
SET Cardholder Registration:
the Secrecy Proofs

(Extended Abstract)

Lawrence C. Paulson

Computer Laboratory, Univ. of Cambridge, Cambridge, England
lcp@cl.cam.ac.uk

1 Introduction

Security protocols aim to protect the honest users of a network from the dishon-
est ones. Asymmetric (public key) cryptography is valuable, though it is normally
used in conjunction with symmetric cryptography, where two users share a secret
key, Asymmetric cryptography is typically used to securely exchange symmetric
keys, which carry the bulk of the traffic. This mode of operation is faster than
using expensive public-key encryption exclusively. It is also more secure, since
the symmetric keys can be changed frequently.

The protocol used to set up of this type of communication must be designed
with care. For example, each message typically includes a random number that
the other party includes in his reply as proof that it is not an old message
replayed by an intruder. This random number, or nonce, may be 20 bytes long,
making the chance of an accidental collision infinitesimal. Many flaws have been
discovered in security protocols [5].

Security protocol verification technologies have progressed in recent years. A
variety of tools are available for analyzing protocols. Model checking is excellent
for debugging a protocol, finding attacks in seconds [6, 7]. Theorem proving is
valuable too: it can analyze protocols in more detail and handles the protocols
that are too big for model checking. Subgoals presented to the user suggest
possible failure modes and give insights into how the protocol operates.

Past work on protocol verification has focused on protocols arising from the
academic community. Only seldom have deployed protocols been investigated,
such as Kerberos [3], SSL [8] and SSL’s successor, TLS [12]. Past work has largely
focused on key exchange protocols. Such protocols allow two participants (in-
variably called Alice and Bob) to agree on a session key : a short-term symmetric
key. In this paper, I would like to describe a project, joint with Bella, Massacci
and Tramontano, to verify a very large commercial protocol: SET, or Secure
Electronic Transactions [15].

2

2 The SET Protocol

People normally pay for goods purchased over the Internet using a credit card.
They give their card number to the merchant, who claims the cost of the goods
against it. To prevent eavesdroppers from stealing the card number, the transac-
tion is encrypted using the SSL protocol. This arrangement requires the customer
and merchant to trust each other: an undesirable requirement even in face-to-face
transactions, and across the Internet it admits unacceptable risks.

– The cardholder is protected from eavesdroppers but not from the merchant
himself. Some merchants are dishonest: pornographers have charged more
than the advertised price, expecting their customers to be too embarrassed
to complain. Some merchants are incompetent: a million credit card numbers
have recently been stolen from Internet sites whose managers had not applied
patches (available free from Microsoft) to fix security holes [9].

– The merchant has no protection against dishonest customers who supply an
invalid credit card number or who claim a refund from their bank without
cause. Contrary to popular belief, it is not the cardholder but the merchant
who has the most to lose from fraud. Legislation in most countries protects
the consumer.

The SET protocol aims to reduce fraud by introducing a preliminary regis-
tration phase. Both cardholders and merchants must register with a certificate
authority (CA) before they can engage in transactions. The cardholder thereby
obtains electronic credentials to prove that he is trustworthy. The merchant
similarly registers and obtains credentials. These credentials do not contain sen-
sitive details such as credit card numbers. Later, when the customer wants to
make purchases, he and the merchant exchange their credentials. If both parties
are satisfied then they can proceed with the transaction. Credentials must be
renewed every few years, and presumably are not issued to known fraudsters.

SET comprises 15 subprotocols, or transactions, in all. Some observers, noting
its extreme complexity, predict that it will never be deployed. However, the
recent large rise in credit card fraud [1] suggests that current arrangements are
unsustainable. SET or a derivative protocol may well be deployed in the next
several years. To a researcher, SET has a further attraction: it makes heavy use
of primitives such as digital envelopes that protocol verifiers have not examined
before now.

3 Cardholder Registration

As described above, each cardholder must register before he is allowed to make
purchases. He proves his identity by supplying personal information previously
shared with his issuing bank. He chooses a private key, which he will use later
to sign orders for goods, and registers the corresponding public key, which mer-
chants can use to verify his signature. In keeping with normal practice, SET

3

requires each participant to have separate key pairs for signature and encryp-
tion.

Cardholder registration comprises six messages:

1. The cardholder contacts the CA to request registration.
2. The CA replies, returning its public key certificates. These contain the CA’s

public keys (which the cardholder needs for the next phase) and are signed
by the Root Certificate Authority (so that the cardholder knows they are
genuine).

3. The cardholder requests a registration form. In this message, he submits
his credit card number to the CA. (SET calls this the PAN, for Principal
Account Number.)

4. The CA uses the credit card number to determine the cardholder’s issuing
bank and returns an appropriate registration form.

5. The cardholder chooses an asymmetric public/private key pair. He submits
the public key along with the completed registration form to the CA, who
forwards it to the bank.

6. The bank checks the various details, and if satisfied, authorises the CA to
issue credentials. The CA signs a certificate that includes the cardholder’s
public signature key and the cryptographic hash1 of a secret number known
to the cardholder. When making purchases, the cardholder will use this num-
ber. the PANSecret, as proof of identity. Finally the cardholder receives
the credentials and is ready to go shopping.

Does verifying cardholder registration serve any purpose? The payment phase
performs the actual E-commerce, and protocol verifiers often assume that partic-
ipants already possess all needed credentials. However, cardholder registration is
a challenging protocol, particularly when it comes to proving that the PANSecret
is actually secret.

The most interesting feature of cardholder registration, from the viewpoint
of verification, is its use of digital envelopes. To send a long message to the CA,
the cardholder generates a fresh symmetric key and encrypts the message, using
public key encryption only to deliver the session key to the CA. As mentioned at
the start of this paper, this combination of symmetric and asymmetric encryption
is more efficient and secure than using asymmetric encryption alone. However,
the two-stage process makes a protocol harder to analyze. The most complicated
case is with the last message exchange, where the cardholder sends the CA two
session keys. One of these keys encrypts the cardholder’s message and the other
encrypts the CA’s reply.

We could simplify the protocol by eliminating digital envelopes and remov-
ing unnecessary encryption. However, the resulting protocol would be trivial.
Experience shows that simplifying out implementation details can hide major
errors [14]. Cardholder registration is valuable preparation for the eventual ver-
ification of the purchase phase.
1 A cryptographic hash maps messages to fixed-length blocks. It is infeasible to recover

a message from its hash or to create two messages having the same hash.

4

4 The Inductive Model

We use the inductive method of protocol verification, which has been described
elsewhere [11, 13]. This operational semantics assumes a population of honest
agents obeying the protocol and a dishonest agent (the Spy) who can steal mes-
sages intended for other agents, decrypt them using any keys at his disposal and
send new messages as he pleases. Some of the honest agents are compromised,
meaning the Spy has full access to their secrets. A protocol is modelled by the
set of all possible traces of events that it can generate. Events are of three forms:

– SaysABX means A sends message X to B.
– GetsAX means A receives message X.
– NotesAX means A stores X in its internal state.

The model of Cardholder Registration is largely the work of Bella, Massacci
and Tramontano, who devoted many hours to decrypting 1000 pages of SET
documentation [2]. We have flattened the hierarchy of certificate authorities.
The Root Certificate Authority is responsible for certifying all the other CAs.
Our model includes compromised CAs — as naturally it should — though we
assume that the root is uncompromised. The compromised CAs complicate the
proofs considerably, since large numbers of session keys and other secrets fall
into the hands of the Spy. Here is a brief summary of the notation:

– set_cr is the set of traces allowed by Cardholder Registration
– used is the set of items appearing in the trace, to express freshness
– symkeys is the set of symmetric keys2

– Nonce, Key, Agent, Crypt and Hash are message constructors
– {|X1, ..., Xn|} is an n-component message

Here is part of the specification, the inductive rule for message 5. Variable
evs5 refers to the current event trace:

[[evs5 ∈ set_cr; C = Cardholder k;

Nonce NC3 /∈ used evs5; Nonce CardSecret /∈ used evs5; NC3 6=CardSecret;

Key KC2 /∈ used evs5; KC2 ∈ symKeys;

Key KC3 /∈ used evs5; KC3 ∈ symKeys; KC2 6=KC3;

cardSK /∈ symKeys; ...

Gets C ... ∈ set evs5;

Says C (CA i) ... ∈ set evs5]]
=⇒ Says C (CA i)

{|Crypt KC3 {|Agent C, Nonce NC3, Key KC2, Key cardSK,

Crypt (invKey cardSK)

(Hash{|Agent C, Nonce NC3, Key KC2,

Key cardSK, Pan(pan C), Nonce CardSecret |}) |},
Crypt EKi {|Key KC3, Pan (pan C), Nonce CardSecret |}|}

evs5 ∈ set_cr

2 In an implementation, a symmetric key occupies 8 bytes while an asymmetric one
occupies typically 128 bytes, so the two types are easily distinguishable.

5

Much has been elided from this rule, but we can see several things:

– the generation of two fresh nonces, NC3 and CardSecret

– the generation of two fresh symmetric keys, KC2 and KC3, to be used as session
keys

– a message encrypted using EKi (the CA’s public key) and containing the
credit card number (pan C) and the key KC3

– a message encrypted using KC3 and containing the symmetric key KC2 and
the cardholder’s public signature key, cardSK

The two encrypted messages constitute a digital envelope.

5 The Secrecy Proofs

Secrecy of the PANSecret must be proved. This number, mentioned in §3, is
never transmitted, but is computed as the exclusive-OR of other secret numbers
generated by the cardholder and the CA. So, do these numbers remain secret?
Since they are encrypted using symmetric keys, the proof requires a lemma that
symmetric keys remain secret. Two complications are that some symmetric keys
do not remain secret, namely those involving a compromised CA, and that some
symmetric keys are used to encrypt others. The latter point means that the loss
of one key can compromise a second key, leading possibly to unlimited losses.

The problem of one secret depending on another has occurred previously,
with the Yahalom [10] and Kerberos [3] protocols. Both of these are simple:
the dependency relation links only two items. Cardholder registration has many
dependency relationships. It also has a dependency chain of length three: in the
last message, a secret number is encrypted using a key (KC2) that was itself
encrypted using another key (KC3).

Fortunately, the method described in earlier work generalizes naturally to this
case and to chains of any length. While the definitions become more complicated
than before, they follow a uniform pattern. The idea is to define a relation, for
a given trace, between pairs of secret items: (K,X) are related if the loss of the
key K leads to the loss of the key or nonce X. Two new observations can be
made about the dependency relation:

– It should ignore messages sent by the Spy, since nothing belonging to him
counts as secret. This greatly simplifies some proofs.

– It must be transitive, since a dependency chain leading to a compromise
could have any length. Past protocols were too simple to reveal this point.

Secrecy of session keys is proved as it was for Kerberos IV [3], by defining
the relation KeyCryptKey DK K evs. This relation captures instances of message 5
in which somebody other than the Spy uses KC3 to encrypt KC2 in the event
trace evs. The session key compromise theorem states that a given key can be
lost only by the keys related to it by KeyCryptKey. The form of this lemma has
been discussed elsewhere [10]; it handles cases of the induction in which some
session keys are compromised. Using this lemma, we can prove that no symmetric
keys are lost in a communication between honest participants:

6

[[CA i /∈ bad; K ∈ symKeys; evs ∈ set_cr;

Says (Cardholder k) (CA i) X ∈ set evs; Key K ∈ parts {X}]]
=⇒ Key K /∈ analz (knows Spy evs)

Any symmetric key that is part of a message X sent by a cardholder (that is, Key
K ∈ parts {X}) is not derivable from material visible to the Spy (that is, Key K

/∈ analz (knows Spy evs)).
Given that the session keys are secure, we might hope to find a simple proof

that nonces encrypted using those keys remain secret. However, secrecy proofs
for nonces require the same treatment as secrecy proofs for keys. We must define
the dependency relation between keys and nonces and prove a lemma analogous
to the one shown above.

Secrecy of nonces is proved as it was for Yahalom [10], except that there are
many key-nonce relationships rather than one. Here is the dependency relation:

KeyCryptNonce DK N (ev # evs) =

(KeyCryptNonce DK N evs ∨
(case ev of

Says A B Z ⇒
A 6= Spy ∧
((∃ X Y. Z = {|Crypt DK {|Agent A, Nonce N, X |}, Y |}) ∨
(∃ K i X Y.

Z = Crypt K {|sign (priSK i) {|Agent B, Nonce N, X |}, Y |} ∧
(DK=K ∨ KeyCryptKey DK K evs)) ∨

(∃ K i NC3 Y.

Z = Crypt K

{|sign (priSK i) {|Agent B, Nonce NC3, Agent(CA i), Nonce N |},
Y |} ∧

(DK=K ∨ KeyCryptKey DK K evs)) ∨
(∃ i. DK = priEK i))

| Gets A’ X ⇒ False

| Notes A’ X ⇒ False))

Here are some hints towards understanding this definition. The only important
case involves Says events. The first disjunct refers to message 5 (shown above
in §4), where key KC3 encrypts nonce NC3 ; it also covers a similar encryption
in message 3. The second and third disjuncts refer to message 6; they involve
KeyCryptKey because that encryption uses a key received from outside. The fourth
disjunct essentially says that we are not interested in asymmetric keys (they are
never sent, so there is no risk of compromise).

Finally, we can show that the secrets exchanged by the parties in the final
handshake remain secure.

[[CA i /∈ bad;

Says (Cardholder k) (CA i)

{|X, Crypt EKi {|Key KC3, Pan p, Nonce CardSecret |}|} ∈ set evs;

...; evs ∈ set_cr]]
=⇒ Nonce CardSecret /∈ analz (knows Spy evs)

7

This theorem concerns the cardholder’s secret. There is an analogous one to
confirm the security of the CA’s secret. These two numbers, remember, are the
ingredients of the all-important PANSecret.

G. Bella has proved that the credit card number also remains secret. It looks
straightforward: the number is encrypted using the CA’s public key, which is
secure provided the CA is uncompromised. As usual, however, the proof is harder
than it looks. It requires a lemma stating that no symmetric keys are of any use
to the spy for stealing a credit card number. This lemma looks obvious too, but
both it and the main theorem are non-trivial inductions. Their proofs together
require about one CPU minute.

Why are proofs so difficult and slow? The digital envelopes and digital sig-
nature conventions are to blame. Compared with other protocols analyzed using
the inductive method, cardholder registration has nested encryption, resulting in
huge case splits. The verifier is sometimes presented with a giant subgoal span-
ning many pages of text. One should not attempt to prove such a monstrosity
but instead to improve the simplification so that it does not occur again.

6 Observations about Cardholder Registration

The proofs suggest that cardholder registration is secure. However, some anoma-
lous features come to light. These do not derive from the formal analysis but
merely by a close inspection of the protocol. A benefit of formal methods is that
they encourage a close scrutiny of the object being verified.

There is unnecessary encryption. The cardholder’s signature verification key
is encrypted, even though it is a public key! The cardholder certificate is also
encrypted, when it is of no use to anyone but the cardholder. Public-key certifi-
cates are nearly always sent in clear; this encryption is presumably intended to
strengthen confidence in SET and to reassure cardholders. Nonces whose pur-
pose is to ensure freshness do not have to be encrypted, but in SET they usually
are. This forces KeyCryptNonce to take them into account, increasing the expres-
sion blow-up in secrecy proofs. We have a paradox: protocol designers who are
concerned about security will include additional encryption, but that encryption
actually makes the protocol more difficult to verify.

I observed two insecurities. The cardholder is not required to generate a fresh
signature key pair, but may register an old one. There is a risk that this old one
could be compromised. SET accordingly includes a further security measure: the
PANSecret. The PANSecret is the exclusive-OR of numbers chosen by the two
parties (see §5), and the cardholder chooses his number before the CA does.
Since exclusive-OR is invertible, a criminal working for a CA can give every
cardholder the same PANSecret.

This combination of insecurities introduces some risk that a criminal could
impersonate the cardholder. The cardholder’s implementation of SET can repair
the first defect by always generating a fresh signature key pair. The second defect
is, in principle, easy to fix: simply change the calculation of the PANSecret,
replacing the exclusive-OR by cryptographic hashing. But that unfortunately is

8

a change to the protocol itself. If this change were made, then secrecy of the
PANSecret would follow from secrecy of either of its two ingredients. With SET
as it stands now, secrecy of the PANSecret is not provable in my model — nor
should it be.

7 Conclusions

Our joint work has been fruitful. We had been able to specify and verify card-
holder registration. Our model is abstract but retains much detail. We can prove
secrecy in the presence of digital envelopes. We have strengthened our previous
work on the relationships between secrets. There must be a connection with Co-
hen’s secrecy invariant [4], though I am not sure of the details. We look forward
to analyzing the remainder of SET.

Acknowledgements. Thanks above all to my colleagues G. Bella, F. Massacci
and P. Tramontano for their many months devoted to understanding the SET
specifications. (By contrast, the secrecy proofs reported above took only days.)
This work was funded by the epsrc grant GR/R01156/01 Verifying Electronic
Commerce Protocols.

References

1. Credit card fraud rises by 50%. On the Internet at
http://news.bbc.co.uk/hi/english/business/newsid_1179000/1179590.stm,
February 2001. BBC News (Business).

2. Giampaolo Bella, Fabio Massacci, Lawrence C. Paulson, and Piero Tramontano.
Formal verification of cardholder registration in SET. In F. Cuppens,
Y. Deswarte, D. Gollman, and M. Waidner, editors, Computer Security —
ESORICS 2000, LNCS 1895, pages 159–174. Springer, 2000.

3. Giampaolo Bella and Lawrence C. Paulson. Kerberos version IV: Inductive
analysis of the secrecy goals. In J.-J. Quisquater, Y. Deswarte, C. Meadows, and
D. Gollmann, editors, Computer Security — ESORICS 98, LNCS 1485, pages
361–375. Springer, 1998.

4. Ernie Cohen. TAPS: A first-order verifier for cryptographic protocols. In 13th
Computer Security Foundations Workshop, pages 144–158. IEEE Computer
Society Press, 2000.

5. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using CSP and FDR. In T. Margaria and B. Steffen, editors, Tools and
Algorithms for the Construction and Analysis of Systems: second international
workshop, TACAS ’96, LNCS 1055, pages 147–166. Springer, 1996.

6. Gavin Lowe. Casper: A compiler for the analysis of security protocols. Journal of
Computer Security, 6:53–84, 1998.

7. Catherine Meadows. Analysis of the Internet Key Exchange protocol using the
NRL Protocol Analyzer. In Symposium on Security and Privacy, pages 216–231.
IEEE Computer Society, 1999.

9

8. John C. Mitchell, Vitaly Shmatikov, and Ulrich Stern. Finite-state analysis of
SSL 3.0 and related protocols. In Hilarie Orman and Catherine Meadows,
editors, Workshop on Design and Formal Verification of Security Protocols.
DIMACS, September 1997.

9. Alan Paller. Alert: Large criminal hacker attack on Windows NTE-banking and
E-commerce sites. On the Internet at
http://www.sans.org/newlook/alerts/NTE-bank.htm, March 2001.

10. Lawrence C. Paulson. Relations between secrets: Two formal analyses of the
Yahalom protocol. Journal of Computer Security. in press.

11. Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6:85–128, 1998.

12. Lawrence C. Paulson. Inductive analysis of the Internet protocol TLS. ACM
Transactions on Information and System Security, 2(3):332–351, August 1999.

13. Lawrence C. Paulson. Proving security protocols correct. In 14th Annual
Symposium on Logic in Computer Science, pages 370–381. ieee Computer
Society Press, 1999.

14. Peter Y. A. Ryan and Steve A. Schneider. An attack on a recursive
authentication protocol: A cautionary tale. Information Processing Letters,
65(1):7–10, January 1998.

15. SETCo. SET Secure Electronic Transaction Specification: Business Description,
May 1997. On the Internet at
http://www.setco.org/set_specifications.html.

