
University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell

Systems I
 Introduction to Computer Systems

Don Fussell
Spring 2011

Topics:
 Theme
 Five great realities of computer systems
 How this fits within CS curriculum

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 2

Course Theme

Abstraction is good, but don’t forget reality!

Courses to date emphasize abstraction
Abstract data types
Asymptotic analysis

These abstractions have limits
Especially in the presence of bugs
Need to understand underlying implementations

Useful outcomes
Become more effective programmers

Able to find and eliminate bugs efficiently
Able to tune program performance

Prepare for later “systems” classes in CS
Compilers, Operating Systems, Networks, Computer Architecture, etc.

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 3

Great Reality #1

Int’s are not Integers, Float’s are not Reals

Examples
Is x2 ≥ 0?

Float’s: Yes!
Int’s:

 40000 * 40000 --> 1600000000
 50000 * 50000 --> ??

Is (x + y) + z = x + (y + z)?
Unsigned & Signed Int’s: Yes!
Float’s:

 (1e20 + -1e20) + 3.14 --> 3.14
 1e20 + (-1e20 + 3.14) --> ??

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 4

Computer Arithmetic

Does not generate random values
Arithmetic operations have important mathematical properties

Cannot assume “usual” properties
Due to finiteness of representations
Integer operations satisfy “ring” properties

Commutativity, associativity, distributivity
Floating point operations satisfy “ordering” properties

Monotonicity, values of signs

Observation
Need to understand which abstractions apply in which contexts
Important issues for compiler writers and serious application
programmers

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 5

Great Reality #2

You’ve got to know assembly

Chances are, you’ll never write program in assembly
Compilers are much better & more patient than you are

Understanding assembly key to machine-level execution
model

Behavior of programs in presence of bugs
High-level language model breaks down

Tuning program performance
Understanding sources of program inefficiency

Implementing system software
Compiler has machine code as target
Operating systems must manage process state

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 6

Assembly Code Example

Time Stamp Counter
Special 64-bit register in Intel-compatible machines
Incremented every clock cycle
Read with rdtsc instruction

Application
Measure time required by procedure

In units of clock cycles

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 7

Code to Read Counter

Write small amount of assembly code using GCC’s asm facility
Inserts assembly code into machine code generated by compiler

static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
 of the cycle counter.
*/
void access_counter(unsigned *hi, unsigned *lo)
{
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 8

Code to Read Counter
/* Record the current value of the cycle counter. */
void start_counter()
{
 access_counter(&cyc_hi, &cyc_lo);
}

/* Number of cycles since the last call to start_counter. */
double get_counter()
{
 unsigned ncyc_hi, ncyc_lo;
 unsigned hi, lo, borrow;
 /* Get cycle counter */
 access_counter(&ncyc_hi, &ncyc_lo);
 /* Do double precision subtraction */
 lo = ncyc_lo - cyc_lo;
 borrow = lo > ncyc_lo;
 hi = ncyc_hi - cyc_hi - borrow;
 return (double) hi * (1 << 30) * 4 + lo;
}

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 9

Measuring Time

Trickier than it Might Look
Many sources of variation

Example
Sum integers from 1 to n

 n Cycles Cycles/n
100 961 9.61

1,000 8,407 8.41
1,000 8,426 8.43

10,000 82,861 8.29
10,000 82,876 8.29

1,000,000 8,419,907 8.42
1,000,000 8,425,181 8.43

1,000,000,000 8,371,2305,591 8.37

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 10

Great Reality #3

Memory Matters

Memory is not unbounded
It must be allocated and managed
Many applications are memory dominated

Memory referencing bugs especially pernicious
Effects are distant in both time and space

Memory performance is not uniform
Cache and virtual memory effects can greatly affect program
performance
Adapting program to characteristics of memory system can lead to
major speed improvements

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 11

Memory Referencing Bug Example

main ()
{
 long int a[2];
 double d = 3.14;
 a[2] = 1073741824; /* Out of bounds reference */
 printf("d = %.15g\n", d);
 exit(0);
}

Alpha MIPS Linux
-g 5.30498947741318e-315 3.1399998664856 3.14

-O 3.14 3.14 3.14

(Linux version gives correct result, but
implementing as separate function gives
segmentation fault.)

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 12

Memory Referencing Errors
C and C++ do not provide any memory protection

Out of bounds array references
Invalid pointer values
Abuses of malloc/free

Can lead to nasty bugs
Whether or not bug has any effect depends on system and compiler
Action at a distance

Corrupted object logically unrelated to one being accessed
Effect of bug may be first observed long after it is generated

How can I deal with this?
Program in Java, Lisp, or ML
Understand what possible interactions may occur
Use or develop tools to detect referencing errors

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 13

Memory Performance Example

Implementations of Matrix Multiplication
Multiple ways to nest loops

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

/* jik */
for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum
 }
}

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 14

0

20

40

60

80

100

120

140

160

matrix size (n)

ijk
ikj
jik
jki
kij
kji

Matmult Performance (Alpha 21164)
Too big for L1 Cache Too big for L2 Cache

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 15

Blocked matmult perf (Alpha 21164)

0

20

40

60

80

100

120

140

160

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
matrix size (n)

bijk
bikj
ijk
ikj

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 16

Great Reality #4

There’s more to performance than asymptotic complexity
Constant factors matter too!

Easily see 10:1 performance range depending on how code written
Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

Must understand system to optimize performance
How programs compiled and executed
How to measure program performance and identify bottlenecks
How to improve performance without destroying code modularity
and generality

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 17

Great Reality #5

Computers do more than execute programs

They need to get data in and out
I/O system critical to program reliability and performance

They communicate with each other over networks
Many system-level issues arise in presence of network

Concurrent operations by autonomous processes
Coping with unreliable media
Cross platform compatibility
Complex performance issues

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 18

Course Perspective

Most Systems Courses are Builder-Centric
Computer Architecture

Design pipelined processor in Verilog
Operating Systems

Implement large portions of operating system
Compilers

Write compiler for simple language
Networking

Implement and simulate network protocols

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 19

Course Perspective (Cont.)

Our Course is Programmer-Centric
Purpose is to show how by knowing more about the underlying
system, one can be more effective as a programmer
Enable you to

Write programs that are more reliable and efficient
Incorporate features that require hooks into OS

E.g., concurrency, signal handlers

Not just a course for dedicated hackers
We bring out the hidden hacker in everyone

Cover material in this course that you won’t see elsewhere

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 20

Teaching staff

Instructor - Don Fussell
Office: ACES 2.120
Office Hours: MW 11-12
Email: fussell@cs.utexas.edu
http://www.cs.utexas.edu/~fussell/

TA - Christian Miller
Office: TBD
Office Hours: TBD
Email: ckm@cs.utexas.edu
http://www.cs.utexas.edu/~ckm

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 21

Textbooks

Required
Randal E. Bryant and David R. O’Hallaron,

“Computer Systems: A Programmer’s Perspective”, Prentice Hall
2003.
http://csapp.cs.cmu.edu/

Optional
Brian Kernighan and Dennis Ritchie,

“The C Programming Language, Second Edition”, Prentice Hall,
1988

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 22

Course Components

Lectures
Higher level concepts

Recitations
Applied concepts, important tools and skills for labs, clarification
of lectures, exam coverage

Labs
The heart of the course
1 or 2 weeks
Provide in-depth understanding of an aspect of systems
Programming and measurement

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 23

Getting Help

Web
http://www.cs.utexas.edu/~fussell/courses/cs429h/
Copies of lectures, assignments, etc.
Clarifications to assignments

Newsgroup
TBD

Personal help
Office hours or by appointment with either instructor or TA

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 24

Policies: Assignments

Work groups
You must work alone on all labs

Handins
Assignments due at 11:59pm on specified due date.
Electronic handins only.

Makeup exams and assignments
 Not normally done, except by prior arrangement with instructor.

Appealing grades
Within 7 days of due date or exam date.
Assignments: Talk to the TA
Exams: Talk to instructor.

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 25

Cheating

What is cheating?
Sharing code: either by copying, retyping, looking at, or supplying
a copy of a file.

What is NOT cheating?
Helping others use systems or tools.
Helping others with high-level design issues.
Helping others debug their code.

Penalty for cheating:
Removal from course with failing grade.

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 26

Policies: Grading

Exams (50%)
Three in class exams (10% each)
Final (20%)
All exams are open book/open notes.

Labs (50%)
7 labs (7-8% each)

Grading Characteristics
Lab scores tend to be high

Serious handicap if you don’t hand a lab in
We offer generous redemption programs

Tests typically have a wider range of scores

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 27

Facilities

Assignments will use the erstwhile Taylor Ubuntu
lab, now in Trailer Hall

You will need a CS account, if you don’t have one, see the UTCS
webpage for a form and the procedure to apply for a class account.

Getting help with the cluster machines:
See course Web page for info
Please direct questions to your TAs

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 28

Course Topics

Topics
Data representation
Hardware building blocks
From application programs to machine-level programs
Processor design
Pipelining principles
Memory hierarchies
Performance programming

Assignments to include
Learning to program in C (multiple)
Lab: Manipulating bits
Lab: Defusing a binary bomb
Lab: Hacking a buffer bomb
Lab: Program optimization

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 29

Lab Rationale

Each lab should have a well-defined goal such as solving a puzzle or winning
a contest.

Defusing a binary bomb.
Winning a performance contest.

Doing a lab should result in new skills and concepts
Data Lab: computer arithmetic, digital logic.
Bomb Labs: assembly language, using a debugger, understanding the stack
Perf Lab: profiling, measurement, performance debugging.
Etc.

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 30

Good Luck!

