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Abstract

In this paper, the definition of a Q-P quantale module and some relative concepts were introduced. Based on which,
some properties of the Q-P quantale module, and the structure of the free Q-P quantale modules generated by a set
were obtained. It was proved that the category of Q-P quantale modules is algebraic.
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1. Introduction

Quantale was proposed by C.J.Mulvey in 1986 for studying the foundations of quantum logic and for studying
non-commutation C*-algebras. The term quantale was coined as a combination of ”quantum logic” and ”lo-
cale” by C.J.Mulvey. The systematic introduction of quantale theory came from the book ≪Quantales and their
applications≫, which written by K.I.Rosenthal in 1990.

Since quantale theory provides a powerful tool in studying noncommutative structures, it has a wide applications,
especially in studying noncommutative C*-algebra theory, the ideal theory of commutative ring, linear logic and
so on. So, the quantale theory has aroused great interests of many scholar and experts, a great deal of new ideas
and applications of quantale have been proposed in twenty years.

Since the ideal of quantale module was proposed by S.Abramsky and S.Vickers, the quantale module has attracted
many scholars eyes. With the development of the quantale theory, the theory of quantale module was studied
deeply in the past years. In this paper, some properties of the category of Q-P quantale modules was discussed,
especially that the category of Q-P quantale modules is algebraic was proved.

2. Preliminaries

Definition 2.1. A quantale is a complete lattice Q with an associative binary operation “&” satisfying:

a&(
∨
i∈I

bi) =
∨
i∈I

(a&bi) and (
∨
i∈I

bi)&a =
∨
i∈I

(bi&a),

for all a, bi ∈ Q, where I is a set, 0 and 1 denote the smallest element and the greatest element of Q respectively.

Definition 2.2. A nonzero element a in a quantale Q is said to be a nonzero divisor if for all nonzero element
b ∈ Q such that a&b , 0, b&a , 0. Q is nonzero divisor if every a ∈ Q is a nonzero divisor.

Definition 2.3. Let Q, P be a quantale, a Q-P quantale module over Q, P (briefly, a Q-P-module) is a complete
lattice M, together with a mapping T : Q × M × P −→ M satisfies the following conditions:

(1) T (
∨
i∈I

ai,m,
∨
j∈J

b j) =
∨
i∈I

∨
j∈J

T (ai,m, b j);

(2) T (a, (
∨

k∈K
mk), b) =

∨
k∈K

T (a,mk, b);

(3) T (a&b,m, c&d) = T (a,T (b,m, c), d).
for all ai, a, b ∈ Q,b j, c, d ∈ P, mk,m ∈ M. We shall denote the Q-P quantale module M over Q, P by (M, T ).

If Q is unital quantale with unit e, we define T (e,m, e) = m for all m ∈ M.
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Example 2.4. (1) Let Q = P = {0, a, b, c, 1} be a set, M = {0, d, e, 1} is a complete lattice. The order relations of Q
and M are given by the following figure 1 and 2, we give a binary operator “&” on Q satisfying the diagram 1.

@
@

�
�

�
�

@
@
◦ ◦

◦

◦

◦

1

0

a cb

Figure 1

& 0 a b c 1
0 0 0 0 0 0
a 0 b c a 1
b 0 c a b 1
c 0 a b c 1
1 0 1 1 1 1

Diagram 1

@
@

�
�

�
�

@
@
◦ ◦

◦

◦

1

0

d e

Figure 2

We can prove that Q is a quantale.

Now, define a mapping T : Q × M × Q −→ M such that T (x,m, y) = m for all x, y ∈ Q, m ∈ M. Then (M, T ) be a
Q-P quantale module.

(2) Let Q = P = {0, a, b, 1} be a complete lattice. The order relation on Q satisfies the following Figure 3 and the
binary operation of Q satisfies the diagram 2:

@
@

�
�

�
�

@
@
◦ ◦

◦

◦

1

0

a b

Figure 3

& 0 a b 1
0 0 0 0 0
a 0 a 0 a

b 0 0 b b

1 0 a b 1
Diagram 2

It is easy to show that (Q,&) is a quantale. Let M = {0, a, 1} ⊆ Q, then M is a complete lattice with the inheriting
order on Q. Now, we define T : Q × M × Q −→ M satisfies T (x,m, y) = x&m&y for all x, y ∈ Q, m ∈ M. Then
(M, T ) is a Q-P quantale module.

Definition 2.5. Let Q, P be a quantale, (M1,T1) and (M2,T2) are Q-P quantale modules. A mapping f : M1 −→ M2
is said to be a Q − P quantale module homomorphism if f satisfies the following conditions:

(1) f (
∨
i∈I

mi) =
∨
i∈I

f (mi);

(2) f (T1(a,m, b)) = T2(a, f (m), b) for all a ∈ Q,b ∈ P, mi,m ∈ M.

Definition 2.6. Let (M,TM) be a Q−P quantale module over Q, P, N be a subset of M, N is said to be a submodule
of M if N is closed under arbitrary join and TM(a, n, b) ∈ N for all a ∈ Q,b ∈ P, n ∈ N.

Definition 2.7.[26] A concrete category (A, U) is called algebraic provied that it satisfies the following conditions:

(1)A has coequalizers;

(2) U has a left adjoint;

(3) U preserves and reflects regular epimorphisms.

3. The Category of Q-P Quantale Modules is Algebraic

Definition 3.1. Let Q, P be a quantale, QModP be the category whose objects are the Q-P quantale modules of
Q, P, and morphisms are the Q-P quantale module homomorphisms, i.e.,

Ob(QModP)={M : M is Q-P quantale modules},
Mor(QModP)={ f : M−→ N is the Q-P quantale modules homorphism}.
Hence, the category QModP is a concrete category.

Definition 3.2. Let Q, P is a quantale, (M,TM) is a Q-P quantale module, R ⊆ M × M. The set R is said to be a
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congruence of Q-P quantale module on M if R satisfies:

(1) R is an equivalence relation on M;

(2) If (mi, ni) ∈ R for all i ∈ I, then (∨
i∈I

mi, ∨
i∈I

ni) ∈ R;

(3) If (m, n) ∈ R, then (TM(a,m, b),TM(a, n, b)) ∈ R for all a ∈ Q,b ∈ P.

We denote the set of all congruence on M by Con(QMP), then Con(QMP) is a complete lattice with respect to the
inclusion order.

Let Q, P be a quantale, M is a Q-P quantale module, R is a congrence of Q-P quantale module on M, define the
order relation on M/R such that [m] ≤ [n] if and only if [m ∨ n] = [n] for all [m], [n] ∈ M/R.

Theorem 3.3. Let Q, P be a quantale, M be a Q-P quantale module, R be a congrence of double quantale module
on M. Define TM/R : Q × M/R × P −→ M/R such that TM/R(a, [m], b) = [TM(a,m, b)] for all a ∈ Q,b ∈ P,
[m] ∈ M/R, then (M/R,TM/R) is a Q-P quantale module and π : m 7→ [m] : M −→ M/R is a Q-P quantale module
homomorphisms.

Proof. (1) We will prove that “ ≤ ”is a partial order on M/R, and TM/R is well defined. In fact, for all [m], [n], [l] ∈
M/R,

(i) It’s clearly that [m] ≤ [m];

(ii) Let [m] ≤ [n], [n] ≤ [m], then [m ∨ n] = [n]and[n ∨ m] = [m], thus [m] = [n];

(iii) Let [m] ≤ [n], [n] ≤ [l], then [m ∨ n] = [n]and[n ∨ l] = [l], therefore [m ∨ l] = [m ∨ (n ∨ l)] = [(m ∨ n) ∨ e] =
[n ∨ l] = [l].

If [m1] = [m2], then (m1,m2) ∈ R, (TM(a,m, b),TM(a, n, b)) ∈ R for all a, b ∈ Q, i.e., [TM(a,m, b)] = [TM(a, n, b)],
thus TM/R is well defined.

(2) We will prove that (M/R,≤) is a complete lattice. Let {[mi] | i ∈ I} ⊆ M/R, we have

(i) Since [mi ∨ (
∨
i∈I

mi)] = [
∨
i∈I

mi] for all i ∈ I, then [mi] ≤ [
∨
i∈I

mi];

(ii) Let [m] ∈ M/R and [mi] ≤ [m] for all i ∈ I, then [mi∨m] = [m] for all i ∈ I, hence, [(
∨
i∈I

mi)∨m] = [
∨
i∈I

(mi∨m)] =

[m], i.e., [
∨
i∈I

mi] ≤ [m].

Thus
M/R∨
i∈I

[mi] = [
∨
i∈I

mi].

(3) For all {ai | i ∈ I} ⊆ Q, {b j | j ∈ J} ⊆ Q, {[ml] | l ∈ H} ⊆ M/R, a, b ∈ Q,c, d ∈ P, [m] ∈ M/R, we have that

(i) TM/R(
∨
i∈I

ai, [m],
∨
j∈J

b j) = [TM(
∨
i∈I

ai,m,
∨
j∈J

b j)] = [
∨
i∈I

∨
j∈J

TM(ai,m, b j)]

=
∨
i∈I

∨
j∈J

TM[ai,m, b j] =
∨
i∈I

∨
j∈J

TM/R(ai, [m], b j);

(ii) TM/R(a, (
∨
j∈J

[m j]), b) = TM/R(a, [
∨
j∈J

m j], b) = [TM(a, (
∨
j∈J

m j), b)] = [
∨
j∈J

TM(a,m j, b)]

=
∨
j∈J

[TM(a,m j, b)] =
∨
j∈J

TM/R(a, [m j], b);

(iii) TM/R(a&b, [m], c&d) = [TM(a&b,m, c&d)] = [TM(a,TM(b,m, c), d)]
= TM/R(a, [TM(b,m, c)], d) = TM/R(a,TM/R(b, [m], c), d).

Then (M/R,TM/R) is a Q-P quantale module.

(4) For all {[mi] | i ∈ I} ⊆ M/R, a ∈ Q,b ∈ P, [m] ∈ M/R,

π(
∨
i∈I

mi) = [
∨
i∈I

mi] =
∨
i∈I

[mi] =
∨
i∈I
π(mi);

π(TM(a,m, b)) = [TM(a,m, b)] = TM/R(a, [m], b) = TM/R(a, π(m), b).
So π : m 7→ [m] : M −→ M/R is a Q-P quantale module homomorphisms. 2

Theorem 3.4. Let Q, P be a quantale, M a double quantale module, then △ = {(x, x) | x ∈ M} is a congrence of
Q-P quantale module on M.

Theorem 3.5. Let Q, P be a quantale, M and N be Q-P quantale modules, f : M −→ N a Q-P quantale module
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homphorism, R a Q-P quantale module congrence on N. Then f −1(R) = {(x, y) ∈ M × M | ( f (x), f (y)) ∈ R} is a
Q-P quantale module congrence on M.

Theorem 3.6. Let Q, P be a quantale, M and N are Q-P quantale modules,
f : M −→ N be a Q-P quantale module homphorism. Then f −1(△) = {(x, y) ∈ M × M | f (x) = f (y)} be a Q-P
quantale module congrence on M, where △ = {(a, a) | a ∈ N}.
Let Q, P be a quantale, M be a Q-P quantale module, R ⊆ M×M, since Con(QMP) is a complete lattice, there exists
a smallest Q-P quantale congrence containing R , which is the intersection all the Q-P quantale module congrence
containing R on M. We said that this congrence is generated by R.

Theorem 3.7. The category QModP has coequalizer.

M
f

g
N E′h

E

π
h

-
-

-

?
�
�

�
���

Proof. Let Q, P be a quantale, (M, TM) and (N, TN) be Q-P quantale modules, f and g be Q-P quantale mod-
ule homomorphisms, Suppose R is the smallest congrence of the Q-P quantale modules on N, which contain
{( f (x), g(x)) | x ∈ M}. Let E = N/R, π : N −→ N/R is the canonical mapping, then (N/R,TN/R) is a Q-P quan-
tale module and π is a Q-P quantale module homomorphisms by theorem 3.3 . We will prove that (π, E) is the
coequalier of f and g. In fact,

(1) π ◦ f = π ◦ g is clear£

(2) Let (E′,TE′ ) be a Q-P quantale module, h : N −→ E′ be a Q-P quantale module homomorphisms such that
h◦ f = h◦g. Let R1 = h−1(△), where △ = {(x, x) | x ∈ E′}. By theorem 3.5, we can see that R1 is a congrence of Q-P
quantale module on N. Since h( f (x)) = h(g(x)) for all x ∈ M, then ( f (x), g(x)) ∈ R1. Define h : N/R −→ E′such
that h([n]) = h(n) for all [n] ∈ Q/R. Let n1, n2 ∈ N and (n1, n2) ∈ R, then (n1, n2) ∈ R1, and we have that
h(n1) = h(n2). Therefore h is well defined.

For all {[ni] | i ∈ I} ⊆ N/R, a, b ∈ Q, [n] ∈ N/R, we have that

h(
∨
i∈I

[ni]) = h([
∨
i∈I

ni]) = h(
∨
i∈I

ni) =
∨
i∈I

h(ni) =
∨
i∈I

h([ni]);

h(TN/R(a, [n], b)) = h([T (a, n, b)]) = h(T (a, n, b)) = TE′ (a, h(n), b) = TE′ (a, h([n]), b).

Thus, h is a Q-P quantale module, and h is the unique homomorphism satisfy h ◦ π = h. Therefore (π, E) is the
coequalizer of f and g. 2

From now until the end of Section 3, we suppose Q be a unital quantale with unit e. Let X be a nonempty set, we
consider the complete lattice (QX ,

∨X), where QX is the set of all the function from X to Q and (
∨X

i∈I
fi)(x) =

∨
i∈I

fi(x)

for all x ∈ X.

Theorem 3.8. Let X be a nonempty set, and Q is idempotent and unital quantale with unit e, define TX : Q ×
QX × Q −→ QX such that TX(a, f , b)(x) = a& f (x)&b, for all a, b ∈ Q, f ∈ QX , x ∈ X. Then (QX , TX) is the free
double quantale module generated by X, equipped with the map φ : x ∈ X 7−→ φx ∈ QX , where φx is defined by

φx(y) =
{

0, y , x,
e , y = x. for all y ∈ X.

Proof. It’s easy to prove that (QX ,TX) is a double quantale module. Let (M,TM) be any double quantale module
and g : X −→ M be an arbitrary map. First observe that for all f ∈ QX , Q be a unital quantale with unit e, hence
f = TX(e, f , e) by definition 2.2. So every elments of QX could denote by TX(c, f , d) for some c, d ∈ Q, f ∈ QX .
Define map hg : QX −→ M such that hg(TX(c, f , d)) =

∨
x∈X

TM(c,TM( f (x), g(x), f (x)), d), for all TX(c, f , d) ∈ QX ,

c, d ∈ Q.
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For all x′ ∈ Z, (hg ◦ φ)(x′) = hg(φx′ ) =
∨
x∈X

TM(φx′ (x), g(x), φx′(x)) = TM(e, g(x), e) = f (x), hence hg ◦ φ = f . This

implies that the following diagram commute.

X QXφ

hg

M

g

-

?

@
@
@
@R

We will prove that hg is a Q-P quantale module homomorphism.

For all { fi}i∈I , a, b ∈ Q, f ∈ QX , we have

(i) hg(
∨
i∈I

fi) = hg(TX(e,
∨
i∈I

fi, e) =
∨
x∈X

TM(e,TM(
∨
i∈I

fi, g(x),
∨
i∈I

fi), e)

=
∨
x∈X

TM(
∨
i∈I

fi, g(x),
∨
i∈I

fi)

=
∨
i∈I

∨
x∈X

TM( fi, g(x), fi)

=
∨
i∈I

hg( fi);

(ii) hg(TX(a, f , b)) =
∨
x∈X

TM(a,TM( f (x), g(x), f (x)), b)

= TM(a,
∨
x∈X

TM( f (x), g(x), f (x)), b)

= TM(a, hg( f ), b).

Therefore, hg is a Q-P quantale module homomorphism.

Next, we will prove that hg is an unique Q-P quantale module homomorphism satisfying the above conditions.

Now, let h′g : QX −→ M be another unique Q-P quantale module homomorphism such that h′g ◦ φ = g. For all
TX(c, f , d) ∈ QX , we have

hg(TX(c, f , d)) =
∨
x∈X

TM(c,TM( f (x), g(x), f (x)), d)

=
∨
x∈X

TM(c,TM( f (x), (h′g ◦ φ)(x), f (x)), d)

=TM(c, h′g(
∨
x∈X

TX( f (x), φx, f (x))), d)

=TM(c, h′g( f ), d) (
∨
x∈X

TX( f (x), φx, f (x)) = f )

=h′g(TX(c, f , d)).

Therefore, (QX ,TX) is the free Q-P quantale module generated by X, equipped with the map φ.

Definition 3.9. Let X be a nonempty set, Q, P is unital quantale , (QX ,TX) is called free Q-P quantale module
generated by X.

Theorem 3.10. The forgetfull functor U : QModP −→ Set have a left adjoint.

Proof. Let X and Y be nonempty sets, (QX ,TX) and (QY ,TY ) be the free Q-p quantale module generated by X and
Y respectively.

Corresponding map f : X −→ Y defines M( f ) : QX −→ QY such that M( f )(g)(y) =
∨{g(x) | f (x) = y, x ∈ X}, for

all g in QX , y ∈ Y . Obiviously, M( f ) is well defined.

We check M( f ) is a Q-p quantale module homomorphism.

For all gi, g ∈ QX , a ∈ Q, b ∈ P, y ∈ Y we have

(i) M( f )(
∨
i∈I

gi) =
∨{∨

i∈I
gi(x) | f (x) = y, x ∈ X}
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=
∨
i∈I

(
∨{gi(x) | f (x) = y, x ∈ X})

=
∨
i∈I

M( f )(gi)(y).

Thus M( f ) preserves arbitrary joins.

(ii) M( f )(TX(a, g, b))(y) =
∨{TX(a, g, b)(x) | f (x) = y, x ∈ X}

=
∨{a&g(x)&b | f (x) = y, x ∈ X}
= a&(

∨{g(x) | f (x) = y, x ∈ X})&b

= a&(M( f )(g)(y))&b

= TY (a,M( f )(g), b)(y).
Thus M( f )(TX(a, g, b))(y) = TY (a,M( f )(g), b)(y).
It is readily verified that M( f ) is a Q-P quantale module homomorphism.

Next, we will check that M : Set −→ QModP is a functor.
Let f : X −→ Y , g : Y −→ Z, idX is the identity function on X. For all h ∈ QX , x ∈ X, z ∈ Z, we have

(i) M(idX)(h)(x) =
∨{h(x) | idX(x) = x} = h(x) = idQX (h)(x), it shows that M preserves identity function.

(ii) (M(g) ◦ M( f ))(h)(z) =
∨{M( f )(h)(y) | g(y) = z, y ∈ Y}

=
∨{∨{h(x) | f (x) = y, x ∈ X} | g(y) = z, y ∈ Y}
=
∨{h(x) | f (x) = y, g(y) = z, x ∈ X, y ∈ Y}
=
∨{h(x) | g( f (x)) = z, x ∈ X}
= M(g ◦ f )(h)(z),

then M preserves composition.

Finally, we will prove that M is the left adjoint of U.

By theorem 3.8, we have (QX ,TX) is the free Q-P quantale module generated by X, equipped with the map φ,
therefore, M is the left adjoint of U. 2

Theorem 3.11. The forgetful functor U : QModP −→ Set preserves and reflects regular epimorphisms.

Proof. It is easy to be verified that the forgetful functor U preserves regular epimorphisms. We will check the
forgetful functor U reflects regular epimorphisms.

At first, every regular epimorphisms is a surjective homomorphism in QModP by Theorem 3.7.

Next, we prove that every surjective homomorphism is a regular epimorphisms in QModP.

Let h : M1 −→ M2 be a surjective Q-P quantale module homomorphism. Since the surjective morphism is an
regular epimorphism in Set. Then h is a regular epimorphism in Set, there exists a set X and maps f , g such that
(h,M2) is a coequalizer of f and g.

Let (QX ,TX) be a Q-P quantale module generated by X. Since Q be a unital quantale with unit e, hence s =
TX(e, s, e) for all s ∈ QX .

Define map h f , hg : QX −→ M such that h f (TX(a, s, b)) =
∨
x∈X

TM1 (a,TM1 (s(x), f (x), s(x)), b).

hg(TX(a, s, b)) =
∨
x∈X

TM1 (a,TM1 (s(x), g(x), s(x)), b), for all TX(a, s, b) ∈ QX , s ∈ QX , a, b ∈ Q.

We know that h f and hg are Q-P quantale module homomorphisms by theorem 3.8.

Since h f is a Q-P quantale module homomorphism, and h ◦ f = h ◦ g, then h ◦ h f = h ◦ hg. Suppose there is a Q-P
quantale module homomorphism h′ : M1 −→ M2 with h′ ◦ h f = h′ ◦ hg, then we have h′ ◦ f = h′ ◦ g.

Because (h,M2) is the coequalizer of f and g, there is a unique Q-P quantale module homomorphism h : M2 −→
M3 such that h′ = h◦h. Since h is a surjective of Q-P quantale module homomorphism, then there exists x′, y′ ∈ M1
and {x′i }i∈I ⊆ M1 such that h(x1) = x, h(y1) = y, h(x′i ) = xi.

We check that h be a Q-P quantale module homomorphism in the following.
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(i) h(
∨
i∈I

xi) = h(
∨
i∈I

h(x′i )) = hh(
∨
i∈I

x′i ) = h′(
∨
i∈I

x′i ) =
∨
i∈I

h(x′i ) =
∨
i∈I

hh(x′i ) =
∨
i∈I

h(xi),

(ii) For any a ∈ Q, b ∈ P, m ∈ M2, since h is a surjective of double quantale module homomorphism, there exists
m′ in M such that h(m′) = m.

So we have T3(a, h(m), b) = T3(a, h(h(m′)), b) = T3(a, h′(m′), b) = h′(T1(a,m′, b))
= hh(T1(a,m′, b)) = h(T2(a, h(m′), b) = h(T2(a,m, b)).

Hence, (h,M2) is an coequalizer of h f and hg in QModP, so h is a regular epimorphism in QModP. Therefore,
the regular epimorphisms are precisely surjective homomorphisms in QModP. Since the forgetfull functor U :
QModP −→ Set reflects surjective homomorphisms, hence U : QModP −→ Set reflects regular epimorphisms.

X
f

g
M1 M3

h′

M2

h
h
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The combination of theorem 3.7, theorem 3.10 and theorem 3.11, we can obtain the main result of this paper.

Theorem 3.12. The category QModP is algeraic.
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