
Automata on Guarded Strings and Applications

Dexter Kozen∗

Cornell University

February 7, 2003

Abstract

Guarded strings are like ordinary strings over a finite alphabet P, except that
atoms of the free Boolean algebra on a set of atomic tests B alternate with the
symbols of P. The regular sets of guarded strings play the same role in Kleene
algebra with tests as the regular sets of ordinary strings do in Kleene algebra.

In this paper we develop the elementary theory of finite automata on guarded
strings, a generalization of the theory of finite automata on ordinary strings. We
give several basic constructions, including determinization, state minimization,
and an analog of Kleene’s theorem.

We then use these results to verify a conjecture on the complexity of a complete
Gentzen-style sequent calculus for partial correctness. We also show that a basic
result of the theory of Boolean decision diagrams (BDDs), namely that minimal
ordered BDDs are unique, is a special case of the Myhill-Nerode theorem for a
class of automata on guarded strings.

1 Introduction

Guarded strings were introduced in [4] as an abstract interpretation for program schemes.
Guarded strings are like ordinary strings over a finite alphabet P, except that atoms of
the free Boolean algebra on a set of atomic tests B alternate with the symbols of P. The
regular sets of guarded strings over P and B form a Kleene algebra with tests (KAT)
and play the same role in KAT as the regular sets of ordinary strings do in Kleene
algebra; specifically, they form the free KAT on generators P,B [8].

Guarded strings are useful in other contexts. In [10], we developed a complete Gentzen-
style sequent calculus S for partial correctness. Guarded strings played a central role

∗Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA.
kozen@cs.cornell.edu

1

in the completeness proof. We also conjectured that the decision problem for S was
PSPACE-complete.

In this paper we verify that conjecture. The proof requires the development the ele-
mentary theory of finite automata on guarded strings, a generalization of the theory
of finite automata on ordinary strings. We give several basic constructions, including
determinization, state minimization, and an analog of Kleene’s theorem. We also point
out a connection to the complexity of BDDs (binary or Boolean decision diagrams), a
well-studied structure in model checking. In particular, we observe that a basic result
of the theory of BDDs, namely that minimal ordered BDDs are unique, is a special
case of the Myhill–Nerode theorem for a class of deterministic automata on guarded
strings.

2 Kleene Algebra with Tests and Guarded Strings

2.1 Kleene Algebra with Tests

A Kleene algebra (K, +, ·, ∗, 0, 1) is an idempotent semiring under +, ·, 0, 1 such
that p∗q is the ≤-least solution to q + px ≤ x and qp∗ is the ≤-least solution to

q + xp ≤ x, where ≤ refers to the natural partial order p ≤ q
def⇐⇒ p+ q = q.

A Kleene algebra with tests (KAT) [6] is a two-sorted structure (K, B, +, ·, ∗, , 0, 1)
such that

• (K, +, ·, ∗, 0, 1) is a Kleene algebra,

• (B, +, ·, , 0, 1) is a Boolean algebra, and

• (B, +, ·, 0, 1) is a subalgebra of (K, +, ·, 0, 1).

The Boolean complementation operator is defined only on B. Syntactically, the lan-
guage of KAT contains two sorts of terms:

tests b, c, d . . . b ::= 〈atomic tests〉 | 0 | 1 | b+ c | bc | b
programs p, q, r, . . . p ::= 〈atomic actions〉 | b | p+ q | pq | p∗

Standard examples of Kleene algebras include the family of regular sets over a finite
alphabet, the family of binary relations on a set, the family of sets of traces of a labeled
transition system, and the family of n×nmatrices over another Kleene algebra. Other
more exotic interpretations include the min,+ algebra or tropical semiring used in short-
est path algorithms and models consisting of convex polyhedra used in computational
geometry.

2

All these Kleene algebras can be extended naturally to Kleene algebras with tests, but
for applications in program verification, the extension makes the most sense in trace
and relation algebras. For example, for the Kleene algebra of binary relations on a set
X , a natural choice for the tests would be the subsets of the identity relation on X .

KAT subsumes propositional Hoare logic; moreover, unlike Hoare logic, KAT is de-
ductively complete for relationally valid propositional Hoare-style rules involving par-
tial correctness assertions [7].

We refer the reader to [6, 7] for a more thorough introduction to Kleene algebra with
tests.

2.2 Guarded Strings

The family of regular sets of strings over a finite alphabet P is the free Kleene algebra
on generators P. The structure that plays the analogous role in KAT is the family of
regular sets of guarded strings. These objects were first studied by Kaplan in 1969 [4]
as an abstract interpretation for program schemes.

Let B = {b1, . . . , bk} and P = {p1, . . . , pm} be fixed finite sets of atomic tests and

atomic actions, respectively, and let B
def= {b | b ∈ B}. Tests and programs over P,B

were defined in Section 2.1. The set of all tests over B is denoted B.

An atom of B is a program c1 · · · ck such that ci ∈ {bi, bi}, 1 ≤ i ≤ k, representing a
minimal nonzero element of the free Boolean algebra on B. We can think of an atom
as a truth assignment to B. Atoms are not to be confused with atomic tests, which are
just the elements of B. We denote by AB the set of all atoms of B and use the symbols
α, β, . . . exclusively for atoms. For an atom α and a test b, we write α ≤ b if α→ b is
a propositional tautology. For every atom α and test b, either α ≤ b or α ≤ b. Every
element of a finite Boolean algebra can be represented as a disjoint sum of atoms.

A guarded string is a sequence x = α0q0α1 · · ·αn−1qn−1αn, where n ≥ 0 and each
αi ∈ AB and qi ∈ P. We define first(x) = α0 and last(x) = αn. The set of all
guarded strings over P,B is denoted GS. If last(x) = first(y), we can form the fusion
product xy by concatenating x and y, omitting the extra copy of the common atom.
For example, if x = αpβ and y = βqγ, then xy = αpβqγ. If last(x)
= first(y), then
xy does not exist.

For sets X,Y of guarded strings, define X ◦ Y to be the set of all existing fusion
products xy with x ∈ X and y ∈ Y , and define X n to be the product of n copies of X
with respect to this operation. Each program p of KAT denotes a set G(p) of guarded

3

strings as follows:

G(p) def= {αpβ | α, β ∈ AB} p an atomic action

G(b) def= {α ∈ AB | α ≤ b} b a test

G(p+ q) def= G(p) ∪ G(q)

G(pq) def= G(p) ◦ G(q)

G(p∗) def=
⋃
n≥0

G(p)n.

A set of guarded strings over P,B is regular if it is G(p) for some program p. The
family of regular sets of guarded strings over P,B is denoted RegP,B. It forms the free
Kleene algebra with tests on generators P,B [8]; in other words, G(p) = G(q) iff
p = q is a theorem of KAT. A guarded string x is itself a program, and G(x) = {x}.
These are the minimal nonzero elements of RegP,B.

A key lemma used in the completeness proof of [8] is the following result, essentially
due to Kaplan [4]: for any program p, there exists a program p̂ such that p = p̂ is a the-
orem of KAT and G(p̂) = R(p̂), where R is the classical interpretation of regular ex-
pressions over the alphabet P ∪ B ∪ B as regular subsets of (P ∪ B ∪ B)∗. Moreover,
if R(q) ⊆ GS, then R(q) = G(q); this is because G(q) =

⋃{G(x) | x ∈ R(q)} and
G(x) = {x} for x ∈ GS. As observed in [10], this result implies that RegP,B is closed
under the Boolean operations. Our automata-theoretic characterization of Reg P,B will
give an alternative proof of this result.

Programs of KAT can also be interpreted as sets of traces or sets of binary relations in
Kripke frames. A Kripke frame over P,B is a structure (K, mK), where K is a set of
states and

mK : P → 2K×K mK : B → 2K .

A trace in K is a sequence σ of the form s0q0s1 · · · sn−1qn−1sn, where n ≥ 0,
si ∈ K , qi ∈ P, and (si, si+1) ∈ mK(qi) for 0 ≤ i ≤ n − 1. The length of
s0q0s1 · · · sn−1qn−1sn is n. We define first(σ) = s0, last(σ) = sn, and label(σ) =
q0 · · · qn−1. For traces of length 0, label(s) = 1. If last(σ) = first(τ), the trace στ is
the trace consisting of σ followed by τ . If last(σ)
= first(τ), then στ does not exist.
A trace s0q0s1 · · · sn−1qn−1sn is linear if the si are distinct.

Programs are interpreted in K as sets of traces according to the following inductive

4

definition:

[[p]]K
def= {spt | (s, t) ∈ mK(p)}, p an atomic action

[[b]]K
def= mK(b), b an atomic test

[[b]]K
def= K − mK(b)

[[0]]K
def= ∅

[[p+ q]]K
def= [[p]]K ∪ [[q]]K

[[pq]]K
def= [[p]]K ◦ [[q]]K

[[p∗]]K def=
⋃
n≥0

[[p]]nK ,

whereX ◦ Y def= {στ | σ ∈ X, τ ∈ Y, στ exists} and X0 def= K , Xn+1 def= X ◦Xn.

Every trace σ has an associated guarded string gs(σ) defined by

gs(s0q0s1 · · · sn−1qn−1sn)
def= α0q0α1 · · ·αn−1qn−1αn,

where αi is the unique atom of B such that si ∈ [[αi]]K , and gs(σ) is the unique
guarded string over P,B such that σ ∈ [[gs(σ)]]K . The relationship between trace
semantics and guarded strings is given by the following lemma.

Lemma 2.1 ([10]) In any trace model K , for any program p and trace τ , τ ∈ [[p]]K
iff gs(τ) ∈ G(p). In other words, [[p]]K = gs−1(G(p)). The mapX �→ gs−1(X) is a
KAT homomorphism from the algebra of regular sets of guarded strings to the algebra
of regular sets of traces over K .

3 Automata on Guarded Strings

A finite automaton on guarded strings (AGS) over atomic actions P and atomic tests
B is just an ordinary finite automaton with transition labels P ∪ B, where B is the
set of tests built from atomic tests B, except that acceptance is defined differently.
Strictly speaking, B is infinite; however, it is finite up to propositional equivalence,
and the semantics of acceptance does not distinguish propositionally equivalent tests.
Transitions labeled with atomic actions are called action transitions and those labeled
with tests are called test transitions.

Ordinary finite automata with ε-transitions can be regarded as the special case in which
B = ∅, giving the two-element Boolean algebra {0,1}. An ε-transition is just a test
transition with Boolean label 1. For nonempty B, tests can be more complicated.

Intuitively, nondeterministic automata on guarded strings work as follows. An input to
the automaton is a guarded string over P and B. We start with a pebble on an input

5

state with the input pointer reading the first atom of the input string. At any point in
the computation, the pebble is occupying a state, and the input pointer is pointing to
an atom somewhere in the input string. If there is an action transition from the current
state labeled with p ∈ P, and the next program symbol in the input string is p, then we
may nondeterministically choose to move the pebble along that transition and advance
the input pointer beyond p. If there is a test transition from the current state labeled with
a test b ∈ B, and if that transition is enabled, then we may nondeterministically choose
to move the pebble along that transition, but we do not advance the input pointer. The
transition is enabled if the current atom α in the input string satisfies b, where we regard
α as a truth assignment to B. The input is accepted if the pebble occupies an accept
state while the input pointer is pointing to the last atom in the input string.

Formally, an automaton on guarded strings over P,B is a Kripke frameM = (Q, mM)
over atomic actions P ∪ B and atomic tests ∅, along with a distinguished set S ⊆ Q of

start states and a distinguished set F ⊆ Q of final or accept states. We write u
d−→
M

v

if (u, v) ∈ mM (d), d ∈ P ∪ B, or just u
d−→ v if M is understood.

A guarded string y over P,B is said to be accepted by M if y ∈ G(x) for some
x ∈ R(M), where R(M) is the set of strings in (P ∪ B)∗ accepted by M under the
ordinary definition of finite automaton acceptance. The set of all guarded strings over
P,B accepted by M is denoted G(M). Formally,

R(M) def= {label(σ) | first(σ) ∈ S, last(σ) ∈ F}
G(M) def= H (R(M)),

where σ represents a trace in M and H is the map

H : 2(P∪B)∗ → 2GS

H (A) def=
⋃
x∈AG(x).

3.1 Kleene’s Theorem

The following is the analog of Kleene’s theorem for automata on guarded strings. We
need the second clause for our complexity result in Section 4.1.

Theorem 3.1 Automata on guarded strings over P,B accept all and only regular sets.
Moreover, the size of the equivalent automatonM constructed from a given program p
is linear in the size of p.

Proof. Given a program p over P,B, consider it as a regular expression over the alpha-
bet P ∪ B with the classical interpretation, and construct an equivalent finite automaton
M with input alphabet P ∪ B as in the usual proof of Kleene’s theorem (see e.g. [5]).

6

The construction is linear. Conversely, given a finite automaton M with input alpha-
bet P ∪ B, construct an equivalent regular expression p. In either direction, let R(p)
denote the regular subset of (P ∪ B)∗ denoted by p under the classical interpretation
of regular expressions, and let R(M) denote the subset of (P ∪ B)∗ accepted by M
under the classical semantics of finite automata. By Kleene’s theorem, R(p) = R(M).

We claim that in both constructions, G(p) = G(M) as well. To show this, it suffices
to show that

G(M) = H (R(M)) (1)

G(p) = H (R(p)). (2)

The equation (1) is just the definition of acceptance for automata on guarded strings.
The equation (2) was proved in [2]. Briefly, it is easily shown that the map H is
a homomorphism with respect to the operators ∪, ◦, and ∗. Moreover, the maps G
and H ◦ R agree on the generators P and B, since H (R(d)) = H ({d}) = G(d) for
d ∈ P ∪ B, and H (R(0)) = G(0) = ∅. It follows by induction that G and H ◦ R
agree on all regular expressions over P ∪ B.

3.2 Determinization

In this section we show how to construct a deterministic automaton on guarded strings
equivalent to a given nondeterministic one. This is the basis of our PSPACE algorithm
of Section 4.1. The construction is analogous to the standard subset construction for
automata on ordinary strings (see e.g. [5]).

An automaton M on guarded strings is deterministic if it satisfies the following prop-
erties.

(i) There is exactly one start state.

(ii) Each state may have either exiting action transitions or exiting test transitions,
but not both. A state is called an action state or a test state in these two circum-
stances, respectively. Every state is either an action state or a test state.

(iii) Every action state has exactly one exiting action transition for each element of
P.

(iv) The labels of the exiting test transitions of a test state are pairwise exclusive and
exhaustive. By this we mean that if the labels are c1, . . . , cn, then ci + cj for
i
= j and c1 + · · · + cn are propositional tautologies.

(v) Every cycle contains at least one action transition.

(vi) All final states are action states.

7

Note that M is not a deterministic automaton in the classical sense. Conditions (i)
and (iii) are standard for deterministic automata. Condition (ii) ensures that there is
no ambiguity in whether to continue to test Boolean inputs or whether to read the next
atomic action. Condition (iv) ensures that at any test state, exactly one exiting transition
is enabled. Condition (v) ensures that there can be no endless loop of tests. Condition
(vi) forces all pending tests to be resolved before deciding whether to accept the input.

Lemma 3.2 For any x ∈ GS and state u of a deterministic AGS M , there is a unique
maximal trace σM (u, x) ofM such that first(σM (u, x)) = u and x ∈ G(label(σM (u, x))).
Moreover, last(σM (u, x)) is an action state.

Proof. This follows from the conditions of determinacy by induction on the length of
x.

We can convert a given nondeterministic automaton N to an equivalent deterministic
automaton M by a subset construction. Suppose N has states Q, transition relation
mN ⊆ Q × (P ∪ B) × Q, start states S ⊆ Q, and final states F ⊆ Q. Define M
with states Q′ = 2Q × {a, t} and deterministic transition relation mM ⊆ Q′ × (P ∪
AB) × Q′ as follows. The tags a, t determine whether the state is an action or a test
state, respectively.

(U,a)
p−→
M

(V, t) def⇐⇒ V = {v | ∃u ∈ U u
p−→
N

v}
= {last(τ) | first(τ) ∈ U, p = label(τ)}

(U, t) α−→
M

(V, a) def⇐⇒ V = {last(π) | first(π) ∈ U, α ≤ label(π)}
= {last(π) | first(π) ∈ U, α ∈ G(label(π))},

where τ and π represent traces of N , p ∈ P, and α ∈ AB. The unique start state of M
is (S, t) and the final states are {(E, a) | E ∩ F
= ∅}.

Thus (U,a)
p−→
M

(V, t) iff V is the set of states of N reachable from a state in U

via a single transition with label p, and (U, t) α−→
M

(V, a) iff V is the set of states of

N reachable from a state in U via a trace whose label is a sequence of tests, all of
which are satisfied by α. Figure 1 illustrates this construction for a nondeterministic
automaton over P = {p} and B = {b, c}. The set of guarded strings accepted by the
two machines in Figure 1 is {bc, bc} ∪ {bcpα, bcpα | α ∈ AB}.

The automaton M constructed above is evidently deterministic. Property (v) follows
from the fact that the graph of M is bipartite between action and test states. Properties
(iii) and (iv) follow from the fact that V on the right-hand side of the definition of
the transition relation is unique, and that the atoms of B are pairwise exclusive and
exhaustive. Properties (i), (ii), and (vi) are immediate from the construction.

8

s

t

u

b

c

p

�

�����

����

�
�

({s}, t)

({t}, a)

({t, u}, a)
�
�

�
�

({u}, a)
�
�

�
�

(∅, a)

({u}, t)

(∅, t)

� �
�

���

			

�����

�

bc
bc

bc

bc

�
�

����
�

�
���
�����

				�	
			

p

p

1
p

p

1

Figure 1: A nondeterministic automaton and an equivalent deterministic automaton

Since the graph ofM is bipartite between action and test states, and since all test labels
are atoms, the label of any trace consists of alternating atomic actions and atoms of B.
Thus if first(τ) = (U, t) and last(τ) = (V, a), then label(τ) begins and ends with an
atom, so it is a guarded string. Since the start state is of the form (S, t) and the final
states are all of the form (E, a), any string accepted byM is a guarded string, therefore
R(M) ⊆ GS.

It follows from these remarks and Lemma 3.2 that for all x ∈ GS and U ⊆ Q, the
unique maximal trace σM ((U, t), x) of M determined by (U, t) and x not only has
x ∈ G(label(σM ((U, t), x))), but actually x = label(σM ((U, t), x)). Moreover,
last(σM ((U, t), x)) is of the form (V, a). Let us denote by ∆(U, x) the set V uniquely
determined by U and x in this way.

Lemma 3.3 For all x ∈ GS and U ⊆ Q,

∆(U, x) = {last(σ) | first(σ) ∈ U, x ∈ G(label(σ))},

where σ ranges over traces of N .

Proof. We proceed by induction on the length of x. The basis x = α ∈ AB is just the
definition of

α−→
M

. For x of the form ypα, by the definition of
α−→
M

and
p−→
M

and the

9

induction hypothesis, we have

∆(U, x)
= {last(π) | first(π) ∈ {last(τ) | first(τ) ∈ ∆(U, y), p = label(τ)},

α ∈ G(label(π))}
= {last(π) | first(π) ∈ {last(τ) | first(τ) ∈ {last(σ) | first(σ) ∈ U,

y ∈ G(label(σ))}, p = label(τ)}, α ∈ G(label(π))}
= {s | ∃σ ∃τ ∃π s = last(π), first(π) = last(τ), first(τ) = last(σ),

first(σ) ∈ U, y ∈ G(label(σ)), p = label(τ), α ∈ G(label(π))}
= {s | ∃ξ ∃σ ∃τ ∃π ξ = στπ, s = last(ξ), first(ξ) ∈ U,

y ∈ G(label(σ)), p = label(τ), α ∈ G(label(π))}
= {last(ξ) | first(ξ) ∈ U, ∃σ ∃τ ∃π ξ = στπ,

y ∈ G(label(σ)), p = label(τ), α ∈ G(label(π))}
= {last(ξ) | first(ξ) ∈ U, ypα ∈ G(label(ξ))}
= {last(ξ) | first(ξ) ∈ U, x ∈ G(label(ξ))}.

Theorem 3.4 G(M) = G(N).

Proof. We have argued that R(M) ⊆ GS. Since G(x) = {x} for guarded strings x,
H is the identity on subsets of GS, therefore

G(M) = H (R(M)) = R(M).

Now using Lemma 3.3,

R(M) = {x | ∆(S, x) ∩ F
= ∅}
= {x | {last(σ) | first(σ) ∈ S, x ∈ G(label(σ))} ∩ F
= ∅}
= {x | ∃σ first(σ) ∈ S, x ∈ G(label(σ)), last(σ) ∈ F}
= G(N).

3.3 State Minimization

It turns out that the existence of unique minimal deterministic AGSs depends on the
choice of input alphabet and restictions on how inputs can be read. We show in Section
3.3.2 that if any test in B is allowed as an input symbol, unique minimal deterministic
AGSs exist. The test symbols of the minimal AGS can be taken to be the atoms of B.
However, although the number of states is small, the specification of transitions may
be exponential in the size of B.

10

A more reasonable choice of input alphabet for tests is B ∪ B. There is no loss of
generality in this restriction, since all regular sets of guarded strings can still be repre-
sented, but the number of states may increase. Unfortunately, uniqueness of minimal
automata is no longer guaranteed. However, if the automata are constrained to read
their Boolean inputs in a given fixed order—such automata are called ordered—then
minimal automata are unique. We show in Section 4.2 that the Canonicity Lemma for
reduced ordered Boolean decision diagrams (ROBDDs) (see [1]) is a special case of
this result.

3.3.1 Ordered AGSs

If we restrict the input alphabet to P ∪ B ∪ B, uniqueness of minimal deterministic
automata is not guaranteed. For example, the automata

�
� �

� �� �

�

�
��

�
�

��

�
�

��
c c c c

b b
�

� �
� �� �

�

�
��

�
�

��

�
�

��
b b b b

c c

over P = ∅ and B = {b, c} represent the same set of guarded strings {bc, bc}. How-
ever, uniqueness can be guaranteed provided we constrain the automata to test Boolean
inputs in a particular fixed order, say b1, b2, . . . , bk. In such automata, each test state is
assigned a level between 0 and k − 1, inclusive. A test state at level i has one exiting
transition labeled bi+1 and one labeled bi+1, and the transitions must go either to an
action state or to a higher-level test state. Such an AGS is called ordered. We show that
there is a unique minimal deterministic ordered AGS with respect to the given linear
order on B. The construction is a generalization of the Myhill–Nerode construction of
classical finite automata theory (see [5]).

Recall our definition of an atom of B = {b1, . . . , bk} as a string c1 · · · ck such that
ci ∈ {bi, bi}, 1 ≤ i ≤ k. A prefix of an atom is a string of the form c1 · · · cj , where
0 ≤ j ≤ k and ci ∈ {bi, bi}, 1 ≤ i ≤ j. The empty string is allowed; that is the case
j = 0. The symbol ω is used for prefixes of atoms.

A prefix of a guarded string is a string x over P ∪ B ∪ B such that xy ∈ GS for some
string y over P ∪ B ∪ B. The definition of prefix is with respect to the ordinary string
concatenation operation on strings over P ∪ B ∪ B. A prefix of a guarded string is
similar to a guarded string, except that last(x) may be a prefix of an atom. The set of
all prefixes of guarded strings is denoted PGS.

We define a binary operation
 on PGS as follows. If c1 · · · cm and d1 · · · dn are
prefixes of atoms, define

c1 · · · cm
 d1 · · · dn def=
{
c1 · · · cm, if n ≤ m
c1 · · · cmdm+1 · · ·dn, otherwise.

11

Intuitively, we overlay c1 · · · cm on d1 · · · dn, resolving disagreements in favor of the
ci. If m = 0, the result is just d1 · · · dn. For x, y ∈ PGS, we define x
 y similarly to
the fusion productxy, except that we perform
 at the interface instead of fusing last(x)
and first(y) as in the fusion product. Unlike fusion product,
 is a total operation. For
example,

b c d p b c
 b c d q b c = b c d p b c d q b c

b c d p b c d
 b c = b c d p b c d.

It is easily shown that
 is associative.

Now let A ⊆ GS. For x, y ∈ PGS, define the Myhill–Nerode relation

x ≡ y
def⇐⇒ ∀z ∈ GS (x
 z ∈ A⇔ y
 z ∈ A).

Lemma 3.5 If x, y ∈ PGS and x ≡ y, then x
 z ≡ y
 z for any z ∈ PGS.

Proof. Using the associativity of
, for any w ∈ GS, (x
 z)
 w ∈ A iff x
 (z

w) ∈ A iff y
 (z
 w) ∈ A iff (y
 z)
 w ∈ A.

Lemma 3.6 If x, y ∈ GS and x ≡ y, then x ∈ A iff y ∈ A.

Proof. For any atom α, x ∈ A iff x
 α ∈ A iff y
 α ∈ A iff y ∈ A.

Define level(x) to be the maximum value of |last(y)| over all y ≡ x, where |ω| is the
length of the atom prefix ω regarded as a string over B ∪ B. Then 0 ≤ level(x) ≤ k,
and level(x) = k iff x is ≡-equivalent to a guarded string.

We now build a deterministic ordered AGS N over P ∪ B ∪ B from the equivalence
classes of ≡. Let

[x]
def= {y ∈ PGS | y ≡ x}.

The states of N are {[x] | x ∈ PGS}. A state [x] is a test state if 0 ≤ level(x) ≤
k − 1 and an action state if level(x) = k. The transitions are

[x]
bi−→
N

[xbi]

[x]
bi−→
N

[xbi]

⎫⎪⎬
⎪⎭ if level(x) = |last(x)| = i− 1 < k

[x]
p−→
N

[xp] if level(x) = |last(x)| = k.

The start state of N is [ε] and the final states are {[x] | x ∈ A}. The transitions are
well defined by Lemma 3.5, and x ∈ A iff [x] is a final state by Lemma 3.6.

12

By Lemma 3.2, for any x ∈ GS, there exists a unique maximal trace σN ([ε], x)
such that first(σN ([ε], x)) = [ε] and x ∈ G(label(σN ([ε], x))). We will show in
Lemma 3.10 that last(σN ([ε], x)) = [x].

For any x, y ∈ PGS, let σN ([x], y) be the longest common prefix of the traces
σN ([x], y
 α) for all atoms α. We denote this by lcpα σN ([x], y
 α).

Lemma 3.7 Let x ∈ PGS and let ω be a prefix of an atom. If x
 η ≡ x
 ω for all η
such that |η| = |ω|, then x ≡ x
 ω.

Proof. For any z ∈ GS, let ηz be the prefix of first(z) of length |ω|. Then

x
 z ∈ A ⇔ x
 (ηz
 z) ∈ A

⇔ (x
 ηz)
 z ∈ A

⇔ (x
 ω)
 z ∈ A.

Since z was arbitrary, x ≡ x
 ω.

Lemma 3.8 The two successors of any test state in N are distinct.

Proof. Let [x] be a test state. Assume without loss of generality that |last(x)| =

level([x]) = i− 1. The exiting transitions are [x]
bi−→ [xbi] and [x]

bi−→ [xbi],

and we must show that xbi
≡ xbi. But if xbi ≡ xbi, then by Lemma 3.7 we would
have x ≡ xbi, which would contradict the assumption that |last(x)| = level([x]).

Lemma 3.9 For all x ∈ PGS, σN ([x], ε) = [x].

Proof. We wish to show that lcpα σN ([x], α) = [x]. If [x] is an action state, then
for all atoms α, σN ([x], α) = [x], and we are done. If [x] is a test state, then its
two successors are distinct by Lemma 3.8. We can pick atoms α and β with opposite
values for the b ∈ B tested at [x], so the longest common prefix of σN ([x], α) and
σN ([x], β) is [x]. Thus σN ([x], ε) = lcpα σN ([x], α) = [x].

Lemma 3.10 For all x, y ∈ PGS, last(σN ([x], y)) = [x
 y]. In particular,
last(σN ([ε], x)) = [x].

Proof. Assume without loss of generality that |last(x)| = level([x]). First we show

13

the result for y = ω, a prefix of an atom. If |ω| ≤ level([x]), then

σN ([x], ω) = lcp
α

σN ([x], ω
 α)

= lcp
α

σN ([x], α)

= σN ([x], ε)
= [x] by Lemma 3.9

= [x
 ω].

If |ω| > level([x]), let i = level([x]) + 1 ≤ |ω| and let c ∈ {bi, bi} such that
ω ≤ c. For all atoms α,

σN ([x], ω
 α) = ([x] c−→ [xc]) · σN ([xc], ω
 α),

thus

σN ([x], ω) = lcp
α

σN ([x], ω
 α)

= ([x] c−→ [xc]) · lcp
α

σN ([xc], ω
 α)

= ([x] c−→ [xc]) · σN ([xc], ω),

therefore

last(σN ([x], ω)) = last(([x] c−→ [xc]) · σN ([xc], ω))

= last(σN ([xc], ω))
= [xc
 ω] by the induction hypothesis

= [x
 ω].

Finally, for ypω ∈ PGS where y ∈ GS, p ∈ P, and ω a prefix of an atom, by the
induction hypothesis we have last(σN ([x], y)) = [x
 y]. Then

σN ([x], ypω)
= lcp

α
σN ([x], ypω
 α)

= lcp
α

(σN ([x], y) · ([x
 y] p−→ [x
 yp]) · σN ([x
 yp], ω
 α))

= σN ([x], y) · ([x
 y] p−→ [x
 yp]) · lcp
α

σN ([x
 yp], ω
 α)

= σN ([x], y) · ([x
 y] p−→ [x
 yp]) · σN ([x
 yp], ω),

thus

last(σN ([x], ypω))

= last(σN ([x], y) · ([x
 y] p−→ [x
 yp]) · σN ([x
 yp], ω))

= last(σN ([x
 yp], ω))
= [(x
 yp)
 ω] by the result for prefixes of atoms proved above

= [x
 ypω].

14

Theorem 3.11 Up to isomorphism, the automatonN constructed above is the unique
minimal deterministic ordered AGS for A. Thus there are finitely many ≡-classes iff A
is regular.

Proof. To show that G(N) = A, for any x ∈ GS, x ∈ G(N) iff last(σN ([ε], x)) is
a final state of N . By Lemmas 3.6 and 3.10, this occurs iff x ∈ A.

For any other deterministic ordered AGS M for A, there is a surjective structure-
preserving map from the accessible states ofM to the states ofN . For x, y ∈ PGS, de-
fine x ∼ y if last(σM (s, x)) = last(σM (s, y)), where s is the start state ofM . There is
a one-to-one correspondence between the accessible states ofM and the∼-equivalence
classes. Moreover, if x ∼ y, then x
 z ∈ A iff y
 z ∈ A for any z, therefore x ≡ y.
Thus ∼ refines ≡. The desired map is last(σM (s, x)) �→ [x] = last(σN ([ε], x)).

3.3.2 Unrestricted Tests

If any test in B is allowed as an input symbol, we can adapt the construction of the
previous section to give unique minimal deterministic automata.

Define PGSi to be the set of prefixes x of guarded strings such that |last(x)| = i.
Then PGS0 = {xp | x ∈ GS, p ∈ P} ∪ {ε} and PGSk = GS. We define
 and ≡
as in Section 3.3.1 and take {[x] | x ∈ PGS0 ∪ PGSk} as states of our automaton.
The equivalence classes [x] for x ∈ GS are the action states. The remaining states
are test states. The transitions are

[y]
α−→ [yα] [x]

p−→ [xp]

for α ∈ AB, p ∈ P, x ∈ GS, and y ∈ PGS0 such that y
≡ z for any z ∈ GS. The
start state is [ε] and the final states are {[x] | x ∈ A}. A direct adaptation of the
arguments of Section 3.3.1 shows that there are finitely many≡-classes iffA is regular,
and that this construction gives the minimal deterministic AGS for A over the alphabet
P ∪ B.

4 Applications

4.1 The Complexity of System S

System S, introduced in [10], is a Gentzen-style sequent calculus for partial correctness
that subsumes propositional Hoare Logic. It was shown in [10] that the system is sound
and complete over relational and trace-based models.

15

The syntax of system S is given in the following grammar. Here we revert to the
notation of [10], in which + is written as ⊕ and · as ⊗. Also, the positive iteration

operator + is taken as primitive, and ∗ is defined by p∗ def= 1 ⊕ p+. Note that there are
two kinds of propositions, tests and formulas.

tests b, c, d . . . b ::= 〈atomic tests〉 | 0 | b→ c
programs p, q, r, . . . p ::= 〈atomic actions〉 | b | p ⊕ q | p ⊗ q | p+

formulas ϕ, ψ, . . . ϕ ::= b | p→ ϕ
environments Γ,∆, . . . Γ ::= ε | Γ, p | Γ, ϕ
sequents Γ � ϕ

We abbreviate b→ 0 by b, 0 by 1, and p ⊗ q by pq.

A formula is either a test or an expression p → ϕ, read “after p, ϕ,” where p is a
program and ϕ is a formula. Intuitively, the meaning is similar to the modal construct
[p]ϕ of Dynamic Logic (DL) (see [3]). The operator → associates to the right. The
empty environment is denoted ε. Intuitively, an environment describes a previous com-
putation that has led to the current state. Sequents are of the form Γ � ϕ, where Γ is
an environment and ϕ is a formula. We write � ϕ for ε � ϕ. Intuitively, the meaning
of Γ � ϕ is similar to the DL assertion [Γ]ϕ, where we think of the environment
Γ = . . . , p, . . . , ψ, . . . as the rich-test program · · · ; p; · · · ;ψ?; · · · of DL.

It is shown in [10] how to encode propositional Hoare Logic (PHL). It follows from
the completeness theorem of [10] that all relationally valid Hoare rules are derivable;
this is false for PHL [7, 9].

Programs and tests are interpreted over Kripke frames K as described in Section 2.2.
Additionally, we interpret formulas, environments, and sequents as follows:

[[p→ ϕ]]K
def= {s | ∀τ first(τ) = s and τ ∈ [[p]]K ⇒ last(τ) ∈ [[ϕ]]K}

[[ε]]K
def= K

[[Γ,∆]]K
def= [[Γ]]K ◦ [[∆]]K .

The sequent Γ � ϕ is valid in the trace modelK if for all traces σ ∈ [[Γ]]K , last(σ) ∈
[[ϕ]]K ; equivalently, if [[Γ]]K ⊆ [[Γ, ϕ]]K .

The rules of S are given in Fig. 2. It was shown in [10] that this system is sound and
complete over trace models; that is, the sequent Γ � ϕ is valid in all trace models iff it
is derivable in this deductive system.

A rule is admissible if for any substitution instance for which the premises are provable,
the conclusion is also provable. It was shown in [10] that the rule and sequent

(ER →)
Γ � p→ ϕ

Γ, p � ϕ (ident) ϕ � ϕ

16

Axiom (b is a test): Arrow Rules:

b � b (R →)
Γ, p � ϕ

Γ � p→ ϕ

Test-cut Rule (b is a test): (I →)
Γ, p, ψ,∆ � ϕ

Γ, p→ ψ, p,∆ � ϕ
(test-cut)

Γ, b,∆ � ϕ Γ, b,∆ � ϕ
Γ,∆ � ϕ

Introduction Rules: Elimination Rules:

(I ⊗)
Γ, p, q,∆ � ϕ

Γ, p ⊗ q,∆ � ϕ (E ⊗)
Γ, p ⊗ q,∆ � ϕ
Γ, p, q,∆ � ϕ

(I ⊕)
Γ, p,∆ � ϕ Γ, q,∆ � ϕ

Γ, p ⊕ q,∆ � ϕ (E1 ⊕)
Γ, p ⊕ q,∆ � ϕ

Γ, p,∆ � ϕ

(I 0) Γ,0,∆ � ϕ (E2 ⊕)
Γ, p ⊕ q,∆ � ϕ

Γ, q,∆ � ϕ

(I +)
ψ, p � ϕ ψ, p � ψ

ψ, p+ � ϕ (E +)
Γ, p+,∆ � ϕ
Γ, p,∆ � ϕ

Structural Rules: Cut Rule:

(W ψ)
Γ,∆ � ϕ

Γ, ψ,∆ � ϕ (cut)
Γ � ψ Γ, ψ,∆ � ϕ

Γ,∆ � ϕ

(W p)
Γ � ϕ
p,Γ � ϕ

(CC +)
Γ, p+,∆ � ϕ

Γ, p+, p+,∆ � ϕ

Figure 2: Rules of System S [10]

17

are admissible.

Lemma 4.1 The operator ⊗ and rules (I ⊗) and (E ⊗) can be extended to pairs of
formulas in the following sense: there exists a map ϕ, ψ �→ ϕ ⊗ ψ such that the rules

Γ, ϕ, ψ,∆ � ρ
Γ, ϕ ⊗ ψ,∆ � ρ

Γ, ϕ ⊗ ψ,∆ � ρ
Γ, ϕ, ψ,∆ � ρ

are admissible. We use (I ⊗) and (E ⊗), respectively, to refer to these extended rules
as well.

Proof. If ϕ = p1 → · · · → pm → b and ψ = q1 → · · · → qn → c, define

ϕ ⊗ ψ
def= (p1 · · · pmb ⊕ q1 · · · qnc) → 0.

Using (R →), (ER →), and (I ⊗) and (E ⊗) on programs, it can be shown that

p1 → · · · → pm → b � p1 · · · pmb→ 0
p1 · · · pmb→ 0 � p1 → · · · → pm → b.

We also have

p→ 0, q → 0 � p ⊕ q → 0 p ⊕ q → 0 � p→ 0 p ⊕ q → 0 � q → 0

by the following arguments:

p→ 0 � p→ 0
p→ 0, q → 0, p � 0

(ER →), (Wψ)
q → 0 � q → 0

p→ 0, q → 0, q � 0
(ER →), (Wψ)

p→ 0, q → 0, p ⊕ q � 0
(I ⊕)

p→ 0, q → 0 � p ⊕ q → 0
(R →)

p ⊕ q → 0 � p ⊕ q → 0
p ⊕ q → 0, p ⊕ q � 0

(ER →)

p ⊕ q → 0, p � 0
p ⊕ q → 0 � p→ 0

(R →)
p ⊕ q → 0, q � 0
p ⊕ q → 0 � q → 0

(R →)

(E1 ⊕), (E2 ⊕)

It follows from (cut) that

ϕ, ψ � ϕ ⊗ ψ ϕ ⊗ ψ � ϕ ϕ ⊗ ψ � ψ.
The admissibility of the extended (I ⊗) and (E ⊗) then follows from (cut).

Lemma 4.2 Let w = (
⊕

P)∗ be an expression denoting all guarded strings. The
sequent

q1 → 0, p1, q2 → 0, p2, . . . , qn → 0, pn � 0 (3)

is valid if and only if there do not exist guarded strings x1, . . . , xn such that x1 · · ·xn
exists, xi ∈ G(pi), 1 ≤ i ≤ n, and xixi+1 · · ·xn
∈ G(qiw), 1 ≤ i ≤ n.

18

Proof. Suppose such x1, . . . , xn exist. Let Γ be the environment on the left-hand
side of (3). Construct a trace model K consisting of a single linear trace σ such that
gs(σ) = x1 · · ·xn. The model is uniquely determined by this specification. Let σ i,
1 ≤ i ≤ n, be the unique subtraces of σ such that gs(σi) = xi and σ = σ1 · · ·σn. By
Lemma 2.1, σi ∈ [[pi]]K . Since xixi+1 · · ·xn
∈ G(qiw), no prefix of xixi+1 · · ·xn
is in G(qi), so by Lemma 2.1 no prefix of σiσi+1 · · ·σn is in [[qi]]K . Since these
are the only traces in K with initial state first(σi), we have first(σi) ∈ [[qi → 0]]K ,
therefore σi ∈ [[qi → 0, pi]]K . It follows that σ ∈ [[Γ]]K . Since [[Γ]]K is nonempty,
(3) is not valid.

Conversely, suppose (3) is not valid. Let K be a trace model and σ a trace in K
such that σ ∈ [[Γ]]K . There exist subtraces σi in K , 1 ≤ i ≤ n, such that σ =
σ1 · · ·σn and σi ∈ [[qi → 0, pi]]K . Then first(σi) ∈ [[qi → 0]]K , so no prefix of
σiσi+1 · · ·σn is in [[qi]]K , and σi ∈ [[pi]]K . Let xi = gs(σi). By Lemma 2.1, no
prefix of xixi+1 · · ·xn is in G(qi), thereforexixi+1 · · ·xn
∈ G(qiw), and xi ∈ G(pi),
1 ≤ i ≤ n.

Theorem 4.3 The problem of deciding whether a given sequent of System S is valid is
PSPACE-complete.

Proof. As observed in [10], the problem encodes the equivalence problem for regu-
lar expressions, a well-known PSPACE-complete problem [11], therefore is PSPACE-
hard. It thus remains to show that the problem is in PSPACE.

Suppose we are given a sequent of the form

q1 → 0, p1, q2 → 0, p2, . . . , qn → 0, pn � 0.

Using the extended (I ⊗) and (E ⊗) of Lemma 4.1 along with (ER →) and (R →), we
can transform any given sequent to one of this form with no significant increase in size,
so the assumption is without loss of generality.

Now build nondeterministic automata Mi from the pi and Ni from the qiw as in The-
orem 3.1, where w = (

⊕
P)∗ is an expression representing all guarded strings. Our

PSPACE algorithm will guess guarded strings x1, . . . , xn symbol by symbol in that
order, scanning the automata to check the positive and negative conditions of Lemma
4.2. We must check that the automata Mi accept the xi and the automata Ni reject
xixi+1 · · ·xn. This is done by simulating the subset construction of Section 3.2 with
pebbles occupying the states of the Mi and Ni. After every guessed atomic action or
atom, the pebbles are moved according to the transitions of the deterministic automata
constructed in Section 3.2. Guessing an atom amounts to guessing a truth assignment
to B; then to determine whether a test transition is enabled, we just evaluate the label
on that truth assignment. We also guess the boundaries between the x i and xi+1 and
make sure that last(xi) = first(xi+1). The entire simulation can be done in PSPACE,
since by Theorem 3.1, the automataM i andNi are linear in the size of the expressions
pi and qiw, respectively, and the simulation need only maintain pebble configurations

19

on each nondeterministic automaton. It does not matter how long the strings x i are; the
simulation continues to guess symbols until it succeeds (or not). This gives a nondeter-
ministic PSPACE algorithm, which can be made deterministic using Savitch’s theorem.

4.2 Boolean Decision Diagrams

We refer the reader to Andersen’s lecture notes [1] for an introduction to BDDs. A
BDD is ordered (OBDD) if the order of the tests along any path is consistent with a
given linear order on B. An OBDD is reduced (ROBDD) if (i) no two nodes that test the
same Boolean variable have the same true successors and the same false successors,
and (ii) the true and false successors of any node are distinct. The Canonicity Lemma
([1, p. 13]) says that any Boolean function has a unique ROBDD for a given linear order
on B. The next theorem shows that the Canonicity Lemma is essentially Theorem 3.11
in the special case P = ∅.

Theorem 4.4 Let P = ∅. For any A ⊆ AB, the minimal ordered AGS for A for a
given order on B constructed in Section 3.3.1 is the canonical ROBDD for

∨
A with

respect to that order.

Proof. The AGS is apparently an OBDD for
∨
A. It therefore remains to check condi-

tions (i) and (ii).

For condition (i), suppose level([x]) = level([y]) = i−1. Assume without loss of
generality that |last(x)| = |last(y)| = i− 1. If [xbi] = [ybi] and [xbi] = [ybi],
then xbi ≡ ybi and xbi ≡ ybi. Let z ∈ GS be arbitrary. If bi occurs positively in
first(z), then x
 z ∈ A iff xbi
 z ∈ A iff ybi
 z ∈ A iff y
 z ∈ A. Similarly, if
bi occurs negatively in first(z), then x
 z ∈ A iff xbi
 z ∈ A iff ybi
 z ∈ A iff
y
 z ∈ A. Thus x ≡ y and [x] = [y].

Condition (ii) is just Lemma 3.8.

Acknowledgements

I am indebted to Jerzy Tiuryn for many valuable ideas and engaging discussions. This
work grew out of joint work with him [9, 10]. I also thank the anonymous referee
for valuable suggestions for improving the presentation. This work was supported in
part by NSF grant CCR-0105586 and by ONR Grant N00014-01-1-0968. The views
and conclusions contained herein are those of the author and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of these organizations or the US Government.

20

References

[1] Henrik Reif Andersen. An introduction to binary decision diagrams. Lecture notes,
Department of Information Technology, Technical University of Denmark, Copenhagen.
http://www.itu.dk/people/hra/notes-index.html, April 1998.

[2] Ernie Cohen, Dexter Kozen, and Frederick Smith. The complexity of Kleene algebra with
tests. Technical Report 96-1598, Computer Science Department, Cornell University, July
1996.

[3] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, Cambridge,
MA, 2000.

[4] Donald M. Kaplan. Regular expressions and the equivalence of programs. J. Comput. Syst.
Sci., 3:361–386, 1969.

[5] Dexter Kozen. Automata and Computability. Springer-Verlag, New York, 1997.

[6] Dexter Kozen. Kleene algebra with tests. Transactions on Programming Languages and
Systems, 19(3):427–443, May 1997.

[7] Dexter Kozen. On Hoare logic and Kleene algebra with tests. Trans. Computational Logic,
1(1):60–76, July 2000.

[8] Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness and decid-
ability. In D. van Dalen and M. Bezem, editors, Proc. 10th Int. Workshop Computer Sci-
ence Logic (CSL’96), volume 1258 of Lecture Notes in Computer Science, pages 244–259,
Utrecht, The Netherlands, September 1996. Springer-Verlag.

[9] Dexter Kozen and Jerzy Tiuryn. On the completeness of propositional Hoare logic. Infor-
mation Sciences, 139(3–4):187–195, 2001.

[10] Dexter Kozen and Jerzy Tiuryn. Substructural logic and partial correctness. Trans. Com-
putational Logic, 4(3), July 2003.

[11] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In Proc.
5th Symp. Theory of Computing, pages 1–9, New York, 1973. ACM.

21

