
A System for Converting PDF Documents into
Structured XML format

Hervé Déjean, Jean-Luc Meunier1

Xerox Research Centre Europe
6, chemin de Maupertuis

F-38240 Meylan
Firstname.Lastname@xrce.xerox.com

Abstract. We present in this paper a system for converting PDF legacy
documents into structured XML format. This conversion system first extracts
the different streams contained in PDF files (text, bitmap and vectorial images)
and then applies different components in order to express in XML the logically
structured documents. Some of these components are traditional in Document
Analysis, other more specific to PDF. We also present a graphical user interface
in order to check, correct and validate the analysis of the components. We
eventually report on two real user cases where this system was applied on.

1 Introduction

Enterprise Content Management (ECM) software enables organizations to
create/capture, manage/secure, store/retain/destroy, publish/distribute, search,
personalize, and present/view/print any digital content [1]. The capture module
essentially offers functionalities such as scanning, OCR, indexing. Most of the ECM
systems integrate now XML, a format which provides, among other advantages, a
way to store documents with metadata and structural information. Due to the
dissemination of this format and its adoption as standard, n ew requests from
organizations challenge ECM software to provide more sophisticated functionalities
such as document conversion to XML which keeps the structural information. This
structural information is not explicitly marked up in most electronic documents. This
is particularly true for PDF documents [2]. Even if the version 6 of PDF allows a user
to create a file containing structural information, most of them do no contain such
information. The use of PDF format as input format for a conversion task can be
questionable: since PDF files are very often generated from another format (MS
Word, Latex), converting files with the original format could be more efficient. But
the everyday life (and customers cases provided by Xerox business units) shows that
PDF is now a common exchange format between organizations, and often is the only
accessible format.

1 This work is supported by VIKEF Integrated Project co-funded under the EU 6th Framework

Programme.

2 Hervé Déjean, Jean-Luc Meunier

Portable Document Format (PDF) goal is “to enable users to exchange and view
electronic documents easily and reliably, independently of the environment in which
they were created” [2]. A detailed presentation of this format is out of the scope of
this article, and we will consider here a PDF document as a sequence of pages, each
page being composed of any combination of text (referred as text objects in [2]),
graphics (path objects) and images (external objects).
1. a text object consists in one or more characters and layout information (position,

fonts)
2. a path object contains vectorial instructions (lines or bezier curves).
3. a image external object defines a rectangular image.

Many PDF converters [3;4;5] are available off the shelf, but often they simply
provide a format conversion, and almost no structural information is provided in the
final format, except at the very low level (words, lines). Information contained in the
original PDF file is in a way simply translated in another format. [6] presents a
comparison of some of them.

OCR-oriented software [7;8;9] now provides a functionality to convert PDF
through scanning and OCR. The drawback is that information clearly present in the
PDF file (text zone, external image) is not used, and the image analysis step can
introduce noise (some text may not be recognized as text zone; some images may not
be correctly recognized). Nevertheless, this strategy is the only one available when
the PDF file only contains images (from scanning).

[6] proposes a method combining both approaches: applying traditional layout
analysis on TIFF images generated from PDF combined with low-level content
extracted from the PDF file. We present here a system that relies solely on the PDF-
extracted content, no longer requiring the conversion to TIFF nor the combination of
both approaches. The first steps consist in extracting the native PDF pieces of
information: text, path objects, and external objects (Sections 2,3). Then the textual
organization of each page and its reading order is computed through a XY-cut-based
algorithm (Sections 4,5). In order to extract the logical structure at the document
level, we first detect the table of contents (Toc) of the document, and structure it
according to the hierarchical information present in its Toc (Section 6). Section 5 and
6 are brief since this work has been reported in [14;18]. We also present a graphical
user interface which allows the user to correct each step of the conversion (if
necessary). We eventually discuss two user cases where this conversion system has
been successfully used.

2 Text Extraction

If PDF allows the preservation of the look of documents, it does not contain or
guarantee a correct logical representation of the text. An inspection of the text streams
extracted form PDF files reveals first that these streams can correspond to various
objects: a character, a partial word, a word, a line,…. Secondly the order of these text
streams does not always correspond to the reading order. A word reconstruction
component and a reading order component are then necessary in order to correctly

3A System for Converting PDF Documents into Structured XML format 3

extract the text from a PDF file. We will describe here the word reconstruction
component we have developed. The reading order component is explained Section 5.

Text objects are extracted from the PDF and a word and line segmentation is
produced based on heuristics using the distance between characters and their
geometrical positions (similarly to the heuristics present in the Xpdf library [10]). In
most cases, this set of heuristics correctly segments the text streams into words and
lines. Table 1 shows tokenization some errors provided by this method.

Table 1. Texts before and after correction
Original text Corrected text

TI GH TEN I N G TO RQ UES TIGHTENING TORQUES
Throttle p edal position sensor Throttle pedal position sensor
F it t in g r ear s eal Fitting rear seal
Oil vap ou r f u ll r ec ir c u lat ion s ys t em (B
low -b y)

Oil vapour full recirculation system (Blow -
b y)

En gine coolant temperatu re sensor Clutch pedal position sensor
Brake pedal p osition senso r Brake pedal position sensor
Ch ec kin g t o r s ion Checking torsion
E N G I N E E R I N G E N G I N E E R I N G
Ch ec kin g b en d in g Checking bend ing
Ch ec kin g t o r s ion Checking torsion
Ru n u p Run up

Even if the errors are marginal, texts which are wrongly tokenized often
cor respond to log ica l e l ements which s t ruc tu re documents , such as
document/chapter/section headings. One possible explanation is that special fonts and
layout are used for these elements. It is noteworthy that extracting these elements
correctly might be very important since they structure the document (as the reader
will see Section 6). To correct these errors, we propose the following method:
1. text is extracted from PDF using geometrical information.
2. a weighted lexicon is built, based on the tokens present in the document
3. for each line, all the possible tokenizations are generated
4. the best tokenization is selected

After the first extraction using geometrical information, a lexicon is built. Since
most of the word segmentation is correctly done, the lexicon mainly contains correct
words. The hypothesis we do here is that words which occur in ill-formed elements
will occur correctly in other parts of the document. We will then use correct
tokenized words in order to retokenize bad words. External lexicons can be of course
used but, since document conversion mainly involves technical documents (with a
domain-specific terminology), the general lexicons may have a bad coverage.

Each token (word of the document) is associated a weight. The weighting schema
we use is the following one:

W= length(token)*log(frequency(token)+1) (1)

where frequency(token) corresponds to the number of token occurrences in the
document, and length(token) is the length in character. We consider that the more
frequent a word, the more reliable.

A weighted automaton (see [11]) is built, describing the set of all tokens of the
document with their respective weight. Let us call it D (for dictionary).

4 Hervé Déjean, Jean-Luc Meunier

In order to generate all the possible tokenizations, we apply (through a transducer
called T) the following actions over an input string (which corresponds to a line built
step 1): a space character is deleted or a space character is inserted.

We associate a weight to both operations. Since most of the errors are corrected by
deleting a space character, we give a higher weight to the deletion operation. An
automaton is generated for a string we want to re-tokenize such that each letter of the
string labels a transition. Let us call this automaton S. S, T and D are composed in
order to generate all the tokenization for S: S .o. T .o. D* (* being the kleen star). This
final transducer will assign to each possible tokenization a weight using the weights
associated to the words (automaton D) and to the operation (transducer T). A Viterbi
algorithm is applied over the transducer in order to select the path with the highest
weight.

Table 1 shows texts extracted from a PDF file and the new tokenization after our
correction component. Tests have been made with correctly tokenized text, and the
correct tokenization is kept unchanged by the method. This method also provides
dealing with hyphenation. By simply adding a third operation: deleting the hyphen
symbol, the resulting automaton will de-hyphenate hyphenated words which occur in
the document somewhere else (or in an external lexicon).

3 Image/Text Separation

PDF contains also information about images, mainly using two objects: external
objects which allow the insertion of external objects (as raster images), and path
objects which allow the description of vectorial elements (the clipping objects are not
yet taken into account by our system). A single vectorial image can be composed of
thousands of paths. One problem is then to regroup all the elements (paths, text,
images) which form the complete image. This is a traditional task for Document
Analysis systems to recognize and label parts of pages as text zones and image zones.
If these methods can be also used here, we prefer to use the information present in the
PDF file. An XY-cut-based algorithm (Section 5) is first applied on external and path
objects, first ignoring text. The zone of a path object is defined thanks to the
coordinates of each element of the path (an approximation is in practice enough for
bezier curves). Ignoring textual elements allows avoiding many situations where
images and text zones form non-manhattan zones, a well-known problem for an XY-
cut approach. The graphical elements (path objects and images) are then grouped, and
the final groups can contain both: images and paths. Text segmentation is explained
Section 5. Once elements have been regrouped into zones, the labeling (text/image
zone) is done by computing the surface of each type (text, image) in the zone. Since
overlap between a text and an image zones can happened, both are merged, and the
label of this zone corresponds to the label of the text or image zone which covers the
highest surface. This simple approach provides a robust solution in most cases, but
fails in the following cases:
1. the page contains a background image: The following heuristic can be used in this

case: when an image has a size which is similar to the page size, consider it as
background image.

5A System for Converting PDF Documents into Structured XML format 5

2. an image/schema is composed of different elements which are too distant: in this
case the image is oversegmented

3. Text is wrongly integrated into an image zone. This error typically occurs when the
author wants to insert an image onto a page, although space is clearly missing.
This component is still under research but the current status is enough in order to

correctly detect vectorial images, and consequently can be used for developing other
components such as a caption detector.

4 Header Footer Detection

The purpose of this component is to detect zones at the top of the document and at the
bottom of the document which correspond to headers and footers. Since one goal of
this system is to logically structure documents, the deletion of pages induces the
deletions of elements which are directly linked to the page segmentation, typically
headers and footers. In order to characterize this zone, we use the following
observation: in a header or footer zone, the textual variety is much lower than in the
body page (see Table 3). A similar observation is used in [12]. The header/footer
detection consists of three main steps: t ext normalization, textual variability
computation and header/footer zone detection

The only normalization applied (step 1) consists in replacing all digits by a unique
character (D). This normalization is due to the frequent use of page/chapter/section
numbering and dates in headers/footers.

The text extraction component provides us with the vertical or horizontal positions
of textual fragments in a page. To each vertical position, we associated the number of
text blocks occurring at this position, and the number of different text blocks
occurring at this position. A textual variability score for each position i is computed
as follows:

)1(
#

#
)(_

blockstexttotal

blockstextdifferent
iscoretv

For example, in the Linux System Administrator's Guide, the texts occurring at the
position 108 have a textual variability of 7/93 =0.075 (Table 2). As Table 3 shows,
and accordingly with our hypothesis, the position 108 has a very low score (header),
while the position 156 (page body) has a very high one.

Table 2. Variability for the position 108 in the Linux System Administrator's Guide

Text at the position y = 108 Nb of occurrences

Installing and Configuring DD/DDDBase-T X/DDDD 25

DD/DDDBase-TX Interface Card Statistics 9
Troubleshooting DD/DDDBase-TX/DDDD 33
Configuring Network Connectivity Using SAM' 5
DDDBase-TX Resources 9
Hardware Regulatory Statements 3
Hardware Reference Information 9

total 93

6 Hervé Déjean, Jean-Luc Meunier

Table 3. Textual variability according to the position in a page: T h e Linux System
Administrator's Guide

position # text blocks #different text blocks Textual variability

96 5 3 0.6
108 93 7 0.075
122 89 32 0.35
143 1 1 1

155 17 11 0.67
156 47 45 0.96

Once the variability score for each position is computed, we try to identify whether
the document has header zones and footer zones. For this, we use the following
method:
1. Identify potential headers/footers elements: all elements with a score lower than a

given threshold θ (0.5 in practice) are identified as potential headers or footers. The
top first potential candidate is identified (starting from the top for the header and
from the bottom for the footer). For the header detection, this candidate must occur
in the upper half-page, for the footer detection, the candidate must occur in the
lower half-page.

2. Merge surrounding elements: We extend the current header zone (resp. footer list)
with preceding and following elements if and only if its insertion decreases the
textual variability score of the new augmented list. Elements are added
incrementally starting from the adjacent elements of the list. Potentially no new
element is added. The reduction of the score imposes that the new element has
some text in common with the current list. If the final zone does not reach the top
(for header) or bottom (for footer) of the page, the zone is invalidated.

3. Return the lowest (resp. highest) position of the header (resp. footer) list. A zone
for header and/or a zone for footer are then recognized, and elements occurring in
them are considered as header or footer.
This method works very well when headers and footers are homogenous over the

entire document. It can partially fail when a document is composed of parts which
have different kinds of headers or footers (headers in an annex can be different (e.g.
lower) to headers in the document body).

5 Reading Order Computation and Segmentation into Paragraphs

The ordering problem consists in ordering the objects of a page in order to reflect the
human reading order. Multiple approaches to this problem have been proposed in the
literature [13], exploiting geometric or typographic features of the page objects, or
going further in exploiting the content of objects, with or without priori knowledge
about a particular document class.

The use of off-the-shelf PDF converters leads to the consideration of layout objects
of various granularities, because they may contain one line, or one word, or part of a
word, or even a single letter. The pages considered here often contain several hundred

7A System for Converting PDF Documents into Structured XML format 7

of textual objects, and we therefore proposed in [14] a method based on the XY-Cut
[15], which takes an optimization approach to the problem and leverages dynamic
programming to process efficiently any page.

It is also often important to segment the flow of text into paragraphs. The XY-cut
approach can also provide this segmentation when the line spacing indicates the
paragraph boundaries.

We evaluated the method thanks to the UW III document image database, which
includes 1600 English journal pages. We tested at both the word-level and line-level
using the ground truth. The parameters were set to their default values (only taking
into account the image resolution factor, since the scale was 4 times larger than with
our PDF converters). We observed an error of less than 1% of misplaced objects.

The method is a pure geometric ordering method, of general applicability in the
sense that no domain knowledge is used. But there exists geometrically ambiguous
pages (rare in our experience with technical documents) and for those, additional
features must be taken into account. Fortunately, the score function offers convenient
room for improvements with the same approach. This method suffers from the XY-
Cut L-Shapes weakness but is fast (20 pages/second on a Pentium 4) thanks to the
dynamic programming technique. We are now interested in exploring alternative
methods based on 2D relationships [16;17].

6 Toc-Based Structuring

This module aims at structuring a document according to its table of contents
(hereafter ToC). First the toc of a document is automatically detected, and in the same
step, the ToC entries are linked to their entries in the document body. Finally the
hierarchical structure of the toc is used to structure the document accordingly. A more
detailed presentation of the method is presented in [18].

In view of the large variation in shape and content a ToC may display, we believe
that a descriptive approach would be limited to a series of specific collections.
Therefore, we instead chose a functional approach that relies on the functional
properties that a ToC intrinsically respects. These properties are:
1. Contiguity: a ToC consists of a series of contiguous references to some other

parts of the document itself;
2. Textual similarity: the reference itself and the part referred to share some level of

textual similarity;
3. Ordering: the references and the referred parts appear in the same order in the

document;
4. Optional elements: a ToC entry may include (a few) elements whose role is not to

refer to any other part of the document, e.g. decorative text;
Our hypothesis is that those 4 properties are sufficient for the entire

characterization of a ToC, independently of the document class and language.

6.1 The Table of Contents Detection

Three steps permit us to identify the area of the document containing the ToC text.

8 Hervé Déjean, Jean-Luc Meunier

 Firstly, links are defined between each pair of text blocks in the whole document
satisfying a textual similarity criterion. Each link includes a source text block and a
target text block. The similarity measure we currently use is the ratio of words shared
by the two blocks, considering spaces and punctuation as word separators. Whenever
the ratio is above a predefined threshold, the similarity threshold, a pair of symmetric
links is created. In practice, 0.5 is a good threshold value to tolerate textual variation
between the ToC and the document body while avoiding too many noisy links.

Secondly, all possible ToC candidate areas are enumerated. A brute force approach
works fine. It consists in testing each text block as a possible ToC start and extending
this ToC candidate further in the document until it is no longer possible to comply
with the five properties identified above. A ToC candidate is then a set of contiguous
text blocks, from which it is possible to select one link per block so as to provide an
ascending order for the target text blocks.

Thirdly, we employ a scoring function to rank the candidate tables of contents. The
highest ranked candidate is then selected for further processing. Currently, the scoring
function is the sum of entry weights, where an entry weight is inversely proportional
to the number of outgoing links. This entry weight characterizes the certainty of any
of its associated links, under the assumption that the more links initiate from a given
source text block, the less likely that any one of those links is a "true" link of a table
of contents.

Once the highest ranked table of contents candidate has been selected, we select
the best link for each of its entries by finding a global optimum for the table of
contents while respecting the five ToC properties. A weight is associated with each
link, which is proportional to the similarity level that led to the link creation. A
Viterbi shortest-path algorithm is adequate to effectively determine the global
optimum.

6.2 Hierarchical structuring using the ToC Hier archy

The next step is then to find the hierarchical organization of the ToC. This is done in a
twofold process:
Entry clustering: the ToC entries are clustered according to their visual
characteristics (fonts, positions, case). The assumption made here is to consider that
elements belonging to the same hierarchical level share the same visual
characteristics. This clustering is done using state-of-the-art algorithms. The output is
a set of clusters which correspond to each hierarchical level. If the document
hierarchy is not reflected by visual clues, then no hierarchy will be found.
Cluster hierarchy determination: The purpose of this second step is to find the
hierarchical relation between clusters. Acknowledging the fact that the first element
of the ToC is not necessarily an element belonging to the highest level (a document
with a complex front matter for example), we use the following heuristics: the
elements (namely ToC Entries) of lowest level more frequently have adjacent
elements from the same level as elements of higher levels. For instance, for a
document with three hierarchical levels (chapter, section, subsection), subsections
very often have at least one adjacent element of the same level (if only ToC entries
are taken into account). This heuristics allows us to identify the lowest hierarchical

9A System for Converting PDF Documents into Structured XML format 9

level. The procedure is iterated by ignoring the cluster just identified. The detailed
procedure is given in [18].

The result of this procedure is the hierarchical structuring of the ToC entries. The
ultimate step simply consists in first marking each heading in the document body with
its hierarchical level, and then in structuring the document accordingly. The final
document is now segmented in hierarchical sections similarly to the information
present in the ToC.

7 The Graphical User Interface

We developed a graphical tool to allow the operator to set up the whole conversion
chain for a given collection and validate and/or correct the processing output. The
conversion chain set up consists in determining which components to apply and with
which parameterization, while the correction/validation activity consists in verifying
the quality of the conversion and correcting it if needed. Actually, both activities are
interleaved since the setting up involves verifying the output while tuning the settings.

Figure 2 shows a screenshot of the graphical user interface of the tool. User-
centered design involving cycles of task analysis, mock-ups and user testing allowed
us to design a tool taking into account the main needs:

 Handling of large collections of documents;
 Fast display of any large document, with instantaneous page browsing and fast

document loading (less than 5s for a 1000 page document);
 Capability of customizing both the conversion process and the settings of each

conversion step;
 Capability to explore the concurrently possible alternate settings;
 Visual rendering of the conversion output thanks to an intuitive graphical page

decoration overlaid;
 An XML display with extensible perspectives offering appropriately

customized views, thanks for instance to a series of dedicated XSLT
transforms or to dedicated applicative code.

 In-place correction mechanism acting on the overlaid decorations with
consistency control;

 A plug-in mechanism to embed future components;

10 Hervé Déjean, Jean-Luc Meunier

Fig. 1. Left side: the collection, the open documents, the tested configurations. Right side:
different perspectives dedicated to each conversion component (here the Toc detector). Center
part: decoration for segmentation in blocks and the reading order. In the toolbar appear the
different possible main views corresponding to each conversion steps

8 Final XML Output

For lack of space, we only present the main element of our final format: documents
are now organized in blocks, and no longer in pages. Blocks have some similarities
with the compound texton presented in [19], consisting of a header, body, and
optional trailer. Our block consists of an optional head, a body and an optional tail.
Each of these three parts contains either textual data or a block. Blocks are then
recursive, similarly to the compound texton. This generic schema allows us to capture
the most frequent structures found in documents.

 Two User Cases

We present here two customer cases where this system was applied on: conversion of
car repairing manuals and construction contracts. In the two cases, the purpose of this
conversion is different: in the first case, the goal was to integrate legacy documents

11A System for Converting PDF Documents into Structured XML format 11

into a new XML-based authoring system, and the requirements in terms of structures
were strong and fine. In the second case, the conversion into XML aims at facilitating
information retrieval, and the requirements for structuring the text in a section were
minimal (lines). In both cases, a specific XSL transformation was used in order to
transform the XML files outputted by our conversion chain into the final customized
schema.

In the first user case, the collection was composed of car repairing manuals. Each
manual has about 1,000 pages. The main task was to segment the manuals into
operations (the document unit). The components used were: the image extractor, the
header/footer detector, the reading order component and the Toc-based structuring.
The images were extracted using the component presented Section 3. One
requirement was to keep the vectorial structure whenever possible, and vectorial
images were converted into SVG. Ad hoc components were developed in order to
associate to the image its number where occur below it. The reading order component
was very important since most of the pages were two-column pages. A segmentation
into paragraphs was achieved by the XY-cut-based module. Some specific structures
(warnings, lists) were detected using rules. An estimation done by the customer shows
that the use of this automatic system increases by 50% the conversion productivity
(done manually before).

In the second user case, the problem was to structure a collection of construction
contracts in divisions and sections. Even if the construction documents follow strict
guidelines, the documents use various layout standards, depending on the institution.
The documents are first scanned, OCR-ed and divided into divisions. Our system was
used in order to segment each division into sections. The requirements for the sections
were minimal: a simple structuring into lines. The components used for this user case
were: the header/footer detector (essentially for the ToC pages), the reading order
detector and the toc-based structuring. Each division has a table of contents with 30 to
200 entries (sections). The test set was composed of 25 documents which represent
about 12,000 pages for 1600 sections. This represents 10% of a daily conversion
(120,000 pages/day). The precision (at the link level) was 92% and the recall 90%.
Errors are mainly due to OCR errors and mismatches between the ToC and the
document body (e.g. a section in the document does not occur in the ToC).

10 Future Work and Conclusion

We have presented a system able to convert PDF documents into logically structured
XML documents. The specificity of our approach relies in the exploitation of the
native internal PDF objects rather than using image-based techniques on an image
representation of the PDF document. We believe this is advantageous because it is
computationally less intensive and potentially more efficient. Indeed exploiting the
PDF native objects is helpful also in the sense that some conventional tasks such as
image segmentation and labeling become either pointless or can be better done from
the native objects.

Our experimentation with some real customer cases allowed us to identify some
required improvements, which are now part of our future work list: other specific

12 Hervé Déjean, Jean-Luc Meunier

components such as figure/table caption, footnotes, table, list detectors… Also, the
XY-cut segmentation in paragraphs is very sensible to parameters (either a potential
under-segmentation or line-segmentation). Other features like fonts, indentation have
to take into account. We have also realized the importance of customizing the
conversion chain in view of the customer requirements. This customization includes
the conformance of the XML output with some precise schema but also requires to
both parameterize appropriately each component and to determine the sequence of
conversion. While the component parameterization is well supported by the GUI, the
customization of the data- and control-flow within the conversion chain deserves
some more support. In conclusion, we have found the proposed approach promising
and are now working on the identified improvements.

References

1. Wikipedia, www.wikipedia.org
2. PDF Reference, fifth edition, Adobe® Portable Document Format
3. CambridgeDoc : www.cambridgedoc.com.
4. JPedal: www.jpedal.org
5. PDFTron, www.pdftron.com
6. K. Hadjar, M. Rigamonti, D. Lalanne, R. Ingold, Xed: a new Tool for eXtracting hidden

structures from electronic Documents, DIAL’04, 2004
7. Omnipage 14, Scansoft, www.scansoft.com.
8. ABBYY FineReader, http://www.abbyy.com/
9. Adobe Acrobat Capture
10. Xpdf, http://www.foolabs.com/xpdf/
11. W Kuich, A. Salomaa. Semirings, Automata, Languages, in EATCS Monographs, on

Theoretical Computer Science, Springer Verlag, 1986
12. Xiaofan Lin, Header and Footer Extraction by Page-Association, Hewlett-Packard

Technical Report, www.hpl.hp.com/techreports/2002/HPL-2002-129.pdf, 2002
13. R. Cattoni, T. Coianiz, S. Messelodi, C.M. Modena: Geometric Layout Analysis Techniques

for Document Image Understanding: a Review, ITC-IRST Technical Report #9703-09
14. J.-L. Meunier, Optimized XY-Cut for Determining a Page Reading Order, ICDAR, 2005
15. G. Nagy and S. Seth, Hierarchical representation of optically scanned documents,

International Conference on Pattern Recognition, 1984
16. M. Aiello and A. Smeulders, Thick 2D Relations for Document Understanding. 7th Joint

Conference on Information Sciences, 2003
17. T. M. Breuel, High performance document layout analysis. Symposium on Document

Image Understanding, 2003
18. H. Déjean, J.-L. Meunier, Structuring documents according to their ToC, DocEng, 2005.
19. D. Dori, D. Doermann, C. Shin, R. Haralick, M. Buchman, D. Ross, I. Phillips, The

representation of Document Structure. In Hansbooks on optical Character Recognition and
Document Analysis, World Scientific Publishing Company, 1996.

