
Verification of Embedded Software:
Problems and Perspectives

Patrick COUSOT
École Normale Supérieure

45 rue d’Ulm
75230 Paris cedex 05, France

Patrick.Cousot@ens.fr

www.di.ens.fr/ cousot

Radhia COUSOT
École Polytechnique

91128 Palaiseau cedex, France

Radhia.Cousot@polytechnique.fr

lix.polytechnique.fr/ rcousot

EMSOFT’01, Lake Tahoe, CA, U.S.A. October 8–10, 2001
! " # !

Introduction on Formal Methods

This work was supported in part by the RTD project IST-1999-20527
Daedalus of the european IST FP5 programme.

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 1 — [] ! — !!!# © P. & R. Cousot

Software Quality

• Exponential complexity growth in VLSI with decreasing or
constant costs;

• Corresponding proportional growth in software (maybe with
a delay of few months or years);

• An operating system running a large number of applications
presently crashing every 24 hours , will crash:
-- every 30 minutes within a decade,
-- every 3 minutes if the software size is multiplied by 10.

→ Hardly acceptable for safety critical systems!

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 2 — [] ! — !!!# © P. & R. Cousot

Success Stories for Formal Methods:
(1) Theorem Proving Based Deductive Methods

Embedded software for the driverless Meteor line 14 metro
in Paris (after failure in Lyon):
• B specification of 115 000 lines;
• compiles into a 87 000 lines ADA program;
• correctness proof, using interactive theorem proving, required

to handle manually 27 800 proof obligations;
• 1400 rules had to be added to the prover and proved correct

(900 of which automatically);

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 3 — [] ! — !!!# © P. & R. Cousot



• No error was ever found in the embedded software nor in its
B specification;

• All errors where found at the interfaces not satisfied by the
central control software (not developped in B);

• Expansive: 600 person/years!

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 4 — [] ! — !!!# © P. & R. Cousot

Success Stories for Formal Methods:
(2) Model-Checking

• Most hardware design companies now have model-checkers
(after the famous FDIV design fault in the Pentium proces
sor);

• Can verify circuit designs of a few hundreds/thousands of
registers (with abstraction of their surrounding environment);

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 5 — [] ! — !!!# © P. & R. Cousot

• State explosion problem: still has to scale up for hardware,
not speaking of software:
-- Evolve from debugging to formal verification;
-- Human-understandable temporal specifications;
-- Automatize the design of models.

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 6 — [] ! — !!!# © P. & R. Cousot

Success Stories for Formal Methods:
(3) Program Static Analysis

After the Ariane 5 flight 501 failure 1:
• The error was caught (too late!) by an abstract interpretation

based static analysis of the program;
• Other errors showed up (data races, divisions by zero, etc.);

1 due to the inertial reference system sending incorrect data following a software exception resulting from an unpro
tected data conversion from a too large 64-bit floating point to a 16-bit signed integer value

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 7 — [] ! — !!!# © P. & R. Cousot



• Static analysis relies on an abstract model of the program
semantics;

• The precision of the approximation can be tailored to the
available time/memory resources;

• Very precise abstractions are suitable for small programs (few
thousands of lines) but global analysis of very large programs
(millions of lines) require loose abstractions.

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 8 — [] ! — !!!# © P. & R. Cousot

Challenges for Verification Techniques

• Software verification cost is well-known to be non-linear in
the software size;

• So informal and formal verification techniques must scale up
at a much higher rate that hardware evolution;

• We highlight some of the verification problems to be consid
ered for embedded software;

• We envision possible abstract interpretation based program
static analysis solutions.

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 9 — [] ! — !!!# © P. & R. Cousot

Warning

This presentation is more a wish list on present or future work
for opening discussion rather than a technical contribution.

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 10 — [] ! — !!!# © P. & R. Cousot

Challenges in
Embedded Software Verification

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 11 — [] ! — !!!# © P. & R. Cousot



Software Models

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 12 — [] ! — !!!# © P. & R. Cousot

Programming Language Semantics
Abstraction

• Program analysis is based on abstractions of the programming
language semantics;

• Abstract interpretation provides a mathematically safe ap
proximation methodology;

• The model of the program to be verified is provided automat
ically to the user;

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 13 — [] ! — !!!# © P. & R. Cousot

• Many difficulties:
-- The execution environment (including operating system)
must be formalized and abstracted;

-- Programming language standards are often very informal;
-- Most standards are continuously revised;
-- Most compilers do not strictly implement standards;
-- Libraries often have no formal specification/semantics;

• Challenge: design stable programming languages semantics
which are usable for program verification and enforcable in
portable implementations.

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 14 — [] ! — !!!# © P. & R. Cousot

Program Specific Abstractions

• There always exists a complete finite approximation to prove
a given specification of a given computer system semantics;

• Discovering this abstraction to a finite model is logically equiv
alent to a formal correctness proof;

• Hand made abstractions are very difficult to design even
for small or medium size programs (few hundred thousands
lines).

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 15 — [] ! — !!!# © P. & R. Cousot



Abstraction in Model Checking

• Three/four different descriptions of the real-world system or
program:
1. in a programming language for the implementation;
2. in a verification language for the model;

(3. in an abstract verification language for the finite abstract
model;)

4. in a logic language for the specification of the properties
of the model which have to be checked.

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 16 — [] ! — !!!# © P. & R. Cousot

• The formal verification is between the model and its specifi
cation;

A few neglected difficulties:
• How formal is the relation between the concrete and abstract

models?
• How formal is the relation between the concrete model and

the implementation?
• How can these three/four descriptions be maintained over

time (e.g. 20 years for planes)?

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 17 — [] ! — !!!# © P. & R. Cousot

Program Versus Language Based
Abstraction

• Abstraction soundness is difficult to prove (undecidable);
• Difficulty is about the same whether it is program-based or

language-based;
• Program-based abstractions are hardly reusable and highly

sensible to program modifications;

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 18 — [] ! — !!!# © P. & R. Cousot

Standard Abstractions for Program Analysis

• In static program analysis abstraction is language-based;
• The model of the implementation is provided by the analyzer

and proved correct for a given programming language;
• Standard abstractions can be shared in the form of reusable

libraries;
• Difficulty: since analyzers must work for infinitely many pro

grams, no finite abstraction will be as powerful as infinite
abstract domains (with widening/narrowing);

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 19 — [] ! — !!!# © P. & R. Cousot



A few challenges:
• A broader class of general-purpose abstractions , implemented

in the form of libraries, is needed;
• The problem of tailoring such abstractions to program-specific

verification is:
-- Partly solved only from a theoretical point of view (abstract
domain refinement);

-- Undecidable hence still opened in practice.

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 20 — [] ! — !!!# © P. & R. Cousot

Widening/Narrowing and Their Duals

• Necessary to speed up fixpoint computations in infinite ab
stract domains;

• Widening/narrowing decide upon the abstraction during the
verification process, not before;

• The success of program analyzers often relies on the design
of subtle widenings/narrowings providing a good balance be
tween cost and precision;

• Challenge: dual widening/narrowing (for approximation from
below);

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 21 — [] ! — !!!# © P. & R. Cousot

Specifications

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 22 — [] ! — !!!# © P. & R. Cousot

Specifications in Model Checking

• User provided: temporal logic or fixpoint calculus;
• Challenges:

-- infinite past/future specifications (for which set of states
based abstractions are incomplete);

-- make such specifications understandable and reusable;

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 23 — [] ! — !!!# © P. & R. Cousot



Specifications in Program Analysis

• Provided automatically: absence of runtime errors, good pro
gramming practice 2;

• User provided: forward/backward and least/greatest fixpoints
based static checking 3;

• Challenges: make specifications and static program analysis
follow the program development process;

2 threads must eventually enter/exit critical sections, the condition in monitors will eventually be verified for condition
variables, etc.

3 Very similar to linear temporal logic

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 24 — [] ! — !!!# © P. & R. Cousot

Control Structures

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 25 — [] ! — !!!# © P. & R. Cousot

Unbounded Control Structures

• Transitions systems are suitable for flat control structures
(e.g. Prolog, procedureless C);

• Programming languages often involve unbounded control struc
tures (recursion/reentrant software, process creation, race
conditions with dynamic priorities, etc.);

• Challenge: precise abstractions of unbounded control struc
tures.

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 26 — [] ! — !!!# © P. & R. Cousot

Numerical Properties

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 27 — [] ! — !!!# © P. & R. Cousot



Integer Properties

• Initial work in program analysis (e.g. convex polyhedral ab
straction) reused in model-checking (e.g. of hybrid automata);

• Most work on linear safety properties;
• Challenges:

-- Little work on liveness properties with fairness hypotheses
(generation of variant functions);

-- Little work on non-linear boundedness;

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 28 — [] ! — !!!# © P. & R. Cousot

Floating Point Properties

• Very important in embedded software (e.g. to control trajec
tories);

• Evolution from fixed-point to floating-point computations;
• Difficulties:

-- run-time errors ,
-- cumulated loss of precision;

• Challenges:
-- Estimate and find the origin of uncontrolled loss of preci
sion of the floating-point operations (without analysis-time
errors/loss of precision!).
EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 29 — [] ! — !!!# © P. & R. Cousot

Data Structures

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 30 — [] ! — !!!# © P. & R. Cousot

Data Structures

• Even trivial data structures can be a problem (e.g. type casts,
buffer overflows);

• Low-level programming languages (C, Ada) used in embedded
software make use of pointers (not even speaking of heap
allocation e.g. in parameter passing);

• Challenge: pointer/alias analysis (hundreds of published pa
pers but no cost/precision adjustable pointer analysis is presently
emerging);

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 31 — [] ! — !!!# © P. & R. Cousot



Modularity

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 32 — [] ! — !!!# © P. & R. Cousot

Modular Program Analysis Techniques

• Simplification-based separate analysis;
• Worst-case separate analysis;
• Separate analysis with (user-provided) module interfaces;
• Symbolic lazy relational separate analysis;
• Iterated composition of the above separate local analyses and

global analysis methods.
• Challenge:

-- Scale-up without precision loss and overwelming user inter
action;

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 33 — [] ! — !!!# © P. & R. Cousot

Timing

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 34 — [] ! — !!!# © P. & R. Cousot

Timing

• Timing constraints are central to process control software;
• Timing constraints must be checked at the lowest machine

level;
• Much progress has been done recently in static WCET esti

mation 4;
• Challenges:

-- Formalize the semantics of modern processors;
-- Design WCET analyzers parameterized by the processor se
mantics;

4 see the presentation by R. Wilhelm and the demo by S. Thesing in this workshop.

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 35 — [] ! — !!!# © P. & R. Cousot



Termination and
Unbounded Liveness Properties

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 36 — [] ! — !!!# © P. & R. Cousot

Finiteness Hypotheses

• Finiteness: every liveness property can be proved by proving
a stronger safety property;

• Infiniteness: not always possible, so (transfinite) variant func
tions are required;

• Challenge: after understanding variant functions as abstrac
tions, infer them automatically.

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 37 — [] ! — !!!# © P. & R. Cousot

Fairness

• Solved problem for finite systems (fair model checking);
• Very difficult to find effective abstractions for infinite systems;
• Challenge:

-- Take scheduling into account (e.g. to statically detect po
tential priority inversions).

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 38 — [] ! — !!!# © P. & R. Cousot

Distribution and Mobility

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 39 — [] ! — !!!# © P. & R. Cousot



Network Integrated Embedded Software

• Critical real-time embedded software evolves from centralized
to distributed control (modern automotive, aeronautic and
train transportation computer systems certainly contain sev
eral dozen of computers communicating on a LAN);

• Predictable evolution towards integration into WANs (e.g.
air traffic control) with continuously evolving communication
topologies;

• More intelligent communication protocoles will certainly re
quire mobile code;

• Challenge: scale up static analysis of distributed/mobile code;
EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 40 — [] ! — !!!# © P. & R. Cousot

User Interfaces

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 41 — [] ! — !!!# © P. & R. Cousot

User Interaction

• All formal methods ultimately require user interaction;
• Automatic program analysis often hard to understand (e.g.

polymorphic type systems with subtypes);
• Challenges:

-- educate programmers on formal methods;
-- communicate/acquire complex reasonings about programs
to/from users (not just counter-examples).

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 42 — [] ! — !!!# © P. & R. Cousot

DAEDALUS

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 43 — [] ! — !!!# © P. & R. Cousot



Partners of

AE

DA D LUS
• P. Cousot (ENS, France), scientific coordinator;

• R. Cousot (École polytechnique, France);
• A. Deutsch & D. Pilaud (PolySpace Technologies , France);
• C. Ferdinand (AbsInt , Germany);

• É. Goubault (CEA, France);
• N. Jones (DIKU, Denmark);
• F. Randimbivololona (Airbus, France), coord.;
• M. Sagiv (Univ. Tel Aviv, Israel);
• H. Seidel (Univ. Trier, Germany);
• R. Wilhelm (Univ. Sarrebrücken, Germany);

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 44 — [] ! — !!!# © P. & R. Cousot

Conclusion

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 45 — [] ! — !!!# © P. & R. Cousot

Long Term Investment

• Formal verification of embedded software is a challenge for
the next decade;

• Program-based hand-made abstraction is extremely costly to
design;

• Language-based hand-made abstraction is extremely costly
to design but reusable;

• Therefore program analysis is an economically viable comple
ment/alternative to model checking/deductive methods;

• Program analyzers are hard to design and implement (>>>
compilers);

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 46 — [] ! — !!!# © P. & R. Cousot

• Challenge: find support for the required long term intellectual
investment.

x

EMSOFT’01, Lake Tahoe, CA, U.S.A. , October 8–10, 2001 """" — 46 — [] ! — !!!# © P. & R. Cousot


