 6]

reassembly—Reconstructing a message by arranging, in correct order, the segments it was
divided into for transmission. [Ch. 7]

reconciliation—A procedure that compares replicas that are intended to be identical and
repairs any differences. [Ch. 10]

recursive name resolution—A method of resolving path names. The least significant
component of the path name is looked up in the context named by the remainder of the
path name, which must thus be resolved first. [Ch. 2]

redo action—An application-specified action that, when executed during failure recovery,
produces the effect of some committed component action whose effect may have been
lost in the failure. (Some systems call this a “do action”. Compare with undo action.) [Ch.
 9]

redundancy—Extra information added to detect or correct errors in data or control signals.
[Ch. 8]

reference—(n.) Use of a name by an object to refer to another object. In grammatical
English, the corresponding verb is “to refer to”. In computer jargon, the non-standard
verb “to reference” appears frequently, and the coined verb “dereference” is a synonym
for resolve. [Ch. 2]

reference string—The string of addresses issued by a thread during its execution (typically
the string of the virtual addresses issued by a thread’s execution of LOAD and STORE

instructions; it may also include the addresses of the instructions themselves). [Ch. 6]

relative path name—A path name that the name resolver resolves in a default context
provided by the environment. [Ch. 2]

Saltzer & Kaashoek Ch. gl, p. 27 June 24, 2009 12:21 am

GL–28 Glossary

reliability—A statistical measure, the probability that a system is still operating at time t,
given that it was operating at some earlier time t0. [Ch. 8]

reliable delivery—A transport protocol assurance: it provides both at-least-once delivery
and data integrity. [Ch. 7]

remote procedure call (RPC)—A stylized form of client/service interaction in which each
request is followed by a response. Usually, remote procedure call systems also provide
marshaling and unmarshaling of the request and the response data. The word
“procedure” in “remote procedure call” is misleading, since RPC semantics are different
from those of an ordinary procedure call: for example, RPC specifically allows for clients
and the service to fail independently. [Ch. 4]

repair—An active intervention to fix or replace a module that has been identified as failing,
preferably before the system of which it is a part fails. [Ch. 8]

repertoire—The set of operations or actions an interpreter is prepared to perform. The
repertoire of a general-purpose processor is its instruction set. [Ch. 2]

replica—1. One of several identical modules that, when presented with the same inputs, is
expected to produce the same output. 2. One of several identical copies of a set of data.
[Ch. 8]

replicated state machine—A method of performing an update to a set of replicas that
involves sending the update request to each replica and performing it independently at
each replica. [Ch. 10]

replication—The technique of using multiple replicas to achieve fault tolerance. [Ch. 8]

repudiate—To disown an apparently authenticated message. [Ch. 11]

request—The message sent from a client to a service. [Ch. 4]

resolve—To perform a name-mapping algorithm from a name to the corresponding value.

[Ch. 2]

response—The message sent from a service to a client in response to a previous request.
[Ch. 4]

roll-forward recovery—A write-ahead log protocol with the additional requirement that
the application log its outcome record before it performs any install actions. If there is a
failure before the all-or-nothing action passes its commit point, the recovery procedure
does not need to undo anything; if there is a failure after commit, the recovery procedure
can use the log record to ensure that cell storage installs are not lost. Also known as redo
logging. Compare with rollback recovery. [Ch. 9]

rollback recovery—A write-ahead log protocol with the additional requirement that the
application perform all install actions before logging an outcome record. If there is a
failure before the all-or-nothing action commits, a recovery procedure can use the log
record to undo the partially completed all-or-nothing action. Also known as undo
logging. Compare with roll-forward recovery. [Ch. 9]

root—The context used for the interpretation of absolute path names. The name for the

Saltzer & Kaashoek Ch. gl, p. 28 June 24, 2009 12:21 am

Glossary GL–29

root is usually bound to a constant value (typically, a well-known name of a lower layer)
and that binding is normally built in to the name resolver at design time. [Ch. 2]

round-robin scheduling—A preemptive scheduling policy in which a thread runs for some
maximum time before the next one is scheduled. When all threads have run, the
scheduler starts again with the first thread. [Ch. 6]

round-trip time—In a network, the time between sending a packet and receiving the
corresponding response or acknowledgment. Round-trip time comprises two (possibly
different) network transit times and the time required for the correspondent to process
the packet and prepare a response. [Ch. 7]

router—A packet forwarder that also participates in a routing algorithm. [Ch. 7]

routing algorithm—An algorithm intended to construct consistent, efficient forwarding
tables. A routing algorithm can be either centralized, which means that one node
calculates the forwarding tables for the entire network, or decentralized, which means
that many participants perform the algorithm concurrently. [Ch. 7]

scheduler—The part of the thread manager that implements the policy for deciding which
thread to run. Policies can be preemptive or non-preemptive. [Ch. 5]

scope—In a layered naming scheme, the set of contexts in which a particular name is
bound to the same value. [Ch. 2]

search—As used in naming, a synonym for multiple lookup. This usage of the term is a
highly constrained form of the more general definition of search as used in information
retrieval and full-text search systems: to locate all instances of records that match a given
query. [Ch. 2]

search path—A default context reference that consists of the identifiers of the contexts to
be used in a multiple lookup name resolution. The word “path” as used here has no
connection with its use in path name, and the word “search” has only a distant
connection with the concept of key word search. [Ch. 2]

secondary device—In a multilevel memory system, the memory device that is larger but
also usually slower. Compare with primary device. [Ch. 6]

secrecy—Synonym for confidentiality. [Ch. 11]

secure area—A physical space or a virtual address space in which confidential information
can be safely confined. [Ch. 11]

secure channel—A communication channel that can safely send information from one
secure area to another. The channel may provide confidentiality or authenticity or, more
commonly, both. [Ch. 11]

security—The protection of information and information systems against unauthorized
access or modification of information, whether in storage, processing, or transit, and
against denial of service to authorized users. [Ch. 11]

security protocol—A message protocol designed to achieve some security objective (e.g.,
authenticating a sender). Designers of security protocols must assume that some of the

Saltzer & Kaashoek Ch. gl, p. 29 June 24, 2009 12:21 am

GL–30 Glossary

communicating parties are adversaries. [Ch. 11]

segment—1. A numbered block of contiguously addressed virtual memory, the block
having a range of memory addresses starting with address zero and ending at some
specified size. Programs written for a segment-based virtual memory issue addresses that
are really two numbers: the first identifies the segment number, and the second identifies
the address within that segment. The memory manager must translate the segment
number to determine where in real memory the segment is located. The second address
may also require translation using a page map. [Ch. 5] 2. In a communication network,
the data that the end-to-end layer gives to the network layer for forwarding across the
network. A segment is the payload of a packet. Compare with frame (n.), message, and
packet. [Ch. 7]

self-pacing—A property of some transmission protocols. A self-pacing protocol
automatically adjusts its transmission rate to match the bottleneck data rate of the
network over which it is operating. [Ch. 7]

semaphore—A special type of shared variable for sequence coordination among several
concurrent threads. A semaphore supports two atomic operations: DOWN and UP. If the
semaphore’s value is larger than zero, DOWN decrements the semaphore and returns to its
caller; otherwise, DOWN releases its processor until another thread increases the semaphore
using UP. When control returns to the thread that originally issued the DOWN operation,
that thread retries the DOWN operation. [Ch. 5]

sequence coordination—A coordination constraint among threads: for correctness, a
certain event in one thread must precede some other certain event in another thread.
[Ch. 5]

sequencer—A special type of shared variable used for sequence coordination. The primary
operation on a sequencer is TICKET, which operates likes the “take a number” machine in
a bakery or post office: two threads concurrently calling TICKET on the same sequencer
receive different values, and the ordering of the values returned corresponds to the time
ordering of the execution of TICKET. [Ch. 5]

serial transmission—A scheme for increasing the data rate between two modules by
sending a series of self-clocking bits over a single transmission line with infrequent or no
acknowledgments. [Ch. 7]

serializable—A property of before-or-after actions, that even if several operate
concurrently, the result is the same as if they had acted one at a time, in some sequential
(in other words, serial) order. [Ch. 9]

server—A module that implements a service. More than one server might implement the
same service, or collaborate to implement a fault tolerant version of the service such that
even if a server fails, the service is still available. [Ch. 4]

service—A module that responds to actions initiated by clients. [Ch. 4] At the end-to-end
layer of a network, the end that responds to actions initiated by the other end. Compare
with client. [Ch. 7]

Saltzer & Kaashoek Ch. gl, p. 30 June 24, 2009 12:21 am

Glossary GL–31

set up—The steps required to allocate storage space for and initialize the state of a
connection. [Ch. 7]

shadow copy—A working copy of an object that an all-or-nothing action creates so that it
can make several changes to the object while the original remains unmodified. When the
all-or-nothing action has made all of the changes, it then carefully exchanges the working
copy with the original, thus preserving the appearance that all of the changes occurred
atomically. Depending on the implementation, either the original or the working copy
may be identified as the “shadow” copy, but the technique is the same in either case. [Ch.
 9]

shared-secret cryptography—A key-based cryptographic transformation in which the
cryptographic key for transforming can be easily determined from the key for the reverse
transformation, and vice versa. In most shared-secret systems, the keys for a
transformation and its reverse transformation are identical. [Ch. 11]

shared-secret key—The key used by a shared-secret cryptography system. [Ch. 11]

sharing—Allowing an object to be used by more than one other object without requiring
multiple copies of the first object. [Ch. 2]

sign—To generate an authentication tag by transforming a message so that a receiver can
use the tag to verify that the message is authentic. The word “sign” is usually restricted
to public-key authentication systems. The corresponding description for shared-secret
authentication systems is “generate a MAC”. [Ch. 11]

simple locking—A locking protocol for creating before-or-after actions requiring that no
data be read or written before reaching the lock point. For the atomic action to also be
all-or-nothing, a further requirement is that no locks be released before commit (or
abort). Compare with two-phase locking. [Ch. 9]

simple serialization—An atomicity protocol requiring that each newly created atomic
action must wait to begin execution until all previously started atomic actions are no
longer pending. [Ch. 9]

simplex—Describes a link between two stations that can be used in only one direction.
Compare with duplex, half-duplex, and full-duplex. [Ch. 7]

single-acquire protocol—A simple protocol for locking: a thread can acquire a lock only
if some other thread has not already acquired it. [Ch. 5]

single-event upset—A synonym for transient fault. [Ch. 8]

slave—In a multiple-site replication scheme, a site that takes update requests from only the
master site. Compare with master. [Ch. 10]

sliding window—In flow control, a technique in which the receiver sends an additional
window allocation before it has fully consumed the data from the previous allocation,
intending that the new allocation arrive at the sender in time to keep data flowing
smoothly, taking into account the transit time of the network. [Ch. 7]

snoopy cache—In a multiprocessor system with a bus and a cache in each processor, a

Saltzer & Kaashoek Ch. gl, p. 31 June 24, 2009 12:21 am

GL–32 Glossary

cache design in which the cache actively monitors traffic on the bus to watch for events
that invalidate cache entries. [Ch. 10]

soft modularity—Modularity defined by convention but not enforced by physical
constraints. Compare with enforced modularity. [Ch. 4]

soft real-time scheduler—A real-time scheduler in which missing a deadline occasionally
is acceptable. [Ch. 6]

soft state—State of a running program that the program can easily reconstruct if it becomes
necessary to abruptly terminate and restart the program. [Ch. 8]

source—The network attachment point that originated the payload of a packet.
Sometimes used as shorthand for source address. [Ch. 7]

source address—An identifier of the source of a packet, usually carried as a field in the
header of the packet. [Ch. 7]

spatial locality—A kind of locality of reference in which the reference string contains
clusters of references to adjacent or nearby addresses. [Ch. 6]

speaks for—A phrase used to express delegation relationships between principals. “A speaks
for B” means that B has delegated some authority to A. [Ch. 11]

speculation—A technique to improve performance by performing an operation in advance
of receiving a request on the chance that it will be requested. The hope is that the result
can be delivered with less latency and with less setup overhead. Examples include
demand paging with larger pages than strictly necessary, prepaging, prefetching, and
writing dirty pages before the primary device space is needed. [Ch. 6]

spin loop—A situation in which a thread waits for an event to happen without releasing
the processor. [Ch. 5]

stability—A property of an object that, once it has a value, it maintains that value
indefinitely. Compare with durability and persistence, terms that have different technical
definitions, as explained in Sidebar 2.7. [Ch. 2]

stable binding—A binding that is guaranteed to map a name to the same value for the
lifetime of the name space. One of the features of a unique identifier name space. [Ch. 2]

stack algorithm—A class of page-removal algorithms in which the set of pages in a primary
device of size m is always a subset of the set of pages in a primary device of size n, if m is
smaller than n. Stack algorithms have the property that increasing the size of the memory
is guaranteed not to result in increased numbers of missing-page exceptions. [Ch. 6]

starvation—An undesirable situation in which several threads are competing for a shared
resource and because of adverse scheduling one or more of the threads never receives a
share of the resource. [Ch. 6]

static routing—A method for setting up forwarding tables in which, once calculated, they
do not automatically change in response to changes in network topology and load.
Compare with adaptive routing. [Ch. 7]

static scope—An example of an explicit context, used to resolve names of program variables

Saltzer & Kaashoek Ch. gl, p. 32 June 24, 2009 12:21 am

Glossary GL–33

in some programming languages. The name resolver searches for a binding starting with
the procedure that used the name, then in the procedure in which the first procedure was
defined, and so on. Sometimes called lexical scope. Compare with dynamic scope. [Ch. 2]

station—A device that can send or receive data over a communication link. [Ch. 7]

stop and wait—A synonym for lock step. [Ch. 7]

storage—Another term for memory. Memory devices that are non-volatile and are read and
written in large blocks are traditionally called storage devices, but there are enough
exceptions that in practice the words “memory” and “storage” should be treated as
synonyms. [Ch. 2]

store and forward—A forwarding network organization in which transport-layer messages
are buffered in a non-volatile memory such as magnetic disk, with the goal that they
never be lost. Many authors use this term for any forwarding network. [Ch. 7]

stream—A sequence of data bits or messages that an application intends to flow between
two attachment points of a network. It also usually intends that the data of a stream be
delivered in the order in which it was sent, and that there be no duplication or omission
of data. [Ch. 7]

strict consistency—An interface requirement that temporary violation of a data invariant
during an update never be visible outside of the action doing the update. One feature of
the read/write coherence memory model is strict consistency. Sometimes called strong
consistency. [Ch. 10]

stub— A procedure that hides from the caller that the callee is not invoked with the
ordinary procedure call conventions. The stub may marshal the arguments into a
message and send the message to a service, where another stub unmarshals the message
and invokes the callee. [Ch. 4]

supermodule—A set of replicated modules interconnected in such a way that it acts like a
single module. [Ch. 8]

supervisor call instruction (SVC)—A processor instruction issued by user modules to pass
control of the processor to the kernel. [Ch. 5]

swapping—A feature of some virtual memory systems in which a multilevel memory
manager removes a complete address space from a primary device and moves in a
complete new one. [Ch. 6]

synonym—One of multiple names that map to the same value. Compare with alias, a term
that usually, but not always, has the same meaning. [Ch. 2]

system—A set of interconnected components that has an expected behavior observed at the
interface with its environment. Contrast with environment. [Ch. 1]

tail drop—A strategy for managing an overloaded resource: the system refuses service to
the queue entry that arrived most recently. [Ch. 7]

tear down—The steps required to reset the state of a connection and deallocate the space
that was used for storage of that state. [Ch. 7]

Saltzer & Kaashoek Ch. gl, p. 33 June 24, 2009 12:21 am

GL–34 Glossary

temporal locality—A kind of locality of reference in which the reference string contains
closely-spaced references to the same address. [Ch. 6]

thrashing—An undesirable situation in which the primary device is too small to run a
thread or a group of threads, leading to frequent missing-page exceptions. [Ch. 6]

thread—An abstraction that encapsulates the state of a running module. This abstraction
encapsulates enough of the state of the interpreter that executes the module so that one
can stop a thread at any point in time and later resume it. The ability to stop a thread
and resume it later allows virtualization of the interpreter. [Ch. 5]

thread manager—A module that implements the thread abstraction. It typically provides
calls for creating a thread, destroying it, allowing the thread to yield, and coordinating
with other threads. [Ch. 5]

threat—A potential security violation from either a planned attack by an adversary or an
unintended mistake by a legitimate user. [Ch. 11]

throughput—a measure of the rate of useful work done by a service for a given workload.
[Ch. 6]

ticket system—A security system in which each principal maintains a list of capabilities,
one for each object to which the principal is authorized to have access. [Ch. 11]

tolerated error—An error or class of errors that is both detectable and maskable, and for
which a systematic recovery procedure has been implemented. Compare with detectable
error, maskable error, and untolerated error. [Ch. 8]

tombstone—A piece of data that will probably never be used again but cannot be discarded
because there is still a small chance that it will be needed. [Ch. 7]

trailer—Information that a protocol layer adds to the end of a packet. [Ch. 7]

transaction—A multistep action that is both atomic in the face of failure and atomic in the
face of concurrency. That is, it is both all-or-nothing and before-or-after. [Ch. 9]

transactional memory—A memory model in which multiple references to primary
memory are both all-or-nothing and before-or-after. [Ch. 9]

transient fault—A fault that is temporary and for which retry of the putatively failed
component has a high probability of finding that it is okay. Sometimes called a single-
event upset. Compare with persistent fault and intermittent fault. [Ch. 8]

transit time—In a forwarding network, the total delay time required for a packet to go
from its source to its destination. In other contexts, this kind of delay is sometimes called
latency. [Ch. 7]

transmission delay—In a communication network, the component of overall delay
contributed by the time spent sending a frame at the available data rate. [Ch. 7]

transport protocol—An end-to-end protocol that moves data between two attachment
points of a network while providing a particular set of specified assurances. It can be
thought of as a prepackaged set of improvements on the best-effort specification of the
network layer. [Ch. 7]

Saltzer & Kaashoek Ch. gl, p. 34 June 24, 2009 12:21 am

Glossary GL–35

triple-modular redundancy (TMR)—N-modular redundancy with N = 3. [Ch. 8]

trusted computing base (TCB)—That part of a system that must work properly to make
the overall system secure. [Ch. 11]

trusted intermediary—A service that acts as the trusted third party on behalf of multiple,
perhaps distrustful, clients. It enforces modularity, thereby allowing multiple distrustful
clients to share resources in a controlled manner. [Ch. 4]

two generals dilemma—An intrinsic problem that no finite protocol can guarantee to
simultaneously coordinate state values at two places that are linked by an unreliable
communication network. [Ch. 9]

two-phase commit—A protocol that creates a higher-layer transaction out of separate,
lower-layer transactions. The protocol first goes through a preparation (sometimes called
voting) phase, at the end of which each lower-layer transaction reports either that it
cannot perform its part or that it is prepared to either commit or abort. It then enters a
commitment phase in which the higher-layer transaction, acting as a coordinator, makes
a final decision—thus the name two-phase. Two-phase commit has no connection with
the similar-sounding term two-phase locking. [Ch. 9]

two-phase locking—A locking protocol for before-or-after atomicity that requires that no
locks be released until all locks have been acquired (that is, there must be a lock point).
For the atomic action to also be all-or-nothing, a further requirement is that no locks for
objects to be written be released until the action commits. Compare with simple locking.
Two-phase locking has no connection with the similar-sounding term two-phase commit.
[Ch. 9]

undo action—An application-specified action that, when executed during failure recovery
or an abort procedure, reverses the effect of some previously performed, but not yet
committed, component action. The goal is that neither the original action nor its reversal
be visible above the layer that implements the action. Compare with redo and compensate.
[Ch. 9]

unique identifier name space—A name space in which each name, once it is bound to a
value, can never be reused for a different value. A unique identifier name space thus
provides a stable binding. In a billing system, customer account numbers usually
constitute a unique identifier name space. [Ch. 2]

universal name space—A name space of a naming scheme that has only one context. A
universal name space has the property that no matter who uses a name it has the same
binding. Computer file systems typically provide a universal name space for absolute
path names. [Ch. 2]

universe of values—The set of all possible values that can be named by a particular naming
scheme. [Ch. 2]

unlimited name space—A name space in which names never have to be reused. [Ch. 3]

untolerated error—An error or class of errors that is undetectable, unmaskable, or
unmasked and therefore can be expected to lead to a failure. Compare with detectable

Saltzer & Kaashoek Ch. gl, p. 35 June 24, 2009 12:21 am

GL–36 Glossary

error, maskable error, and tolerated error. [Ch. 8]

user-dependent binding—A binding for which a name used by a shared object resolves to

different values, depending on the identity of the user of the shared object. [Ch. 2]

user mode—A feature of a processor that, when set, disallows the use of certain processor

features (e.g., changing the page-map address register). Compare with kernel mode. [Ch.
 5]

utilization—The percentage of capacity used for a given workload. [Ch. 6]

value—The thing to which a name is bound. A value may be a real, physical object, or it
may be another name either from the original name space or from a different name space.
[Ch. 2]

valid construction—The term used by software designers for fault avoidance. [Ch. 8]

version history—The set of all values for an object or variable that have ever existed, stored
in journal storage. [Ch. 9]

virtual address—An address that must be translated to a physical address before using it to
refer to memory. Compare with physical address. [Ch. 5]

virtual circuit—A connection intended to carry a stream through a forwarding network,
in some ways simulating an electrical circuit. [Ch. 7]

virtual machine—A method of emulation in which, to maximize performance, a physical
processor is used as much as possible to implement virtual instances of itself. [Ch. 5]

virtual machine monitor—The software that implements virtual machines. [Ch. 5]

virtualization—A technique that simulates the interface of a physical object, in some cases
creating several virtual objects using one physical instance, in others creating one large
virtual object by aggregating several smaller physical instances, and in yet other cases
creating a virtual object from a different kind of physical object. [Ch. 5]

virtual memory manager—A memory manager that implements virtual addresses,
resolving them to physical addresses by using, for example, a page map. [Ch. 5]

volatile memory—A kind of memory in which the mechanism of retaining information
actively consumes energy. When one disconnects the power source it forgets its
information content. Compare with non-volatile memory. [Ch. 2]

voter—A device used in some NMR designs to compare the output of several nominally
identical replicas that all have the same input. [Ch. 8]

well-known name (or address)—A name or address that has been advertised so widely that
one can depend on it not changing for the lifetime of the value to which it is bound. In
the United States, the emergency telephone number “911” is a well-known name. In
some file system designs, sector or block number 1 of every storage device is reserved as
a place to store device data, making “1” a well-known address in that context. [Ch. 2]

window—In flow control, the quantity of data that the receiving side of a transport
protocol is prepared to accept from the sending side. [Ch. 7]

Saltzer & Kaashoek Ch. gl, p. 36 June 24, 2009 12:21 am

Glossary GL–37

witness—A (usually cryptographically strong) hash value that attests to the content of a
file. Another widely used term for this concept is fingerprint. [Ch. 10]

working directory—In a file system, a directory used as a default context, for resolution of
relative path names. [Ch. 2]

working set—The set of all addresses to which a thread refers in the interval Δt. If the
application exhibits locality of reference, this set of addresses will be small compared to
the maximum number of possible addresses during Δt. [Ch. 6]

write-ahead-log (WAL) protocol—A recovery protocol that requires appending a log
record in journal storage before installing the corresponding data in cell storage. [Ch. 9]

write tearing—See atomic storage.

write-through—A property of a cache: a write operation updates the value in both the
primary device and the secondary device before acknowledging completion of the write.
(A cache without the write-through property is sometimes called a write-behind cache.)
[Ch. 6]

Saltzer & Kaashoek Ch. gl, p. 37 June 24, 2009 12:21 am

GL–38 Glossary

Saltzer & Kaashoek Ch. gl, p. 38 June 24, 2009 12:21 am

CHAPTERComplete Index of Concepts

Design principles and hints appear in underlined italics. Procedure names appear in SMALL

CAPS. Page numbers in bold face are in the Glossary. Index entries for the Glossary and

Problem Sets use Part II page numbers.

A
abort 9–27, PS–1, GL–1
absolute path name 68, 72, GL–1
abstraction 22, GL–1

leaky 30
accelerated aging 8–12
access control list 11–74, GL–1
access time 48
ACK (see acknowledgment)
acknowledgment 7–67, 7–77, 7–82, GL–1
ACL (see access control list)
ACQUIRE 225, 9–70
action 53, 9–3, GL–1
action graph PS–138
active fault 8–4, GL–1
ad hoc wireless network 2, PS–69, PS–79
adaptive

routing 7–49, GL–1
timer 7–69

additive increase 7–96
address

destination GL–8

in naming 51, 122, GL–1

in networks 7–46, GL–21

resolution protocol 7–105, GL–1

source GL–32

space 51, GL–1

virtual 206, 243, GL–36

adopt sweeping simplifications xliii, 40, 149,
160, 7–20, 8–8, 8–37, 8–51, 9–3,
9–29, 9–30, 9–47, 10–11, 11–16

ADVANCE 276
Advanced Encryption Standard (AES)

 11–103
adversary 11–6, GL–2
advertise 76, 7–51, GL–2

alias 72, GL–2
(see also indirect name)

alibi 228
all-or-nothing atomicity 89, 9–21, GL–2
any-to-any connection 7–4, GL–2
application protocol 7–23
arbiter failure 229
archive 9–37, GL–2

log 9–40
ARP (see address resolution protocol)
assembly 9
associative memory 51
asynchronous 55, 309, 7–7, GL–2
at-least-once

protocol assurance 7–68, GL–2

RPC 170

at-most-once
protocol assurance 7–71, GL–2
RPC 170

atomic GL–2
action 89, 220, 9–3, GL–2
storage GL–2

atomicity 9–3, 9–19, GL–2
all-or-nothing 89, 9–21, GL–2
before-or-after 46, 89, 9–54, GL–3
log 9–40

attachment point (see network attachment
point)

authentication 11–20, GL–3
key 11–41
logic 11–86
origin 11–37, GL–22
tag 11–41, GL–3

authoritative name server 179
authorization 11–21, 11–73, GL–3

matrix 11–73
INDEX–1

Saltzer & Kaashoek Ch. index, p. 1 June 24, 2009 12:21 am

Complete Index of Concepts

INDEX–2

automatic rate adaptation 7–14, 7–93,
GL–3

availability 8–9, GL–3
avoid excessive generality xliii, 16
avoid rarely used components xliii, 8–51,

8–60, 11–148
AWAIT 276

B
backoff

exponential 7–70, GL–11
exponential random 9–78, GL–11
random 227

backup copy 10–10, GL–3
backward error correction 8–22, GL–3
bad-news diode 38, GL–3
bandwidth 7–37, GL–3
bang-bang protocol 7–114
base name 67
batch 314, GL–3
bathtub curve 8–10
be explicit xliii, 8–7, 11–4, 11–10, 11–24,

11–26, 11–53, 11–55, 11–61, 11–67,
11–68

before-or-after atomicity 46, 89, 9–54,
GL–3

Belady’s anomaly 337
best effort 7–14, GL–4

contract 7–21
big-endian numbering 158
BIND 63
binding 27, 61, 62, GL–4

stable GL–32
user-dependent 74, GL–36

bit error rate 7–38, GL–4
bit stuffing 7–39, GL–4
blast protocol 7–119
blind write 9–49, 9–66, GL–4
block 245

cipher 11–103
in UNIX® 93

blocking read 9–11
bootstrapping 223, 9–21, 9–43, 9–61,

9–80, GL–4

bot 11–19
bottleneck 300, GL–4

data rate 7–79
bounded buffer 206
broadcast 77, 7–45, 7–102, GL–4
buffer overrun attack 11–22, 11–23
burn in, burn out 8–11
burst 7–7, GL–4
bus 80

address 81
arbitration 81

Byzantine fault 8–53, GL–4

C
CA (see certificate authority)
cache 51, 332, GL–4

coherence 10–4, GL–4
snoopy 10–8, GL–31

capability 11–74, GL–4
capacity 302, 322, GL–5
careful storage 8–45
carrier sense multiple access 7–100, GL–11
cascading change propagation 11–105
case-

coercing 128

preserving 128

sensitive 128

CBC (see cipher-block chaining)
cell 46

storage 9–31, GL–5
certificate 11–56, GL–5

authority 11–56, GL–5
self-signed 11–92

certify 11–11, GL–5
checkpoint 9–51, GL–5
checksum 7–10, 7–74, GL–5
cipher 11–99, GL–5
cipher-block chaining 11–105
ciphertext 11–49, GL–5
circuit

switch 7–9, GL–5
virtual 7–82, GL–36

cleartext 11–38, GL–5
client 155, 7–63, GL–5

Saltzer & Kaashoek Ch. index, p. 2 June 24, 2009 12:21 am

Complete Index of Concepts

INDEX–3

client/service organization 159, GL–5
clock algorithm 344
CLOSE 88
close-to-open consistency 192, GL–5
closure 68, GL–5
coding 8–21
coherence

cache 10–4, GL–4

read/write 46, GL–27

collision
Ethernet 7–100, GL–11
hash 11–33
name 124, GL–5

commit 9–27, GL–6
two-phase 9–84, GL–35

communication link 59, GL–6
commutative cryptographic transformation

 11–153
COMPARE 75
compartment 11–81
compensation 10–31, GL–6
complete mediation xliv, 11–5, 11–15,

11–18, 11–25, 11–136
complexity 10, GL–6

Kolmogorov 11
component 8
computationally secure 11–33
condition variable 276, PS–48
conditional failure rate function 8–14
confidentiality 11–49, GL–6
confinement 11–82, GL–6
conflict 10–19
confusion matrix 372
congestion 7–13, 7–87, GL–6

collapse 7–87, 7–88, GL–6
connection 7–7, GL–6
connectionless 7–8, GL–6
consensus 10–11, GL–6

the consensus problem 10–11
consistency GL–6

close-to-open 192, GL–5
eventual 10–3
external time 9–18
sequential 9–18

Saltzer & Kaashoek Ch. index, p. 3

strict 10–3, GL–33
strong (see consistency, strict)

consistent hashing PS–90
constituent 9
constraint 10–2, GL–7
context 62, GL–7
context reference 63, 66, GL–7
continuous operation 8–35, GL–7
control point 7–89, GL–7
convergent encryption PS–191
cookie 11–124
cooperative multitasking 269
cooperative scheduling 269, GL–7
copy-on-write 326
covert channel 11–84, GL–7
critical section 220
cross-layer cooperation 7–91, 7–93
cryptographic

hash function 11–32, GL–7
key 11–39, GL–7
transformation 11–39, 11–99, GL–7
transformation, commutative 11–153

cryptography 11–22, GL–7
public key 11–40, GL–26
shared-secret 11–40, GL–31

CSMA/CD (see carrier sense multiple access)
cursor 88
cursor stability 10–30
cut-through 7–10, GL–7

D
dally 314
dangling reference 130, GL–7
data integrity

in communications 7–73, GL–7

in security assurance 11–36, GL–7

in storage 10–15

data rate 7–4, GL–8
datagram 7–8
deadlock 221, 9–76, GL–8
decay 46, 8–41, GL–8

factor 7–70
set 8–42, GL–8

declassify 11–84

June 24, 2009 12:21 am

Complete Index of Concepts

INDEX–4

decouple modules with indirection xliii, 27,
106, 123, 173, 243, 286, 325, 7–110

decrypt 7–86, 11–49, GL–8
DECRYPT 11–49
default context reference 66, GL–8
defense in depth 8–3, 11–12
delay 7–9, 7–98

processing 7–10, 7–98, GL–25
propagation 7–3, 7–10, 7–99, GL–25
queuing 7–11, 7–99, GL–26
transmission 7–10, 7–99, GL–34

delayed authentication 11–157
delegation forwarding 112
demand

algorithm 339, GL–8
paging 346

dependent outcome record 9–81
design for iteration xliii, 37, 228, 8–8,

8–11, 8–15, 8–37, 11–4, 11–10,
11–26

design principles 40
adopt sweeping simplifications xliii, 40,

149, 160, 7–20, 8–8, 8–37, 8–51,
9–3, 9–29, 9–30, 9–47, 10–11,
11–16

avoid excessive generality xliii, 16
avoid rarely used components xliii, 8–51,

8–60, 11–148
be explicit xliii, 8–7, 11–4, 11–10,

11–24, 11–26, 11–53, 11–55,
11–61, 11–67, 11–68

complete mediation xliv, 11–5, 11–15,
11–18, 11–25, 11–136

decouple modules with indirection xliii, 27,
106, 123, 173, 243, 286, 325,
7–110

design for iteration xliii, 37, 228, 8–8,
8–11, 8–15, 8–37, 11–4, 11–10,
11–26

durability mantra xliv, 10–10
economy of mechanism xliv, 11–16,

11–26
end-to-end argument xliii, 7–31, 8–49,

8–52, 9–79, 10–30, 11–16

escalating complexity principle xliii, 14
fail-safe defaults xliv, 11–16, 11–24,

11–126
golden rule of atomicity xliv, 9–26, 9–42
incommensurate scaling rule xliii, 33, 316,

7–91
keep digging principle xliii, 37, 8–8,

8–64, 11–126
law of diminishing returns xliii, 18, 305,

9–53
least privilege principle xliv, 11–17,

11–24, 11–39, 11–79, 11–80,
11–81, 11–130

minimize common mechanism xliv, 11–16,
11–141

minimize secrets xliv, 11–15, 11–34,
11–39

one-writer principle xliv, 212
open design principle xliii, 11–13, 11–39,

11–64, 11–140
principle of least astonishment xliii, 85, 89,

128, 205, 11–15, 11–138
robustness principle xliv, 29, 8–15
safety margin principle xliv, 24, 8–8,

8–16, 8–58
unyielding foundations rule xliv, 20, 38,

288
destination 7–8, 7–27, 7–46, GL–8

address GL–8
detectable error 8–17, GL–8
dictionary attack 11–34
digital signature 11–44, GL–8
dilemma of the two generals 9–90, GL–35
diminishing returns, law of xliii, 18, 305,

9–53
direct

mapping 346
memory access 83

directory 65, GL–8
in UNIX® 97

discipline
simple locking 9–72, GL–31
systemwide locking 9–70
two-phase locking 9–73, GL–35

Saltzer & Kaashoek Ch. index, p. 4 June 24, 2009 12:21 am

Complete Index of Concepts

INDEX–5

discovery
of maximum transmission unit 7–61,

GL–19
of names 76

discretionary access control 11–74, 11–81,
GL–8

dispatcher 262
distance vector 7–54
divide-by-zero exception 206
DMA (see direct memory access)
do action (see redo action)
domain

name 175

virtual memory 230, GL–8

Domain Name System
design of 175
eventual consistency in 10–5
fault tolerance of 8–36, 8–39

down time 8–9, GL–9
dry run 9–97
duplex 7–45, GL–9
duplicate suppression 7–17, 7–71, GL–9
durability 46, 8–39, GL–9

log 9–40
durability mantra xliv, 10–10
durable storage 8–38, 8–46, GL–9
dynamic scope 68, GL–9

E
earliest deadline first scheduling policy 360,

GL–9
early drop 7–92, GL–9
echo request 7–60
economy of mechanism xliv, 11–16, 11–26
element 9
elevator algorithm 361
emergent property 4, GL–9
emulation 208, GL–9
encrypt 7–86, 11–49, GL–9
ENCRYPT 11–49
encryption key 11–49
end-to-end GL–9

layer 7–25, 7–28, 7–62, GL–10

end-to-end argument xliii, 7–31, 8–49,
8–52, 9–79, 10–30, 11–16

enforced modularity 153, GL–10
ENUMERATE 63
enumerate (in naming) 63, GL–10
environment GL–10

of a system 8

of an interpreter 53

reference 53

erasure 8–23, GL–10
ergodic 8–10, GL–10
error 8–4, GL–10

containment 8–2, 8–5, GL–10
correction 7–40, 8–2, 8–57, GL–10
detection 7–40, 8–2, GL–10

escalating complexity principle xliii, 14
Ethernet 7–100, GL–11
event variable PS–45
eventcount 276, GL–11
eventual consistency 10–3, GL–11
EWMA (see exponentially weighted moving

average)
exactly-once

protocol assurance 7–73, GL–11
RPC 171

exception 57, 206, 235, GL–11
divide-by-zero 206
illegal instruction 235
illegal memory reference 233
indirect 325
memory reference 231
missing-page 328, GL–19
permission error 233
TLB miss 253

explicit context reference 66, GL–11
explicitness 11–61, GL–11
exploit brute force 301
exponential

backoff 7–70, GL–11
random backoff 9–78, GL–11

exponentially weighted moving average 355,
7–70

export 60, GL–11
external time consistency 9–18

Saltzer & Kaashoek Ch. index, p. 5 June 24, 2009 12:21 am

Complete Index of Concepts

INDEX–6

F
fail-

fast 8–5, 8–17, GL–11
safe 8–17, GL–12
secure 8–17, GL–12
soft 8–17, GL–12
stop 8–5, GL–12
vote 8–27, GL–12

fail-safe defaults xliv, 11–16, 11–24,
11–126

failure 8–4, GL–12
tolerance 8–16, GL–12

false positive/negative 371
fast start 7–114
fate sharing 153
fault 8–3, GL–12

avoidance 8–6, GL–12

tolerance 8–5, GL–12

tolerance design process 8–6

tolerance model 8–18

FCFS (see first-come, first-served)
FIFO (see first-in, first-out)
file 87, GL–12

in UNIX® 95

memory-mapped 325

pointer 88

fingerprint 7–10, GL–12

first-come, first-served scheduling policy 353,

GL–12
first-in, first-out page-removal policy 336,

GL–12
fixed

timer 7–69
window 7–78

flooding 2, PS–75
flow control 7–77, GL–12
follow-me forwarding 112
force 320, 9–53, GL–13
forward

error correction 8–21, GL–13
secrecy 11–61, GL–13

forwarder 7–9
forwarding table 7–48, GL–13
fragile name 121

fragment GL–13
frame 7–6, 7–8, 7–37, GL–13
freshness 11–61, GL–13
full-duplex 7–45, GL–13

G
garbage collection 131
gate (protected entry) 236, GL–13
generality 15
generated name 124, GL–13
GET 50
global name 75, GL–13
golden rule of atomicity xliv, 9–26, 9–42
granularity 8, 9–71
guaranteed delivery 7–14

H
half-duplex 7–45, GL–13
Hamming distance 8–21, GL–13
hard-edged 7–6
hard error 8–5
hard link 105
hard real-time scheduling policy 359, GL–13
hash function 125, GL–14
hashed MAC 11–107
hazard function 8–14
header 7–26, GL–14
heartbeat 8–54
hierarchy 25, GL–14

in naming 73
in routing 7–56, GL–14

high-water mark 9–65
hints 40

exploit brute force 301
instead of reducing latency, hide it 309
optimize for the common case 307, 334,

9–39
separate mechanism from policy 331, 349,

11–7, 11–84
hit ratio 333
HMAC (see hashed MAC)
hop limit 7–54, GL–14
hot swap 8–35, GL–14
hyperlink 133

Saltzer & Kaashoek Ch. index, p. 6 June 24, 2009 12:21 am

I

Complete Index of Concepts

INDEX–7

I/O bottleneck 316
ICMP (see Internet control message protocol)
idempotent 170, 7–18, 9–47, GL–14
identifier 127, GL–14
illegal instruction GL–14

exception 235
illegal memory reference exception 233
IMS (see Information Management System)
in-memory database 9–39
incommensurate scaling 5, GL–14
incommensurate scaling rule xliii, 33, 316,

7–91
incremental

backup 10–18, GL–14
redundancy 8–21

indirect
name 73, 104, GL–14

indirection 27, 61, GL–14
exception 325

infant mortality 8–11
information flow control 11–83
Information Management System 9–100
inode 95
install 9–39, GL–15
instead of reducing latency, hide it 309
instruction

reference 53, GL–15
repertoire GL–28

integrity (see data integrity)
intended load 7–88, GL–15
interconnection 8
interface 8
interleaving 310, GL–15
intermittent fault 8–5, GL–15
International Organization for

Standardization 7–30, GL–15
Internet 7–32

control message protocol 7–60
protocol 7–32
service provider 139

interpreter 53, GL–15
interrupt 53, 235, 283, GL–15
invalidate 10–7, GL–15

invisible hand 7–98
IP (see Internet protocol)
ISO (see International Organization for

Standardization)
isochronous 7–6, GL–15
isolation 220
ISP (see Internet service provider)
iteration 36

J
jitter 7–84, GL–15
job 352, GL–15
journal storage 9–31, GL–16

K
KDC (see key distribution center)
keep digging principle xliii, 37, 8–8, 8–64,

11–126
kernel 238, GL–16

mode 234, GL–16
key (see cryptographic key)
key distribution center 11–57, GL–16
key-based cryptographic transformation

 11–41, GL–16
Kolmogorov complexity 11

L
latency 49, 302, 8–5, GL–16
latent fault 8–4, GL–16
law of diminishing returns xliii, 18, 305,

9–53
layer

bypass 79
end-to-end 7–25, 7–28, 7–62, GL–10
link 7–25, 7–34, GL–16
network 7–25, 7–27, 7–46, GL–21

layering 24, GL–16
leaky abstraction 30
least astonishment principle xliii, 85, 89, 128,

205, 11–15, 11–138
least privilege principle xliv, 11–17, 11–24,

11–39, 11–79, 11–80, 11–81,
11–130

Saltzer & Kaashoek Ch. index, p. 7 June 24, 2009 12:21 am

Complete Index of Concepts

INDEX–8

least-recently-used page-removal policy 338,
GL–16

least significant component 71
lexical scope (see static scope)
lightweight remote procedure call 238, PS–25
limited change propagation 11–100
limited name space 129, GL–16
link

in communications 59, GL–6
in naming 73, GL–16
in UNIX® 99
layer 7–25, 7–34, GL–16
soft (see indirect name)
symbolic (see indirect name)

list system 11–74, GL–16
little-endian numbering 158
livelock 222, 9–78, GL–16
locality of reference 334, GL–17

spatial 334, GL–32
temporal 334, GL–34

location-addressed memory 51
lock 218, 9–69, GL–17

compatibility mode 9–76
manager 9–70
point 9–72, GL–17
set 9–72, GL–17

lock-step protocol 7–75, GL–17
locking discipline

simple 9–72, GL–31
systemwide 9–70
two-phase 9–73, GL–35

log 9–39, GL–17
archive 9–40
atomicity 9–40
durability 9–40
performance 9–40
record 9–42
redo 9–50, GL–28
sequence number 9–53
undo 9–50, GL–28
write-ahead 9–42, GL–37

logical
copy 10–10, GL–17
locking 9–75, GL–17

lost object 130

LRPC (see lightweight remote procedure call)

LRU (see least-recently used)

M
MAC

(see media access control address)
(see message authentication code)

magnetic disk memory 49
malware 11–19
Manchester code 7–36, GL–17
margin 8–20, GL–17
mark point 9–58, GL–17
marshal/unmarshal 157, GL–17
maskable error 8–18, GL–17
masking 8–2, 8–17, GL–18
massive redundancy 8–25
master 10–10, GL–18
maximum transmission unit 7–45, GL–18
mean time

between failures 8–9, GL–18

to failure 8–9, GL–18

to repair 8–9, GL–18

media access control address 126
mediation 11–73, GL–18
memory 45

associative 51
barrier 47
cell 46
location-addressed 51
manager 230, GL–18
manager, multilevel 325
manager, virtual 206, 243, GL–36
-mapped file 325
-mapped I/O 84, GL–18
random access 50, GL–26
transactional 9–69, GL–34
volatile/non-volatile 45, GL–21, GL–36

memory reference exception 231
memoryless 8–13, GL–18
message 59, 7–7, 7–33, GL–18

authentication 11–36, GL–18

authentication code 11–44, GL–19

representation 54

Saltzer & Kaashoek Ch. index, p. 8 June 24, 2009 12:21 am

Complete Index of Concepts

INDEX–9

message-sending protocol 7–63
message timing diagram 155
metadata 91, 120, GL–19
microkernel 240, GL–19
minimize common mechanism xliv, 11–16,

11–141
minimize secrets xliv, 11–15, 11–34, 11–39
mirror 10–9, GL–19
missing-page exception 328, GL–19
mobile host 7–118
modular sharing 116, GL–19
modularity 19

enforced 153, GL–10
soft 153, GL–32

module 9, 8–2, GL–19
monolithic kernel 238, GL–19
most-recently-used page-removal policy 340,

GL–19
most significant component 72

MRU (see most-recently-used)

MTBF (see mean time between failures)

MTTF (see mean time to failure)

MTTR (see mean time to repair)

MTU (see maximum transmission unit)

MTU discovery 7–61, GL–19

multihomed 7–46, GL–19

multilevel

memory 324, GL–19

memory manager 325

multiple
lookup 73, GL–19
-reader, single-writer protocol 9–76
register set processor PS–31

multiplexing 7–5, 7–42, 7–47, 7–64,
GL–19

multiplicative decrease 7–96
multipoint 7–67, GL–19
multiprogramming 256
multitasking 256
Murphy’s law 86
mutual exclusion 220

N
N + 1 redundancy 8–35, GL–20

Saltzer & Kaashoek Ch. index, p. 9

N-modular redundancy 8–26, GL–20
N-version programming 8–36, GL–20
NAK (see negative acknowledgment)
name 44, GL–20

base 67
collision 124
conflict 116, GL–20
discovery 76
fragile 121
generated 124, GL–13
global 75, GL–13
indirect 73, 104, GL–14
lookup, multiple 73, GL–19
opaque 121, GL–21
overloaded 120, GL–22
path GL–23
pure 120, GL–26
qualified 67, GL–26
resolution 62
resolution, recursive 71, GL–27
well-known 77, GL–36

name-mapping algorithm 62
name space 61, GL–20

limited 129, GL–16
unique identifier 64, GL–35
universal 62, GL–35
unlimited 129, GL–35

name-to-key binding 11–45, GL–20
namespace (see name space)
naming

authority 180
hierarchy 73, GL–20
network 72, GL–20
scheme 61, GL–20

NAT (see network address translation)
negative acknowledgment 7–71, 7–83,

GL–20
nested outcome record 9–86
network 7–2, GL–21

address 7–46, GL–21
address translation 7–61
attachment point 65, 7–9, 7–27, 7–46,

GL–21
layer 7–25, 7–27, 7–46, GL–21

June 24, 2009 12:21 am

Complete Index of Concepts

INDEX–10

services access point GL–21
Network File System 184
NFS (see Network File System)
NMR (see N-modular redundancy)
non-blocking read 9–12
non-discretionary access control 11–74,

11–81, GL–21
non-preemptive scheduling 269, GL–21
non-volatile memory 45, GL–21
nonce 7–17, 7–71, GL–21
not-found result 64
NSAP (see network services access point)

O
object 9, 60, GL–21
object-based virtual memory PS–51
occasionally connected 10–20
offered load 311, 7–88, GL–21
on-demand zero-filled page 326
one-time pad 11–99
one-writer principle xliv, 212
opaque name 121, GL–21
OPEN 88
open design principle xliii, 11–13, 11–39,

11–64, 11–140
operating system 78, 79, GL–21
OPT (see optimal page-removal policy)
optimal page-removal policy 337, GL–21
optimistic concurrency control 9–63, GL–21
optimize for the common case 9–45
optimize for the common case 307, 334, 9–39
origin authenticity 11–37, GL–22
orphan 130
OSI (see International Organization for

Standardization)
outcome record 9–32
overhead 302
overlay network 7–33, 3, PS–74
overload 311, GL–22
overloaded name 120, GL–22
overprovisioning 7–94

P
pacing 7–115

packet 7–8, 7–33, GL–22
forwarding 7–9, GL–22
forwarding network 7–9
switch 7–9, GL–22

page 245, GL–22
fault (see missing-page exception)
map 245, GL–22
on-demand zero-filled 326
table 246, GL–22

page-map address register 247, GL–22
page-removal policy 329, GL–22

clock algorithm 344
direct mapping 346
first-in, first-out 336, GL–12
least-recently used 338, GL–16
most-recently used 340, GL–19
optimal 337, GL–21
random 345

pair-and-compare 8–33, GL–22
pair-and-spare GL–22
parallel transmission 7–35, GL–23
partition 8–34, 10–18, GL–23
password 11–31, GL–23
patch 17
path 7–48

name 75, GL–23

name, absolute 68, 72, GL–1

name, relative 72, GL–27

search 73, 75, GL–29

selection 7–51, GL–23

vector 7–51

payload 7–26, GL–23
peer-to-peer

design 164
network 3

pending 9–32, GL–23
performance log 9–40
permission error exception 233
persistent 46, GL–23

fault 8–5, GL–23
sender 7–67, GL–23

pessimistic concurrency control 9–63,
GL–23

PGP (see protocol, pretty good privacy)

Saltzer & Kaashoek Ch. index, p. 10 June 24, 2009 12:21 am

Complete Index of Concepts

INDEX–11

phase encoding 7–36, GL–23
phase-locked loop 7–36
physical

address 243, GL–24

copy 10–10, GL–24

locking 9–75, GL–24

piggybacking 7–77, GL–24
pipeline GL–24
PKI (see public key infrastructure)
plaintext 11–38, 11–49, GL–24
point-to-point 7–44, GL–24
polling 273, GL–24
port 7–64, GL–24
precision (in information retrieval) 373
preemptive scheduling 269, GL–24
prepaging 346, GL–24
PREPARED

message 9–87

state GL–24

presentation
protocol 7–23, 7–67, GL–24
service 7–29

presented load (see offered load)
preservation 8–40
presumed commit 9–88
preventive maintenance 8–12, GL–24
pricing 7–97
primary

copy 10–10, GL–24
device 331, GL–25

principal 11–20, GL–25
principle of escalating complexity xliii, 14
principle of least astonishment xliii, 85, 89,

128, 205, 11–15, 11–138
principles (see design principles)
priority

inversion 358
scheduling policy 357, GL–25

privacy 11–6, GL–25
private key 11–40, GL–25
probe 7–60
procedure calling convention 150
process 97, 248
processing delay 7–10, 7–98, GL–25

Saltzer & Kaashoek Ch. index, p. 11

processor multiplexing 256
producer and consumer problem 211
program counter 56, GL–25
progress 9–77, GL–25
propagation delay 7–3, 7–10, 7–99,

GL–25
propagation of effects 4, GL–25
protection 11–6, GL–25

group 11–76, GL–25
protocol 7–21, GL–25

address resolution 7–105, GL–1
application 7–23
bang-bang 7–114
blast 7–119
bus arbitration 81
carrier sense multiple access 7–100,

GL–11
challenge-response 11–64
Diffie-Hellman key agreement 11–68
Internet 7–32
internet control message 7–60
Kerberos 11–58
lock-step 7–75, GL–17
message-sending 7–63
multiplexing 7–42
Network File System 184
presentation 7–23, 7–67, GL–24
pretty good privacy 11–98
ready/acknowledge 7–35, GL–27
real-time transport 7–67
reliable message stream 7–66
request/response 7–66
routing 7–50
secure shell 11–46
secure socket layer 11–117
security 11–36, 11–54, GL–29
simple network time service 7–109
stream transport 7–82
transmission control 7–65
transport 7–23, 7–63, GL–34
transport layer security 11–116
two-phase commit 9–84, GL–35
user datagram 7–65

proxy 7, 371

June 24, 2009 12:21 am

Complete Index of Concepts

INDEX–12

pseudocode representation 54
pseudorandom number generator 11–101
public key 11–40, GL–25

cryptography 11–40, GL–26
infrastructure 11–93, 11–114

publish/subscribe 173, GL–26
pull 172
pure name 120, GL–26
purging 8–33, GL–26
push 172
PUT 50

Q
quad component 8–26
qualified name 67, GL–26
quantum 356
quench 7–13, 7–91, GL–26
query 77
queuing delay 7–11, 7–99, GL–26
quorum 10–16, GL–26
quota 313

R
race condition 215, GL–26
RAID 52, GL–26

RAID 1 8–47
RAID 4 8–24
RAID 5 8–67

RAM (see random access memory)
random

access memory 50, GL–26
backoff 227
backoff, exponential 9–78, GL–11
drop 7–92, GL–26
early detection 7–92, GL–26
number generator 11–99
page-removal policy 345
pseudorandom number generator 11–101

rate monotonic scheduling policy 360,
GL–26

raw storage 8–42
RC4 cipher 11–101
READ 45
read and set memory 224, GL–27

read-capture 9–63
read/write coherence 46, GL–27
ready/acknowledge protocol 7–35, GL–27
real time 359, 7–84, GL–27
real-time

scheduling policy 359, GL–27
scheduling policy, hard 359, GL–13
scheduling policy, soft 359, GL–32
transport protocol 7–67

reassembly 7–8, GL–27
recall (in information retrieval) 373
RECEIVE 59
receive livelock 350
reconciliation 10–12, 10–19, GL–27
recovery 8–38
recursive

name resolution 71, GL–27
replication 8–27

RED (see random early detection)
redo

action 9–43, GL–27
log 9–50, GL–28

reduced instruction set computer 55
redundancy 8–2, GL–27
redundant array of independent disks (see

RAID)
reference 60, GL–27

monitor 11–20
string 334, GL–27

register renaming 9–67
relative path name 72, GL–27
RELEASE 225, 9–70
reliability 8–13, GL–28
reliable

delivery 7–74, GL–28
message stream protocol 7–66

remote procedure call 167, GL–28
reorder buffer 9–67
repair 8–31, GL–28
repertoire 53, GL–28
replica 8–26, GL–28
replicated state machine 10–11, GL–28
replication GL–28

recursive 8–27

Saltzer & Kaashoek Ch. index, p. 12 June 24, 2009 12:21 am

Complete Index of Concepts

INDEX–13

reply 155
representations

bit order numbering 158
confusion matrix 371
message 54
pseudocode 54
timing diagram 155
Venn diagram 372
version history 9–55
wait-for graph 221

repudiate GL–28
request 155, GL–28
request/response protocol 7–66
resolution, name 62
resolve GL–28
RESOLVE 63
response 155, GL–28
restartable atomic region PS–34
revectoring 8–46
reverse lookup 64
revocation 11–73
RISC (see reduced instruction set computer)
Rivest, Shamir, and Adleman cipher 11–109
robustness principle xliv, 29, 8–15
roll-forward recovery 9–50, GL–28
rollback recovery 9–50, GL–28
root 72, GL–28

in UNIX® 102
round-robin scheduling policy 262, 356,

GL–29
round-trip time 7–67, GL–29

estimation 7–69, 7–80
route 7–9, 7–48
router 7–9, 7–50, GL–29
routing 7–48

algorithm 7–49, GL–29
protocol 7–50

RPC (see remote procedure call)
RSA (see Rivest, Shamir, and Adleman cipher)
RSM (see read and set memory)
RTP (see real-time transport protocol)

S
safety margin principle xliv, 24, 8–8, 8–16,

8–58
safety net approach 11–10
safety-net approach 8–7
scheduler 348, GL–29
scheduling policy

earliest deadline first 360, GL–9

first-come, first-served 353, GL–12

hard real-time 359, GL–13

priority 357, GL–25

rate monotonic 360, GL–26

real-time 359, GL–27

round-robin 262, GL–29, 356

shortest-job-first 354

soft real-time 359, GL–32

scope 75, GL–29
dynamic 68, GL–9
lexical (see scope, static)
static 68, GL–32

search 73, GL–29
in key word query 75
in name discovery 76

search path 73, 75, GL–29
second-system effect 39
secondary device 331, GL–29
secrecy GL–29
secure area GL–29
secure channel 11–22, 11–116, GL–29
Secure Socket Layer 11–117
security 11–6, GL–29

protocol 11–36, 11–54, GL–29
seed 11–101
segment

of a message 7–8, 7–33, GL–30
virtual memory 68, 253, 285, GL–30

self-describing storage 365
self-pacing 7–80, GL–30
semaphore 276, 277, GL–30
separate mechanism from policy 331, 349,

11–7, 11–84
sequence coordination 211, 273, 9–13,

GL–30
sequencer 276, GL–30

Saltzer & Kaashoek Ch. index, p. 13 June 24, 2009 12:21 am

Complete Index of Concepts

INDEX–14

sequential consistency 9–18
serial transmission 7–35, GL–30
serializability PS–138
serializable 9–18, GL–30
server 157, GL–30
service 155, 7–63, GL–30

time 311, 7–87
session service 7–29
set up 7–7, GL–31
shadow copy 9–29, GL–31
Shannon’s capacity theorem 7–37
shared-secret

cryptography 11–40, GL–31
key 11–40, GL–31

sharing 60, 7–5, GL–31
shortcut (see indirect name)
shortest-job-first scheduling policy 354
sign 7–86, 11–41, GL–31
simple

locking discipline 9–72, GL–31
network time service protocol 7–109
serialization 9–54, GL–31

simplex 7–44, GL–31
simplicity 39
single

-event upset 8–5, GL–31
-acquire protocol 220, GL–31
point of failure 8–63
state machine 10–13

single-writer, multiple-reader protocol 9–76
Six sigma 8–15
slave 10–10, GL–31
sliding window 7–79, GL–31
slow start 7–95
snapshot isolation 9–68
snoopy cache 10–8, GL–31
SNTP (see protocol, simple network time

service)
soft

error 8–5
link (see indirect name)
modularity 153, GL–32
real-time scheduling policy 359, GL–32
state 189, GL–32

source 7–27, 7–46, GL–32
address GL–32

spatial locality 334, GL–32
speaks for 11–85, GL–32
speculate 314, GL–32
spin loop 212, GL–32
SSH (see protocol, secure shell)
SSL (see Secure Socket Layer)
stability 46, GL–32

cursor 10–30
stable

binding 64, GL–32
storage 45

stack
algorithm 341, GL–32
discipline 150
pointer 56

starvation 355, GL–32
static

discipline 29
routing 7–49, GL–32
scope 68, GL–32

station 7–50, 7–101, GL–33
identifier 7–101

stop and wait (see lock-step protocol)
storage 50, GL–33

atomic GL–2

careful 8–45

cell 46, 9–31, GL–5

durable 8–38, 8–46, GL–9

fail-fast 8–43

journal 9–31, GL–16

leak 130

raw 8–42

stable 45

store and forward 7–14, GL–33
stream 7–7, 7–33, GL–33

cipher 11–99
transport protocol 7–82

strict consistency 10–3, GL–33
strong consistency (see strict consistency)
stub 167, GL–33
subassembly 9
submodule 9

Saltzer & Kaashoek Ch. index, p. 14 June 24, 2009 12:21 am

Complete Index of Concepts

INDEX–15

subsystem 9
supermodule 8–27, GL–33
supervisor call instruction 236, GL–33
SVC (see supervisor call instruction)
swapping 347, GL–33
sweeping simplifications

(see adopt sweeping simplifications)
symbolic link (see indirect name)
synonym 72, GL–33
system 8, GL–33
systemwide lock 9–70

T
Taguchi method 8–16
tail drop 7–92, GL–33
TCB (see trusted computing base)
TCP (see transmission control protocol)
TDM (see time-division multiplexing)
tear down 7–7, GL–33
temporal

database 10–28
locality 334, GL–34

tentatively committed 9–82
test and set memory (see read and set memory)
thrashing 335, GL–34
thread 204, GL–34

manager 205, GL–34
threat 11–7, GL–34

insider 11–8
throughput 303, 323, GL–34
ticket system 11–74, GL–34
tiger team 11–27
time-division multiplexing 7–6
time domain addressing 10–28
time-sharing 256
time-to-live 10–6
timed capability 11–156
timer

adaptive 7–69
fixed 7–69

timing diagram 155, 156
TLB (see translation look-aside buffer)
TLB miss exception 253
TLS (see Transport Layer Security)

Saltzer & Kaashoek Ch. index, p. 15

TMR (see triple-modular redundancy)
tolerance 23
tolerated error 8–18, GL–34
tombstone 7–72, GL–34
tracing garbage collection 131
trade-off 6

binary classification 7, 371
tragedy of the commons 7–93
trailer 7–26, GL–34, GL–36
transaction 9–3, 9–4, GL–34
transactional memory 9–69, GL–34
TRANSFER operation 9–5
transient fault 8–5, GL–34
transit time 7–9, GL–34
translation look-aside buffer 253
transmission

control protocol 7–65

delay 7–10, 7–99, GL–34

parallel 7–35, GL–23

serial 7–35, GL–30

transport
protocol 7–23, 7–63, GL–34
service 7–29

Transport Layer Security 11–116
triple-modular redundancy 8–26, GL–35
trusted

computing base 11–26, GL–35
intermediary 163, GL–35

TTL (see time-to-live)
tunnel (in networks) 7–33
two generals dilemma 9–90, GL–35
two-phase

commit 9–84, GL–35

locking discipline 9–73, GL–35

U
UDP (see user datagram protocol)
UNBIND 63
undo

action 9–43, GL–35
log 9–50, GL–28

Uniform Resource Locator 133
unique identifier name space 64, GL–35
universal name space 62, GL–35

June 24, 2009 12:21 am

Complete Index of Concepts

INDEX–16

universe of values 62, GL–35
unlimited name space 129, GL–35
untolerated error 8–18, GL–35
unyielding foundations rule xliv, 20, 38, 288
upcall 7–27
URL (see Uniform Resource Locator)
useful work 302
user

datagram protocol 7–65
-dependent binding 74, GL–36
mode 234, GL–36

utilization 302, GL–36

V
valid construction 8–37, GL–36
validation (see valid construction)
value 62, GL–36
verify 7–86, 11–41
version history 9–30, GL–36
virtual

address 206, 243, GL–36
address space 206, 248
circuit 7–82, GL–36
machine 208, 290, GL–36
machine monitor 208, 290, GL–36
memory 206, 332
memory manager 206, 243, GL–36
memory, object-based PS–51
shared memory 326

virtualization 201, GL–36
virus 11–19
volatile memory 45, GL–36

voter 8–26, GL–36

W
wait-for graph 221
WAL (see write-ahead log)
watchdog 8–54
waterbed effect 6
well-known

name/address 77, GL–36

port 7–64

window 7–78, GL–36
fixed 7–78
of validity 11–33
sliding 7–79, GL–31

wired down (page) 331
witness 7–10, 10–21, 11–48, GL–37
work factor 11–33
working

directory 67, GL–37
set 335, GL–37

worm 11–19
WRITE 45
write-ahead log 9–42, GL–37
write tearing 47, GL–2
write-through GL–37

X
X Window System 162

Y
yield (in manufacturing) 8–11
YIELD (thread primitive) 257

Saltzer & Kaashoek Ch. index, p. 16 June 24, 2009 12:21 am

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

