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Abstract. Coherent states in the time-energy plane provide a natural basis
to study adiabatic scattering. We relate the (diagonal) matrix elements of the
scattering matrix in this basis with the frozen on-shell scattering data. We
describe an exactly solvable model, and show that the error in the frozen data
cannot be estimated by the Wigner time delay alone. We introduce the notion
of energy shift, a conjugate of Wigner time delay, and show that for incoming
state ρ(H0) the energy shift determines the outgoing state.

1. Introduction

Scattering from a slowly changing scatterer is described, to leading order, by a
time independent scatterer frozen at the scattering time [11]. Although this seems
like stating the obvious, it turns out that in trying to make precise how accurate
this approximation is, one encounters both conceptual and technical difficulties.
Our aim is to describe these difficulties and explain how they are resolved.

One conceptual difficulty is to understand what the frozen S matrix—a function
of energy and scattering time—means. Strictly speaking, a function of both time
and energy is in conflict with the uncertainty principle. A wave that is sharp in
energy will have an ill-defined scattering time and conversely, a wave with a well-
defined scattering time is ill-defined in energy. What, then, is the meaning of the
frozen S matrix?

The resolution of this problem is related to the fact that the adiabatic limit
naturally leads to different parameterizations of time, and the right parameteriza-
tion has small uncertainty. Specifically, the physical time t will parameterize the
intrinsic “fast” dynamics and has the usual time-energy uncertainty ~. The slow
variation in the external conditions will be parameterized by s. We refer to the
latter as epoch. Since the epoch often plays a role of a parameter it is convenient to
choose s dimensionless. The two parameterizations are related by s = ωt, with ω
a slow frequency—the adiabaticity parameter. The epoch-energy uncertainty then
takes the form δs δe ∼ ~ω and so arbitrarily small in the adiabatic limit.

Coherent states provide a convenient basis to analyze the semi-classical limit
[12, 6]. Semi-classical analysis is traditionally about the ~ → 0 limit, but is equally
valid when ~ is fixed (and henceforth set equal to one) and ω → 0. Here we
introduce coherent states labelled by points in the time-energy plane, with time
being the scattering time. As we shall see, the frozen S matrix approximates the
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diagonal matrix elements of the dynamical scattering matrix in such coherent states.
This reconciles the time-energy uncertainty with the frozen scattering data. In a
further step, matrix elements of the frozen S matrix can be approximated by the
on-shell data.

Another thorny issue that we address is when a description in terms of frozen
data is meaningful and how accurate it is. The question can also be rephrased as
a question about the intrinsic time scale relevant to scattering. If τ denotes this
time scale, then ωτ is the error in the frozen data and ωτ � 1 characterizes the
adiabatic regime.

The Wigner time delay τw(E, s) conveys information about the time the particle
spends near the scatterer. It is a function of the energy E and scattering epoch
s. It is tempting to hope that τ might be estimated by τw(E, s), but there is no
compelling argument for doing so. One cannot argue on the basis of dimensional
analysis alone, since τ̇w and

√
τ ′w, with dot a derivative with respect to the epoch

and prime with respect to the energy, give additional and independent time scales.
In fact, since Wigner time delay is a comparison of the arrival time at a faraway
point, relative to the time of arrival in the free dynamics, it is not even positive-
definite. This suggests that it cannot quite capture τ , which is more closely related
to the “dwell time” near the scatterer.

The way to determine τ is to consider the error in approximating the scattering
data by the frozen data. The error is, to leading order, proportional to the adia-
baticity parameter ω. Since the error is, in general, complex, we identify τ with the
absolute value of the error divided by ω. Calculating the error, to leading order in
ω, is no harder, and reminiscent of, calculating the scattering in the lowest order
of the Born approximation.

We shall see that, to leading order, the adiabatic time scale τ can be estimated
from the scattering data and the derivative of the Hamiltonian H with respect to
the epoch, Eq. (7.3) below, but not from the Wigner time delay alone. We show
this by considering an exactly soluble model where the dynamical S matrix can be
computed explicitly.

We introduce the energy shift operator E . This is a measure of the energy change
in time dependent scattering and is a natural dual of the Wigner time delay. As
we shall see, in the case that the incoming state is ρ(H0), the outgoing state is
ρ(H0 − ωE). In the adiabatic limit, the energy shift can be approximated by the
frozen energy shift, which is related to the logarithmic derivative of the on-shell
scattering matrix with respect to the epoch, Eq. (4.2). The energy shift then gives
a handle on the exchange of energy [2, 9] and the pumping of charge in adiabatic
scattering [3].

2. Elements of scattering theory

Scattering theory is a comparison of dynamics: One is the actual dynamics
generated by the time dependent H(t) = Hs, (s = ωt), the other is a fiducial
dynamics generated by a time independent Hamiltonian H0. The Hamiltonian H0

is the generator of dynamics for which there is trivial scattering and the S matrix
is the identity.

The results of this section are true in general, without taking the adiabatic limit
ω → 0. We shall assume that H and H0 admit good scattering. Namely, we
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assume the existence of wave operators and the unitarity of the S matrix. For
explicit conditions on H0 and H(t) that guarantee this see e.g. [14, 15].

2.1. The wave operator. Let U(t′′, t′) and U0(t′′, t′) = U0(t′′ − t′) denote the
evolution from time t′ to t′′, generated by H(t) and the time-independent H0 re-
spectively.

Definition 2.1. The wave operators, based at epoch s, are defined by the (strong)
limit

(2.1) Ω±(s;H,H0) = lim
t′→±∞

U(t, t′)U0(t′ − t), (s = ωt).

The existence of the limit, and the equation of motion imply

Proposition 2.2. The dependence of the wave operator on the base point s satisfy
the differential equation

(2.2) −iωΩ̇±(s) = HsΩ±(s,H,H0)− Ω±(s,H,H0)H0.

As we shall presently see, the notion of wave operator based at epoch s is only
interesting in the case of a time dependent H(t).

2.2. The frozen wave operators. The frozen Hamiltonian Hs is time indepen-
dent so U(t′′, t′) = eiHs(t′′−t′), in this case and Ω±(s0, Hs, H0) is independent of
the base point s0 = ωt0. This follows from the existence of the limit in Eq. (2.1)
since t′ → ±∞ is the same as t′ − t0 → ±∞. To stress this we write Ω±(Hs, H0).
From Eq. (2.2) then follows the standard intertwining relation of time-independent
scattering theory:

Corollary 2.3. The wave operators Ω±(Hs, H0) relating the frozen Hamiltonian at
epoch s and H0 are independent of the base point, and intertwine the two dynamics:

(2.3) HsΩ±(Hs, H0) = Ω±(Hs, H0)H0.

2.3. The dynamical S matrix. The (dynamical) scattering matrix based at
epoch s is defined by

(2.4) Sd(s;H,H0) = Ω†+(s;H,H0)Ω−(s;H,H0).

The S matrices based on different points in time are all related by conjugation
generated by the free evolution. Namely:

Proposition 2.4. Suppose that the wave operators exist. Then

(2.5) Sd(s;H,H0) = e−iH0tSd(0;H,H0)eiH0t, (s = ωt).

This follows from U(s, t)Ω±(s;H,H0) = Ω±(s;H,H0)e−iH0(s−t). Under a change
of the reference Hamiltonian, say to the frozen Hamiltonian Hs,

(2.6) Sd(s;H,H0) = Ω†+(Hs, H0)Sd(s;H,Hs)Ω−(Hs, H0).

2.4. The frozen S matrix. In the frozen S data the epoch is decoupled from time.
As such it can also be studied using time independent methods, which are normally
quite powerful [15]. Its basic properties are in marked contrast with that of the
dynamical S matrix, namely:
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Corollary 2.5. The frozen S matrix

(2.7) Sf (Hs, H0) = Ω†+(Hs, H0)Ω−(Hs, H0)

is independent of the base point. It depends on the freezing time parametrically
through Hs.

2.5. The on-shell S matrix. H0 provides a basis that spans the Hilbert space of
scattering states. Let |E, j) denote the generalized eigenvectors of H0:

(2.8) H0|E, j) = E |E, j), (E, j|E′, j′) = δ(E − E′)δj,j′ .

E is the energy and j labels the scattering channels. Sf commutes with H0, by
Eq. (2.3), hence

(2.9) (E, j|Sf

(
Hs, H0

)|E′, j′) = δ(E − E′)Sjj′(s, E).

Sjj′ (s, E) is the on-shell scattering matrix. Note that in the frozen Hamiltonian
the physical time is decoupled from the epoch, which now has been relegated to
the role of a parameter. The on-shell scattering matrix therefore is not in conflict
with the uncertainty principle.

3. The energy shift

By taking the s-derivatives of Eq. (2.5) one gets

i ωṠd(s)Sd(s)† = H0 − Sd(s)H0 Sd(s)† = [H0,Sd(s)]S†d(s)

= [H0,Sd(s)− Sf (Hs, H0)]S†d(s).(3.1)

This equation may interpreted as follows. If we think of H0 as the asymptotic
observable associated with the outgoing energy, then H0,in = Sd(s)H0 Sd(s)† rep-
resents the asymptotic observable [5] corresponding to the incoming energy. This
motivates calling

(3.2) Ed(s) = iṠd(s)S†d(s).

the operator of energy shift.
The energy shift vanishes for time independent scattering, as it must. It gives a

handle on changes in (certain) quantum states. By the functional calculus applied
to Eq. (3.1), for any function ρ:

(3.3) Sd(s) ρ(H0)Sd(s)† = ρ
(
H0 − ωEs(s)

)
.

This is interpreted as follows: If ρ(H0) is the incoming state, then the corresponding
outgoing state is ρ

(
H0 − ωEs(s)

)
. The energy shift is a first order quantity in the

adiabaticity parameter and, as we shall see, it can be approximated, to leading
order by the frozen data. This then gives a handle on the outgoing state ρ to first
order in the adiabaticity parameter.

Proposition 3.1. The energy shift based on time s is conjugate to the energy shift
based on time zero

(3.4) Ed(s) = eiH0tEd(0) e−iH0t, (s = ωt).

This follows directly from Eq. (2.5) and Eq. (3.1).
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4. The problem of adiabatic scattering

The dynamical S matrix has qualitatively different properties from the frozen S
matrix: The dynamical S matrix has no freezing time—It does not “know” when the
incoming wave is going to hit the scatterer. It does depend however, by conjugation,
on a choice of a base point. In contrast, the frozen S matrix is independent of the
choice of a base point and depends non-trivially on the freezing time—The frozen
scattering data for one epoch know nothing a-priori about the corresponding data
at any other epoch.

Matrix elements of the scattering matrix carry information about the time that
the wave is near the scatterer. For such matrix elements, the adiabatic limit can be
expressed in terms of the corresponding frozen matrix elements. However, the intro-
duction of wave packets promotes the epoch from playing the role of a parameter,
to that of real, albeit slow, time. One then needs to confront the uncertainty prin-
ciple. We do that by considering matrix elements between coherent states labelled
by points in the energy time plane.

4.1. The Wigner time delay. The Wigner time delay is defined in terms of
the on-shell scattering matrix. When this definition is transcribed to the frozen,
on-shell, S matrix it reads

(4.1) τw(s, E) = −i S′(s, E)S†(s, E).

Prime denotes partial derivative with respect to the energy. With this definition,
the Wigner time-delay is a Hermitian matrix.

4.2. The frozen energy shift. For the frozen, on-shell, Hamiltonian one can
associate a matrix of energy shift which is a natural conjugate of the Wigner time
delay:

(4.2) E(s, E) = i Ṡ(s, E)S†(s, E),

where dot denotes derivative with respect to the epoch.

4.3. Time scales. The frozen on-shell S matrix defines several time scales. Among
them: τw and the (dimensionless) time scale E−1. The coherent states provide us
with yet another time scale related to the time-width of the coherent states. One
of the problems of adiabatic scattering is to study the relation between these time
scales and the time scale τ such that ωτ � 1 characterizes the adiabatic regime.

5. Time-Energy Coherent states

5.1. The role of dispersion. For a particle moving on the line, its energy and
the time that it crosses the origin are canonical coordinates. One can therefore
construct energy-time coherent states in analogy with the usual phase space coher-
ent states. The explicit construction, however, depends on the dispersion law. For
linear dispersion the construction is particularly simple.

Consider a classical particle with dispersion law e(p) moving freely on the line.
The velocity of the particle is e′(p) so the time of passage through the origin is
t = −q

e′(p) . Time-energy are (local) canonical coordinates since

(5.1) de ∧ dt = dq ∧ dp.
The global aspects of the energy-time phase space can be complicated. For example,
for a free (massive) particle, with quadratic dispersion e(p) = p2 the energy-time
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phase space is made of two copies of the half plane e ≥ 0 depending on the direction
of crossing of the origin.

A simpler situation is obtained in the case of linear dispersion, e(p) = p. There
is now no ambiguity in the direction of crossing and the energy-time phase space is
again the plane. The map (q, p) ↔ (e, t) is, in fact, the identity

(5.2) e = p, t = −q.
The usual coherent states are then also the coherent states on the energy-time
plane.

5.2. Coherent states for linear dispersion. The time-energy coherent states
are

(5.3) |t, e; ε〉 = ei(tP+eX) |gε〉 , [P,X ] = −i,
with gε Gaussian:

(5.4) 〈p|gε〉 =
1

4
√
πε2

e−
p2

2ε2 .

They have the following properties [12]:
A The states |t, e; ε〉 are normalized.
B |t, e; ε〉 have Gaussian localization in time and energy near the point

(t, e) with width

δe ∼ ε, δt ∼ 1
ε
, δs ∼ ω

ε
.

Hence ω plays the role of ~ in the epoch-energy plane.
C H0 is the generator of shifts of the coherent states:

e−iH0t′ |t, e; ε〉 = e−it′e/2 |t− t′, e; ε〉 .
D The overlap of coherent states is:

〈t, e, ε|t′, e′, ε〉 = e−
(e−e′)2

4ε2 e−
ε2(t−t′)2

4 e−i et′−e′t
2 .

E The coherent states give a resolution of the identity∫
dt de

2π
|t, e; ε〉 〈t, e; ε| = 1.

F The scalar product between coherent states and the eigenstates of
H0 = P is

(E |t, e; ε〉 = e−ite/2e−itE e−(E−e)2/2ε2

4
√
πε2

.

6. Scattering between channels with linear dispersion

Linear dispersion approximates the low energy physics of electrons in one dimen-
sional channels provided the Fermi energy is large. The price one pays is that the
“ultraviolet” properties are pathological. In particular, the spectrum is unbounded
below and this then leads to certain anomalies which must be correctly interpreted.
With linear dispersion one can also solve certain models with interacting electrons
[10].

In the following we shall study adiabatic scattering for non interacting particles
with linear dispersion. The particles move on a collection of lines and are allowed
to “hop” from one line to the other and scatter. Each line serves as an incoming
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and outgoing channel since the flow on it is uni-directional. An example with two
channels is shown in Fig. 1. (Such models bear some resemblance to Schrödinger
operators on graphs [1].) The Hilbert space is ⊕n

j=1L
2(R), a finite direct sum. j

labels the scattering channels. H0 is then(
H0ψ

)
(x, j) = −i ψ′(x, j), x ∈ R, 1 ≤ j ≤ n.

For the interaction one may take, for example,((
H(s)−H0

)
ψ

)
(x, j) =

∑
j′
vj,j′(x, s)ψ(x, j′)

with vjj′ hermitian, and compactly supported. Alternatively, one may consider
finite rank perturbations.

Figure 1. A network of two channels. Each channel is chiral
and lets particles propagate to and from infinity, according to the
arrows. The circle denotes the region where the channels are cou-
pled.

6.1. A soluble model. Here we describe a simple, time dependent, model for
which the calculation of both the dynamical and frozen scattering matrices is re-
duced to quadrature.

Consider scattering on the line with

H0 = P = −i∇, Hs = P + f(s)V, s = ωt

with
(
V ψ

)
(x) = v(x)ψ(x) a potential (multiplication operator) which is sufficiently

regular and short range so that
∫ |v(x)| dx, ∫ |xv(x)| dx < ∞ . The model has

one channel and should not be confused with the 2-channel example pictured in
Figure 1.

To calculate the dynamical S matrix note that

(6.1) Ω(t, t′) := U(t, t′)U0(t′ − t),

satisfies the Volterra type equation:

(6.2)
∂Ω(t, t′)
∂t′

= if (ωt′)Ω(t, t′)V (t− t′), Ω(t′, t′) = 1,
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with V (t) the (backward) free Heisenberg evolution of the potential, i.e.

(6.3) V (t) := U0(t) V U0(−t).
Since H0 = P is the generator of shifts, V (t) is the shifted potential:

(6.4)
(
V (t)ψ

)
(x) = v(x − t)ψ(x).

In particular, V (t) at different times commute, and the solution of the Volterra
type problem is given simply by

(6.5) Ω(t, t′) = e−i t−t′
0 f(s−ωt′′)V (t′′)dt′′ , s = ωt.

From the definition of the wave operators based on time s, Eq. (2.1), we obtain for
the dynamical wave operators:

Ω−(s;H,H0) = e−i ∞
0 f(s−ωt′)V (t′)dt′ , Ω+(s;H,H0) = ei 0

−∞ f(s−ωt′)V (t′)dt′ .

From this we obtain for the dynamical scattering matrix

(6.6) Sd(s,H,H0) = e−i ∞
−∞ f(s−ωt′)V (t′) dt′ .

The dynamical scattering matrix, as well as the wave operators, are local gauge
transformations, i.e. multiplication by a function of position, of modulus one.

The wave operators and the S matrix reduce to the frozen ones upon replacing
the function f(s− ωt′) by its frozen value f(s), hence:

(6.7) Sf (Hs, H0) = e−if(s) ∞
−∞ V (t) dt = e−if(s) ∞

−∞ V+(t) dt,

where 2V+(t) = V (t) + V (−t). Sf is just a number, not a function of position.
The frozen scattering matrix provide very little information on the potential

v(x), for it depends one just one number—the total weight of the potential1. The
dynamical S matrix, in contrast, provides independent information about the po-
tential for each value of s.

Since the frozen S matrix is independent of the incident energy, the Wigner time
delay vanishes identically in this model: τw = 0. The (frozen) energy shift is just a
real number (a multiple of the identity)

Ef = ḟ(s)
∫ ∞

−∞
v(x)dx.

In contrast, the dynamical energy shift, is the multiplication operator:

(6.8) Ed =
∫ ∞

−∞
ḟ(s− ωt′)V (t′) dt′.

6.2. The on-shell scattering matrix and coherent states. For later purposes
we shall need the matrix elements of the frozen S matrix. Since Sf commutes with
H0, the matrix elements are independent of t and are related to the on-shell matrix
by

〈t, e, j; ε| Sf

(
Hs, H0

) |t, e, j′; ε〉 =
1√
πε

∫
dE Sjj′ (s, E)e−

(E−e)2

ε2

= Sjj′ (s, e) +O(ε2∂EES).(6.9)

1This is in sharp contrast with scattering problems where H0 is the Laplacian [4].
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The estimate is obtained by observing that Sjj′ (s, E)−Sjj′ (s, e) does not contribute
to the integral to first order in E − e. Since

(∂EES)S† = −τ2
w + iτ ′w,

(with prime denoting the derivative with respect to the energy) we see that the on-
shell S matrix approximates the diagonal entries of the frozen S matrix, provided
the Wigner time delay and its energy dependence are both small:

(6.10) ε2(τ2
w + |τ ′w|) � 1.

7. The adiabatic time scale τ

In this section we compute, to leading order, the time scale τ relevant to adiabatic
scattering. This time scale is defined so that ωτ � 1 characterizes the adiabatic
regime in the sense that the frozen scattering data approximate the dynamical
scattering data.

There are two results in this section, one positive and one negative. The positive
result says that, at least to leading order, τ can be computed from time independent
quantities alone, Eq. (7.3) below. The negative result is that τ cannot be computed
from the on-shell scattering matrix and its derivatives. In particular, the Wigner
time delay alone does not determine τ .

Using Eqs. (2.5,2.6,2.7) and property 5.2.C one finds

〈t, e, j; ε| (Sd(0;H,H0)− Sf (Hs, H0)
) |t, e, j′; ε〉 =(7.1)

〈0, e, j; ε|Ω†+(Hs, H0)
(Sd(s;H,Hs)− 1

)
Ω−(Hs, H0) |0, e, j; ε〉 .

The correction to the leading order of the S matrix can be approximated by an
analog of the Born series [15]:

Sd

(
s;H,Hs

)− 1 ≈ −i
∫ ∞

−∞
eiHst′ (Hs+ωt′ −Hs

)
e−iHst′ dt′.

SinceHs+ωt′−Hs is supported near the origin, only small t′ contribute to the matrix
elements in Eq. (7.1). More precisely, this depends only on the time localization
property of either the bra or the ket. We can therefore approximate Hs+ωt′ −Hs ≈
ωt′Ḣs. Using property 5.2.C

e−iHstΩ−(Hs, H0) |0, e, j; ε〉 = e−iet/2 Ω−(Hs, H0) |t, e, j; ε〉
we finally get

〈t, e, j; ε| (Sd(0;H,H0)− Sf (Hs, H0)
) |t, e, j′; ε〉 ≈ −iωτ(e, s; ε)(7.2)

where

(7.3) τ(e, s; ε) =
∫ ∞

−∞
〈t′, e, j; ε|Ω†+(Hs, H0)ḢsΩ−(Hs, H0) |t′, e, j; ε〉 t′ dt′.

τ(e, s; ε) involves the frozen wave operators and the rate of change of the Hamil-
tonian at the epoch s. In particular, one can use methods of time-independent
scattering theory to compute it. It is in general complex. The adiabatic time scale,
τ = |τ(e, s; ε)| is a measure of the error. ωτ � 1 then clearly characterizes the
adiabatic regime.

Propagation estimates can, and have been, used [13] to bound the error in the
frozen data. These estimates yield bounds on τ .
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7.1. Example: the soluble model. For the case of one channel scattering with
H(s) = P + f(s)V , by Eq. (6.6,6.7)

Sd(s;H,H0)− Sf (Hs, H0) =
(
e−i ∞

−∞

(
f(s−ωt)−f(s)

)
V (t) dt − 1

)
Sf (Hs, H0)

≈ iωḟ(s)
(∫ ∞

−∞
tV (t) dt

)
Sf (Hs, H0).(7.4)

The adiabatic time scale τ is, in analogy with Eq. (7.2), the multiplication operator:

τ ≈ −ḟ(s)
(∫ ∞

−∞
tV (t) dt

)
Sf (Hs, H0) = −ḟ(s)

(∫ ∞

−∞
tV−(t) dt

)
Sf (Hs, H0);(7.5)

2V−(t) = V (t)− V (−t).
By Eq. (6.7) the frozen S matrix only depends on V+, while the error only depends
on V−. Since V− and V+ are independent this shows that the error term in the
adiabatic expansion cannot be estimated in terms on the frozen scattering data
alone.

Combining Eqs. (6.9) and (7.2) we obtain a relation between matrix elements of
the dynamical S matrix and the on-shell S matrix:

(7.6) 〈t, e, j; ε| Sd(0;H,H0) |t, e, j′; ε〉 = Sjj′ (s, e) +O
(
ε2(τ2

w + |τ ′w|) + ωτ(e, s; ε)
)
,

8. The energy shift

The energy shift is a first order quantity, nevertheless, it is determined, to leading
order, by the frozen data:

〈t, e, j; ε| Ed(0) |t, e, j′; ε〉 ≈ i
(
Ṡ(s, e)S†(s, e)

)
jj′ , (s = ωt).(8.1)

We first remark that (7.2,7.3) generalize to off-diagonal matrix elements, i.e., the
time t in the ket |t, e, j′; ε〉 may be shifted to t + ∆t (resp. t′ + ∆t in (7.3)) while
leaving the bra unchanged. By the translation property of coherent states, property
5.2.C, multiplication by H0 can be traded for derivative with respect to time. Hence

〈t, e, j; ε| [H0,Sd(0;H,H0)
] |t+ ∆t, e, j′; ε〉

= i∂t 〈t, e, j; ε| Sd(0;H,H0) |t+ ∆t, e, j′; ε〉
≈ i∂t 〈t, e, j; ε| Sf (Hs, H0) |t+ ∆t, e, j′; ε〉
= iω 〈t, e, j; ε| Ṡf (Hs, H0) |t+ ∆t, e, j′; ε〉 .(8.2)

In principle, the order of the error in the frozen data in the passage from the second
to the third line does not determine the order of the error in derivatives, but this
can be justified in the present case. The last identity in the equation above can be
seen from

〈t, e, j; ε| Sf

(
Hs, H0

) |t+ ∆t, e, j′; ε〉
=

1√
πε

∫
dE Sjj′ (s, E)e−

(E−e)2

ε2 e−i(∆t)e/2e−i(∆t)E .
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We then multiply (8.2) with the complex conjugate of the mentioned generalization
of (7.2) and integrate over ∆t using property 5.2.E. The result then heuristically
follows from Eq. (3.1) and the statement for Ef analogous to (6.9).2

The energy shift plays a role in the theory of adiabatic quantum pumps. In
particular, the pumped charge, the entropy production and noise generation in
quantum pumps can all be expressed in terms of the energy shift [3]. It is remarkable
that basic properties of adiabatic quantum pumps can be understood, to leading
order, in terms of the frozen scattering data alone.
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