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INTRODUCTION 

The earliest programming languages were 
developed with one simple goal in mind: to 
provide a vehicle through which one could 
control the behavior of computers. Not sur- 
prisingly, the early languages reflected the 
structure of the underlying machines fairly 
well. Although at first blush that goal 
seems eminently reasonable, the viewpoint 
quickly changed for two very good reasons. 
First, it became obvious that what was easy 
for a machine to reason about was not 
necessarily easy for a human being to rea- 
son about. Second, as the number of differ- 

1 Miranda is a trademark of Research Software Ltd. 

ent kinds of machines increased, the need 
arose for a common language with which to 
program all of them. 

Thus from primitive assembly lan- 
guages (which were at least a step up from 
raw machine code) there grew a plethora of 
high-level programming languages, begin- 
ning with FORTRAN in the 1950s. The 
development of these languages grew so 
rapidly that by the 1980s they were best 
characterized by grouping them into fami- 
lies that reflected a common computation 
model or programming style. Debates over 
which language or family of languages is 
best will undoubtedly persist for as long as 
computers need programmers. 
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The class of functional, or applicative, 
programming languages, in which compu- 
tation is carried out entirely through the 
evaluation of expressions, is one such fam- 
ily of languages, and debates over its merits 
have been quite lively in recent years. Are 
functional languages toys? Or are they 
tools? Are they artifacts of theoretical fan- 
tasy or of visionary pragmatism? Will they 
ameliorate software woes or merely com- 
pound them? Whatever answers we might 
have for these questions, we cannot ignore 

the significant interest current researchers 
have in functional languages and the im- 
pact they have had on both the theory and 
pragmatics of programming languages in 
general. 

Among the claims made by functional 
language advocates are that programs can 
be written quicker, are more concise, are 
higher level (resembling more closely tra- 
ditional mathematical notation), are more 
amenable to formal reasoning and analysis, 
and can be executed more easily on parallel 
architectures. Of course, many of these fea- 
tures touch on rather subjective issues, 
which is one reason why the debates can be 
so lively. 

This paper gives the reader significant 
insight into the very essence of functional 
languages and the programming method- 
ology that they support. It starts with a 
discussion of the nature of functional lan- 
guages, followed by an historical sketch of 
their development, a summary of the dis- 
tinguishing characteristics of modern func- 
tional languages, and a discussion of 
current research areas. Through this study 
we will put into perspective both the power 
and weaknesses of the functional program- 
ming paradigm. 

A Note to the Reader: This paper as- 
sumes a good understanding of the funda- 
mental issues in programming language 
design and use. To learn more about mod- 
ern functional programming techniques, 
including the important ideas behind rea- 
soning about functional programs, refer to 
Bird and Wadler [1988] or Field and Har- 
rison [1988]. To read about how to imple- 
ment functional languages, see Peyton 
Jones [ 19871 (additional references are 
given in Sections 1.8 and 5). 

Finally, a comment on notation: Unless 
otherwise stated, all examples will be writ- 
ten in Haskell, a recently proposed func- 
tional language standard [Hudak and 
Wadler 19881. Explanations will be given 
in square brackets [ ] as needed.’ 

‘Since the Haskell Report is relatively new, some 
minor changes to the language may occur after this 
paper has appeared. An up-to-date copy of the Report 
may be obtained from the author. 

ACM Computing Surveys, Vol. 21, NO. 3, September 1989 



Functional Programming Languages 361 

Programming Language Spectrum 

Imperative languages are characterized as 
having an implicit state that is modified 
(i.e., side effected) by constructs (i.e., com- 
mands) in the source language. As a result, 
such languages generally have a notion of 
sequencing (of the commands) to permit 
precise and deterministic control over 
the state. Most, including the most pop- 
ular, languages in existence today are 
imperative. 

As an example, the assignment state- 
ment is a (very common) command, since 
its effect is to alter the underlying implicit 
store so as to yield a different binding for 
a particular variable. The begin . . . end 
construct is the prototypical sequencer of 
commands, as are the well-known goto 
statement (unconditional transfer of con- 
trol), conditional statement (qualified se- 
quencer), and while loop (an example of a 
structured command). With these simple 
forms, we can, for example, compute the 
factorial of the number X: 

n:= x; 
a := 1; 
while n>O do 
begin a := a*n; 

n := n-l 
end; 

After execution of this program, the value 
of a in the implicit store will contain the 
desired result. 

In contrast, declarative languages are 
characterized as having no implicit state, 
and thus the emphasis is placed entirely on 
programming with expressions (or terms). 
In particular, functional languages are dec- 
larative languages whose underlying model 
of computation is the function (in contrast 
to, for example, the relation that forms the 
basis for logic programming languages). 

In a declarative language state-oriented 
computations are accomplished by carrying 
the state around explicitly rather than im- 
plicitly, and looping is accomplished via 
recursion rather than by sequencing. For 
example, the factorial of x may be computed 

in the functional language Haskell by 

fat x 1 
where fat n a 

= if n>O then fat (n-l) (a*n) 
else a 

in which the formal parameters n and a are 
examples of carrying the state around ex- 
plicitly, and the recursive structure has 
been arranged so as to mimic as closely as 
possible the looping behavior of the pro- 
gram given earlier. Note that the condi- 
tional in this program is an expression 
rather than command; that is, it denotes a 
value (conditional on the value of the pred- 
icate) rather than a sequencer of com- 
mands. Indeed the value of the program is 
the desired factorial, rather than it being 
found in an implicit store. 

Functional (in general, declarative) pro- 
gramming is often described as expressing 
what is being computed rather than how, 
although this is really a matter of degree. 
For example, the above program may say 
less about how factorial is computed than 
the imperative program given earlier, but 
is perhaps not as abstract as 

fat x 
where fat n 

= if n==O then 1 
else n*fac (n-l) 

[== is the infix operator for equality], 
which appears very much like the mathe- 
matical definition of factorial and is indeed 
a valid functional program. 

Since most languages have expressions, 
it is tempting to take our definitions liter- 
ally and describe functional languages via 
derivation from conventional programming 
languages: Simply drop the assignment 
statement and any other side-effecting 
primitives. This approach, of course, is very 
misleading. The result of such a derivation 
is usually far less than satisfactory, since 
the purely functional subset of most im- 
perative languages is hopelessly weak 
(although there are important exceptions, 
such as Scheme [Rees and Clinger 19861). 

Rather than saying what functional lan- 
guages don’t have, it is better to character- 
ize them by the features they do have. For 
modern functional languages, those fea- 
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tures include higher-order functions, lazy 
evaluation, pattern matching, and various 
kinds of data abstraction-all of these fea- 
tures will be described in detail in this 
paper. Functions are treated as first-class 
objects, are allowed to be recursive, higher 
order, and polymorphic, and in general are 
provided with mechanisms that ease their 
definition and use. Syntactically, modern 
functional languages have an equational 
look in which functions are defined using 
mutually recursive equations and pattern 
matching. 

This discussion suggests that what is im- 
portant is the functional programming 
style, in which the above features are man- 
ifest and in which side effects are strongly 
discouraged but not necessarily eliminated. 
This is the viewpoint taken, for example, 
by the ML community and to some extent 
the Scheme community. On the other hand, 
there is a very large contingency of purists 
in the functional programming community 
who believe that purely functional lan- 
guages are not only sufficient for general 
computing needs but are also better because 
of their “purity”. At least a dozen purely 
functional languages exist along with their 
implementations.3 The main property that 
is lost when side effects are introduced is 
referential transparency; this loss in turn 
impairs equational reasoning, as described 
below. 

Referential Transparency and Equational 
Reasoning 

The emphasis on a pure declarative style of 
programming is perhaps the hallmark of 
the functional programming paradigm. The 
term referentially transparent is often used 
to describe this style of programming, in 
which “equals can be replaced by equals”. 
For example, consider the (Haskell) expres- 
sion 

. . . x+x . . . 
wherex=fa 

The function application (f a) may be sub- 
stituted for any free occurrence of x in the 

3 This situation forms an interesting contrast with the 
logic programming community, where Prolog is often 
described as declarative (whereas Lisp is usually not), 
and there are very few pure logic programming lan- 
guages (and even fewer implementations). 

Unlike many developments in computer 
science, functional languages have main- 
tained the principles on which they were 

4 In all fairness, there are logics for reasoning about 
imperative programs, such as those espoused by Floyd, 
Hoare, Dijkstra, and Wirth. None of them, however, 
exploits any notion of referential transparency. 
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scope created by the where expression, such 
as in the subexpression x+x. The same 
cannot generally be said of an imperative 
language, where we must first be sure that 
no assignment to x is made in any of the 
statements intervening between the initial 
definition of x and one of its subsequent 
uses.4 In general this can be quite a tricky 
task, for example, in the case in which 
procedures are allowed to induce nonlocal 
changes to lexically scoped variables. 

Although the notion of referential trans- 
parency may seem like a simple idea, the 
clean equational reasoning that it allows is 
very powerful, not only for reasoning for- 
mally about programs but also informally 
in writing and debugging programs. A pro- 
gram in which side effects are minimized 
but not eliminated may still benefit from 
equational reasoning, although naturally 
more care must be taken when applying 
such reasoning. The degree of care, how- 
ever, may be much higher than we might 
think at first: Most languages that allow 
minor forms of side effects do not minimize 
their locality lexically-thus any call to any 
function in any module might conceivably 
introduce a side effect, in turn invalidating 
many applications of equational reasoning. 

The perils of side effects are appreciated 
by the most experienced programmers in 
any language, although most are loathe to 
give them up completely. It remains the 
goal of the functional programming com- 
munity to demonstrate that we can do com- 
pletely without side effects, without 
sacrificing efficiency or modularity. Of 
course, as mentioned earlier, the lack of 
side effects is not all there is to the func- 
tional programming paradigm. As we shall 
soon see, modern functional languages rely 
heavily on certain other features, most no- 
tably higher-order functions, lazy evalua- 
tion, and data abstraction. 

Plan of Study 
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founded to a surprising degree. Rather than 
changing or compromising those ideas, 
modern functional languages are best clas- 
sified as embellishments of a certain set of 
ideals. It is a distinguishing feature of mod- 
ern functional languages that they have so 
effectively held on to pure mathematical 
principles in a way shared by very few other 
languages. 

Because of this, we can learn a great deal 
about functional languages simply by 
studying their evolution. On the other 
hand, such a study may fail to yield a 
consistent treatment of any one feature 
that is common to most functional lan- 
guages, for it will be fractured into its man- 
ifestations in each of the languages as they 
were historically developed. For this reason 
I have taken a three-fold approach to our 
study: 

First, Section 1 provides an historical 
sketch of the development of functional 
languages. Starting with the lambda calcu- 
lus as the prototypical functional language, 
it gradually embellishes it with ideas 
as they were historically developed, lead- 
ing eventually to a reasonable technical 
characterization of modern functional 
languages. 

Next, Section 2 presents a detailed 
discussion of four important concepts- 
higher-order functions, lazy evaluation, 
data abstraction mechanisms, and equa- 
tions/pattern matching-which are critical 
components of all modern functional lan- 
guages and are best discussed as indepen- 
dent topics. 

Section 3 discusses more advanced ideas 
and outlines some critical research areas. 
Then to round out the paper, Section 4 puts 
some of the limitations of functional lan- 
guages into perspective by examining some 
of the myths that have accompanied their 
development. 

1. EVOLUTION OF FUNCTIONAL 
LANGUAGES 

1.1 Lambda Calculus 

The development of functional languages 
has been influenced from time to time by 
many sources, but none is as paramount 
nor as fundamental as the work of Church 

[1932-1933, 19411 on the lambda calculus. 
Indeed the lambda calculus is usually 
regarded as the first functional language, 
although it was certainly not thought of as 
programming language at the time, given 
that there were no computers on which to 
run the programs. In any case, modern 
functional languages can be thought of as 
(nontrivial) embellishments of the lambda 
calculus. 

It is often thought that the lambda cal- 
culus also formed the foundation for Lisp, 
but this in fact appears not to be the case 
[McCarthy 19781. The impact of the 
lambda calculus on early Lisp development 
was minimal, and it has only been very 
recently that Lisp has begun to evolve more 
toward lambda calculus ideals. On the other 
hand, Lisp had a significant impact on the 
subsequent development of functional lan- 
guages, as will be discussed in Section 1.2. 

Church’s work was motivated by the de- 
sire to create a calculus (informally, a syn- 
tax for terms and set of rewrite rules for 
transforming terms) that captured one’s 
intuition about the behavior of functions. 
This approach is counter to the considera- 
tion of functions as, for example, sets (more 
precisely, sets of argument/value pairs), 
since the intent was to capture the compu- 
tational aspects of functions. A calculus is 
a formal way for doing just that. 

Church’s lambda calculus was the first 
suitable treatment of the computational 
aspects of functions. Its type-free nature 
yielded a particularly small and simple cal- 
culus, and it had one very interesting prop- 
erty, capturing functions in their fullest 
generality: Functions could be applied to 
themselves. In most reasonable theories of 
functions as sets, this is impossible, since 
it requires the notion of a set containing 
itself, resulting in well-known paradoxes. 
This ability of self-application is what gives 
the lambda calculus its power. It allows 
us to gain the effect of recursion without 
explicitly writing a recursive definition. 
Despite this powerful ability, the lambda 
calculus is consistent as a mathematical 
system-no contradictions or paradoxes 
arise. 

Because of the relative importance of the 
lambda calculus to the development of 
functional languages, I will describe it in 
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detail in the remainder of this section, using 
modern notational conventions. 

1.1.7 Pure Untyped Lambda Calculus 

The abstract syntax of the pure untyped 
lambda calculus (a name chosen to distin- 
guish it from other versions developed 
later) embodies what are called lambda 
expressions, defined by5 

x E Id Identifiers 
e E Exp Lambda expressions 

where e ::= x 1 el e2 I Xx.e 

Expressions of the form Xx.e are called 
abstractions and of the form (el e,) are 
called applications. It is the former that 
captures the notion of a function and the 
latter that captures the notion of applica- 
tion of a function. By convention, applica- 
tion is assumed to be left associative, so 
that (ei ez e3) is the same as ((ei en) e3). 

The rewrite rules of the lambda calculus 
depend on the notion of substitution of an 
expression ei for all free occurrences of an 
identifier x in an expression e2, which we 
write as [el/x]e2.6 Most systems, including 
both the lambda calculus and predicate cal- 
culus, that use substitution on identifiers 
must be careful to avoid name conflicts. 
Thus, although the intuition behind substi- 
tution is strong, its formal definition can 
be somewhat tedious. 

To understand substitution, we must 
first understand the notion of the free vari- 
ables of an expression e, which we write as 
fu(e) and define by the following simple 
rules: 

b(x) = 1x1 
fu(el e2) = fukl) U fuk2) 
fu(Xx.e) = fu(e) - (x) 

6 The notation d E D means that d is a typical element 
of the set D, whose elements may be distinguished by 
subscripting. In the case of identifiers, we assume that 
each xi is unique; that is, xi # zj if i # j. The notation 
d ::= altl ) ah2 ] . . ] altn is standard BNF syntax. 
6 In denotational semantics the notation e[u/x] is used 
to denote the function e’ that is just like e except that 
e’ x = U. Our notation of placing the brackets in front 
of the expression is to emphasize that [u/x]e is a 
syntactic transformation on the expression e itself. 

We say that x is free in e iff x E fu(e). 
The substitution [el/x]e2 is then defined 
inductively by 

Wxlk2 e3) = ([edxle2)([edxl4 

hXj.e2, ifi=j 

hX,..[edxile2, if i # j and xi $ fu(eJ 

hXk.[el/xi]([xklxjle2), otherwise, 

where k f i, k # j, 

and xk 4 fu (el) U fu (e2) 

The last rule is the subtle one, since it is 
where a name conflict could occur and is 
resolved by making a name change. The 
following example demonstrates applica- 
tion of all three rules: 

[y/x]((Xy.x)(Xx.x)x) = (Xz.y)(Xx.x)y 

To complete the lambda calculus, we de- 
fine three simple rewrite rules on lambda 
expressions: 

(1) ol-conversion (renaming): . 

Xxi.e H Xxj.[xj/xi]e, where xj 4 fu(e). 

(2) p-conversion (application): 

0-3 k2 H k2lxh. 

(3) q-conversion: 

Xx.(e x) H e, if x 4 fu(e). 

These rules, together with the standard 
equivalence relation rules for reflexivity, 
symmetricity, and transitivity, induce a 
theory of convertibility on the lambda cal- 
culus, which can be shown to be consistent 
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as a mathematical system.7 The well- 
known Church-Rosser theorem [Church 
and Rosser 19361 (actually two theorems) 
is what embodies the strongest form of 
consistency and has to do with a notion of 
reduction, which is the same as convertibil- 
ity but restricted so that P-conversion 
and v-conversion only happen in one 
direction: 

l 365 

sion. Obviously, we would like for that 
value to be unique; and we would like to be 
able to find it whenever it exists. The 
Church-Rosser theorems give us positive 
results for both of these desires. 

1.1.2 Church-Rosser Theorems 

Church-Rosser Theorem I 

(1) ,&reduction: 

(2) s-reduction: 

Xx.(e x) * e, if x 4 fu(e). 

We write e, & e2 if e2 can be derived from 
zero or more /3- or v-reductions or cu-con- 
versions; in other words 5 is the reflex- 
ive, transitive closure of + including 
a-conversions. Similarly, & is the reflexive, 
transitive closure of w. In summary, * 
captures the notion of reducibility, and 45 
captures the notion of intraconvertibility. 

Definition 

A lambda expression is in normal form if 
it cannot be further reduced using p- or 
q-reduction. 

Note that some lambda expressions have 
no normal form, such as 

One consequence of this result is that 
how we arrive at the normal form does 
not matter; that is, the order of evaluation 
is irrelevant (this has important conse- 
quences for parallel evaluation strategies). 
The question then arises as to whether or 
not it is always possible to find the normal 
form (assuming it exists). We begin with 
some definitions. 

(Xx. b x)1 ox. (x x)), Definition 

where the only possible reduction leads to 
an identical term, and thus the reduction 
process is nonterminating. 

Nevertheless, the normal form appears 
to be an attractive canonical form for a 
term, has a clear sense of finality in a 
computational sense, and is what we intu- 
itively think of as the value of an expres- 

A normal-order reduction is a sequential 
reduction in which, whenever there is more 
than one reducible expression (called a 
reder), the leftmost one is chosen first. In 
contrast, an applicative-order reduction is a 
sequential reduction in which the leftmost 
innermost redex is chosen first. 

Church-Rosser Theorem II 

If e. & el and e, is in normal form, then 
there exists a normal-order reduction from 
e. to el. 

7 The lambda calculus as we have defined it here is 
what Barendregt [1984] calls the XKq-calculus and is 
slightly more general than Church’s original XK-cal- 
culus (which did not include p-conversion). Further- 
more, Church originally showed the consistency of the 
XI-calculus [Church 19411, an even smaller subset (it 
only allowed abstraction of x from e if x was free in 
e). We will ignore the subtle differences between these 
calculi-our version is the one most often discussed 
in the literature on functional languages. 

If e. & e, then there exists an e2 such that 
e. A e2 and el + e2.’ 

In other words, if e. and el are intracon- 
vertible, then there exists a third term (pos- 
sibly the same as e. or el) to which they 
can both be reduced. 

Corollary 

No lambda expression can be converted to 
two distinct normal forms (ignoring differ- 
ences due to a-conversion). 

a Church and Rosser’s original proofs of their theorems 
are rather long, and many have tried to improve on 
them since. The shortest proof I am aware of for the 
first theorem is fairly recent and aptly due to Rosser 
119821. 
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This is a very satisfying result; it says 
that if a normal form exists, we can always 
find it; that is, just use normal-order reduc- 
tion. To see why applicative-order reduc- 
tion is not always adequate, consider the 
following example: 

Applicative-order reduction 

(Xx. y)((Xx. x x) (Xx. x x)) 
4 (Xx. y)((Xx. x x)(Xx. x Lx)) 
a* 

Normal-order reduction 

(Xx.y) ((Xxxx) (Xx.xx)) 

*Y 

We will return to the trade-offs between 
normal- and applicative-order reduction 
in Section 2.2. For now we simply note 
that the strongest completeness and con- 
sistency results have been achieved with 
normal-order reduction. 

In actuality, one of Church’s (and oth- 
ers’) motivations for developing the lambda 
calculus in the first place was to form a 
foundation for all of mathematics (in the 
way that, for example, set theory is claimed 
to provide such a foundation). Unfortu- 
nately, all attempts to extend the lambda 
calculus sufficiently to form such a foun- 
dation failed to yield a consistent theory. 
Church’s original extended system was 
shown inconsistent by the Kleene-Rosser 
paradox [Kleene and Rosser 19351; a sim- 
pler inconsistency proof is embodied in 
what is known as the Curry paradox [Ros- 
ser 19821. The only consistent systems that 
have been derived from the lambda calculus 
are much too weak to claim as a foundation 
for mathematics, and the problem remains 
open today. 

These inconsistencies, although disap- 
pointing in a foundational sense, did not 
slow down research on the lambda calculus, 
which turned out to be quite a nice model 
of functions and of computation in general. 
The Church-Rosser theorem was an ex- 
tremely powerful consistency result for a 
computation model, and in fact rewrite sys- 
tems completely different from the lambda 
calculus are often described as “possessing 
the Church-Rosser property” or even 

anthropomorphically as being Church- 
Rosser. 

1.1.3 Recursion, X-Definability, and 
Church’s Thesis 

Another nice property of the lambda cal- 
culus is embodied in the following theorem: 

Fixpoint Theorem 

Every lambda expression e has a fixpoint e’ 
such that (e e’) & e’. 

Proof. Take e ’ to be (Y e), where Y, 
known as the Y combinator, is defined by 

Y = Xf.(Xx.f (x x))(hx.f (x x)) 

Then we have 

(Ye) = (Xx.e(x x))(Ax.e(x x)) 
= e((Xx.e(x x))(Xx.e(x x))) 
= e(Y e) 

This surprising theorem (and equally 
surprising simple proof) is what has earned 
Y the name “paradoxical combinator”. The 
theorem is quite significant-it means that 
any recursive function may be written non- 
recursively (and nonimperatively)., To see 
how, consider a recursive function f defined 
by 

fF . . . f . . . 

This could be rewritten as 

f = (Xf. ... f .**)f 

where the inner occurrence of f is now 
bound. This equation essentially says that 
f is a fixpoint of the lambda expression 
(Xf. * * * f e. s). But that is exactly what Y 
computes for us, so we arrive at the follow- 
ing nonrecursive definition for f: 

f = Y(Xf. -0. f .**) 

As a concrete example, the factorial func- 
tion 

fat = Xn. 
if (n = 0) then 1 else (n * fac(n - 1)) 

can be written nonrecursively as 

fat = Y(hfac. An. 
if (n = 0) then 1 else (n * fac(n - 1))) 
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The ability of the lambda calculus to 
simulate recursion in this way is the key to 
its power and accounts for its persistence 
as a useful model of computation. Church 
recognized this power, and is perhaps best 
expressed in his now famous thesis: 

Church’s Thesis 

Effectively computable functions from posi- 
tive integers to positive integers are just 
those definable in the lambda calculus. 

This is quite a strong claim. Although 
the notion of functions from positive inte- 
gers to positive integers can be formalized 
precisely, the notion of effectively comput- 
able cannot; thus no proof can be given for 
the thesis. It gained support, however, from 
Kleene [1936] who in 1936 showed that 
X-definability was precisely equivalent to 
Godel and Herbrand’s notions of recursive- 
ness. Meanwhile, Turing [1936] had been 
working on his now famous Turing ma- 
chine, and in 1937 [Turing 19371 he showed 
that Turing computability was also pre- 
cisely equivalent to X-definability. These 
were quite satisfying results.’ 

The lambda calculus and the Turing 
machine were to have profound impacts on 
programming languages and computational 
complexity,1° respectively, and computer 
science in general. This influence was prob- 
ably much greater than Church or Turing 
could have imagined, which is perhaps not 
surprising given that computers did not 
even exist yet. 

In parallel with the development of the 
lambda calculus, Schonfinkel and Curry 
were busy founding combinatory logic. It 
was Schonfinkel [ 19241 who discovered the 
surprising result that any function could be 

‘Much later Post [1943] and Markov [1951] pro- 
posed two other formal notions of effective com- 
putability; these also were shown to be equivalent 
to X-definability. 
lo Although the lambda calculus and the notion of h- 
definability predated the Turing machine, complexity 
theorists latched onto the Turing machine as their 
fundamental measure of decidability. This is probably 
because of the appeal of the Turing machine as a 
machine, giving it more credibility in the emerging 
arena of electronic digital computers. See Trakhten- 
brot [1988] for an interesting discussion of this issue. 

expressed as the composition of only two 
simple functions, K and S. Curry 119301 
proved the consistency of a pure combina- 
tory calculus, and with Feys [Curry and 
Feys 19581 elaborated the theory consider- 
ably. Although this work deserves as much 
attention from a logician’s point of view as 
the lambda calculus, and in fact its origins 
predate that of the lambda calculus, we will 
not pursue it here since it did not contribute 
directly to the development of functional 
languages in the way that the lambda 
calculus did. On the other hand, the com- 
binatory calculus was eventually to play 
a surprising role in the implementation 
of functional languages, beginning with 
Turner [1979] and summarized in Peyton 
Jones [1987, Chapter 161. 

Another noteworthy attribute of the 
lambda calculus is its restriction to func- 
tions of one argument. That it suffices to 
consider only such functions was first sug- 
gested by Frege in 1893 [van Heijenoort 
19671 and independently by Schonfinkel in 
1924. This restriction was later exploited 
by Curry and Feys [ 19581, who used the 
notation (f x y) to denote ((f 3~) y), which 
previously would have been written f (x, y). 
This notation has become known as cur- 
rying, and f is said to be a curried function. 
As we will see, the notion of currying has 
carried over today as a distinguishing syn- 
tactic characteristic of modern functional 
languages. 

There are several variations and embel- 
lishments of the lambda calculus. They will 
be mentioned in the discussion of the point 
at which functional languages exhibited 
similar characteristics. In this way we can 
clearly see the relationship between the 
lambda calculus and functional languages. 

1.2 Lisp 

A discussion of the history of functional 
languages would certainly be remiss if it 
did not include a discussion of Lisp, begin- 
ning with McCarthy’s seminal work in the 
late 1950s. 

Although lambda calculus is often con- 
sidered as the foundation of Lisp, by 
McCarthy’s [ 19781 own account the lambda 
calculus actually played a rather small role. 
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Its main impact came through McCarthy’s 
desire to represent functions anonymously, 
and Church’s h-notation was what he 
chose: A lambda abstraction written Xx.e in 
lambda calculus would be written (lambda 
(x) e) in Lisp. 

Beyond that, the similarity wanes. For 
example, rather than use the Y combinator 
to express recursion, McCarthy invented 
the conditional expression” with which re- 
cursive functions could be defined explicitly 
(and, arguably, more intuitively). As an 
example, the nonrecursive factorial func- 
tion given in the lambda calculus in Section 
1.1.3 would be written recursively in Lisp 
in the following way: 

(define fat (n) 
(if (= n 0) 

t* n Vat (- n 1))) )) 

This and other ideas were described in 
two landmark papers in the early 1960s 
[McCarthy 1960; 19631 that inspired work 
on Lisp for many years to come. 

McCarthy’s original motivation for de- 
veloping Lisp was the desire for an alge- 
braic list-processing language for use in 
artificial intelligence research. Although 
symbolic processing was a fairly radical 
idea at the time, his aims were quite prag- 
matic. One of the earliest attempts at de- 
signing such a language was suggested by 
McCarthy and resulted in FLPL (FOR- 
TRAN-compiled list processing language), 
implemented in 1958 on top of the FOR- 
TRAN system on the IBM 704 [Gelernter 
et al. 19601. During the next few years 
McCarthy designed, refined, and imple- 
mented Lisp. His chief contributions dur- 
ing this period were the following: 

(1) The conditional expression and its use 
in writing recursive functions. 

(2) The use of lists and higher-order oper- 
ations over lists such as mapcar. 

(3) The central idea of a cons cell and the 
use of garbage collection as a method 
of reclaiming unused cells. 

I1 The conditional in FORTRAN (essentially the only 
other programming language in existence at the time) 
was a statement, not an expression, and was for con- 
trol, not value-defining, purposes. 

(4) The use of S-expressions (and abstract 
syntax in general) to represent both 
program and data.” 

All four of these features are essential in- 
gredients of any Lisp implementation to- 
day; the first three are essential to 
functional language implementations as 
well. 

A simple example of a typical Lisp defi- 
nition is the following one for mapcar: 

(define mapcar (fun 1st) 
(if (null 1st) 

nil 
(cons (fun (car 1st)) 
(mapcar fun (cdr 
1st))) 1) 

This example demonstrates all of the points 
mentioned above. Note that the function 
fun is passed as an argument to mapcar. 
Although such higher-order programming 
was very well known in lambda calculus 
circles, it was certainly a radical departure 
from FORTRAN and has become one of 
the most important programming tech- 
niques in Lisp and functional programming 
(higher order functions are discussed more 
in Section 2.1). The primitive functions 
cons, car, cdr, and null are the well-known 
operations on lists whose names are still 
used today. cons creates a new list cell 
without burdening the user with explicit 
storage management; similarly, once that 
cell is no longer needed a “garbage collec- 
tor” will come along and reclaim it, again 
without user involvement. For example, 
since mapcar constructs a new list from an 
old one, in the call 

(mapcar fun (cons a (cons b nil))) 

the list (cons a (cons b nil)) will become 
garbage after the call and will automatically 
be reclaimed. Lists were to become the par- 
adigmatic data structure in Lisp and early 
functional languages. 

The definition of mapcar in a modern 
functional language such as Haskell would 
appear similarly, except that pattern 
matching would be used to destructure the 

I2 Interestingly, McCarthy [1978] claims that it was 
the read and print routines that influenced this 
notation most. 
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list: 

mapcar fun [ ] = [I 
mapcar fun (xxs) = fun x : mapcar fun xs 

[ [ ] is the null list and : is the infix operator 
for cons; also note that function application 
has higher precedence than any infix 
operator.] 

McCarthy was also interested in design- 
ing a practical language, and thus Lisp had 
many pragmatic features-in particular, 
sequencing, the assignment statement, and 
other primitives that induced side effects 
on the store. Their presence undoubtedly 
had much to do with early experience with 
FORTRAN. Nevertheless, in his early pa- 
pers, McCarthy emphasized the mathemat- 
ical elegance of Lisp, and in a much later 
paper his student Cartwright demonstrated 
the ease with which one could prove 
properties about pure Lisp programs 
[ Cartwright 19761. 

Despite its impurities, Lisp had a great 
influence on functional language develop- 
ment, and it is encouraging to note that 
modern Lisps (especially Scheme) have re- 
turned more to the purity of the lambda 
calculus rather than the ad hocery that 
plagued the Maclisp era. This return to 
purity includes the first-class treatment of 
functions and the lexical scoping of identi- 
fiers. Furthermore, the preferred modern 
style of Lisp programming, such as es- 
poused by Abelson et al. [ 19851, can be 
characterized as being predominantly side- 
effect free. And, finally, note that Hender- 
son’s [1980] Lispkit Lisp is a purely func- 
tional version of Lisp that uses an infix, 
algebraic syntax. 

1.2.1 Lisp in Retrospect 

Before continuing the historical develop- 
ment it is helpful to consider some of the 
design decisions McCarthy made and how 
they would be formalized in terms of the 
lambda calculus. It may seem that condi- 
tional expressions, for example, are an ob- 
vious feature to have in a language, but that 
only reflects our familiarity with modern 
high-level programming languages, most of 
which have them. In fact the lambda cal- 
culus version of the factorial example given 

in the previous section used a conditional 
(not to mention arithmetic operators), yet 
most readers probably understood it per- 
fectly and did not object to the departure 
from precise lambda calculus syntax. 

The effect of conditional expressions can 
in fact be achieved in the lambda calculus 
by encoding the true and false values as 
functions, as well as by defining a function 
to emulate the conditional: 

true = hx.Ay.x 
false = Xx.Ay.y 
cond = Xp.Xc.Xa.(p c a) 

In other words, (cond p c a) = (if p then c 
else a). One can then define, for example, 
the factorial function by 

fuc = An. cond (= n 0) 1 (* n( fuc (- n 1))) 

where = is defined by 

(=nn) *true 
(= n m) + false, if m # n 

where m and n range over the set of integer 
constants. However, I am still cheating a 
bit by not explaining the nature of the 
objects -, *, 0, 1, and so on, in pure lambda 
calculus terms. It turns out that they can 
be represented in a variety of ways, essen- 
tially using functions to simulate the proper 
behavior, just as for true, false, and the 
conditional (for the details, see Church 
[1941]). In fact any conventional data or 
control structure can be simulated in the 
lambda calculus; if this were not the case, 
it would be difficult to believe Church’s 
thesis. 

Even if McCarthy knew of these ways to 
express things in the lambda calculus (there 
is reason to believe that he did not), effi- 
ciency concerns might have rapidly led him 
to consider other alternatives, especially 
since FORTRAN was the only high-level 
programming language with which anyone 
had any experience. In particular, FOR- 
TRAN functions evaluated their argu- 
ments before entering the body of the 
function, resulting in what is often called a 
strict, or call-by-value, evaluation policy, 
corresponding roughly to applicative-order 
reduction in the lambda calculus. With this 
strategy extended to the primitives, includ- 
ing the conditional, we cannot easily define 
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recursive functions. For example, in the 
above definition of factorial all three argu- 
ments to cond would be evaluated, includ- 
ingfac (- n l), resulting in nontermination. 

Nonstrict evaluation, corresponding to 
the normal-order reduction that is essential 
to the lambda calculus in realizing recur- 
sion, was not very well understood at the 
time-it was not at all clear how to imple- 
ment it efficiently on a conventional von 
Neumann computer-and we would have 
to wait another 20 years or so before such 
an implementation was even attempted.13 
The conditional expression essentially 
allowed one to invoke normal-order, or 
nonstrict, evaluation selectively. Stated 
another way, McCarthy’s conditional, 
although an expression, was compiled into 
code that essentially controlled the reduc- 
tion process. Most imperative program- 
ming languages today that allow recursion 
do just that, and thus even though such 
languages are often referred to as strict, 
they all rely critically on at least one 
nonstrict construct: the conditional. 

1.2.2 Lambda Calculus with Constants 

The conditional expression is actually only 
one example of very many primitive func- 
tions that were included in Lisp. Rather 
than explain them in terms of the lambda 
calculus by a suitable encoding (i.e., com- 
pilation), it is perhaps better to extend the 
lambda calculus formally by adding a set of 
constants along with a set of what are usu- 
ally called &rules, which state relationships 
between constants and effectively extend 
the basis set of a-, p-, and a-reduction rules. 
For example, the reduction rules for = given 
earlier (and repeated below) are &rules. 
This new calculus, often called the lambda 
calculus with constants, can be given a 
precise abstract syntax: 

x E Id Identifiers 
c E Con Constants 
e E Exp Lambda expressions 

where e ::= x 1 c 1 el e2 1 Xx.e 

In On the other hand, the call-by-name evaluation 
strategy invented in ALGOL had very much of a 
normal-order reduction flavor. See Wadsworth [1971] 
and Wegner [1968] for early discussions of these 
issues. 
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for which various &rules apply, such as the 
following: 

(= 0 0) + True 
(= 0 1) + False 

(+ 0 0) * 0 
(+ 0 1) * 1 

(+ 27 32) + 59 

(If True el e2) * e, 
(If False el e2) + e2 

(Car (Cons el e2)) * el 
(Cdr (Cons el e2)) * e2 

where =, +, 0, 1, If, True, False, Cons, and 
so on, are elements of Con. 

The above rules can be shown to be a 
conservative extension of the lambda cal- 
culus, a technical term that in our context 
essentially means that convertible terms in 
the original system are still convertible 
in the new, and (perhaps more importantly) 
inconvertible terms in the original system 
are still inconvertible in the new. In gen- 
eral, care must be taken when introducing 
d-rules, since all kinds of inconsistencies 
could arise. For a quick and dirty example 
of inconsistency, we might define a primi- 
tive function over integers called broken 
with the following d-rules: 

(broken 0) * 0 
(broken 0) 4 1 

which immediately implies that more than 
one normal form exists for some terms, 
violating the first Church-Rosser theorem 
(see Section 1.1). 
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As a more subtle example, suppose we 
define the logical relation Or by 

(Or True e) 4 True 
(Or e True) 4 True 

(Or False False) + Fake 

Although these rules form a conservative 
extension of the lambda calculus, a com- 
mitment to evaluate either of the argu- 
ments may lead to nontermination (even if 
the other argument may reduce to True). 
In fact, it can be shown that with the above 
rules there does not exist a deterministic 
sequential reduction strategy that will 
guarantee that the normal form True will 
be found for all terms having such a normal 
form, and thus the second Church-Rosser 
property is violated. This version of Or is 
often called the parallel or, since a parallel 
reduction strategy is needed to implement 
it properly (and with which the first 
Church-Rosser theorem will at least hold). 
Alternatively, we could define a sequential 
or by 

significant syntactic and semantics ideas 
[Landin 19661. Iswim, according to Landin, 
“can be looked on as an attempt to deliver 
Lisp from its eponymous commitment to 
lists, its reputation for hand-to-mouth stor- 
age allocation, the hardware dependent fla- 
vor of its pedagogy, its heavy bracketing, 
and its compromises with tradition.” When 
all is said and done, the primary contri- 
butins of Iswim, with respect to the 
development of functional languages, are 
the following: 

(1) Syntactic innovations 

(4 

(b) 

The abandonment of prefix syntax 
in favor of infix. 
The introduction of let and where 
clauses, including a notion of si- 
multaneous and mutually recursive 
definitions. 

(c) 

(Or True e) + True 
(Or False e) + e 

The use of an off-side rule based 
on indentation rather than sepa- 
rators (such as commas or semi- 
colons) to scope declarations and 
expressions. For example (using 
Haskell syntax), the program frag- 
ment 

which can be shown to satisfy both e where f x = x 
Church-Rosser theorems. ab=l 

1.3 lswim 

Historically speaking, Peter Landin’s work 
in the mid 1960s was the next significant 
impetus to the functional programming 
paradigm. Landin’s work was deeply influ- 
enced by that of Curry and Church. His 
early papers discussed the relationship 
between lambda calculus and both ma- 
chines and high-level languages (specifi- 
cally ALGOL 60). Landin [1964] discussed 
how one could mechanize the evaluation of 
expressions through an abstract machine 
called the SECD machine; in Landin [ 19651 
he formally defined a nontrivial subset of 
ALGOL 60 in terms of the lambda calculus. 

cannot be confused with 

e where f x = x a 
b=l 

and is equivalent to what might 
otherwise be written as 

e where {f x = x; a b = 1) 

It is apparent from his work that Landin 
regarded highly the expressiveness and pu- 
rity of the lambda calculus and at the same 
time recognized its austerity. Undoubtedly 
as a result of this work, in 1966 Landin 
introduced a language (actually a family of 
languages) called Iswim (for If You See 
What I Mean), which included a number of 

(2) Semantic innovations 

(4 An emphasis on generality. Landin 
was half serious in hoping that the 
Iswim family could serve as the 
“next 700 programming languages.” 
Central to his strategy was the idea 
of defining a syntactically rich lan- 
guage in terms of a very small but 
expressive core language. 

(b) An emphasis on equational reason- 
ing (i.e., the ability to replace equals 
with equals). This elusive idea was 
backed up with four sets of rules for 
reasoning about expressions, dec- 
larations, primitives, and problem- 
oriented extensions. 
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(c) The SECD machine as a simple 
abstract machine for executing 
functional programs. 

We can think of Landin’s work as ex- 
tending the lambda calculus with constants 
defined in the last section so as to include 
more primitives, each with its own set of 6- 
rules, but more importantly let and where 
clauses, for which it is convenient to intro- 
duce the syntactic category of declarations: 

e E Exp Expressions 

where e ::= . + . ] e where dl . . . d, 
1 let dI . . . d, in e 

d E Decl Declarations 

where d ::= x = e 
1 xx1 --. xn=e 

and for which we then need to add some 
axioms (i.e., reduction rules) to capture the 
desired semantics. Landin proposed special 
constructs for defining simultaneous and 
mutually recursive definitions, but we will 
take a simpler and more general approach 
here: We assume that a block of decla- 
rations dI -. . d, always is potentially 
mutually recursive-if it isn’t, our rules 
still work: 

(let d, . . . d, in e) 
+ (e where dI - - . d,) 

(xx1 a.+ x,=e) 
* (x = Xx1.Xx2. . . - Xx,.e) 

(e where x1 = el) 
3 (Xx,.e)( YXxl.el) 

(e where (x, = ei) . . . (x, = e,)) 
=a (Xxl.e)(YXxl.el) 
where x2 = (Xxl.ez)(YXrl.e,) 

x, = (Xx1. e,)(YXxl.el) 

These rules are semantically equivalent to 
Landin’s, but they avoid the need for a 
tupling operator to handle mutual recur- 
sion and they use the Y combinator (de- 
fined in Section 1.1) instead of an iterative 
unfolding step. 

We will call this resulting system the 
recursive lambda calculus with constants, or 
just recursive lambda calculus. 

Landin’s emphasis on expressing what 
the desired result is, as opposed to saying 
how to get it, and his claim that Iswim’s 
declarative14 style of programming was bet- 
ter than the incremental and sequential 
imperative style were ideas to be echoed by 
functional programming advocates to this 
day. On the other hand, it took another 10 
years before interest in functional lan- 
guages was to be substantially renewed. 
One of the reasons is that there were no 
decent implementations of Iswim-like lan- 
guages around; this reason, in fact, was to 
persist into the 1980s. 

1.4 APL 

Iverson’s [1962] APL, although not a 
purely functional programming language, 
is worth mentioning because its functional 
subset is an example of how we could 
achieve functional programming without 
relying on lambda expressions. In fact, 
Iverson’s design of APL was motivated out 
of his desire to develop an algebraic pro- 
gramming language for arrays, and his orig- 
inal work used an essentially functional 
notation. Subsequent development of APL 
resulted in several imperative features, but 
the underlying principles should not be 
overlooked. 

APL was also unique in its goal of suc- 
cinctness, in that it used a specially de- 
signed alphabet to represent programs- 
each letter corresponding to one operator. 
That APL became popular is apparent in 
the fact that many keyboards, both for 
typewriters and computer terminals, car- 
ried the APL alphabet. Backus’ FP, which 
came after APL, was certainly influenced 
by the APL philosophy, and its abbreviated 
publication form also used a specialized 
alphabet (see the example in Section 1.5). 
In fact FP has much in common with APL, 
the primary difference being that FP’s fun- 
damental data structure is the sequence, 
whereas APL’s is the array. 

It is worth noting that recent work on 
APL has revived some of APL’s purely 
functional foundations. The most notable 

I4 Landin actually disliked the term “declarative,” 
preferring instead “denotative.” 
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work is that of Tu [Tu 1986; Tu and Perlis 
19861, who designed a language called FAC, 
for Functional Array Calculator (presum- 
ably a take off on Turner’s KRC, Kent 
Recursive Calculator). FAC is a purely 
functional language that adopts most of the 
APL syntax and programming principles 
but also has special features to allow pro- 
gramming with infinite arrays; naturally, 
lazy evaluation plays a major role in the 
semantics of the language. Another inter- 
esting approach is that of Mullin [1988]. 

1.5 FP 

Backus’ FP was one of the earliest func- 
tional languages to receive widespread at- 
tention. Although most of the features in 
FP are not found in today’s modern func- 
tional languages, Backus’ [ 19781 Turing 
Award lecture was one of the most influ- 
ential and now most-often cited papers 
extolling the functional programming par- 
adigm. It not only stated quite eloquently 
why functional programming was “good” 
but also quite vehemently why traditional 
imperative programming was Ubad,?.15 

Backus’ coined the term “word-at-a-time 
programming” to capture the essence of 
imperative languages, showed how such 
languages were inextricably tied to the von 
Neumann machine, and gave a convincing 
argument why such languages were not 
going to meet the demands of modern soft- 
ware development. That this argument was 
being made by the person who is given the 
most credit for designing FORTRAN and 
who also had significant influence on the 
development of ALGOL led substantial 
weight to the functional thesis. The expo- 
sure given to Backus’ paper was one of the 
best things that could have happened to the 
field of functional programming, which at 
the time was certainly not considered main- 
stream. 

Despite the great impetus Backus’ paper 
gave to functional programming, it is inter- 
esting to note that in the same paper 
Backus also said that languages based on 
lambda calculus would have problems, both 

i5 Ironically, the Turing Award was given to Backus 
in a large part because of his work on FORTRAN. 

in implementation and expressiveness, be- 
cause the model was not suitably history 
sensitive (more specifically, it did not han- 
dle large data structures such as databases 
very easily). With regard to implementa- 
tion, this argument is certainly understand- 
able because it was not clear how to 
implement the notion of substitution in an 
efficient manner nor was it clear how to 
structure data in such ways that large data 
structures could be implemented efficiently 
(both of these issues are much better under- 
stood today). With regard to expressive- 
ness, that argument is still a matter of 
debate today. In any case, these problems 
were the motivation for Backus’ Applica- 
tive State Transition (AST) Systems, in 
which state is introduced as something on 
which purely functional programs interact 
with in a more traditional (i.e., imperative) 
way. 

Perhaps more surprising, and an aspect 
of the paper that is usually overlooked, 
Backus had this to say about lambda- 
calculus based systems: . 

An FP system is founded on the use of a fixed set 
of combining forms called functional forms. . . In 
contrast, a lambda-calculus based system is founded 
on the use of the lambda expression, with an asso- 
ciated set of substitution rules for variables, for 
building new functions. The lambda expression 
(with its substitution rules) is capable of defining 
all possible computable functions of all possible 
types and of any number of arguments. This free- 
dom and power has its disadvantages as well as its 
obvious advantages. It is analogous to the power of 
unrestricted control statements in conventional lan- 
guages: with unrestricted freedom comes chaos. If 
one constantly invents new combining forms to suit 
the occasion, as one can in the lambda calculus, one 
will not become familiar with the style or useful 
properties of the few combining forms that are 
adequate for all purposes. 

Backus’ argument, of course, was in the 
context of garnering support for FP, which 
had a small set of combining forms that 
were claimed to be sufficient for most pro- 
gramming applications. One of the advan- 
tages of this approach is that each of these 
combining forms could be named with par- 
ticular brevity, and thus programs become 
quite compact-this was exactly the ap- 
proach taken by Iverson in designing APL 
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(see Section 1.4). For example, an FP pro- 
gram for inner product looks like 

Def IP = (/+) 0 (ax) 0 Trans 

where /, 0, and LY are combining forms 
called insert, compose, and apply-to-all, re- 
spectively. In a modern functional language 
such as Haskell this would be written with 
slightly more verbosity as 

ip 11 12 = fold1 (+) 0 (map2 (*) 11 12) 

[In Haskell an infix operator such as + may 
be passed as an argument by surrounding 
it in parentheses.] Here fold1 is the equiv- 
alent of insert (/), and map2 is a two-list 
equivalent of apply-to-all (a), thus elimi- 
nating the need for Trans. These functions 
are predefined in Haskell, as they are in 
most modern functional languages, for the 
same reason that Backus argues-they are 
commonly used. If they were not, they could 
easily be defined by the user. For example, 
we may wish to define an infix composition 
operator for functions, the first of which is 
binary, as follows: 

(f.0.g) XY =f(gxy) 

[Note how infix operators may be defined 
in Haskell; operators are distinguished lex- 
ically by being nonalphabetic.] With this 
we can reclaim much of FP’s succinctness 
in defining ipp: 

lp = fold1 (+) 0 .o. map2 (*) 

[Recall that in Haskell, function applica- 
tion has higher precedence than infix op- 
erator application.] It is for this reason, 
together with the fact that FP’s specializa- 
tion precluded the generality afforded by 
user-defined higher order functions (which 
is all that combining forms are), that mod- 
ern functional languages did not follow the 
FP style. As we shall soon see, certain other 
kinds of syntactic sugar became more pop- 
ular instead (such as pattern matching, list 
comprehensions, and sections). 

Many extensions to FP have been pro- 
posed over the years, including the inclu- 
sion of strong typing and abstract datatypes 
[Guttag et al. 19811. In much more recent 
work, Backus et al. [1986] have designed 
the language FL, which is strongly (al- 
though dynamically) typed and in which 

higher order functions and user-defined 
datatypes are allowed. Its authors still 
emphasize the algebraic style of reasoning 
that is paramount in FP, although it is 
also given a denotational semantics that is 
probably consistent with respect to the 
algebraic semantics. 

1.6 ML 

In the mid 197Os, at the same time Backus 
was working on FP at IBM, several re- 
search projects were underway in the 
United Kingdom that related to functional 
programming, most notably work at Edin- 
burgh. There Gordon et al. [ 19791 had been 
working on a proof-generating system 
called LCF for reasoning about recursive 
functions, in particular in the context of 
programming languages. The system con- 
sisted of a deductive calculus called PPX 
(polymorphic predicate calculus) together 
with an interactive programming language 
called ML, for metalanguage (since it 
served as the command language for LCF). 

LCF is quite interesting as a proof sys- 
tem, but its authors soon found that ML 
was also interesting in its own right, and 
they proceded to develop it as a stand-alone 
functional programming language [Gordon 
et al. 19781. That it was, and still is, called 
a functional language is actually somewhat 
misleading, since it has a notion of refer- 
ences that are locations that can be stored 
into and read from, much as variables are 
assigned and read. Its I/O system also in- 
duces side effects and is not referentially 
transparent. Nevertheless, the style of pro- 
gramming that it encourages is still func- 
tional, and that is the way it was promoted 
(the same is somewhat true for Scheme, 
although to a lesser extent). 

More recently a standardization effort 
for ML has taken place, in fact taking some 
of the good ideas of Hope [Burstall et al. 
19801 (such as pattern matching) along 
with it, yielding a language now being called 
Standard ML, or SML [Milner 1984; 
Wikstrom 19881. 

ML is a fairly complete language-cer- 
tainly the most practical functional lan- 
guage at the time it appeared-and SML is 
even more so. It has higher order functions, 
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a simple I/O facility, a sophisticated mod- 
ule system, and even exceptions. But by far 
the most significant aspect of ML is its 
type system, which is manifested in several 
ways: 

(1) 
(2) 

(3) 

(4) 

It is strongly and statically typed. 
It uses type inference to determine the 
type of every expression, instead of re- 
lying on excplicit type declarations. 
It allows polymorphic functions and 
data structures; that is, functions may 
take arguments of arbitrary type if in 
fact the function does not depend on 
that type (similarly for data struc- 
tures) . 
It has user-defined concrete and ab- 
stract datatypes (an idea actually bor- 
rowed from Hope and not present in 
the initial design of ML). 

ML was the first language to use type in- 
ference as a semantically integrated com- 
ponent of the language, and at the same 
time its type system was richer than 
any previous statically typed language in 
that it permitted true polymorphism. It 
seemed that the best of two worlds had 
been achieved-not only is making explicit 
type declarations (a sometimes burdensome 
task) not required, but in addition a pro- 
gram that successfully passes the type in- 
ferencer is guaranteed not to have any type 
errors. Unfortunately, this idyllic picture is 
not completely accurate (although it is 
close), as we shall soon see. 

We shall next discuss the issue of types 
in a foundational sense, thus continuing 
our plan of elaborating the lambda calculus 
to match the language features being dis- 
cussed. This will lead us to a reasonable 
picture of ML’s Hindley-Milner type sys- 
tem, the rich polymorphic type system that 
was mentioned above and that was later 
adopted by every other statically typed 
functional language, including Miranda 
and Haskell. Aside from the type system, 
the two most novel features in ML are its 
references and modules, which are also cov- 
ered in this section. Discussion of ML’s 
data abstraction facilities will be postponed 
until Section 2.3. 

1.6.1 Hindley-Milner Type System 

We can introduce types into the pure 
lambda calculus by first introducing a do- 
main of basic types, say BasTyp, as well as 
a domain of derived types, say Typ, and 
then requiring that every expression be 
tagged with a member of Typ, which we do 
by superscripting, as in e’. The derived 
type r2 + 71 denotes the type of all func- 
tions from values of type 72 to values of 
type TV, and thus a proper application will 
have the form e;P-r’ eF)T1. Modifying the 
pure lambda calculus in this way, we arrive 
at the pure typed lambda calculus: 

bg Basic types 
TE Derived types 

where T ::= b 1 71 + 72 

xT E Id Typed identifiers 
e E Exp Typed lambda expressions 

where e ::= x7 
e;2-Tle;z)T1 

1 ~Xx’2.e’l)‘*-rl 

for which we then provide the following 
reduction rules: 

(1) Typed-oc-conversion: 

(xx;1 . eT) w (Xx;l . [x;‘/xi1]e7), 

where xi’ 4 fu(e’). 

(2) Typed-P-conversion: 

((xxrz . e;l)e;l) et3 [e;2/xT2]e;‘. 

(3) Typed-s-converson: 

Xx” . (e’*x’l) -3 eT*, if x7’ @ fu(e’?). 

To preserve type correctness, we assume 
that the typed identifiers xrl and x12, where 
71 # TV, are distinct identifiers. Note then 
how every expression in our new calculus 
carries with it its proper type, and thus type 
checking is built in to the syntax. 

Unfortunately, there is a serious problem 
with this result: Our new calculus has lost 
the power of X-definability. In fact, every 
term in the pure typed lambda calculus can 
be shown to be strongly normalizable, mean- 
ing each has a normal form, and there 
is an effective procedure for reducing each 
of them to its normal form [Fortune et al. 
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19851. Consequently, we can only compute 
a rather small subset of functions from 
integers to integers-namely, the extended 
polynomials [Barendregt 19841 .I6 

The reader can gain some insight into 
the problem by trying to write the defini- 
tion of the Y combinator-that paradoxical 
entity that allowed us to express recur- 
sion-as a typed term. The difficulty lies 
in properly typing self-application (recall 
the discussion in Section l.l), since typing 
(ee) requires that e have both the type 
72 + pi and r2, which cannot be done within 
the structure we have given. It can, in fact, 
be shown that the pure typed lambda cal- 
culus has no fixpoint operator. 

Fortunately, there is a clever way to solve 
this dilemma. Instead of relying on self- 
application to implement recursion, simply 
add to the calculus a family of constant 
fixpoint operators similar to Y, only typed. 
To do this, we first move into the typed 
lambda calculus with constants, in which a 
domain of constants Con is added as in the 
(untyped) lambda calculus with constants. 
We then include in Con a typed fixpoint 
operator of the form Y, for every type 7, 
where 

Then for each fixpoint operator Y, we add 
the &rule: 

Typed- Y-conversion: 

( Y7eT+r)T * (e’“( Y,eT’T)T)T 

The reader may easily verify that type con- 
sistency is maintained by this rule. 

By ignoring the type information, we can 
see that the above &rule corresponds to the 
conversion (Yf) w (f (Yf )) in the untyped 
case, and the same trick for implementing 
recursion with Y as discussed in Section 
1.1 can be used here, thus regaining X- 
definability. For example, a nonrecursive 
definition of the typed factorial function 
would be the same as the untyped version 

I6 On the bright side, some researchers view the strong 
normalization property as a feature, since it means 
that all programs are guaranteed to terminate. Indeed 
this property forms the basis of much of the recent 
work on using constructive type theory as a foundation 
for programming languages. 
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given earlier, except that Y, would be used 
where 7 = Int + Int. 

In addition to this calculus, we can derive 
a typed recursive lambda calculus with con- 
stants in the same way that we did in the 
untyped case, except that instead of the 
unrestricted Y combinator we use the typed 
versions defined above. 

At this point our type system is about on 
par with that of a strongly and explicitly 
typed language such as Pascal or Ada. We 
would, however, like to do better. As men- 
tioned in Section 1.6, the designers of ML 
extended the state of the art of type systems 
in two significant ways: 

l They permitted polymorphic functions. 
l They used type inference to infer types 

rather than requiring that they be de- 
clared explicitly. 

As an example of a polymorphic function, 
consider 

map :: (a + b) -3 [a] + [b] 

mwf[l=[l 
mapf(x:xs) =fx:mapfxs 

The first line is a type signature that de- 
clares the type of map; it can be read as 
“for all types a and b, map is a function 
that takes two arguments, a function from 
a into b and a list of elements of type a, 
and returns a list of elements of type b.” 

[Type signatures are optional in Haskell; 
the type system is able to infer them auto- 
matically. Also note that the type con- 
structor + is right associative, which is 
consistent with the left associativity of 
function application.] 

Therefore, map can be used to map 
square down a list of integers, or head down 
a list of lists, and so on. In a monomorphic 
language such as Pascal, one would have to 
define a separate function for each of these. 
The advantage of polymorphism should be 
clear. 

One way to achieve polymorphism in our 
calculus is to add a domain of type variables 
and extend the domain of derived types 
accordingly: 

b E BasTyp Basic types 
v E TypId Type variables 

7 E TYP Derived types 

where 7 ::= b I u I ~14 72 
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Thus, for example, u -+ 7 is a proper type 
and can be read as if the type variable was 
universally quantified: “for all types u, the 
type u + 7.” To accommodate this we must 
change the rule for P-conversion to read 
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signatures present. The use of such poly- 
morphism however, is limited to the scope 
in which map was defined. For example, 
the program 

(2) 
silly map f g 
where f :: Int -+ Int 

g :: Char ---) Char 
map :: (a + 6) + bl + PI 
silly m f g = (m f num-list, 

m g char-list) 

Typed-P-conversion with type vari- 
ables: 
(a) ((XxTz.ez) @ ([e;a/xrs]e;‘)‘l 

(b) ((xx”.e;l)ep) 

@ ([~2/ul([e~/x”le;l))‘~ 

where substitution on type variables is de- 
fined in the obvious way. Note that this 
rule implies the validity of expressions of 
the form (ey+T1e2) TV. Similar changes are 
required to accommodate expressions such 
as (e ;-“e;) “. 

But, alas, now that type variables have 
been introduced, it is no longer clear 
whether a program is properly typed-it is 
not built in to the static syntactic structure 
of the calculus. In fact, the type-checking 
problem for this calculus is undecideable, 
being a variant of a problem known as 
partial polymorphic type inference [Boehm 
1985; Pfenning 19881. 

Rather than trying to deal with the type- 
checking problem directly, we might go one 
step further with our calculus and try to 
attain ML’s lack of a requirement for ex- 
plicit typing. We can achieve this by simply 
erasing all type annotations and then trying 
to solve the seemingly harder problem of 
inferring types of completely naked terms. 
Surprisingly, it is not known whether an 
effective type inference algorithm exists for 
this calculus, even though the problem of 
partial polymorphic type inference, known 
to be undecidable, seems as if it should be 
easier. 

Fortunately, Hindley [ 19691 and Milner 
[1978] independently discovered a re- 
stricted polymorphic type system that is 
almost as rich as that provided by our cal- 
culus and for which type inference is decid- 
able. In other words, there exist certain 
terms in the calculus presented above that 
one could argue are properly typed but 
would not be allowed in the Hindley- 
Milner system. The system still allows pol- 
ymorphism, such as exhibited by map de- 
fined earlier, and is able to infer the type 
of functions such as map without any type 

[(el, e2) is a tuple] results in a type error, 
since map is passed as an argument and 
then instantiated in two different ways; 
that is, once as type (Int -+ Int) + [Int] + 
[Int] and once as type (Char + Char) + 
[Char] + [Char]. If map were instantiated 
in several ways within the scope in which 
it was defined or if m were only instantiated 
in one way within the function silly, there 
would have been no problem. 

This example demonstrates a fundamen- 
tal limitation to the Hindley-Milner type 
system, but in practice the class of pro- 
grams that the system rejects is not large 
and is certainly smaller than that rejected 
by any existing type-checking algorithm for 
conventional languages in that, if nothing 
else, it allows polymorphism. Many other 
functional languages have since then incor- 
porated what amounts to a Hindley-Milner 
type system, including Miranda and 
Haskell. It is beyond the scope of this ar- 
ticle to discuss the details of type inference, 
but the reader may find good pragmatic 
discussions in Hancock [1987] and Damas 
and Milner [1982] and a good theoretical 
discussion in Milner [ 19781. 

As a final comment we point out that an 
alternative way to gain polymorphism is to 
introduce types as values and give them at 
least some degree of first-class status (as 
we did earlier for functions); for example, 
allowing them to be passed as arguments 
and returned as results. Allowing them to 
be passed as arguments only (and then used 
in type annotations in the standard way) 
results in what is known as the polymorphic 
or second-order typed lambda calculus. 
Girard [1972] and Reynolds [1974] discov- 
ered and studied this type system indepen- 
dently, and it appears to have great 
expressive power. It turns out, however, to 
be essentially equivalent to the system we 
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developed earlier and has the same diffi- 
culties with respect to type inference. It is, 
nevertheless, an active area of current re- 
search (see Cardelli and Wegner [ 19851 and 
Reynolds [ 19851 for good summaries of this 
work). 

1.6.2 ML ‘s References 

A reference is essentially a pointer to a cell 
containing values of a particular type; ref- 
erences are created by the (pseudo)function 
ref. For example, ref 5 evaluates to an 
integer reference-a pointer to a cell that 
is allowed to contain only integers and in 
this case having initial contents 5. The 
contents of a cell can be read using the 
prefix operator !. Thus if x is bound to ref 
5 then !r returns 5. 

The cell pointed to by a reference may 
be updated via assignment using the infix 
operator :=. Continuing with the above ex- 
ample, x := 10, although an expression, has 
the side effect of updating the cell pointed 
to by x with the value 10. Subsequent eval- 
uations of !x will then return 10. Of course, 
to make the notion of subsequent well- 
defined, it is necessary to introduce se- 
quencing constructs; indeed ML even has 
an iterative while construct. 

References in ML amount to assignable 
variables in a conventional programming 
language and are only notable in that they 
can be included within a type structure 
such as Hindley-Milner’s and can be rele- 
gated to a minor role in a language that is 
generally proclaimed as being functional. A 
proper treatment of references within a 
Hindley-Milner type system can be found 
in Tofte [1988]. 

1.6.3 Modules 

Modules in ML are called structures and 
are essentially reified environments. The 
type of a structure is captured in its signa- 
ture and contains all of the static properties 
of a module that are needed by some other 
module that might use it. The use of one 
module by another is captured by special 
functions called functors that map struc- 
tures to new structures. This capability is 
sometimes called a parameterized module 
or generic package. 

For example, a new signature called SIG 
(think of it as a new type) may be declared 
by 

signature SIG = 
sig 

val x : int 
val succ : int + int 

end 

in which the types of two identifiers have 
been declared, x of type int and succ of type 
int + int. The following structure S (think 
of it as an environment) has the implied 
signature SIG defined above: 

structure S = 
struct 

val n = 5 
val succ x = x+1 

end 

If we then define the following functor F 
(think of it as a function from structures to 
structures): 

functor F( 2’: SIG) = 
struct 

valy= TX+ 1 
val add2 x: = T.succ(Z’.su~~(x)) 

end 

then the new structure declaration 

structure U = F(S) 

is equivalent to having written 

structure U = 
struct 

valy=x+l 
val add2 x = succ(succ(~)) 
val x: = 5 
val succ x = x+1 

end 

except that the signature of U does not 
include bindings for x and succ (i.e., they 
are hidden). 

Although seemingly simple, the ML 
module facility has one very noteworthy 
feature: Structures are (at least partially) 
first class in that functor take them as 
arguments and return them as values. A 
more conservative design (such as adopted 
in Miranda and Haskell) might require all 
modules to be named, thus relegating them 
to second-class status. Of course, this first- 
class treatment has to be ended somewhere 
if type checking is to remain effective, and 
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in ML that is manifested in the fact that 
structures can be passed to functors only 
(e.g., they cannot be placed in lists), the 
signature declaration of a functor’s argu- 
ment is mandatory in the functor declara- 
tion, and functors themselves are not first 
class. 

It is not clear whether this almost-first- 
class treatment of structures is worth the 
extra complexity, but the ML module facil- 
ity is certainly the most sophisticated of 
those found in existing functional program- 
ming languages, and it is achieved with no 
loss of static type-checking ability, includ- 
ing the fact that modules may be compiled 
independently and later linked via functor 
application. 

1.7 SASL, KRC, and Miranda 

At the same time ML and FP were being 
developed, David Turner, first at the Uni- 
versity of St. Andrews and later at the 
University of Kent, was busy working on 
another style of functional languages re- 
sulting in a series of three languages that 
characterize most faithfully the modern 
school of functional programming ideas. 
More than any other researcher, Turner 
[ 1981,1982] argued eloquently for the value 
of lazy evaluation, higher order functions 
and the use of recursion equations as a 
syntactic sugaring for the lambda calculus. 
Turner’s use of recurrence equations was 
consistent with Landin’s argument 10 years 
earlier, as well as Burge’s [1975] excellent 
treatise on recursive programming tech- 
niques and Burstall and Darlington’s 
[ 19771 work on program transformation. 
But the prodigious use of higher order func- 
tions and lazy evaluation, especially the 
latter, was something new and was to be- 
come a hallmark of modern functional pro- 
gramming techniques. 

In the development of SASL (St. 
Andrews Static Language) [Turner 19761, 
KRC (Kent Recursive Calculator) [Turner 
19811, and Miranda17 [Turner 19851, 
Turner concentrated on making things eas- 
ier on the programmer, and thus he intro- 
duced various sorts of syntactic sugar. In 

I’ Miranda is one of the few (perhaps the only) func- 
tional languages to be marketed commercially. 

particular, using SASL’s syntax for equa- 
tions gave programs a certain mathematical 
flavor, since equations were deemed appli- 
cable through the use of guards and 
Landin’s notion of the off-side rule was 
revived. For example, this definition of the 
factorial function 

fat n = 1, n=O 
= n * fac(n-l), n>O 

looks a lot like the mathematical version 

fat n = 
{ 

1 ifn=O 
n * fac(n - 1) if n > 0 

(In Haskell this program would be written 
with slightly different syntax as 

fat n(n==O= 1 
1 C-0 = n*fac(n-1) 

More on equations and pattern matching 
may be found in Section 2.4.) 

Another nice aspect of SASL’s equa- 
tional style is that it facilitates the use of 
higher order functions through currying. 
For example, if we define 

addxy=x+y 

then “add” 1 is a function that adds 1 to its 
argument. 

KRC is an embellishment of SASL pri- 
marily through the addition of ZF expres- 
sions (which were intended to resemble 
Zemelo-Frankel set abstraction and whose 
syntax was originally suggested by John 
Darlington), as well as various other short- 
hands for lists (such as [a . . b] to denote 
the list of integers from a to b, and [a . .] to 
denote the infinite sequence starting with 
a). For example (using Haskell syntax), 

[ x*x 1 x c [l . . loo], odd(x) ] 

is the list of squares of the odd numbers 
from 1 to 100 and is similar to 

(x2 1 x E (1, 2, . . . , 100) A odd(x)} 

except that the former is a list, the latter is 
a set. In fact Turner used the term set 
abstraction as synonymous with ZF expres- 
sion, but in fact both terms are some- 
what misleading since the expressions ac- 
tually denote lists, not true sets. The more 
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popular current term is list comprehen- 
sion,” which is what is used in the re- 
mainder of this paper. As an example of 
the power of list comprehensions, here is 
a concise and perspicuous definition of 
quicksort: 

4s[ 1 =[I 
qs (x:xs) = qs [y 1 ytrs,y<3c ] ++ [x] ++ 

PIY I Y-wY>=xl 

[+-t is the infix append operator.] 
Miranda is in turn an embellishment of 

KRC, primarily in its treatment of types: 
It is strongly typed, using a Hindley-Milner 
type system, and it allows user-defined con- 
crete and abstract datatypes (both of these 
ideas were presumably borrowed from ML; 
see Sections 1.6 and 1.6.1). One interesting 
innovation in syntax in Miranda is its use 
of sections (first suggested by Richard 
Bird), which are a convenient way to con- 
vert partially applied infix operators into 
functional values. For example, the expres- 
sions (+), (x+), and (+x) correspond to the 
functions f, g, and h, respectively, defined 
by 

fxy=x+y 
i?Y = x+y 
hy =y+x 

In part because of the presence of sections, 
Miranda does not provide syntax for 
lambda abstractions. (In contrast, the 
Haskell designers chose to have lambda 
abstractions and thus chose not to have 
sections.) 

Turner was perhaps the foremost pro- 
ponent of both higher-order functions and 
lazy evaluation, although the ideas origi- 
nated elsewhere. Discussion of both of 
these topics is delayed until Sections 2.1 
and 2.2, respectively, where they are dis- 
cussed in a more general context. 

1.8 Dataflow Languages 

In the area of computer architecture, begin- 
ning predominantly with the work of 
Dennis’ and Misuras [1974] the early 
1970s there arose the notion of dataflow, 
a computer architecture organized solely 

” A term popularized by Philip Wadler. 

around the data dependencies in a program, 
resulting in high degrees of parallelism. 
Since data dependencies were paramount 
and artificial sequentiality was objectiona- 
ble, the languages designed to support such 
machines were essentially functional lan- 
guages, although historically they have 
been called dataflow languages. In fact they 
do have a few distinguishing features, typ- 
ically reflecting the idiosyncrasies of the 
dataflow architecture (just as imperative 
languages reflect the von Neumann archi- 
tecture): They are typically first order (re- 
flecting the difficulty in constructing 
closures in the dataflow model), strict (re- 
flecting the data-driven mode of operation 
that was most popular and easiest to imple- 
ment), and in certain cases do not even 
allow recursion (reflecting Dennis’ original 
static dataflow design, rather than, for ex- 
ample, Arvind’s dynamic tagged-token 
model [Arvind and Gostelow 1977; Arvind 
and Kathail 19811). A good summary of 
work on dataflow machines, at least 
through 1981, can be found in Treleaven et 
al. [1982]; more recently, see Vegdahl 
[1989]. 

The two most important dataflow lan- 
guages developed during this era were 
Dennis et al.‘s Val [Ackerman and Dennis 
1979; McGraw 19821, and Arvind and 
Gostelow’s Id [1982]. More recently, Val 
has evolved into SISAL [McGraw et al. 
19831 and Id into Id Nouveau [Nikhiel 
et al. 19861. The former has retained much 
of the strict and first-order semantics of 
dataflow languages, whereas the latter has 
many of the features that characterize 
modern functional languages. 

Keller’s FGL [Keller et al. 19801 and 
Davis’ DDN [Davis 19781 are also notable 
developments that accompanied a flurry of 
activity on dataflow machines at the Uni- 
versity of Utah in the late 70’s. Yet another 
interesting dataflow language is Ashcroft 
and Wadge’s Lucid [Ashcroft and Wadge 
1976a, 197613; Wadge and Ashcroft 19851 
[McGraw et al. 19831 whose distinguishing 
feature is the use of identifiers to represent 
streams of values (in a temporal, dataflow 
sense), thus allowing the expression of it- 
eration in a rather concise manner. The 
authors also developed an algebra for rea- 
soning about Lucid programs. 
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1.9 Others 

In the late 1970s and early 1980s a surpris- 
ing number of other modern functional lan- 
guages appeared, most in the context of 
implementation efforts. These included 
Hope at Edinburgh University [Burstall et 
al. 19801, FEL at Utah [Keller 19821, Lazy 
ML (LML) at Chalmers [Augustsson 
19841, Alfl at Yale [Hudak 19841, Ponder 
at Cambridge [Fairbairn 19851, Orwell at 
Oxford [Wadler and Miller 19881, Daisy at 
Indiana [Johnson N.d.] Twentel at the 
University of Twente [Kroeze 19871, and 
Tui at Victoria University [Boutel 19881. 

Perhaps the most notable of these lan- 
guages was Hope, designed and imple- 
mented by Rod Burstall, David MacQueen, 
and Ron Sannella at Edinburgh University 
[ 19801. Their goal was “to produce a very 
simple programming language which en- 
courages the production of clear and 
manipulable programs.” Hope is strongly 
typed, allows polymorphism, but requires 
explicit type declarations as part of all 
function definitions (which also allowed a 
useful form of overloading). It has lazy lists 
but otherwise is strict. It also has a simple 
module facility. But perhaps the most sig- 
nificant aspect of Hope is its user-defined 
concrete datatypes and the ability to pat- 
tern match against them. ML, in fact, did 
not originally have these features; they 
were borrowed from Hope in the design of 
SML. 

To quote Bird and Wadler [1988], this 
proliferation of functional languages was “a 
testament to the vitality of the subject,” 
although by 1987 there existed so many 
functional languages that there truly was a 
Tower of Babel, and something had to be 
done. The funny thing was, the semantic 
underpinnings of these languages were 
fairly consistent, and thus the researchers 
in the field had very little trouble under- 
standing each other’s programs, so the mo- 
tivation within the research community to 
standardize on a language was not high. 

Nevertheless, in September 1987 a meet- 
ing was held at the FPCA Conference in 
Portland, Oregon, to discuss the problems 
that this proliferation of languages was cre- 
ating. There was a strong consensus that 
the general use of modern, nonstrict func- 

tional languages was being hampered by 
the lack of a common language. Thus it was 
decided that a committee should be formed 
to design such a language, providing faster 
communication of new ideas, a stable 
foundation for real applications develop- 
ment, and a vehicle through which other 
people would be encouraged to learn and 
use functional languages. The result of that 
committee’s effort was a purely functional 
programming language called Haskell 
[Hudak and Wadler 19881, named after 
Haskell B. Curry, and described in 
Section 1.10. 

1.10 Haskell 

Haskell is a general-purpose, purely func- 
tional programming language exhibiting 
many of the recent innovations in func- 
tional (as well as other) programming 
language research, including higher order 
functions, lazy evaluation, static poly- 
morphic typing, user-defined datatypes, 
pattern matching, and list comprehensions. 
It is also a very complete language in that 
it has a module facility, a well-defined func- 
tional I/O system, and a rich set of primi- 
tive datatypes, including lists, arrays, 
arbitrary and fixed precision integers, and 
floating-point numbers. in this sense Has- 
kell represents both the culmination and 
solidification of many years of research on 
functional languages-the design was in- 
fluenced by languages as old as Iswim and 
as new as Miranda. 

Haskell also has several interesting new 
features; most notably, a systematic treat- 
ment of overloading, an orthogonal ab- 
stract datatype facility, a universal and 
purely functional I/O system, and, by anal- 
ogy to list comprehensions, a notion of 
array comprehensions. 

Haskell is not a small language. The de- 
cision to emphasize certain features such 
as pattern matching and user-defined da- 
tatypes and the desire for a complete and 
practical language that includes such things 
as I/O and modules necessitates a some- 
what large design. The Haskell Report also 
provides a denotational semantics for both 
the static and dynamic behavior of the lan- 
guage; it is considerably more complex than 
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the simple semantics defined in Section 2.5 
for the lambda calculus, but then again one 
wouldn’t really want to program in as 
sparse a language as the lambda calculus. 

Will Haskell become a standard? Will it 
succeed as a useful programming language? 
Only time will tell. As with any other lan- 
guage development, it is not only the qual- 
ity of the design that counts but also the 
ready availability of good implementations 
and the backing from vendors, government 
agencies, and researchers alike. At this date 
it is too early to tell what role each of these 
factors will play. 

I will end our historical development of 
functional languages here, without elabo- 
rating on the details of Haskell just yet. 
Those details will surface in significant 
ways in the next section, where the most 
important features of modern function lan- 
guages are discussed, and in the following 
section, where more advanced ideas and 
active research areas are discussed. 

2. DISTINGUISHING FEATURES OF 
MODERN FUNCTIONAL LANGUAGES 

Recall that I chose to delay detailed dis- 
cussion of four distinguishing features of 
modernfunctionallanguages-higher-order 
functions, lazy evaluation, data abstrac- 
tion met hanisms, and equations/pattern 
matching. Now that we have completed our 
study of the historical development of func- 
tional languages, we can return to those 
features. Most of the discussion will center 
on how the features are manifested in 
Haskell, ML, and Miranda. 

2.1 Higher Order Functions 

If functions are treated as first-class values 
in a language-allowing them to be stored 
in data structures, passed as arguments, 
and returned as results-they are referred 
to as higher-order functions. I have not said 
too much about the use of higher order 
functions thus far, although they exist in 
most of the functional languages that I have 
discussed, including of course the lambda 
calculus. Their use has in fact been argued 
in many circles, including ones outside of 
functional programming, most notably the 
Scheme community [Abelson et al. 19851. 

The main philosophical argument for 
higher-order functions is that functions are 
values just like any others, so why not give 
them the same first class status? But there 
are also compelling pragmatic reasons for 
wanting higher-order functions. Simply 
stated, the function is the primary abstrac- 
tion mechanism over values; thus facilitat- 
ing the use of functions increases the use 
of that kind of abstraction. 

As an example of a higher-order function, 
consider the following: 

twicefx=f(fx) 

which takes its first argument, a function 
f, and applies it twice to its second argu- 
ment, X. The syntax used here is important: 
twice as written is curried, meaning that 
when applied to one argument it returns a 
function that then takes one more argu- 
ment, the second argument above. For ex- 
ample, the function add2. 

add2 = twice succ 
where succ x = n+l 

is a function that will add 2 to its argument. 
Making function application associate to 
the left facilitates this mechanism, since 
(twice succ X) is equivalent to ((twice succ) 
x), so everything works out just fine. 

In modern functional languages func- 
tions can be created in several ways. One 
way is to name them using equations, as 
above; another way is to create them di- 
rectly as lambda abstractions, thus render- 
ing them nameless, as in the Haskell 
expression 

\x + x+1 

[in lambda calculus this would be written 
Xx.x + 11, which is the same as the successor 
function succ defined above. add2 can then 
be defined more succinctly as 

add2 = twice (Lx + x+1) 

From a pragmatic viewpoint, we can un- 
derstand the use of higher-order functions 
by analyzing the use of abstraction in gen- 
eral. As known from introductory program- 
ming, a function is an abstraction of values 
over some common behavior (an expres- 
sion). Limiting the values over which the 
abstraction occurs to nonfunctions seems 
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unreasonable; lifting that restriction re- 
sults in higher-order functions. Hughes 
makes a slightly different but equally com- 
pelling argument in Hughes [1984] where 
he emphasizes the importance of modular- 
ity in programming and argues convinc- 
ingly that higher-order functions increase 
modularity by serving as a mechanism for 
glueing program fragments together. That 
glueing property comes not just from the 
ability to compose functions but also from 
the ability to abstract over functional be- 
havior as described above. 

A.s an example, suppose in the course of 
program construction we define a function 
to add together the elements of a list as 
follows: 

sum [] = 0 
sum(x:xs) = add x (sum xs) 

Then suppose we later define a function to 
multiply the elements of a list as follows: 

prod [ ] = 1 
prod(x:xs)= mu1 x (prod xs) 

But now we notice a repeating pattern and 
anticipate that we might see it again, so we 
ask ourselves if we can possibly abstract 
the common behavior. In fact, this is easy 
to do: We note that add/mu1 and O/l are 
the variable elements in the behavior, and 
thus we parameterize them; that is, we 
make them formal parameters, say f and 
init. Calling the new function fold, the 
equivalent of sum/prod will be “fold f init”, 
and thus we arrive at 

(fold f init) [ ] = init 
(fold f init)(x:xs) = f x ((fold f init) xs) 

where the parentheses around “fold f init” 
are used only for emphasis, and are other- 
wise superfluous. 

From this we can derive new definitions 
for sum and product: 

sum = fold add 0 
prod = fold mu1 1 

Now that the fold abstraction has been 
made, many other useful functions can be 
defined, even something as seemingly un- 
related as append: 

append xs ys = fold (:) ys xs 

[An infix operator may be passed as an 
argument by enclosing it in parentheses; 
thus (:) is equivalent to \x y + x : y.] This 
version of append simply replaces the [ ] at 
the end of the list xs with the list ys. 

It is easy to verify that the new defini- 
tions are equivalent to the old using simple 
equational reasoning and induction. It is 
also important to note that in arriving at 
the main abstraction we did nothing out of 
the ordinary-we just apply classical data 
abstraction principles in as unrestricted a 
way as possible, which means allowing 
functions to be first-class citizens. 

2.2 Nonstrict Semantics (Lazy Evaluation) 

2.2.1 Fundamentals 

The normal-order reduction rules of the 
lambda calculus are the most general in 
that they are guaranteed to produce a 
normal form if in fact one exists (see 
Section 1.1). In other words, they result in 
termination of the rewriting process most 
often, and the strategy lies at the heart of 
the Church-Rosser theorem. Furthermore, 
as argued earlier, normal-order reduction 
allows recursion to be emulated with the 
Y combinator, thus giving the larnbda cal- 
culus the most powerful form of effec- 
tive computability, captured in Church’s 
Thesis. 

Given all this, it is quite natural to con- 
sider using normal-order reduction as the 
computational basis for a programming 
language. Unfortunately, normal-order re- 
duction, implemented naively, is hopelessly 
inefficient. To see why, consider this simple 
normal-order reduction sequence: 

(Xx. (+ x x))(* 5 4) 
* (+ (* 5 4)(* 5 4)) 
* (+ 20 (* 5 4)) 
* (+ 20 20) 
4 40 

Note that the multiplication (* 5 4) is done 
twice. In the general case, this could be an 
arbitrarily large computation, and it could 
potentially be repeated as many times as 
there are occurrences of the formal param- 
eter (for this reason an analogy is often 
drawn between normal-order reduction and 
call-by-name parameter passing in Algol). 
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In practice this can happen quite often, 
reflecting the simple fact that results are 
often shared. 

One solution to this problem is to resort 
to something other than normal-order re- 
duction, such as applicative-order reduc- 
tion, which for the above term yields the 
following reduction sequence: 

(Ax. (+ x x))(* 5 4) 
4 (Xx. (+ x x)) 20 
=$ (+ 20 20) 
* 40 

Note that the argument is evaluated before 
the P-reduction is performed (similar to 
a call-by-value parameter-passing mecha- 
nism), and thus the normal form is reached 
in three steps instead of four, with no re- 
computation. The problem with this solu- 
tion is that it requires the introduction of 
a special reduction rule to implement re- 
cursion (such as gained through the &rule 
for McCarthy’s conditional), and further- 
more there are examples for which it does 
more work than normal-order reduction. 
For example, consider 

Applicative order normal order 
(Xx. l)(* 5 4) (Xx. l)(* 5 4) 

* (Xx. 1) 20 *l 
*l 

or even worse (repeated from Section 1.1): 

Applicative order 

(Xx. l)((Xx. x x)(Xx. x x)) 
- (Xx. l)((Xx. x x)(Xx. x x)) 
=+ 

Normal order 

(Xx. l)((hr. x x)(Xx. x z)) 
*l 

which in the applicative-order case does not 
terminate. Despite these problems, most of 
the early functional languages, including 
pure Lisp, FP, ML, Hope, and all of the 
dataflow languages used applicative-order 

semantics.” In addition to overcoming the 
efficiency problem of normal-order reduc- 
tion, applicative-order reduction could be 
implemented with relative ease using the 
call-by-value compiler technology that had 
been developed for conventional imperative 
programming languages. 

Nevertheless, the appeal of normal-order 
reduction cannot be ignored. Returning to 
lambda calculus basics, we can try to get to 
the root of the efficiency problem, which 
seems to be the following: Reduction in the 
lambda calculus is normally described as 
string reduction, which precludes any pos- 
sibility of sharing. If instead we were to 
describe it as a graph reduction process, 
perhaps sharing could be achieved. This 
idea was first suggested by Wadsworth 
in his Ph.D. dissertation in 1971 [1971, 
Chapter 41, in which he outlined a graph- 
reduction strategy that used pointers to 
implement sharing. Using this strategy re- 
sults in the following reduction sequence 
for the first example given earlier: 

which takes the same number of steps as 
the applicative-order reduction sequence. 

We will call an implementation of 
normal-order reduction in which recompu- 
tation is avoided lazy evaluation (another 
term often used is call by need). Its key 
feature is that arguments in function calls 
are evaluated at most once. It possesses the 
full power of normal-order reduction while 

I9 Actually this is not quite true-most implementa- 
tions of these languages use an applicative-order re- 
duction strategy for the top-level redices only, thus 
yielding what is known as a weak head normal form. 
This strategy turns out to be easier to implement than 
complete applicative-order reduction and also permits 
certain versions of the Y combinator to be imple- 
mented without special rules. See Burg [1975] for an 
example of this using Landin’s SECD machine. 
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being more efficient than applicative-order 
reduction in that “at most once” sometimes 
amounts to no computation at all. 

Despite the appeal of lazy evaluation and 
this apparent solution to the efficiency 
problem, it took a good 10 years more for 
researchers to discover ways to implement 
it efficiently compared to conventional pro- 
gramming languages. The chief problem 
centered on the difficulty in implementing 
lazy graph-reduction mechanisms on con- 
ventional computers, which seem to be 
better suited to call-by-value strategies. 
Simulating the unevaluated portions of 
the graph in a call-by-value environment 
amounts to implementing closures, or 
“thunks” efficiently, which have some in- 
herent, nontrivial costs [Bloss et al. 19811. 
It is beyond the scope of this paper to 
discuss the details of these implementation 
concerns; see Peyton-Jones [1987] for an 
excellent summary. 

Rather than live with conventional com- 
puters, we could alternatively build special- 
ized graph-reduction or dataflow hardware, 
but so far this has not resulted in any 
practical, much less commercially avail- 
able, machines. Nevertheless, this work is 
quite promising, and good summaries of 
work in this area can be found in articles 
by Treleaven et al. [1982] and Vegdahl 
[1984], both of which are reprinted in 
Thakkar [ 19871. 

2.2.2 Expressiveness 

Assuming that we can implement lazy eval- 
uation efficiently (current practice is con- 
sidered acceptably good), we should return 
to the question of why we want it in the 
first place. Previously we argued on philo- 
sophical grounds-it is the most general 
evaluation policy-but is lazy evaluation 
useful to programmers in practice? The 
answer is an emphatic yes, which I will 
show via a twofold argument. 

First, lazy evaluation frees a programmer 
from concerns about evaluation order. The 
fact is, programmers are generally con- 
cerned about the efficiency of their pro- 
grams, and thus they prefer not evaluating 
things that are not absolutely necessary. As 
a simple example, suppose we may need to 

know the greatest common divisor of b and 
c in some computation involving 2. In a 
modern functional language we might write 

fax 
where a = gcd b c 

without worrying about a being evaluated 
needlessly-if in the computation of f a n 
the value of a is needed, it will be computed; 
otherwise it will not. If we were to have 
written this program in Scheme, for exam- 
ple, we might try 

(let ( (a kcd b c)) 1 
(fax)) 

which will always evaluate a. Knowing that 
f doesn’t always need that value and being 
concerned about efficiency, we may decide 
to rewrite this as 

(let ( (a (delay &cd b cl)) 1 
(fax)) 

which requires modifying f so as to force its 
first argument. Alternatively, we could just 
write (f b c x), which requires modifying f 
so as to compute the gcd internally. Both 
of these solutions are severe violations of 
modularity and arise out of the program- 
mer’s concern about evaluation order. Lazy 
evaluation eliminates that concern and pre- 
serves modularity. 

The second argument for lazy evaluation 
is perhaps the one more often heard: the 
ability to compute with unbounded “infinite” 
data structures. The idea of lazily evaluat- 
ing data structures was first proposed by 
Vuillemin [ 19741, but similar ideas were 
developed independently by Henderson 
and Morris [1976] and Friedman and Wise 
[1976]. In a later series of papers, Turner 
[1981, 19821 provided a strong argument 
for using lazy lists, especially when com- 
bined with list comprehensions (see Sec- 
tion 1.7) and higher order functions (see 
Section 2.1). Aside from Turner’s elegant 
examples, Hughes [1984] presented an ar- 
gument based on facilitating modularity in 
programming where, along with higher or- 
der functions, lazy evaluation is described 
as a way to “glue” pieces of programs 
together. 
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The primary power of lazily evaluated 
data structures comes from its use in sep- 
arating data from control. The idea is that 
a programmer should be able to describe a 
specific data structure without worrying 
about how it gets evaluated. Thus, for ex- 
ample, we could describe the sequence of 
natural numbers by the following simple 
program: 

nats = 0: map succ nats 

or alternatively by 

numsfrom n = n:numsfrom (n+l) 
nats = numsfrom 0 

These are examples of “infinite lists”, or 
streams, and in a language that did not 
support lazy evaluation would cause the 
program to diverge. With lazy evaluation 
these data structures are only evaluated 
as they are needed, on demand. For exam- 
ple, we could define a function that filters 
out only those elements satisfying a pro- 
perty p : 

filter p (X : xs) 
= if (p X) then (x: rest) else rest 

where rest = filter p xs 

in which case “filter p nats” could be writ- 
ten knowing that the degree of the list’s 
computation will be determined by its con- 
text-that is, the consumer of the result. 
Thus filter has no operational control 
within it and can be combined with other 
functions in a modular way. For example, 
we could compose it with a function to 
square each element in a list: 

map (\x-+x*x) . filter p 

[. is the infix composition operator.] This 
kind of modular result, in which data is 
separated from control, is one of the key 
features of lazy evaluation. Many more ex- 
amples of this kind may be found in Hughes 
[1984]. 

2.3 Data Abstraction 

Independently of the development of func- 
tional languages there has been considera- 
ble work on data abstraction in general and 
on strong typing, user-defined datatypes 
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and type checking in particular. Some of 
this work has also taken on a theoretical 
flavor, not only in foundational mathemat- 
ics where logicians have used types to re- 
solve many famous paradoxes, but also in 
formal semantics where types aid our un- 
derstanding of programming languages. 

Fueling the theoretical work are two sig- 
nificant pragmatic advantages of using data 
abstraction and strong typing in one’s 
programming methodology. First, data ab- 
straction improves the modularity, secu- 
rity, and clarity of programs. Modularity is 
improved because we can abstract away 
from implementation (i.e., representation) 
details; security is improved because inter- 
face violations are automatically prohib- 
ited, and clarity is improved because data 
abstraction has an almost self-documenting 
flavor. 

Second, strong static typing helps in de- 
bugging since we are guaranteed that if a 
program compiles successfully no error can 
occur at run time due to type violations. It 
also leads to more efficient implementa- 
tions, since it allows us to eliminate the 
most run-time tag bits and type testing. 
Thus there is little performance penalty for 
using data abstraction techniques. 

Of course, these issues are true for any 
programming language, and for that reason 
a thorough treatment of types and data 
abstraction is outside the scope of this sur- 
vey; the reader may find an excellent sum- 
mary in Cardelli and Wegner [1985]. The 
basic idea behind the Hindley-Milner type 
system was discussed in Section 1.6.1. I will 
concentrate in this section on how data 
abstraction is manifest in modern func- 
tional languages. 

2.3.1 Concrete Datatypes 

As mentioned earlier, there is a strong ar- 
gument for wanting language features that 
facilitate data abstraction, whether or not 
the language is functional. In fact such 
mechanisms were first developed in the 
context of imperative languages such as 
Simula, Clu, and Euclid. It is only natural 
that they be included in functional lan- 
guages. ML, as I mentioned, was the first 
functional language to do this, but many 
others soon followed suit. 
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In this section I will describe concrete 
(or algebraic) datatypes as well as type 
synonyms. I will use Haskell syntax, but 
the ideas are essentially identical (at least 
semantically) to those used in ML and 
Miranda. 

New algebraic datatypes may be defined 
along with their constructors using data 
declarations, as in the following definitions 
of lists and trees: 

data List a 
= Nil / Cons a (List a) 

data Tree b 
= Empty 1 Node 6 (List (Tree b)) 

The identifiers List and Tree are called type 
constructors, and the identifiers a and b are 
called type variables, which are implicity 
universally quantified over the scope of the 
data declaration. The identifiers Nil, Cons, 
Empty, and Node are called data construc- 
tors, or just constructors, with Nil and 
Empty being nullary constructors. [Note 
that both type constructors and data con- 
structors are capitalized, so that the latter 
can be used without confusion in pattern 
matching (as discussed in the next section) 
and to avoid confusion with type variables 
(such as a and b in the above example).] 

List and Tree are called type construc- 
tors since they construct types from other 
types. For example, Tree Ints is the type of 
trees of integers. Reading from the data 
declaration for Tree, we see then that a tree 
of integers is either Empty or a Node con- 
taining an integer and a list of more trees 
of integers. 

We can now see that the previously given 
type signature for map, 

map :: (a * b) - [al ---f PI 

is equivalent to 

map :: (a-+b)+(Lista)-+(Listb) 

That is, [. . .] in a type expression is just 
syntax for application of the type construc- 
tor List. Similarly, we can think of + as an 
infix type constructor that creates the type 
of all functions from its first argument (a 
type) to its second (also a type). 

[A useful property to note is the con- 
sistent syntax used in Haskell for ex- 
pressions and types. Specifically, if Ti is 
the type of expression or pattern ci, then 

the expressions \e1+e2, [e,], and (e1,e2) 
have the types Tl+T2, [T,], and (Tl,T2), 
respectively.] 

Instances of these new types are built 
simply by using the constructors. Thus 
Empty is an empty tree, and Node 5 Empty 
is a very simple tree of integers with one 
element. The type of the instance is in- 
ferred via the same type inference mecha- 
nism that infers types of polymorphic 
functions, as described previously. 

Defining new concrete datatypes is fairly 
common not only in functional languages 
but also in imperative languages, although 
the polymorphism offered by modern func- 
tional languages makes it all the more 
attractive. 

Type synonyms are a way of creating new 
names for types, such as in the following: 

type Intree = Tree Ints 
type Flattener = Intree -+ [Ints] 

Note that Intree is used in the definition of 
Flattener.Type synonyms do not introduce 
new types (as data declarations do) but 
rather are a convenient way to introduce 
new names (i.e., synonyms) for existing 
types. 

2.3.2 Abstract Datatypes 

Another idea in data abstraction originat- 
ing in imperative languages is the notion of 
an abstract datatype (ADT) in which the 
details of the implementation of a datatype 
are hidden from the users of that type, thus 
enhancing modularity and security. The 
traditional way to do this is exemplified 
by ML’s ADT facility and emulated in 
Miranda. Although the Haskell designers 
chose a different approach to ADTs (de- 
scribed below), the following example of a 
queue ADT is written as if Haskell had 
ML’s kind of ADTs, using the keyword 
abstype: 

abstype Queue a = Q [a] 
where first (Q us) = last us 

isempty (Q [ 1) = True 
isempty (Q as) = False 

The main point is that the functions first, 
isempty, and so on, are visible in the scope 
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of the abstype declaration, but the con- 
structor Q, including its type, is not. Thus 
a user of the ADT has no idea whether 
queues are implemented as lists (as shown 
here) or some other data structure. The 
advantage of this, of course, is that one is 
free to change the representation type with- 
out fear of breaking some other code that 
uses the ADT. 

2.3.3 Haskell’s Orthogonal Design 

In Haskell a rather different approach was 
taken to ADTs. The observation was made 
that the main difference between a concrete 
and abstract datatype was that the latter 
had a certain degree of information hiding 
built into it. So instead of thinking of ab- 
stract datatypes and information hiding as 
going hand in hand, the two were made 
orthogonal components of the language. 
More specifically, concrete datatypes were 
made the only data abstraction mechanism, 
and to that an expose declaration was 
added to control information hiding, or 
visibility. 

For example, to get the effect of the 
earlier definition of a queue, we would write 

expose Queue, first, isempty 
from data Queue a = Q [a] 

first (Q as) = last as 
isempty (Q [ ] = True 
isempty (Q us) = False 

Since Q is not explicitly listed in the expose 
declaration, it becomes hidden from the 
user of the ADT. 

The advantage of this approach to ADTs 
is more flexibility. For example, suppose we 
also wish to hide isempty or perhaps some 
auxiliary function defined in the nested 
scope. This is trivially done with the or- 
thogonal design but is much harder with 
the ML design as described so far. Indeed, 
to alleviate this problem the ML designers 
provided an additional construct, a local 
declaration, with which one can hide local 
declarations. Another advantage of the or- 
thogonal design is that the same mecha- 
nism can be used at the top level of a 
module to control visibility of the internals 
of the module to the external world. In 
other words, the expose mechanism is very 
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general and can be nested. Haskell uses a 
conservative module system that relies on 
this capability. 

A disadvantage of the orthogonal ap- 
proach is that if the most typical ADT 
scenario only requires hiding the represent- 
ative type, the user will have to think 
through the details in each case rather than 
having the hiding done automatically by 
using abstype. 

2.4 Equations and Pattern Matching 

One of the programming methodology at- 
tributes that is strongly encouraged in the 
modern school of functional programming 
is the use of equational reasoning in the 
design and construction of programs. The 
lack of side effects accounts for the primary 
ability to apply equational reasoning, but 
there are syntactic features that can facili- 
tate it as well. Using equations as part of 
the syntax is the most obvious of these, but 
along with that goes pattern matching 
whereby one can write several equations 
when defining the same function, only one 
of which is presumably applicable in a given 
situation. Thus modern functional lan- 
guages have tried to maximize the expres- 
siveness of pattern matching. 

At first blush, equations and pattern 
matching seem fairly intuitive and rela- 
tively innocuous. Indeed, we have already 
given many examples that use pattern 
matching without having said much about 
the details of how it works. But in fact 
pattern matching can have surprisingly 
subtle effects on the semantics of a lan- 
guage and thus should be carefully and 
precisely defined. 

2.4.1 Pattern Matching Basics 

Pattern matching should actually be viewed 
as the primitive behavior of a case expres- 
sion, which has the general form 

case e of 
pat1 + el 
pat2 + e2 

patn -+ en 

Intuitively, if the structure of e matches 
pati, then the result of the case expression 
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is ei. A set of equations of the form 

fpatl = el 
f pat2 = e2 

f patn = en 

can then be thought of as shorthand for 

f=\x+caserof 
pat1 -+ el 
pat2 ---, e2 

patn + en 

Despite this translation, for convenience I 
will use the equational syntax in the re- 
mainder of this section. 

The question to be asked first is just what 
the pattern-matching process consists of. 
For example, what exactly are we pattern 
matching against? One idea that seems rea- 
sonable is to allow one to pattern match 
against constants and data structures. 
Thus, fat can be defined by 

fat 0 = 1 
’ n = n*fac(n-1) 

[The tick mark in the second equation is 
an abbreviation for fat.] But note that this 
relies on a top-to-bottom reading of the 
program, since (fat 0) actually matches 
both equations. We can remove this ambi- 
guity by adding a guard (recall the discus- 
sion in Section 1.7), which in Haskell looks 
like the following: 

fat 0 
’ 

= 1 
n ] n>O = n*fac(n-1) 

As we have already demonstrated through 
several examples, it is also reasonable to 
pattern match against lists: 

length [] = 0 
(x: xs) = 1 + length xs 

and for that matter any data structure, 
including user-defined ones: 

data Tree2 a 
= Leaf a ] Branch (Tree2 a) (Tree2 a) 

fringe (Leaf x) = [x] 
9 (Branch left right) 

= fringe left ++ fringe right 

where ++ is the infix append operator. 

Another possibility that seems desirable 
is the ability to repeat formal parameters 
on the left-hand side to denote that argu- 
ments in those positions must have the 
same value, as in the second line of the 
following definition: 

member x [ ] = False 
, x (x : xs) = True 
, x (y : xs) = member x xs 

[This is not legal Haskell syntax, since such 
repetition of identifiers is not allowed.] 
Care must, however, be taken with this 
approach since in something like 

alleq [x, x, x] = True 
, 

Y = False 

it is not clear in what order the elements of 
the list are to be evaluated. For example, if 
they are evaluated left to right then “alleq 
[I, 2, bot]“, where bot is any nonterminat- 
ing computation, will return False, whereas 
with a right to left order the program will 
diverge. One solution that would at least 
guarantee consistency in this approach is 
to insist that all three positions are evalu- 
ated so that the program diverges if any of 
the arguments diverge. 

In general the problem of what gets eval- 
uated, and when, is perhaps the most subtle 
aspect of reasoning about pattern matching 
and suggests that the pattern-matching al- 
gorithm be fairly simple so as not to mislead 
the user. Thus in Haskell the above repe- 
tition of identifiers is disallowed-equa- 
tions must be linear-but some functional 
languages allow it (e.g., Miranda and Alfl 
[Hudak 19841). 

A particularly subtle version of this prob- 
lem is captured in the following example. 
Consider these definitions: 

data Silly a = Foo a ] Other 
bar (Foo x) = 0 
’ Other = 1 

Then a call “bar bot” will diverge, since bar 
must be strict in order that it can distin- 
guish between the two kinds of arguments 
that it might receive. But now consider this 
small modification: 

data Silly a = Foo a 
bar (Foo x) = 0 

ACM Computing Surveys, Vol. 21, No. 3, September 1989 



390 l Paul Hudak 

Now a call bar bot seems like it should 
return 0, since bar need not be strict-it 
can only receive one kind of argument and 
thus does not need to examine it unless it 
is needed in computing the result, which in 
this case it does not. In Haskell a mecha- 
nism is provided so that either semantics 
may be specified. 

Two useful discussions on the subject of 
pattern matching can be found in Augusts- 
son [1985] and Wadler [1987a]. 

2.4.2 Connecting Equations 

Let us now turn to the more global issue of 
how the individual equations are connected 
together as a group. As mentioned earlier, 
one simple way to do this is give the equa- 
tions a top-to-bottom priority, so that in 

fat 0 = 1 
’ n = n * fac(n-1) 

the second equation is tried only after the 
first one has failed. This is the solution 
adopted in many functional languages, in- 
cluding Haskell and Miranda. 

An alternative method is to insist that 
the equations be disjoint, thus rendering 
the order irrelevant. One significant moti- 
vation for this is the desire to reason about 
the applicability of an equation indepen- 
dently of the others, thus facilitating equa- 
tional reasoning. The question is, HOW can 
one guarantee disjointness? For equations 
without guards, the disjointness property 
can be determined statically; that is, by just 
examining the patterns. Unfortunately, 
when unrestricted guards are allowed, the 
problem becomes undecidable, since it 
amounts to determining the equality of ar- 
bitrary recursive predicates. This in turn 
can be solved by resolving the guard dis- 
jointness at run time. On the other hand, 
this solution ensures correctness only for 
values actually encountered at run time, 
and thus the programmer might apply 
equational reasoning erroneously to as yet 
unencountered values. 

The two ideas could also be combined by 
providing two different syntaxes for joining 
equations. For example, using the hypo- 

thetical keyword else (not valid in Haskell): 

sameShallowStructure [a] [c] = True 
[a&] [c,d] = True 

else 
7 

x Y = False 

The first two equations would be combined 
using a disjoint semantics; together they 
would then be combined with the third 
using a top-to-bottom semantics. Thus the 
third equation acts as an “otherwise” clause 
in the case that the first two fail. A design 
of this sort was considered for Haskell early 
on, but the complexities of disjointness, 
especially in the context of guards, were 
considered too great and the design was 
eventually rejected. 

2.4.3 Argument Order 

In the same sense that it is desirable to 
have the order of equations be irrelevant, 
it is desirable to have the order of argu- 
ments be irrelevant. In exploring this pos- 
sibility, consider first the functions f and’g 
defined by 

fll=l 
fZx=Z 

gll=l 
gx2=2 

which differ only in the order of their ar- 
guments. Now consider to what “f 2 bot” 
should evaluate. Clearly the equations for f 
are disjoint, clearly the expression matchs 
only the second equation, and since we 
want a nonstrict language it seems the an- 
swer should clearly be 2. For a compiler to 
achieve this it must always evaluate the 
first argument to f first. 

Now consider the expression “g bot 2”- 
by the same argument given above the re- 
sult should also be 2, but now the compiler 
must be sure always to evaluate the second 
argument to g first. Can a compiler always 
determine the correct order in which to 
evaluate its arguments? 

To help answer that quation, first con- 
sider this intriguing example (due to Berry 
[ 19781): 

fOlx=l 
flrO=Z 
fx01=3 
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Clearly these equations are disjoint. So 
what is the value of “f 0’1 bot”? The desired 
answer is 1. And what is the value of “f 1 
bot O”? The desired answer is 2. And what 
is the value of “f bot 0 l”? The desired 
answer is 3. But now the most difficult 
question is In what order should the argu- 
ments be evaluated? If we evaluate the 
third one first, then the answer to the first 
question cannot be 1. If we evaluate the 
second one first, then the answer to the 
second question cannot be 2. If we evaluate 
the first one first, then the answer to the 
third question cannot be 3. In fact there is 
no sequential order that will allow us to 
answer these three questions the way we 
would like-some kind of parallel evalua- 
tion is required. 

This subtle problem is solvable in several 
ways, but they all require some kind of 
compromise-insisting on a parallel (or 
pseudoparallel) implementation, rejecting 
certain seemingly valid programs, making 
equations more strict than one would like, 
or giving up on the independence of 
the order of evaluation of arguments. In 
Haskell the last solution was chosen- 
perform a left-to-right evaluation of the 
arguments-because it presented the sim- 
plest semantics to the user, which was 
judged to be more important than making 
the order of arguments irrelevant. Another 
way to explain this is to think of equations 
as syntax for nested lambda expressions, in 
which case one might not expect symmetry 
with respect to the arguments anyway. 

2.5 Formal Semantics 

Simultaneously with work on functional 
languages Scott, Strachey, and others were 
busy establishing the foundations of deno- 
tational semantics, now the most widely 
used tool for describing the formal seman- 
tics of programming languages. There was 
a close connection between this work and 
functional languages primarily because the 
lambda calculus served as one of the sim- 
plest programming languages with enough 
useful properties to make its formal seman- 
tics interesting. In particular, the lambda 
calculus had a notion of self-application, 
which implies that certain domains had to 
contain their own function spaces. That is, 

it required a domain D that was a solution 
to the following domain equation: 

D=D+D 

At first this seems impossible-surely there 
are more functions from D into D than 
there are elements in D-but Scott [1970] 
was able to show that indeed such domains 
existed, as long as one was willing to restrict 
the allowable functions in certain (quite 
reasonable) ways and by treating = as an 
isomorphism rather than an equality. 
Scott’s work served as the mathematical 
foundation for Strachey’s work [Milne and 
Stracheg 19761 on the denotational seman- 
tics of programming languages; see [Stoy 
19791 and [Schmidt 19851 for thorough 
treatments. 

Denotational semantics and functional 
programming have close connections, and 
the functional programming community 
emphasizes the importance of formal se- 
mantics in general. For completeness and 
to show how simple the denotational 
semantics of a functional language can 
be, we give the semantics of the recursive 
lambda calculus with constants defined 
in Section 2.3. 

Bas = Int + Bool + . . . Basic values 
D = Bas + (D + D) Denotable values 
Env = Id + D Environments 

8: Exp -+ Env + D 
3: Con + D 

gI[xi)enu= enuI[xj 
8I[cjenv = 3T[cl 
~?(jele2]enu = (271[el J/env)(Z?[epjenv) 
BI[Xx.ejenu = Au.Z?[ejenu[u/x] 
kF[e where x1 = e,; .‘. . ; X, = e,l)env 

= 8I[ejenv’ 

where 

env’ = fix Aenv’.env[(Z[e,Denv’)/xl, 

This semantics is relatively simple, but 
in moving to a more complex language such 
as Miranda or Haskell the semantics can 
become significantly more complex due to 
the many syntactic features that make the 
languages convenient to use. In addition, 
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one must state precisely the static seman- 
tics as well, including type checking and 
pattern-matching usage. This complexity is 
managed in the Haskell Report by first 
translating Haskell into a kernel which is 
only slightly more complex than the above. 

3. ADVANCED FEATURES AND ACTIVE 
RESEARCH AREAS 

Some of the most recent ideas in functional 
language design are new enough that they 
should be regarded as on-going research. 
Nevertheless, many of them are sound 
enough to have been included in current 
language designs. In this section we will 
explore a variety of such ideas, beginning 
with some of the innovative ideas in the 
Haskell design. Some of the topics have a 
theoretical flavor, such as extensions of the 
Hindley-Milner type system; some have a 
pragmatic flavor, such as expressing non- 
determinism, efficient arrays, and I/O; and 
some involve the testing of new application 
areas, such as parallel and distributed com- 
putation. All in all, studying these topics 
should provide insight into the goals of 
functional programming as well as some of 
the problems in achieving those goals. 

3.1 Overloading 

The kind of polymorphism exhibited by 
the Hindley-Milner type system is what 
Strachey called parametric polymorphism 
to distinguish it from another kind that he 
called ad hoc polymorp.lzi.sm or overloading. 
The two can be distinguished in the follow- 
ing way: A function with parametric poly- 
morphism does not care what type certain 
of its arguments have and thus it behaves 
identically regardless of the type. In con- 
trast, a function with ad hoc polymorphism 
does care and in fact may behave differently 
for different types. Stated another way, ad 
hoc polymorphism is really just a syntactic 
device for overloading a particular func- 
tion name or symbol with more than one 
meaning. 

For example, the function map defined 
earlier exhibits parametric polymorphism 
and has typing 

map :: (a + b) - [a] -+ [b] 

Regardless of the kind of list given to map 
it behaves in the same way. In contrast, 
consider the function +, which we normally 
wish to behave differently for integer and 
floating point numbers and not at all (i.e., 
be a static error) for nonnumeric argu- 
ments. Another common example is the 
function == (equality), which certainly be- 
haves differently when comparing the 
equality of two numbers versus, say, two 
lists. 

Ad hoc polymorphism is normally (and 
I suppose appropriately) treated in an 
ad hoc manner. Worse, there is no accepted 
convention for doing this; indeed ML, 
Miranda, and Hope all do it differently. 
Recently, however, a uniform treatment for 
handling overloading was discovered inde- 
pendently by Kaes [ 19881 (in trying to gen- 
eralize ML’s ad hoc equality types) and 
Wadler and Blott [1989] (as part of the 
process of defining Haskell). Below I will 
describe the solution as adopted in Haskell; 
details may be found in Wadler and Blott 
[ 19891. 

The basic idea is to introduce a notion of 
type classes that capture a collection of 
overloaded operators in a consistent way. 
A class declaration is used to introduce a 
new type class and the overloaded operators 
that must be supported by any type that is 
an instance of that class. An instance dec- 
laration declares that a certain type is an 
instance of a certain class, and thus in- 
cluded in the declaration are the definitions 
of the overloaded operators instantiated on 
the named type. 

For example, say that we wish to overload 
+ and negate on types Int and Float. To do 
so, we introduce a new type class called 
Num: 

class Num a where 
(+) :: a+a-+a 
negate :: a -3 a 

This declaration may be read “a type a 
belongs to the class Num if there are (over- 
loaded) functions + and negate, of the ap- 
propriate types, defined on it.” 

We may then declare Int and Float to be 
instances of this class, as follows: 

instance Num Int where 
x+Y = addInt x y 
negate x = negateInt x 
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instance Num Float where 
x+Y = addFloat x y 
negate x = negateFloat n 

[note how infix operators are defined; 
Haskell’s lexical syntax prevents ambigui- 
ties] where addInt, negateInt, addFloat, 
and negateFloat are assumed in this case 
to be predefined functions but in general 
could be any user-defined function. The 
first declaration above may be read “Int is 
an instance of the class Num as witnessed 
by these definitions of + and negate.” 

Using type classes we can thus treat over- 
loading in a consistent, arguably elegant, 
way. Another nice feature is that type 
classes naturally support a notion of inher- 
itance. For example, we may define a class 
Eq by 

class Eq a where 
(==) :: a + a + Boo1 

Given this class, we would certainly expect 
all members of the class Num, say, to have 
== defined on them. Thus the class decla- 
ration for Num could be changed to 

class Eq a * Num a where 
(+I ::a+a+a 
negate :: a + a 

which can be read as “only members of the 
class Eq may be members of the class Num, 
and a type a belongs to the class Num if. . . 
(as before).” Given this class declaration, 
instance declarations for Num must include 
a definition of == as in 

instance Num Int where 
x+Y = addInt x y 
negate n = negateInt x 
X”Y = eqInt x y 

The Haskell Report uses this inheritance 
mechanism to define a very rich hierarchi- 
cal numeric structure that reflects fairly 
well a mathematician’s view of numbers. 

The traditional Hindley-Milner type 
system is extended in Haskell to include 
type classes. The resulting type system is 
able to verify that the overloaded operators 
do have the appropriate type. It is however, 
possible (but not likely) for ambiguous sit- 
uations to arise, which in Haskell result in 
type error but can be reconciled explicitly 
by the user (see Hudak and Wadler [1988] 
for the details). 

3.2 Purely Functional Yet Universal I/O 

To many the notion of I/O conjures an 
image of state, side effects, and sequencing. 
Is there any hope at achieving purely func- 
tional yet universal and of course efficient 
I/O? Suprisingly, the answer is yes. Per- 
haps even more surprising is that over the 
years there have emerged not one but two 
seemingly very different solutions: 

The lazy stream model, in which temporal 
events are modeled as lists, whose lazy 
semantics mimics the demand-driven be- 
havior of processes. 
The continuation model in which tem- 
porality is modeled via explicit contin- 
uations. 

Although papers have been written ad- 
voacting both solutions, and indeed they 
are very different in style, the two solutions 
turn out to be exactly equivalent in terms 
of expressiveness; in fact, there is an almost 
trivial translation from one to the other. 
The Haskell I/O system takes advantage of 
this fact and provides a unified framework 
that supports both styles. The specific I/O 
operations available in each style are iden- 
tical-what differs is the way they are ex- 
pressed-and thus programs in either style 
may be combined with a well-defined se- 
mantics. In addition, although certain of 
the primitives rely on nondeterministic be- 
havior in the operating system, referential 
transparency is still retained internal to a 
Haskell program. 

In this section the two styles will be 
described as they appear in Haskell, to- 
gether with the translation of one in terms 
of the other. Details of the actual Haskell 
design may be found in Hudak and Wadler 
[1988], and a good discussion of the trade- 
offs between the styles, including examples, 
may be found in Hudak and Sundaresh 
[ 19881. ML, by the way, uses an imperative, 
referentially opaque, form of I/O (perhaps 
not surprising given the presence of refer- 
ences); Miranda uses a rather restricted 
form of the stream model; and Hope uses 
the continuation model but with a strict 
(i.e., call-by-value) semantics. 

To begin, we can paint an appealing 
functional view of a collection of programs 
executing within an operating system (OS) 
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as shown in Figure 1. With this view pro- 
grams are assumed to communicate with 
the OS via messages-programs issue re- 
quests to the OS and receive responses from 
the OS. 

Ignoring for now the OS itself as well as 
the merge and split operations, a program 
can be seen as a function from a stream 
(i.e., list) of responses to a stream of re- 
quests. Although the above picture is quite 
intuitive, this latter description may seem 
counterintuitive-how can a program re- 
ceive a list of responses before it has gen- 
erated any requests? But remember that we 
are using a lazy (i.e., nonstrict) language, 
and thus the program is not obliged to 
examine any of the responses before it is- 
sues its first request. This application of 
lazy evaluation is in fact a very common 
style of programming in functional lan- 
guages. 

Thus a Haskell program engaged in I/O 
is required to have type Behavior, where 

type Behavior = [Response] -+ [Request] 

(Recall from Section 2.3 that [Response] is 
the type consisting of lists of values of type 
Response.) The main operational idea is 
that the nth response is the reply of the 
operating system to the nth request. 

For simplicity, we will assume that there 
are only two kinds of requests and three 
kinds of responses, as defined below: 

data Request 
= ReadFile’ Name 

1 WriteFile’ Name Contents 

data Response 
= Success 1 Return Contents 

1 Failure ErrorMsg 
type Name = String 
type Contents = String 
type ErrorMsg= String 

[This is a subset of the requests available 
in Haskell.] 

As an example, given this request list, 

1 . . . , WriteFile fname sl, Readfile fname, 
. . . 1 

and the corresponding response list, 

[ . . . , Success, Return ~2, . . . ] 

then sl == 52, unless there were some 
intervening external effect. 

In contrast, the continuation model is 
normally characterized by a set of transac- 
tions. Each transaction typically takes a 
success continuation and a failure contin- 
uation as arguments. These continuations 
in turn are simply functions that generate 
more transactions. For example, 

data Transaction 
= ReadFile’ Name FailCont RetCont 
1 WriteFile’ Name Contents 

FailCont SuccCont 
type FailCont 

= ErrorMsg + Transaction 
type RetCont 

= Contents + Transaction 
Type SuccCont Transaction 

[In Haskell the transactions are actually 
provided as functions rather than construc- 
tors; see below.] The special transaction 
Done represents program termination. 
These declarations should be compared 
with those for the stream model given 
earlier. 

Returning to the simple example given 
earlier, the request and response list are no 
longer separate entities since their effect is 
interwoven into the continuation structure, 
yielding something like this: 

WriteFile’ fname sl exit 
(ReadFile’ fname exit 

(\s2 + . . .) ) 
where exit errmsg = Done 

in which case, as before, we would expect 
sl == s2 in the absence of external effects. 
This is essentially the way I/O is handled 
in Hope. 

Although these two styles seem very dif- 
ferent, there is a simple translation of the 
continuation model into the stream model. 
In Haskell, instead of defining the new 
datatype Transaction, a set of functions is 
defined that accomplishes the same task 
but that is really stream transformers in 
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requests 
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Figure 1. Functional I/O. 

the request/response style. In other words, input and output. Because the merge itself 
the type Transaction should be precisely is implemented in the operating system, 
the type Behavior and should not be a new referential transparency is retained within 
datatype at all. Thus we arrive at a Haskell program. 

readFile :: Name + FailCont += FailCont ---) RetCont -+ Behavior 
writeFile :: Name + Contents ---$ FailCont + SuccCont ---* Behavior 
done :: Behavior 
type FailCont = ErrorMsg + Behavior 
type RetCont = Contents -+ Behavior 
type SuccCont = Behavior 
readFile name fail succ resps = 

(ReadFile name) : case (head resps) of 
Return contents --, succ contents (tail resps) 
Failure msg -+ fail msg (tail resps) 

writeFile name contents fail succ resps = 
(WriteFile name contents) : case (head resps) of 

Success + succ (tail resps) 
Failure msg -+= fail msg (tail resps) 

done resps = [ ] 

This pleasing and very efficient translation 
allows us to write Haskell programs in 
either style and mix them freely. 

The complete design, of course, includes 
a fairly rich set of primitive requests besides 
ReadFile and WriteFile, including a set of 
requests for communicating through chan- 
nels, which include things such as standard 

Another useful aspect of the Haskell de- 
sign is that it includes a partial (but rigor- 
ous) specification of the behavior of the OS 
itself. For example, it introduces the notion 
of an agent that consumes data on out- 
put, channels and produces data on input 
channels. The user is then modeled as an 
agent that consumes standard output and 
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produces standard input. This particular 
agent is required to be strict in the standard 
output, corresponding to the notion that 
the user reads the terminal display before 
typing at the keyboard. No other language 
design that I am aware of has gone this far 
in specifying the I/O system with this de- 
gree of precision; it is usally left implicit in 
the specification. It is particularly impor- 
tant in this context however, because the 
proper semantics relies critically on how 
the OS consumes and produces the request 
and response lists. 

To conclude this section I will show two 
Haskell programs that prompt the user for 
the name of a file, read and echo the file 
name, and then look up and display the 
contents of the file on standard output. The 
first version uses the stream model, the 
second the continuation model. 
[The operator !! is the list selection opera- 
tor; thus xs !! n is the nth element in the 
list xs.] 

translated almost verbatim into a func- 
tional language. The main philosophy is to 
treat the entire array as a single entity 
defined declaratively rather than as a place 
holder of values that is updated incremen- 
tally. This, in fact, is the basis of the APL 
philosophy (see Section 1.4), and some 
researchers have concentrated on com- 
bining functional programming ideas with 
those from APL [Tu 1986; Tu and Perlis 
19861. The reader may find good general 
discussions of arrays in functional pro- 
gramming languages in Wadler [ 19861, 
Hudak [1986a], and Wise [1987]. In the 
remainder of this section I will describe 
Haskell’s arrays, which originated from 
some ideas in Id Nouveau [Nikhil et al. 
19861. 

Haskell has a family of multidimensional 
nonstrict immutable arrays whose special 
interaction with list comprehensions pro- 
vides a convenient array comprehension 
syntax for defining arrays monolithically. 

main resps = 
[ AppendChannel “stdout” “please type a filename\CR\“, 

if (resps!!l == Success) then (ReadChannel “stdin”), 
AppendChannel “stdout” fname, 
if (resps!!3 == Success) then (ReadFile fname), 
AppendChannel “stdout” (case resps !! 4 of 

Failure msg ---f “can’t open” 
Return file-contents -+ file-contents) 

] where fname = case resps !! 2 of 
Return user-input --+ get-line user-input 

main = appendchannel “stdout” “please type a filename\CR\” exit 
(readchannel “stdin” exit (\user-input -+ 

appendchannel “stdout” fname exit 
(readFile fname (\msg + appendchannel “stdout” “can’t open” exit done) 

(\contents + 
appendchannel “stdout” contents exit done)) 
where fname = get-line user-input)) 

exit msg = done 

3.3 Arrays As an example, here is how to define a 

As it turns out, arrays can be expressed 
vector of squares of the integers from 1 

rather nicely in a functional language, and 
to n. 

. 
in fact all of the arguments about mathe- a = array (1, n) [ (i, i*i) 1 i + [l . . n] ] 
matical elegance fall in line when using 
arrays. This is especially true of program The first argument to array is a tuple of 
development in scientific computation, bounds, and thus this array has size n 
where textbook matrix algebra can often be and is indexed from 1 to n. The second 
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argument is a list of index/value pairs and 
is written here as a conventional list com- 
prehension. The ith element of an array a 
is written a ! i, and thus in the above case 
we have that a ! i = i*i. 

There are several useful semantic prop- 
erties of Haskell’s arrays. First, they can be 
recursive-here is an example of defining 
the first n numbers in the Fibonacci 
sequence: 

fib = array (0, n) 
( I@, 11, (1,1) I ++ 

[ (i, fib!&l)+fib! (i-2)) 1 i c [2 . . n] ] ) 

This example demonstrates how we can use 
an array as a cache, which in this case turns 
an exponentially poor algorithm into an 
efficient linear one. 

Another important property is that array 
comprehensions are constructed lazily, and 
thus the order of the elements in the list is 
completely irrelevant. For example, we can 
construct an m-by-n matrix using a wave- 
front recurrence, where the north and west 
borders are 1 and each other element is 
the sum of its north, northwest, and west 
neighbors, as follows: 

a = array ((lm), (l,n)) 
( [ ((1,lM) 1 ++ 

[ ((i,l),l) ( i c [2.. m] ] ++ 
1 ((l,i),l) lj + 12.. nl I ++ 
[ ((i,j), a!(&1,;) + a!(i,j-1) 

+ a!(i-l,j-1)) 
lic[2.. ml,j-P..nl I) 

The elements in this result can be accessed 
in any order-the demand-driven effect of 
lazy evaluation will cause the necessary 
elements to be evaluated in an order con- 
strained only by data dependencies. It is 
this property that makes array comprehen- 
sions so useful in scientific computation, 
where recurrence equations express the 
same kind of data dependencies. In imple- 
menting such recurrences in FORTRAN 
we must be sure that the elements are eval- 
uated in an order consistent with the de- 
pendencies-lazy evaluation accomplishes 
that for us. 

On the other hand, although elegant, ar- 
ray comprehensions may be difficult to im- 
plement efficiently. There are two main 
difficulties: the standard problem of over- 
coming the inefficiencies of lazy evaluation 

and the problem of avoiding the construc- 
tion of the many intermediate lists that the 
second argument to array seems to need. A 
discussion of ways to overcome these prob- 
lems is found in Anderson and Hudak 
[ 19891. Alternative designs for functional 
arrays and their implementations may be 
found in Aasa et al. [1987], Holmstrom 
[ 19831, Hughes [1985a], and Wise [ 19871. 

Another problem is that array compre- 
hensions are not quite expressive enough 
to capture all behaviors. The most conspic- 
uous example of this is the case in which 
an array is being used as an accumulator, 
say in building a histogram, and thus one 
actually wants an incremental update ef- 
fect. Thus in Haskell a function called 
accumArray is provided to capture this 
kind of behavior in a way consistent with 
the monolithic nature of array comprehen- 
sions (similar ideas are found in Steele et 
al. [1986] and Wadler [1986]). It is not, 
however, clear that this is the most general 
solution to the problem. An alternative ap- 
proach is to define an incremental update 
operator on arrays, but then even nastier 
efficiency problems arise, since (concep- 
tually at least) the updates involve copying. 
Work on detecting when it is safe to imple- 
ment such updates destructively has 
resulted in at least one efficient implemen- 
tation [Bloss 1988; Bloss and Hudak N.d.; 
Hudak and Bloss 19851, although the 
analysis itself is costly. 

Nevertheless, array comprehensions 
have the potential for being very useful, 
and many interesting applications have al- 
ready been programmed using them (see 
Hudak and Anderson [1988] for some ex- 
amples). It is hoped that future research 
will lead to solutions to the remaining 
problems. 

3.4 Views 

Pattern matching (see Section 2.4) is very 
useful in writing compact and readable pro- 
grams. Unfortunately, knowledge of the 
concrete representation of an object is nec- 
essary before pattern matching can be in- 
voked, which seems to be at odds with the 
notion of an abstract datatype. To reconcile 
this conflict Wadler [1987] introduced a 
notion of views. 
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A view declaration introduces a new 
algebraic datatype, just like a data decla- 
ration, but in addition establishes an iso- 
morphism between the values of this new 
type and a subset of the values of an exist- 
ing algebraic datatype. For example, 

data Complex = Rectangular Float Float 
view Complex = Polar Float Float 

where toView (Rectangular x y) 
= Polar (sqrt (x**2+y**2)) 

(arctan ( y/x 1) 
fromview (Polar r t) 

= Rectangular (r*(cos t)) 
(r*(sin t)) 

[Views are not part of Haskell, but as with 
abstract datatypes we will use Haskell syn- 
tax, here extended with the keyword view.] 
Given the datatype Complex, we can read 
the view declaration as, “One view of Com- 
plex contains only Polar values; to translate 
from a Rectangular to a Polar value, use 
the function toView; to translate the other 
way, use fromview.” 

Having declared this view, we can now 
use pattern matching using either the Rec- 
tangular constructor or the Polar construc- 
tor; similarly, new objects of type Complex 
can be built with either the Rectangular or 
Polar constructors. They have precisely the 
same status, and the coercions are done 
automatically. For example, 

rotate (Polar r t) angle = Polar r (t+angle) 

As the example stands, objects of type 
Complex are concretely represented with 
the Rectangular constructor, but this deci- 
sion could be reversed by making Polar the 
concrete constructor and Rectangular the 
view, without altering any of the functions 
that manipulate objects of type Complex. 

Whereas traditionally abstract data 
types are regarded as hiding the represen- 
tation, with views we can reveal as many 
representations (zero, one, or more) as are 
required. 

As a final example, consider this defini- 
tion of Peano’s view of the natural number 
subset of integers: 

view Integer = Zero 1 Succ Integer 
where fromView Zero = 0 

’ (Succ n) 1 n>=O =n+l 
toView 0 = Zero 
’ n 1 n>O = succ (n-l) 

With this view, 7 is viewed as equivalent to 

succ (Succ (Succ (Succ (Succ (Succ (Succ 
Zero)))))) 

Note that fromView defines a mapping of 
any finite element of Peano into an integer, 
and toView defines the inverse mapping. 
Given this view, we can write definitions 
such as 

fat Zero = 1 
’ (Succ n) = (Succ n) * (fat n) 

which is very useful from an equational 
reasoning standpoint, since it allows us 
to use an abstract representation of inte- 
gers without incurring any performance 
overhead-the view declarations provide 
enough information to map all of the 
abstractions back into concrete implemen- 
tations at compile time. 

On the other hand, perhaps the most 
displeasing aspect of views is that an im- 
plicit coercion is taking place, which may 
be confusing to the user. For example, in 

case (Foo a b) of 
Fooxy+exp 

we cannot be sure in exp that a==x and 
b==y. Although views were considered in 
an initial version of Haskell, they were 
eventually discarded, in a large part be- 
cause of this problem. 

3.5 Parallel Functional Programming 

An often-heralded advantage of functional 
languages is that parallelism in a functional 
program is implicit; it is manifested solely 
through data dependencies and the seman- 
tics of primitive operators. This is in con- 
trast to more conventional languages, 
where explicit constructs are typically used 
to invoke, synchronize, and in general co- 
ordinate the concurrent activities. In fact, 
as discussed earlier, many functional lan- 
guages were developed simultaneously with 
work on highly parallel dataflow and reduc- 
tion machines, and such research continues 
today. 

In most of this work, parallelism in 
a functional program is detected by the 
system and allocated to processors auto- 
matically. Although in certain constrained 
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classes of functional languages the mapping 
of process to processor can be determined 
optimally [Chen 1986; Delosme and Ipsen 
19851, in the general case the optimal strat- 
egy is undecidable, so heuristics such as 
load balancing are often used instead. 

But what if a programmer knows a good 
(perhaps optimal) mapping strategy for a 
program executing on a particular machine, 
but the compiler is not smart enough to 
determine it? And even if the compiler is 
smart enough, how does one reason about 
such behavior? We could argue that the 
programmer should not be concerned about 
such details, but that is a difficult argument 
to make to someone whose job is precisely 
to invent such algorithms. 

To meet these needs, various researchers 
have designed extensions to functional lan- 
guages, resulting in what I like to call 
parafunctional programming languages. 
The extensions amount to a metalanguage 
(e.g., annotations) to express the desired 
behavior. Examples include annotations to 
control evaluation order [Burton 1984; 
Darlington and While 1987; Sridharan 
19851, prioritize tasks, and map processes 
to processors [Hudak 1986c; Hudak and 
Smith 1986; Keller and Lindstrom 19851. 
Similar work has taken place in the Prolog 
community [Shapiro 19841. In addition, re- 
search has resulted in formal operational 
semantics for such extensions [Hudak 
198613; Hudak and Anderson 19871. In 
the remainder of this section one kind of 
parafunctional behavior will be demon- 
strated-that of mapping program to ma- 
chine (based on the work in Hudak [1986c] 
and Hudak and Smith [1986]). 

The fundamental idea behind process-to- 
processor mapping is quite simple. Con- 
sider the expression el+e2. The strict 
semantics of + allows the subexpressions 
el and e2 to be executed in parallel-this 
is an example of what is meant by saying 
that the parallelism in a functional program 
is implicit. But suppose now that we wish 
to express precisely where (i.e., on which 
processor) the subexpressions are to be 
evaluated; we may do so quite simply by 
annotating the subexpressions which ap- 
propriate mapping information. An expres- 
sion annotated in this way is called a 
mapped expression, which has the following 

form: 

exp on proc 

[on is a hypothetical keyword, and is not 
valid Haskell] which intuitively declares 
that exp is to be computed on the processor 
identified by proc. The expression exp is 
the body of the mapped expression and 
represents the value to which the overall 
expression will evaluate (and thus can 
be any of expression. including another 
mapped expression). The expression proc 
must evaluate to a processor id. Without 
loss of generality the processor ids, or pids, 
are assumed to be integers, and there is 
some predefined mapping from those inte- 
gers to the physical processors they denote. 

Returning now to the example, we can 
annotate the expression (el+e2) as follows: 

(el on 0) + (e2 on 1) 

where 0 and 1 are processor ids. Of course, 
this static mapping is not very interesting. 
It would be nice, for example, if we were 
able to refer to a processor relative to the 
currently executing one. We can do this 
through the use of the reserved identifier 
self, which when evaluated returns the pid 
of the currently executing processor. Using 
self we can now be more creative. For ex- 
ample, suppose we have a ring of n proces- 
sors that are numbered consecutively; we 
may then rewrite the above expression as 

(el on left self) + (e2 on right self) 
where left pid = mod (pid-1) rz 

right pid = mod (pid+l) n 

[mod x y computes x modulo y.], which 
denotes the computation of the two sub- 
expressions in parallel on the two neigh- 
boring processors, with the sum being 
computed on self. 

To see that it is desirable to bind self 
dynamically, consider that one may wish 
successive invocations of a recursive call to 
be executed on different processors-this is 
not easily expressed with lexically bound 
annotations. For example, consider the fol- 
lowing list-of-factorials program, again 
using a ring of processors: 

(map fat [2,3,4]) on 0 
where map f [] = [I 

f (xxs) = f x : ((map f xs) on 
(right self)) 
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Note that the recursive call to map is 
mapped onto the processor to the right of 
the current one, and thus the elements 2, 
6, and 24 in the result list are computed on 
processors 0, 1, and 2, respectively. 

Parafunctional programming languages 
have been shown to be adequate in express- 
ing a wide range of deterministic parallel 
algorithms clearly and concisely [Hudak 
1986c; Hudak and Smith 19861. It remains 
to be seen, however, whether the pragmatic 
concerns that motivate these kinds of lan- 
guage extensions persist, and if they do, 
whether or not compilers can become smart 
enough to perform the optimizations auto- 
matically. Indeed these same questions can 
be asked about other language extensions, 
such as the memoization techniques dis- 
cussed in the next section. 

3.6 Caching and Memoization 

Consider this simple definition of the 
Fibonacci function: 

fibO=l 
’ l=l 
’ n = fib (n-l) + fib (n-2) 

Although simple, it is hopelessly inefficient. 
We could rewrite it in one of the classic 
ways, but then the simplicity and elegance 
of the original definition is lost. Keller and 
Sleep [ 19861 suggest an elegant alternative: 
Provide syntax for expressing the caching 
or memoization of selected functions. For 
example, the syntax might take the form of 
a declaration that precedes the function 
definition, as in 

memo f’ib using cache 
fibO=l 
’ l=l 
’ n = fib (n-l) + fib (n-2) 

which would be syntactic sugar for 

fib = cache fib1 
where fib1 0 = 1 

’ l=l 
’ n = fib (n-l) + fib (n-2) 

The point is that cache is a user-defined 
function that specifies a strategy for cach- 
ing values of fib. For example, to cache 
values in an array, we might define 

cache by 

cache fn = \n + (array (0,max) 
[(i&z i) 1 it[O..max]]) ! n 

where we assume max is the largest argu- 
ment to which fib will be applied. Expand- 
ing out the definitions and syntax yields 

fib n = (array (0,max) 
where k$lj i HO..maxll) ! n 

’ l=l 
’ n = fib (n-1) + fib (n-2) 

which is exactly the desired result.” As a 
methodology this is very nice, since librar- 
ies of useful caching functionals may be 
produced and reused to cache many differ- 
ent functions. There are limitations to the 
approach, as well as extensions, all of which 
are described in Keller and Sleep [1986]. 

One of the limitations of this approach 
is that in general it can only be used with 
strict functions, and even then the expense 
of performing equality checks on, for ex- 
ample, list arguments can be expensive. As 
a solution to this problem. Hughes intro- 
duced the notion of lazy memo-functions, 
in which the caching strategy uses an iden- 
tity test (EQ in Lisp terminology) instead 
of an equality test [Hughes 1985131. Such a 
strategy can no longer be considered as 
syntactic sugar, since an identity predicate 
is not something normally provided as a 
primitive in functional languages because 
it is implementation dependent. Neverthe- 
less, if built into a language lazy memo- 
functions provide a very efficient (constant 
time) caching mechanism and allow very 
elegant solutions to a class of problems not 
solved by Keller and Sleep’s strategy: those 
involving infinite data structures. For ex- 
ample, consider this definition of the infi- 
nite list of ones: 

ones = 1 : ones 

Any reasonable implementation will rep- 
resent this as a cyclic list, thus consuming 
constant space. Another common idiom is 
the use of higher-order functions such as 

” This is essentially the same solution as the one given 
in Section 3.3. 
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map: 

twos = map (\x+2*x) ones 

But now note that only the cleverest of 
implementations will represent this as a 
cyclic list, since map normally generates a 
new list cell on every recursive call. By lazy 
memoizing map, however, the cyclic list will 
be recovered. To see how, note that the first 
recursive call to map will be “map (\x+ 
2*x) (tail ones)“-but (tail ones) is identi- 
cal to ones (remember that ones is cyclic), 
and thus map is called with arguments 
identical to the first call. Thus the old value 
is returned, and the cycle is created. Many 
more practical examples are discussed in 
Hughes [ 1985b]. 

The interesting thing about memoization 
in general is that it begins to touch on some 
of the limitations of functional languages- 
in particular, the inability to side effect 
global objects such as caches-and solu- 
tions such as lazy memo-functions repre- 
sent useful compromises. It remains to be 
seen whether more general solutions can be 
found that eliminate the need for these 
special-purpose features. 

3.7 Nondeterminism 

Most programmers (including the very 
idealistic among us) admit the need for 
nondeterminism, despite the semantic dif- 
ficulties it introduces. It seems to be an 
essential ingredient of real-time systems, 
such as operating systems and device con- 
trollers. Nondeterminism in imperative 
languages is typically manifested by run- 
ning in parallel several processes that 
are side effecting some global state-the 
nondeterminism is thus implicit in the 
semantics of the language. In functional 
languages, nondeterminism is manifested 
through the use of primitive operators such 
as amb or merge-the nondeterminism is 
thus made explicit. Several papers have 
been published on the use of such primi- 
tives in functional programming, and it 
appears quite reasonable to program con- 
ventional nondeterministic applications 
using them [Henderson 1982; Stoye 19851. 
The problem is, once introduced, nondeter- 

minism completely destroys referential 
transparency, as we shall see. 

By way of introduction, McCarthy [ 19631 
defined a binary nondeterministic operator 
called amb having the following behavior: 

amb(el, I) = el 
amb(l., e2) = e2 
amb(e,, e2) = either e, or e2, 

chosen nondeterministically 

The operational reading of amb(e,, e2) is 
that e, and e2 are evaluated in parallel, and 
the one that completes first is returned as 
the value of the expression. 

To see how referential transparency is 
lost, consider this simple example: 

(amb 1 2) + (amb 1 2) 

Is the answer 2 or 4? Or is it perhaps 3? 
The possibility of the answer 3 indicates 
that referential transparency is lost-there 
does not appear to be any simple syntactic 
mechanism for ensuring that we could not 
replace equals for equals in a misleading 
way. Shortly, we will discuss possible solu- 
tions to this problem, but for now let us ’ 
look at an example using this style of non- 
determinism. 

Using amb, we can easily define things 
such as merge that nondeterministically 
merge two lists, or streams:21 

merge as bs = amb 
(if (as == [ 1) then bs else 

(head as: merge (tail as) bs)) 
(if (bs == [ 1) then as else 

(head bs: merge as (tail bs))) 

which then can be used, for example, in 
combining streams of characters from dif- 
ferent computer terminals: 

process (merge term1 term2) 

” Note that this version of merge: 

merge [ ] bs = bs 
merge as [ ] = as 
merge (a:as) (b: bs) 

= amb (a : merge as (b:bs)) (b : merge (a:as) 
bs) 

is not correct, since merge I bs evaluates to I, whereas 
we would like it to be bs ++ I, which in fact the 
definition in the text yields. 
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Using this as a basis, Henderson [1982] 
show how many operating system problems 
can be solved in a pseudofunctional lan- 
guage. Hudak [1986a] uses nondetermin- 
ism of a slightly different kind to emulate 
the parallel updating of arrays. 

Although satisfying in the sense of being 
able to solve real-world kinds of nondeter- 
minism, these solutions are dissatisfying in 
the way they destroy referential transpar- 
ency. One might argue that the situation is 
at least somewhat better than the conven- 
tional imperative one in that the nondeter- 
minism is at least made explicit, and thus 
one could induce extra caution when rea- 
soning about those sections of a program 
exhibiting nondeterministic behavior. The 
only problem with this is that determining 
which sections of a program are nondeter- 
ministic may be difficult-it is not a lexical 
property, but rather a dynamic one, since 
any function may call a nondeterministic 
subfunction. 

At least two solutions have been pro- 
posed to this problem. One, proposed by 
Burton [1988], is to provide a tree-shaped 
oracle as an argument to a program from 
which nondeterministic choices may be se- 
lected. By passing the tree and its subtrees 
around explicitly, referential transparency 
can be preserved. ‘The problem with this 
approach is that carrying the oracle around 
explicitly is cumbersome at best. On the 
other hand, functional programmers al- 
ready carry around a greater amount of 
state to avoid problems with side effects, so 
perhaps the extra burden is not too great. 

Another (at least partial) solution was 
proposed by Stoye [1985] in which all of 
the nondeterminism in a program is forced 
to be in one place. Indeed to some extent 
this was the solution adopted in Haskell, 
although for somewhat different reasons. 
The problem with this approach is that the 
nondeterminism is not eliminated com- 
pletely but rather centralized. It allows rea- 
soning equationally within the isolated 
pieces but not within the collection of 
pieces as a whole. Nevertheless, the isola- 
tion (at least in Haskell) is achieved syn- 
tactically, and thus it is easy to determine 
when equational reasoning is valid. A gen- 
eral discussion of these issues is found in 
Hudak and Sundaresh [1988]. 

An interesting variation on these two 
ideas is to combine them-centralize the 
nondeterminism and then use an oracle to 
define it in a referentially transparent way. 
Thus the disadvantages of both approaches 
would seem to disappear. 

In any case, I should point out that none 
of these solutions makes reasoning about 
nondeterminism any easier, they just make 
reasoning about programs easier. 

3.8 Extensions to Polymorphic-Type 
Inference 

The Hindley-Milner type system has cer- 
tain limitations; an example of this was 
given in Section 1.6.1. Some success has 
been achieved in extending the type system 
to include other kinds of data objects, but 
surprisingly little success has been achieved 
at removing the fundamental limitations 
while still retaining the tractability of the 
type inference problem. It is a somewhat 
fragile system but is fortunately expressive 
enough to base practical languages on it. 
Nevertheless, research continues in this 
area. 

Independently of type inference, consid- 
erable research is underway on the expres- 
siveness of type systems in general. The 
most obvious thing to do is allow types to 
be first class, thus allowing abstraction over 
them in the obvious way. Through gener- 
alizations of the type system it is possible 
to model such things as parameterized 
modules, inheritance, and subtyping. This 
area has indeed taken on a character of its 
own; a good summary of current work may 
be found in Cardelli and Wegner [1985] 
and Reynolds [ 19851. 

3.9 Combining Other Programming Language 
Paradigms 

A time-honored tradition in programming 
language design is to come up with hybrid 
designs that combine the best features of 
several different paradigms, and functional 
programming language research has not 
escaped that tradition. I will discuss two 
such hybrids here, although others exist. 

The first hybrid is combining logic 
programming with functional program- 
ming. The “logical variable permits” two- 
way matching (via unification) in logic 
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programming languages, as opposed to the 
one-way matching (via pattern matching) 
in functional languages, and thus seems 
like a desirable feature to have in a lan- 
guage. Indeed its declarative nature fits well 
with the ideals of functional programming. 
The integration is, however not easy- 
many proposals have been made yet none 
are completely satisfactory, especially in 
the context of higher order functions 
and lazy evaluation. See Degroot and 
Lindstrom [1985] for a good summary of 
results. 

The second area reflects an attempt to 
combine the state-oriented behavior of im- 
perative languages in a semantically clean 
way. The same problems arise here as they 
do with nondeterminism-simply adding 
the assignment statement means that equa- 
tional reasoning must always be qualified, 
since it is difficult to determine whether or 
not a deeply nested call is made to a func- 
tion that induces a side effect. There are, 
however, some possible solutions to this, 
most notably work by Gifford and Lucassen 
[Gifford and Lucassen 1986; Lucassen and 
Gifford 19881 in which effects are captured 
in the type system. In Gifford’s system it is 
possible to determine from a procedure’s 
type whether or not it is side-effect free. It 
is not currently known, however, whether 
such a system can be made into a type 
inference system in which type declarations 
are not required. This is an active area of 
current research. 

4. Dispelling Myths About Functional 
Programming 

To gain further insight into the nature of 
functional languages, it is helpful to dis- 
cuss, with the hope of dispelling, certain 
myths that have arisen over the years. 

Myth 1, that functional programming is 
the antithesis of conventional imperative 
programming, is largely responsible for 
alienating imperative programmers from 
functional languages. But, in fact, there is 
much in common between the two styles of 
programming, which I make evident by two 
simple arguments. 

Consider first that one of the key evolu- 
tionary characteristics of high-level imper- 
ative programming languages has been the 

use of expressions to denote a result rather 
than a sequence of statements to put to- 
gether a result imperatively and in piece- 
meal. Expressions were an important 
feature of FORTRAN, had more of a math- 
ematical flavor, and freed the programmer 
of low-level operational detail (this burden 
was of course transferred to the compiler). 
From FORTRAN expressions, to functions 
in Pascal, to expression oriented program- 
ming style in Scheme-these advances are 
all on the same evolutionary path. Func- 
tional programming can be seen as carrying 
this evolution to its logical conclusion- 
everything is an expression. 

The second argument is based on an 
analogy between functional (i.e., side- 
effect-free) programming and structured 
(i.e., goto-less) programming. The fact is, it 
is hard to imagine doing without either 
goto’s or assignment statements, until one 
is shown what to use in their place. In the 
case of goto, one uses instead structured 
commands, in the case of assignment state- 
ments, one uses instead lexical binding and 
recursion. 

As an example, this simple program frag- 
ment with goto’s 

x := init; 
i := 0; 

loop: x := f(x, i); 
i := i+l; 
if id0 got0 loop; 

can be rewritten in a structured style as 

x := init; 
i := 0; 
while i<lO 

being x := f(x, i); 
i := i+l 

end; 

In capturing this disciplined use of goto, 
arbitrary jumps into or out of the body of 
the block now cannot be made. Although 
this can be viewed as a constraint, most 
people feel that the resulting disciplined 
style of programming is clearer, easier to 
maintain, and so on. 

More discipline is evident here than just 
the judicious use of goto. Note in the orig- 
inal program fragment that x and i are 
assigned to exactly once in each iteration 
of the loop; the variable i, in fact, is only 
being used to control the loop termination 
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criteria, and the final value of x is intended 
as the value computed by the loop. This 
disciplined use of assignment can be cap- 
tured by the following assignment-free 
Haskell program: 

loop init 0 
where loop x i = if i-40 

then (loop (fx i) (i+l) 
else x 

Functions (and procedures) can in fact be 
thought of as a disciplined use of goto and 
assignment-the transfer of control to the 
body of the function and the subsequent 
return capture a disciplined use of goto, 
and the formal-to-actual parameter binding 
captures a disciplined use of assignment. 

By inventing a bit of syntactic sugar to 
capture the essence of tail recursion, the 
above program could be rewritten as 

let x = init 
i=O 

in while i-40 

[this syntactic sugar is not found in Has- 

begin next x = f(x, i) 
next i = i+l 

end 
result x 

kell, although some other functional (es- 
pecially dataflow) languages have similar 
features, including Id, Val, and Lucid] 
where the form “next x = . . .” is a construct 
(next is a keyword) used to express what 
the value of x will be on the next iteration 
of the loop. Note the similarity of this 
program to the structured one given earlier. 
In order to enforce a disciplined use of 
assignment properly, we can constrain the 
syntax so that only one next statement is 
allowed for each identifier (stated another 
way, this constraint means that it is a triv- 
ial matter to convert such programs into 
the tail recursive form shown earlier). If we 
think of “next x” and “next i” as new 
identifiers (just as the formal parameters 
of loop can be thought of as new identifiers 
for every call to loop), then referential 
transparency is preserved. Functional pro- 
gramming advocates argue that this results 
in a better style of programming, in much 
the same way that structured programming 
advocates argue for their cause. 

Thus the analogy between goto-less 
programming and assignment-free pro- 
gramming runs deep. When Dijkstra first 
introduced structured programming, much 
of the programming community was 
aghast-how could one do without goto? 
But as people programmed in the new style, 
it was realized that what was being imposed 
was a discipline for good programming not 
a police state to inhibit expressiveness. Ex- 
actly the same can be said of side-effect- 
free programming, and its advocates hope 
that as people become more comfortable 
programming in the functional style, they 
will appreciate the good sides of the disci- 
pline thus imposed. 

When viewed in this way functional lan- 
guages can be seen as a logical step in the 
evolution of imperative languages-thus, of 
course, rendering them nonimperative. On 
the other hand, it is exactly this purity to 
which some programmers object, and one 
could argue that just as a tasteful use of 
goto here or there is acceptable, so is a 
tasteful use of a side effect. Such small 
impurities certainly shouldn’t invalidate 
the functional programming style and thus 
may be acceptable. 

Myth 2 is that functional programming 
languages are toys. The first step toward 
dispelling this myth is to cite examples of 
efficient implementations of functional 
languages, of which there now exist several. 
The Alfl compiler at Yale, for example, 
generates code that is competitive with that 
generated by conventional language com- 
pilers [Young 19881. Other notable compi- 
ler efforts include the LML compiler at 
Chalmers University [Augustsson 19841, 
the Ponder compiler at Cambridge Univer- 
sity [Fairbairn 19851, and the ML compi- 
lers developed at Bell Labs and Princeton 
[Appel and MacQueen 19871. 

On the other hand, there are still in- 
herent inefficiencies that cannot be ig- 
nored. Higher-order functions and lazy 
evaluation certainly increase expressive- 
ness, but in the general case the overhead 
of, for example, the dynamic storage man- 
agement necessary to support them cannot 
be eliminated. 

The second step toward dispelling this 
myth amounts to pointing to real applica- 
tions development in functional languages 
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including real-world situations involving 
nondeterminism, databases, parallelism, 
and so on. Atlhough examples of this sort 
are not plentiful (primarily because of the 
youth of the field) and are hard to cite 
(since papers are not usually written about 
applications), they do exist. For example, 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

The dataflow groups at MIT and the 
functional programming groups at Yale 
have written numerous functional pro- 
grams for scientific computation. So 
have two national labs: Los Alamos and 
Lawrence Livermore. 
MCC has written a reasonably large 
expert system (EMYCIN) in SASL. 
At least one company is currently mar- 
keting a commercial product (a CAD 
package) that uses a lazy functional 
language. 
A group at IBM uses a lazy functional 
language for graphics and animation. 
The LML (lazy ML) compiler at Chal- 
mers was written almost entirely in 
LML, and the new Haskell compilers 
at both Glasgow and Yale are being 
written in Haskell. 
GEC Hirst Research Lab is using a 
program for designing VLSI circuits 
that was written by some researchers 
at Oxford using a lazy functional 
language. 

There are other examples. In particular, 
there are many Scheme and Lisp programs 
that are predominantly side effect free and 
could properly be thought of as functional 
programs. 

Myth 3, that functional languages cannot 
deal with state, is often expressed as a 
question: How can someone program in a 
language that does not have a notion of 
state? The answer, of course, is that we 
cannot, and in fact functional languages 
deal with state very nicely, although the 
state is expressed explicitly rather than 
implicitly. So the issue is more a matter of 
how one expresses state and manipulations 
of it. 

State in a functional program is usually 
carried around explicitly in one of two 
ways: (1) in the values of bound variables 
of functions, in which case it is updated by 

making a recursive call to the function with 
new values as arguments, or (2) in a data 
structure that is updated nondestructively 
so that, at least conceptually, the old value 
of the data structure remains intact and 
can be accessed later. Although declarative 
and referentially transparent, this treat- 
ment of state can present problems to an 
implementation, but it is certainly not a 
problem in expressiveness. Furthermore, 
the implementation problems are not as 
bad as they first seem, and recent work has 
gone a long way toward solving them. For 
example, a compiler can convert tail recur- 
sions into loops and “single-threaded” data 
structures into mutable ones. 

It turns out that, with respect to expres- 
siveness, one can use higher-order func- 
tions not only to manipulate state but also 
to make it appear implicit. To see how, 
consider the imperative program given 
earlier: 

x := init; 
i := 0; 

loop: X := f(x, i); 
i := i + 1; 
if (i < 10) got0 loop; 

We can model the implicit state in this 
program as a pair (xval, ival) and define 
several functions that update this state 
in a way that mimics the assignment 
statements: 

x (xval, ival) xval’ = (xval’, ival) 
i (xval, ival) ival’ = (xval, ival’) 
x’(x,i)=x 
i’ (x, i) = i 
const u s = u 

We will take advantage of the fact that 
these functions are defined in curried form. 

Note how x and i are used to update the 
state, and x ’ and i ’ are used to access the 
state. For example, the following function, 
when applied to the state, will increment i: 

\s-+is((i’s)+l) 

For expository purposes we would like to 
make the state as implicit as possible, and 
thus we express the result as a composition 
of higher-order functions. To facilitate this 
and to make the result look as much like 
the original program as possible, we define 
the following higher-order infix operators 
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and functions”: 

f:=g =\s-+fs(gs) 

f;g =\s-g(fs) 
got0 f = f 
f+‘g=\s-+fs+gs 
f<‘g=\s-+fs<gs 
if’ p c = \s + (if (p s) then (c s) else s) 

[I am cheating slightly here in that ; is a 
reserved operator ‘in Haskell and thus can- 
not really be redefined in this way.] 

Given these definitions, we can now write 
the following functional (albeit contrived) 
version of the imperative program given 
earlier: 

x := const init; 
i := const 0; 

loop where 
loop = x := f; 

i := i’ +’ const 1; 
if’ (i’ C’ const 10) (got0 loop) 

This result is rather disquieting-it looks 
very much like the original imperative pro- 
gram. Of course, we worked hard to make 
it that way, which in the general case is 
much harder to do and it is certainly not 
the recommended way to do functional pro- 
gramming. Nevertheless it exemplifies the 
power and flexibility of higher-order func- 
tions-note how they are used here both to 
manipulate the state and to implement the 
goto (where in particular the definition of 
loop is recursive, since the goto implements 
a loop). 

5. Conclusions 

This paper presented functional program- 
ming in its many shapes and forms. Al- 
though it only touched on the surface of 
many issues, it is hoped that enough of a 
foundation has been given that researchers 
can explore particularly interesting topics 
in more depth and programmers can learn 
to use functional languages in a variety of 
applications. 

I said little about how to implement 
functional languages, primarily because 
doing that subject justice would probably 

“It is interesting to note that :=, const, and goto 
correspond precisely to the combinators S, K, and I, 
and ; is almost the combinator B, but is actually CR. 

double the size of this paper. The interes- 
ted reader can refer to by far the best 
single reference to sequential implementa- 
tions, Peyton Jones’ [ 19871, as well as other 
techniques that have recently appeared 
viable [Bloss et al. 1988; Burn et al. 1988; 
and Fairbairn and Wray 19871. Parallel 
implementations have taken a variety of 
forms. On commercial machines the state 
of the art on parallel graph reduction im- 
plementations may be found in Goldberg 
and Hudak [1988] and Goldberg [1.988a, 
1988b]. The latest on special-purpose par- 
allel graph reducers can be found in Peyton 
Jones et al. [ 19871 and Watson and Watson 
[1987]. For a different kind of implemen- 
tation see Hudak and Mohr [1988]. Refer- 
ences to dataflow machines were given in 
Section 1.8. 
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