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Abstract. We give an exposition of the proof of a few results in global Riemannian geometry due

to Synge and Weinstein using variations of the energy integral.

1. Introduction

One of the big refrains of modern Riemannian geometry is that curvature determines topology. Re-
call, for instance, the basic Cartan-Hadamard theorem that a complete, simply connected Riemannian
manifold of nonnegative curvature is diffeomorphic to Rn under the exponential map. We proved this
basically by showing that expp is nonsingular under the hypothesis of nonnegative curvature (using
Jacobi fields) and that it was thus a covering map (the latter part was relatively easy). More difficult,
and relevant to the present topic, was the Bonnet-Myers theorem, which asserted the compactness of a
complete Riemannian manifold with bounded-below, positive Ricci curvature. The proof there showed
that a long enough geodesic could not minimize energy (by using the second variation formula—recall
that the second variation formula is intimately connected with curvature), and therefore could not
minimize length. Since the distance between two points in a complete Riemanninan manifold is the
length of the shortest geodesic between them (Hopf-Rinow!), this implied a bound on the diameter.

Today, however, we’re going to assume at the outset that the manifold in question is already
compact. One of the theorems will be that a compact, even-dimensional orientable manifold of positive
curvature is simply connected. In particular, there is no metric of everywhere positive sectional
curvature on the torus T2.

How will we do this? Well, first consider the universal cover M̃ →M . The covering transformations
of M̃ are all smooth, and we can endow M̃ with a metric in a natural way such that these are isometries,
and M̃ has positive curvature—hence, by comppleteness (a covering manifold of a complete manifold

is also complete, easy exercise) and the Bonnet-Myers theorem, M̃ is compact. It is also orientable
since we can pull back the M -orientation. If M is not simply connected, then we can find a nontrivial
covering transformation f : M̃ → M̃ .

But, we will show, using the that an isometry of a compact, oriented, even-dimensional manifold
admits a fixed point. In particular, f does, which means that it is the identity, contradiction.

2. The statement

We will now begin work on the more general fixed-point theorem.
So, we’re going to start with a compact oriented n-dimensional Riemannian manifold M of positive

sectional curvature and an isometry f : M →M .

Theorem 1 (Weinstein). Suppose M is as above and f preserves orientation if n is even and reverses
orientation if n is odd. Then f has a fixed point.
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The hypothesis about the dimension seems a little odd, but it comes from linear algebra used in
the proof.

3. The strategy

Here is the strategy. Let d : M ×M → R≥0 be the metric. By compactness, there is p ∈ M such
that d(p, f(p)) is minimal. Assuimng this minimum is nonzero, we consider the minimal geodesic γ
from p to f(p) and construct a variation γs of it joining points ps → f(ps). By its construction and the
second variation formula, we will show that E(γs) < E(γ) for s small, which contradicts minimality.

So, how are we going to whisk this variation out of thin air? We will construct a parallel vector
field V on γ, perpendicular to γ′, and let

γs(t) = expγ(t)(sV (t)).

In order that γs connects ps := γs(0) = expp(sV (0)) to f(ps), we need f∗(V (0)) = V (1) (assuming γ
is parametrized by [0, 1]).

4. Construction of the vector field

Proposition 1. There exists a parallel vector field V on γ, perpendicular to γ′, such that f∗(V (0)) =
V (1).

The first step, paradoxically enough, will be to prove that γ′ itself satisfies these conditions (except
orthogonality), in other words that:

Lemma 1. f∗(γ
′(0)) = γ′(1).

Proof. Now f ◦ γ is a geodesic starting at f(p), and if we show that the piecewise smooth broken
geodesic c = γ + f ◦ γ (concatenation) is actually smooth, we will have established the first step.

Pick some point p∗ in the middle of γ. Then d(p∗, f(p∗)) ≥ d(p, f(p)). But there is a path c0 from
p∗ to f(p∗) of the same length d(p, f(p)), namely c traversed starting at p∗ to f(p∗). For instance,
we could take p∗ = γ(0.5) and then traverse the curve c from 0.5 to 1.5, for a total distance of
||γ′(0)|| = length(γ) = d(p∗, f(p∗)). This means that c0 is smooth, hence so is c; the only point in
doubt was at t = 1. In particular the left and right-hand derivatives match, so f∗(γ

′(0)) = γ′(1). �

Proof of the proposition. There was, in fact, method to this madness. We are now going to use this
fact and linear algebra to construct the vector field V . So, the goal is to find some vector V0 ∈ Tp(M)
such that the transformation T : Tp(M) → Tp(M) obtained by first applying f∗ (and sending to
Tf(p)(M)) and then parallel translating back along γ has an eigenvector perpendicular to γ′(0)—
which we just proved is a fixed point. Then the parallel field extending V0 can be taken as our V ,
which proves the lemma.

Now consider the subspace W = {γ′(0)}⊥ ⊂ Tp(M). Now T is an isometry so fixes W , and W is of
dimension one smaller. Also T (and hence T |W ) preserves (resp. reverses) orientation if dimW = n−1
is odd (resp. even). By now invoking the following result from linear algebra, such a vector falls into
our lap. �

Lemma 2 (Linear algebra). Let T : W →W be an orthogonal linear transformation of a real vector
space W . Suppose A fixes orientation if dimW is odd and reverses it if dimW is even. Then T has
a nontrivial fixed point.

This will be proved later (in the appendix). Anyway, we now can use Proposition 1.
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5. The second variation formula

5.1. The approach. Recall that we have defined the variation γs(t) = expγ(t)(sV (t)); by what has

been discussed, f(γs(0)) = γs(1) for all s. In particular, we have paths between ps and f(ps). Recall
also the energy E(c) =

∫
〈c′, c′〉 of a piecewise-smooth path c; we shall use this in the sequel because

it is easier to work with than the length (which has annoying square roots). Now

d

ds
E(γs) = 0

because E(γs) has a minimum at s = 0. Indeed, E(γ) = d(p, f(p))2—since γ = γ0 moves at constant
speed, being a geodesic—and E(γs) ≥ d(ps, f(ps))

2 by Schwarz’s inequality. When we prove

d2

ds2
E(γs) < 0

it will follow that there is some s 6= 0 small with ps 6= p but

d(ps, f(ps))
2 ≤ E(γs) < E(γ) = d(p, f(p)),

contradiction.

5.2. Proof of the variation formula. First, let us recall a more general version of the second
variation formula and a sketch of the proof. Let γ : [0, 1] → M be a geodesic, γs a smooth variation
of γ (not necessarily fixing endpoints) with variation vector field V = ∂E

∂s |s=0. Then

1

2
E′(s) =

∫
〈D
ds

d

dt
γs,

d

dt
γs〉 =

∫
〈D
dt

d

ds
γs,

d

dt
γs〉

This becomes (where, by abuse of notation γ′ denotes differentiation w.r.t. t)

1

2

d

ds
E(s) =

∫
d

dt
〈 d
ds
γs,

d

dt
γs〉 −

∫
〈 d
ds
γs,

D2

dt2
γs〉

i.e.

1

2

d

ds
E(s) = 〈 d

ds
γs, γ

′
s〉10 −

∫
〈 d
ds
γs,

D2

dt2
γs〉.

Differentiate with respect to s again:

1

2

d2

ds2
E(s) = 〈D

2

ds2
γs, γ

′
s〉10 + 〈 d

ds
γs,

D

dt

d

ds
γs〉10 −

d

ds

∫
〈 d
ds
γs,

D2

dt2
γs〉.

We shall now analyze each term separately. The first two terms become

〈D
2

ds2
γs|s=0, γ

′〉10 + 〈V, DV
dt
〉10.

The last term becomes

−
∫
〈D

2

ds2
γs,

D2

dt2
γs〉 −

∫
〈 d
ds
γs,

D

ds

D

dt
γ′s〉

Since γ0 is a geodesic, evaluation at s = 0 of this yields

−
∫
〈V, D

ds

D

dt
γ′s〉 = −

∫
〈V, D

dt

D

ds
γ′〉 −

∫
〈V,R(γ′, V, γ′)〉
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which in total yields

1

2

d2

ds2
E(s)|s=0 = −

∫
〈V, V ′′ −R(γ′, V )γ′〉+ 〈D

2

ds2
γs, γ

′
s〉10 + 〈 d

ds
γs, V

′〉10.

This is the version of the second variation formula that we shall use.

6. Computation of the variation

Now let’s apply the formula to the γs constructed in the proof of Weinstein’s theorem. Fortunately,
most of the mess clears up. By parallelism, V ′ = V ′′ = 0, so all that we are left with is

1

2

d2

ds2
E(s)|s=0 =

∫
〈V,R(γ′, V )γ′) = −||γ′||

∫
K(γ(t), span{γ′(t), V (t)})dt < 0

by hypothesis on the sectional curvature and since γ′, V are orthogonal. It now follows, as discussed
previously, that d(p, f(p)) is not minimal, which gives a contradiction.

7. Consequences

Theorem 2 (Synge). Let M be a compact n-dimensional Riemannian manifold of positive curvature.

(1) If n is even and M is oriented, then M is simply connected.
(2) If n is odd, then M is orientable.

Proof. We have already discussed case a) in the introduction. In case b), if M is not orientable,

then there is an orientable double cover M̃ → M . The manifold M̃ is compact, has an induced
Riemannian metric of positive curvature, and has an orientation-reversing covering transformation f
when considered as a convering space of M . This transformation f must thus have no fixed points,
which contradicts Weinstein’s theorem. �

8. Appendix: Proof of the linear algebra lemma

For convenience, we restate the lemma:
Let T : W →W be an orthogonal linear transformation of W . Suppose A fixes orientation if dimW

is odd and reverses it if dimW is even. Then T has a nontrivial fixed point.

Proof. First, in either case, the nonreal eigenvalues of A occur in conjugate pairs, so the product of
nonreal eigenvalues is positive. All the real eigenvalues are ±1 since T is orthogonal.

(1) dimW is odd. Then detA = 1 and A has an odd number of real eigenvalues; they thus cannot
all be −1.

(2) dimW is even. Then detA = −1 and A has an even number of real eigenvalues; they thus
cannot all be −1.

�
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