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Abstract. The force-based quasicontinuum (QCF) approximation is the principle
that lies behind the most commonly used atomistic/continuum hybrid models for
crystalline solids. Recent analyses have shown some potential pitfalls of the QCF
method, particularly the lack of positive definiteness of the linearized QCF operator
and the lack of uniform stability as the number of atoms tends to infinity. We derive
a weak variational representation of the QCF operator and identify the origin of
these difficulties as the lack of an interface condition on the stresses. This leads us
to propose an improved variant of the QCF method that can be understood as a
coupling mechanism based on stresses rather than forces.

1. Introduction

Atomistic/continuum (A/C) coupling methods, such as the quasicontinuum (QC)
method [12, 13, 16], are important tools in modern materials simulations since they
enable, in principle, the accurate description of phenomena that are accessible neither
to pure atomistic nor pure continuum models. However, difficult open problems
remain for the formulation of accurate and reliable energy-based coupling mechanism
[8, 17].

The force-based quasicontinuum (QCF) approximation [10, 16, 2, 6] is the only
known atomistic/continuum (A/C) coupling scheme for general interaction potentials
and general A/C interface geometries, that does not exhibit spurious ghost forces at
the interface. Moreover, it is the underlying principle behind the most commonly
used quasicontinuum software (www.qcmethod.com).

Over the past year, considerable progress has been made on the analysis of the
QCF method [2, 6, 5, 4, 11]. These references have shown several interesting and
unexpected analytical structures. In particular, if the QCF operator is written in a
weak variational form, then certain interface terms appear that are the cause of some
undesirable (in-)stability properties of the method. For example, it can be shown
that the linearized QCF operator is almost never positive definite [6, Thm. 1], which
has, for example, severe consequences for the solution of the nonlinear QCF system
[4].
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In this article, we first present a formulation of the QCF method for a 1D periodic
chain with second-neighbour pair interactions and coarse-graining by a P1-finite ele-
ment scheme (Section 2). We then derive the weak form of the QCF equations, where
we will provide a physical interpretation of the interface terms in terms of an atomistic
stress function (Section 3.1). Next, we review the aforementioned instability results
and extend the result showing lack of positive definiteness to the coarse-grained case
(Section 3.2). Guided by these motivations we then define, in Section 4, a new force-
based A/C method that is based on coupling stresses as opposed to forces. We will
review some error estimates for this method that we have derived in [11], and prove
that the linearization of the new method is typically positive definite. We show that
this leads to optimal error estimates in discrete W1,p-norms that do not hold for the
classical QCF method.

2. The Force-Based Quasicontinuum Method

2.1. Notation for discrete functions. Our models will be formulated for infinite
chains, hence we introduce some notation for functions defined on Z, which we will
denote v = (vξ)ξ∈Z ∈ RZ. The space of 2N -periodic functions is denoted by RZ

#. We
will normally work on a particular period, which we denote

L =
{
−N + 1, . . . , N

}
.

Throughout, we define ε = 1/N . This will later be the atomistic spacing in non-
dimenional variables.

For any set K ⊂ RZ, for any p ∈ [1,∞), and for any function v ∈ RZ, we define
the norms

‖v‖`pε(K) =

(
ε
∑
ξ∈K

|vξ|p
)1/p

, and ‖v‖`∞ε (K) = ‖v‖`∞(K) = max
ξ∈K
|vξ|.

If the set (K) is omitted from the above notation, then it is assumed that K = L.
For p = 2 and K = L the associated inner product is

(v, w)ε = ε
∑
ξ∈L

vξwξ for v, w ∈ RZ.

Using the notation 1 = (1)ξ∈Z, the set of periodic functions with mean zero is denoted
by

U =
{
v ∈ RZ

# : (v, 1)ε = 1
}
. (1)

For v ∈ RZ we define v′ = (v′ξ)ξ∈Z, v′′ = (v′′ξ )ξ∈Z, and v′′′ = (v′′′ξ )ξ∈Z as follows:

v′ξ =
vξ−vξ−1

ε
, v′′ξ =

vξ+1−2vξ+vξ−1

ε2
, and v′′′ξ =

vξ+1−3vξ+3vξ−1−vξ−2

ε3
.

2.2. Atomistic model problem. We wish to present our ideas in the simplest
possible setting. To that end we focus on a one-dimensional periodic chain, thus
ignoring difficult questions associated with boundaries, defects, or complicated lattice
geometries in 2D/3D. We define the set of admissible deformations as

Y = Bx+ U =
{
Bx+ u : u ∈ U

}
, (2)
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where U is the displacement space defined in (1). We note that 2N denotes the
number of atoms per period, and ε = 1/N is the atomic spacing in non-dimensional
coordinates. We define a reference lattice

x = (xξ)ξ∈Z = (εξ)ξ∈Z.

The constant B > 0 can be thought of as a macroscopic strain. Thus, the admissible
deformations are the periodic displacements with zero mean from the homogeneous
lattice Bx. For future reference, we also define

Y+ =
{
y ∈ Y : y′ξ > 0 for all ξ ∈ Z

}
.

For simplicity, we assume that each atom interacts only with its next and next-
nearest neighbours through a pair potential φ ∈ C3(0,+∞), such as a Lennard–Jones
or Morse potential. The internal stored energy of a deformation y ∈ Y is then given
by

Φa(y) = ε
∑
ξ∈L

φ(y′ξ) + ε
∑
ξ∈L

φ(y′ξ + y′ξ+1).

Assuming that all external forces are dead loads, collected into a function g ∈ U , the
total energy of a deformation y is given by

Φa
tot(y) = Φa(y)− (g, y)ε.

The problem we wish to solve is to find a local minimizer of Φa
tot in Y :

Find ya ∈ argmin Φa
tot(Y). (3)

2.3. The local QC approximation. It can be shown (see, e.g., [1, 6, 9, 14]) that
in regions of the domain L where the atomistic deformation is smooth (by which we
mean that y′ξ varies slowly) one can replace the atomistic model by the Cauchy–Born
approximation

Φc(y) =

∫ 1

−1

W (y′) dx,

where W (t) = φ(t)+φ(2t) is the Cauchy–Born stored energy function. The P1-finite
element discretization of Φc is sometimes also called the so-called local quasicontin-
uum (QCL) approximation. (The QCL method is derived, in reverse order, by first
coarse-graining the atomistic model and then applying the Cauchy–Born rule in each
finite element. [12, 13])

To formulate this, we partition the domain by choosing a finite number of repatoms

Lrep =
{
ξ1, . . . , ξM

}
⊂ L,

where M � N and ξ1 < ξ2 < · · · < ξM . The grid is extended periodically, that
is, we define ξm+M = ξm + 2N for all m ∈ Z. The position of the repatoms are
Xm = xξm = εξm. The mesh size functions for elements and for nodes are

hm = Xm −Xm−1 and Hm = 1
2
(Xm+1 −Xm−1), for m ∈ Z.

Moreover, we define the mesh-dependent inner product

(v, w)h =
M∑
m=1

Hmvξmwξm for v, w ∈ RZ.
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We denote by S 1
h the space of piecewise linear functions with respect to the grid

(Xm)m∈Z. If vh ∈ S 1
h then we denote its nodal values by Vm = vh(Xm) = vh,ξm , and

its gradient in the interval (Xm−1, Xm) by V ′m = (Vm − Vm−1)/hm, that is,

vh,ξ = Vm−1 + V ′m(xξ −Xm−1) for ξ = ξm−1, . . . , ξm.

Finally, we define the finite element deformation and displacement spaces associated
with Y and U , respectively, as

Uh =
{
uh ∈ S 1

h ∩ RZ
# : (uh, 1)h = 0

}
and Yh = Bx+ Uh.

For future reference, we also define Y+
h =

{
yh ∈ Yh : y′h,ξ > 0 for all ξ ∈ Z

}
.

The total energy functional for the QCL method is given by

Φc
tot(y) = Φc(y)− (g, y)h for y ∈ Y ,

where we have approximated the inner product (·, ·)ε by (·, ·)h, which can be com-
puted with complexity O(K). If yh ∈ Yh (with vector of nodal values Y ) then the
functional can be written as

Φc
tot(yh) =

M∑
m=1

hmW (Y ′m)−
M∑
m=1

HmgξmYm. (4)

In the QCL method, we aim to find a local minimizer of Φc
tot in Yh, that is:

Find yc
h ∈ argmin Φc

tot(Yh). (5)

2.4. The force-based QC approximation. If ya is a solution of (3) then it satisfies
the first-order criticality condition

(f a(y) + g, v)ε = 0 ∀v ∈ U , (6)

where the (scaled) force vector f a = (f a
ξ )ξ∈Z is defined as

f a
ξ (y) := −1

ε

∂Φa(y)

∂yξ
, for ξ ∈ Z.

Similarly, if yc
h ∈ Yh is a solution of (5) then it satisfies(

F c(yc
h) + g, vh

)
h

= 0 ∀vh ∈ Uh, (7)

where the generalized forces F c = (F c
m)m∈Z are given by

F c
m(yh) = − 1

Hm

∂Φc(yh)

∂Ym
for m ∈ Z.

We remark that we could equally formulate (6) and (7) pointwise (e.g., f a
ξ (y)+gξ = 0

for ξ ∈ Z), however, it was shown in [6, 11] that this is problematic for the QCF
method, which we define next.

To construct the QCF method, we partition the set of repatoms Lrep = La ∪ Lc

into the degrees of freedom for which we require atomistic accuracy, La, and those
for which the accuracy of the continuum model is sufficient, Lc. For simplicity, we
assume throughout that, for some constant κ ∈ N,

La = {−κ, . . . , κ}, and that {−κ− 2, . . . , κ+ 2} ⊂ Lrep. (8)
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The first condition is only to simplify the notation and is needed neither for the for-
mulation nor the analysis of the two A/C methods that we discuss in this paper. The
second condition is not strictly necessary either but does considerably simplify both
the analysis and the implementation of the QCF method and stress-based method
that we define in Section 4.

Upon defining the QCF force vector

F qc(y) =
(
F qc
m (y)

)
m∈Z where F qc

m (y) =

{
f a
ξm

(y), if ξm ∈ La,

F c
m(y), if ξm ∈ Lc,

extended periodically for m ∈ Z, the QCF method is defined by the following non-
linear variational problem:

Find yqc
h ∈ Yh s.t.

(
F qc(yqc

h ) + g, vh
)
h

= 0 ∀vh ∈ Uh. (9)

3. Analysis of the QCF Method

In this section we summarize a number of recent results from [5, 6, 11]. We begin
by deriving the weak variational forms of (6), (7) and (9), which are crucial to the
analysis of the QCF method.

3.1. Stress functions and weak variational forms. A straightforward and stan-
dard calculation, starting from (4), gives the following representation of the first
variation of Φc, which is the most convenient form for finite element analysis:

− (F c(yh), vh)h =
M∑
m=1

hmΣc
m(yh)V

′
m for all vh ∈ Uh, (10)

where Σc
m(yh) = DW (Y ′m). We note, moreover, that

F c
m(yh) = H−1

m

[
Σc
m+1(yh)− Σc

m(yh)
]
. (11)

While continuum models are usually formulated in terms of stresses as in (10),
atomistic models are almost exclusively formulated in terms of forces as in (6). How-
ever, it was seen in [5, 6, 11, 14, 15] that, in order to understand the consistency and
stability of coupling mechanisms, it is crucial to understand the weak forms of the
atomistic and quasicontinuum models. Hence, in [11], we derive a stress function for
the atomistic model:

Proposition 1. Let y ∈ Y+ then

− (f a(y), v)ε = ε
∑
ξ∈L

Σa
ξ(y)v′ξ for all v ∈ U , (12)

where the atomistic stress function Σa
ξ(y) is given by

Σa
ξ(y) = φ′(y′ξ) + φ(y′ξ−1 + y′ξ) + φ(y′ξ + y′ξ+1). (13)

Moreover, the atomistic forces and stresses are related by the formula

f a
ξ (y) = ε−1

[
Σa
ξ+1(y)− Σa

ξ(y)
]
. (14)
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Proof. The first result follows immediately upon noticing that

Σa
ξ(y) =

1

ε

∂Φa(y)

∂y′ξ
.

The formula (14) can be verified by a direct computation. �

Before we state the weak variational form of the QCF method, we need some
additional notation. We denote the indices of the degrees of freedom corresponding
to the interface atoms −κ, κ by K,K ∈ {1, . . . ,M}, that is,

ξK = κ, and ξK = −κ.
The set of indices of finite elements (Xm−1, Xm) that belong, respectively, to the
atomistic and continuum regions are defined as Ma = {K, . . . ,K + 1} and Mc =
{1, . . . ,M} \Ma. We think of the interface elements (XK−1, XK) and (XK , XK+1)
as belonging to the atomistic region. To simplify the notation, we will also use the
convention Σa

m(yh) = Σa
ξm

(yh) for yh ∈ Y+
h and for m ∈Ma.

With this notation, we can insert (11) and (14) into (15) and perform summation
by parts separately in the atomistic and continuum regions, and collect the boundary
terms in a convenient way, to arrive at the following result [11, Sec. 4.1].

Proposition 2. Let yh ∈ Y+
h and Σ

a/c
m = Σ

a/c
m (yh); then, for all vh ∈ Uh,

−
(
F qc(yh), vh

)
h

=
∑
m∈Ma

εV ′mΣa
m +

∑
m∈Mc

hmV
′
mΣc

m

− VK−1(Σ
c
K − Σa

K) + VK+1(Σ
c
K+1
− Σa

K+1
).

(15)

We see from Proposition 2 that the QCF method does not satisfy the common
principle in continuum multiphysics modelling of equality of the normal components
of the stresses at an interface. Indeed, weakly imposing this condition is equivalent
to dropping the interface terms in the second line of (15). We will explain next that
these interface terms are the origin of a number of undesirable properties of the QCF
method.

3.2. Consequences of the interface terms. In this section we cite two unexpected
results from [5, 6] concerning the stability of the QCF method.

3.2.1. Lack of positive definiteness. The simplest, and possibly most important no-
tion of stability for energy minimization problems is positive definiteness of the Hes-
sian matrix. For example, if ya is a local minimizer then D2Φa(ya) ≥ 0, and usually
one even has strict positive definiteness. The same is true for the local QC energy.
However, for the QCF method, we have the following result.

Proposition 3. Suppose that B is chosen so that φ′′(2B) 6= 0; then there exist
positive constants C1, C2 such that, for N sufficiently large and for 2 ≤ κ ≤ N/2,

−C1N
1/2 ≤ inf

uh∈Uh
‖u′h‖`2ε=1

(
−DF qc(Bx)uh, uh

)
h
≤ −C2N

1/2.
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Proof. Without coarse-graining, i.e., with Uh = U , this result is given in [5, Thm.
4.1]. The main idea of the proof presented there was to find a test function that is
constant in the atomistic region, piecewise affine in the continuum region, and has
oscillations of order ε1/2 in the interface region. These oscillations ensure that the
interface terms dominate.

For the present case it is sufficient to note that the test function constructed in
the proof of [5, Thm. 4.1] is affine in the continuum region and thus, after shifting
it by a constant value, belongs to Uh for any choice of finite element grid. �

This result has a number of undesirable consequences:

1. Positive definiteness of the linearization is the simplest way to establish sta-
bility of a numerical scheme and its absence makes the analysis of the QCF
method in higher dimensions a formidable challenge.

2. It is shown in [4] that the lack of positive definiteness implies that certain
commonly used nonlinear iterative solvers for the QCF method are unstable.

3. If we could have shown that DF qc is positive definite if and only if D2Φa is
positive definite up to a controllable error (such a result holds, e.g., for the
quasinonlocal coupling scheme [3, 14]), then we could use this property to
decide whether a given computed QCF solution corresponds to a minimum,
maximum or saddle point. In view of Proposition 3, we do not have this
possibility. Alternative notions of stability were suggested in [5] but require
further investigation.

3.2.2. Instability in various Sobolev spaces. In the absence of positive definiteness,
one needs to prove invertibility and boundedness of the inverse of the linearized
operator directly. It turns out, however, that for most natural choices of (discrete)
function spaces no uniform bounds on the inverse operator hold. For the case U = Uh,
i.e., Lrep = {−N + 1, . . . , N}, it was shown in [5, Thm. 4.3] that, if DF qc(Bx) is
invertible and if φ′′(2B) 6= 0, then

‖DF qc(Bx)−1‖L(U−1,p,U1,p) & N1/p,

where U±1,p are discrete variants of the Sobolev spaces W±1,p
# (−1, 1) of periodic func-

tions. In the same way as Proposition 3, this result is again established by construct-
ing test functions for which the interface terms dominate.

Since it is quite tedious to generalize this result to arbitrary discretizations we
will not give a rigorous statement of this kind for the coarse-grained case. However,
it seems that the proof carries over with only minor modifications, and hence we
strongly expect that a similar (negative) result will remain true.

We note that it is in fact possible to prove sharp stability results in higher order
discrete Sobolev spaces U2,p, p ∈ [2,∞] (see [5] for the case p = ∞ and [7] for
the general case). However, experience from regularity theory for elliptic PDE, and
numerical experiments [7] clearly show that these stability results hold only at smooth
deformations but fail in the presence of defects, or even if the deformation at which
F qc is linearized is not globally smooth. Hence, these results are only of limited value
for the analysis of the QCF method.
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3.2.3. Stability in the space of Lipschitz functions and error estimates. The space of
Lipschitz functions is the only suitable function space identified so far that allows a
rigorous error analysis of the QCF method under reasonably general conditions. In
[11] we establish stability and consistency estimates in U1,∞, which allow a rigorous
error analysis that is valid for large and non-smooth deformations. However, it
is again due to the interface terms that our stability estimates do not hold up to
bifurcation points.

4. Stress-based A/C Coupling

If we take the point of view, as is usually done in finite element analysis, that
the weak variational forms (10) and (12) are the most natural representations of
the atomistic and continuum models then it is reasonable to consider a stress-based
atomistic/continuum (SAC) coupling mechanism. We define the SAC operator Sqc :
Yh → U∗h , in variational form, via(

Sqc(yh), vh
)
h

=
∑
m∈Ma

εV ′mΣa
m(yh) +

∑
m∈Mc

hmV
′
mΣc

m(yh), (16)

where we recall that Σa
m = Σa

ξm
is defined in (13), and Σc

m(yh) = DW (Y ′m) is defined
in (10). The resulting nonlinear system is

Find yh ∈ Yh s.t. (Sqc(yh), vh)h = (g, vh)h ∀vh ∈ Uh. (17)

We can immediately make the following interesting observation: The variational
form of the SAC operator is identical to the weak variational form of the QCF
operator (15) after dropping the interface terms

−VK−1(Σ
c
K − Σa

K) + VK+1(Σ
c
K+1
− Σa

K+1
).

Hence, we see that this new method can also be understood as as a force-based QC
method, in which equality of the normal components of the stresses at the atom-
istic/continuum interface is imposed weakly.

Since the SAC method does not have the problematic interface terms, we expect
that it will have superior stability properties compared to the QCF method. In the
remainder of the section, we first summarize the error estimates proven for the SAC
method in [11]. We will then prove that the linearized SAC operator is positive
definite, however, not necessarily up to bifurcation points. Finally, we will show that
the linearized QCS operator is stable in a range of discrete Sobolev spaces up to a
simple bifurcation point, uniformly in N and κ.

4.1. A priori error estimates. Before we can embark on the analysis of the SAC
method, we need to briefly define a modified nodal interpolant. The problem is that
the standard nodal interpolant does not map U to Uh. Hence, in [11, Sec. 2.6.1] we
define an interpolant Ih : U → Uh via

(Ihu)ξm = uξm + C for all m = 1, . . . ,M, with C s.t. (Ihu, 1)h = 0.

With slight abuse of notation, we also define the nodal interpolation operator on Y ,
as

Ih(Bx+ u) = Bx+ Ihu. (18)
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From [15, Thm. A.4, Eq. (74)], we obtain the following interpolation error estimate:

‖Ihy′ − y′‖`∞({ξm−1+1,...,ξm}) ≤ 1
2
hm‖y′′‖`∞({ξm−1+1,...,ξm−1}). (19)

As the first crucial step for the error analysis we establishing an inf-sup stability
result. The following result shows that if yh ∈ Y+

h and γs(yh) > 0 then the operator
DSqc(yh) is invertible with an explicit bound on the inverse.

Lemma 4 (Stability). Let yh ∈ Y+
h ; then

inf
uh∈Uh
‖u′h‖`∞ε =1

sup
vh∈Uh
‖vh‖`1ε=1

(
DSqc(yh)uh, vh

)
h
≥ γs(yh), where

γs(yh) =
1

2
min

{
min
m∈Mc

D2W (Y ′m),

min
m∈Ma

(
φ′′(y′h,ξ)− 2

∣∣φ′′(y′h,ξm + y′h,ξm+1)
∣∣− 2

∣∣φ′′(y′h,ξm−1 + y′h,ξm)
∣∣)}.

Proof. It is easy to see that Sqc is differentiable in Y+
h . Defining (Jm,n)Mm,n=1 as

Jm,m = D2W (Y ′m) for m ∈Mc,

and

Jm,n = φ′′(y′h,ξ)+


φ′′(y′h,ξm+ y′h,ξm−1), m ∈Ma, n = m− 1,

φ′′(y′h,ξm+ y′h,ξm−1) + φ′′(y′h,ξm+ y′h,ξm+1), m ∈Ma, n = m,
φ′′(y′h,ξm+ y′h,ξm+1), m ∈Ma, n = m+ 1,

and Jm,n = 0 otherwise, we obtain

(
DSqc(yh)uh, vh

)
h

=
M∑

m,n=1

hmJmnV ′mU ′n.

The result follows by applying the abstract inf-sup estimate [11, Lemma 7]. �

The main strength of this stability estimate is that it is valid up to bifurcation
points. For example, if we consider the purely homogeneous deformation y = Bx (if
g = 0), then it is shown in [3], under the assumptions φ′′(B) > 0 and φ′′(2B) ≤ 0,
that this is a stable equilibrium of the atomistic model if and only if

φ′′(B) + 4φ′′(2B) +O(ε2) > 0.

Under the same conditions, Lemma 4 shows that

γs(Bx) > 0 iff. φ′′(B) + 4φ′′(2B) > 0,

that is, the SAC method is stable to within an O(ε2) error of the cricital strain B at
which the homogeneous deformation y = Bx becomes unstable.
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The second fundamental ingredient is a consistency error estimate.

Lemma 5 (Consistency). Let y ∈ Y+ then

sup
uh∈Uh
‖u′h‖`1ε=1

∣∣∣(Sqc(Ihy), uh)h + (f a(y), uh)ε

∣∣∣ ≤ E s
approx(y) + E s

model(y),

where the approximation error Eapprox and model error Emodel are, respectively,

Eapprox = C1 max
m∈Mc

h2
m‖y′′‖2`∞({ξm−1+1,...,ξm−1}), and (20)

Emodel = C2ε
2
{
‖y′′‖2`∞(Lc) + ‖y′′′‖`∞(Lb

c )

}
, (21)

and where the constants C1, C2 depend on minξ∈Lb
c
y′ξ and on the interaction potential,

and Lb
c = {−N + 1, . . . , N} \ {−κ, . . . , κ+ 1} is modification of the set Lc that takes

into account bonds as opposed to atoms.

Proof. The proof of this lemma is contained in [11, Sec. 3,5], however, for the purpose
of illustration we give a brief sketch.

We begin by writing out (Sqc(Ihy), uh)h + (f a(y), uh)ε, using the weak form (12):

(Sqc(Ihy), uh)h + (f a(y), uh)ε =
∑
m∈Ma

hmΣa
m(Ihy)U ′m +

∑
m∈Mc

hmΣc
m(Ihy)U ′m

−
∑
ξ∈L

εΣa
ξ(y)u′h,ξ.

Since Ihy and y differ only by a constant in the atomistic region the contributions in
the atomistic region from the SAC and the atomistic models are the same, so that
we are left with

(Sqc(Ihy), uh)h + (f a(y), uh)ε =
∑
ξ∈Lb

c

ε
(
DW ((Ihy)′ξ)− Σa

ξ(y)
)
u′h,ξ

=
∑
ξ∈Lb

c

ε
(
DW ((Ihy)′ξ)−DW (y′ξ)

)
u′h,ξ +

∑
ξ∈Lb

c

ε
(
DW (y′ξ)− Σa

ξ(y)
)
u′h,ξ.

Estimating the first group in the above representation is a classical superconver-
gence estimate (see [11, Sec. 4,5] for the full details), using the interpolation error
estimate (19), and leads directly to the Eapprox term.

To estimate the second group we use a consistency error estimate between the
atomistic and continuum stresses (see [11, Sec. 3] for a more general result),∣∣Σa

ξ(y)−DW (y′ξ)
∣∣ ≤ C3ε

2
{
|y′′′ξ |+ 1

2
(|y′′ξ |2 + |y′′ξ−1|2)

}
, (22)

where C3 depends only on min y′ξ. This contribution leads to the term Emodel in the
consistency error estimate. �
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Finally, before we state the main error estimate, we need to estimate the effect of
approximating (·, ·)ε by (·, ·)h. A minor modification of [11, Sec. 4] (see also [15])
gives the following result.

Lemma 6 (Consistency of External Forces). The consistency error for the
external forces is bounded by

sup
vh∈Uh
‖v′h‖`1ε=1

∣∣(g, vh)ε − (g, vh)h
∣∣ ≤ Eext, where

Eext = max
m∈Mc

h2
m

[
‖g′′‖`∞({ξm−1+1,...,ξm−1}) + 4‖g′‖`∞({ξm−1+1,...,ξm})

]
.

We are now in a position to formulate the main result of [11, Sec. 5]. Its proof is
technical but straightforward once the stability and consistency results of this section
are established. The theorem essentially states that, if ya is a stable critical point of
the atomistic model, and if both ya and g are sufficiently smooth in the continuum
region, then there exists a (locally unique) solution yqc

h of the SAC method (16) in a
neighbourhood of ya such that quasi-optimal error estimates hold.

Theorem 7. Let ya ∈ Y+ be a critical point of the atomistic energy Φa
tot, and

suppose that γs(y
a) > 0.

There exists a constant δ > 0, which depends only on min(ya)′ and on γs(y
a), such

that, if

Emodel(y
a) + Eapprox(ya) + Eext < δ, (23)

then there exists a locally unique solution yqc
h ∈ Y

+
h of the SAC method (17) satisfying

‖(yqc
h − y

a)′‖`∞ ≤ max
m∈Mc

1
2
hm‖(ya)′′‖`∞({ξm−1+1,...,ξm−1})

+ 4γs(y
a)−1

(
E s

model(y
a) + E s

approx(ya) + Eext

)
.

(24)

Moreover, we have the superconvergence result

‖(yqc
h − y

a)′‖`∞ ≤ 4γs(y
a)−1

(
E s

model(y
a) + E s

approx(ya) + Eext

)
. (25)

4.2. Positive definiteness of the SAC method. Recall from Section 3.2 that one
of our main motivations for formulating the SAC method was the lack of positive
definiteness of the linearized QCF operator. We will now show that the SAC method
does preserve positive definiteness, however, not necessarily up to bifurcation points.
For simplicity we consider only the case y = Bx, which was introduced in [3] as a
model problem, however, our arguments are easily extended to large deformations.

Proposition 8. Let B > 0 such that φ′′(B) > 0 and φ′′(2B) ≤ 0, then

φ′′(B) + 4.5φ′′(2B) ≤ inf
uh∈Uh
‖u′h‖`2ε=1

(
Sqc(Bx)uh, uh

)
h
≤ φ′′(B) + 4.11φ′′(B).
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Proof. For y = Bx we obtain from the proof of Lemma 4 that(
DSqc(Bx)uh, uh

)
=

M∑
m,n=1

hmJmnU ′mU ′n,

where

Jmn =


φ′′(B) + 4φ′′(2B), m ∈Mc, n = m,
φ′′(B) + 2φ′′(2B), m ∈Ma, n = m,

φ′′(2B), m ∈Ma, n = m± 1,
0, otherwise.

Thus, we can explicitly write(
DSqc(Bx)uh, uh

)
(26)

=

K−1∑
m=1

hm(φ′′(B) + 4φ′′(2B))|U ′m|2 +
M∑

m=K+2

hm(φ′′(B) + 4φ′′(2B))|U ′m|2

+
K+1∑
m=K

hm

{
(φ′′(B) + 2φ′′(2B))|U ′m|2 + φ′′(B)(U ′m−1U

′
m + U ′m+1U

′
m)
}
.

We estimate the mixed terms from below by

U ′m±1U
′
m ≥ −1

2
|U ′m±1|2 − 1

2
|U ′m|2.

A straightforward calculation, using the fact that φ′′(2B) ≤ 0, shows that(
DSqc(Bx)uh, uh

)
≥

M∑
m=1

hm(φ′′(B) + 4φ′′(2B))|U ′m|2

− 1
2
φ′′(2B)ε

(
|U ′K |2 + |U ′

K+1
|2
)

+ 1
2
φ′′(2B)ε

(
|U ′K−1|2 + |U ′

K+2
|2
)
.

Estimating the terms with positive coefficients in the second row below by zero yields
the stated lower bound.

To obtain an upper bound, we construct an explicit test function, similarly as in
[4, Lemma 2]. For positive constants α, β, there exists a unique test function ûh ∈ Uh
such that

Û ′m =


−(αε)−1, m = K − 1,
−(βε)−1, m = K,

(βε)−1, m = K + 1,
(αε)−1, m = K + 2,

0, otherwise.

Moreover, if 2/α+ 2/β = 1 then this test function has norm ‖û′h‖`2ε = 1. Inserting it
into (26), after a short calculation, we obtain(

DSqc(Bx)ûh, ûh
)
h

= φ′′B + 4φ′′2B + φ′′2B

( 2√
αβ
− 4

β

)
.

Clearly, we can choose α, β so that the term in brackets becomes positive, and thus
obtain an upper bound that gives a constant worse than 4. Numerically optimizing



STRESS-BASED A/C COUPLING 13

over α, β, suggests the choice

α = 2.11, β =
2α

α− 2
= 38.3636.

Inserting these numerical values, we obtain(
DSqc(Bx)ûh, ûh

)
h
≤ φ′′(B) + (4 + 0.11)φ′′(2B),

which is precisely the stated upper bound. �

This result, and its obvious generalizations to large deformations, shows that the
linearized SAC operator is indeed positive definite. This will considerably simplify
the stability analysis in higher dimensions. However, we have also obtained an upper
bound on the coercivity constant, which shows that there exist homogeneous defor-
mations y = Bx which are stable in both the atomistic and continuum model, but for
which DSqc(Bx) is not positive definite. The gap is relatively small, however, and
could be considered acceptable. This question deserves further investigation.

4.3. Error estimates in other norms. We conclude with a brief comment on error
estimates in other Sobolev norms. We will not give a rigorous analysis, but only a
brief outline of the main arguments.

Suppose that we are in the situation of Theorem 7, that is, we have guaranteed
the existence of a stable atomistic equilibrium ya and of an SAC solution yqc

h in a
neighbourhood. If ya contains singularities (in 2D/3D, e.g., a crack tip singularity
or the elastic field generated by a dislocation) then error estimates in `∞ may be too
restrictive, especially in view of the fact that error estimates in `2ε correspond more
closely to errors in the energy.

Suppose now that the SAC operator is positive definite in a neighbourhood of the
solutions ya, yqc

h (we have shown in the previous section that this can be expected),
then we can deduce from Theorem 7 and a simple generalization of Lemma 5, for
simplicity assuming that Eext vanishes, that

‖(Ihya − yqc
h )′‖`2ε ≤ C

{( ∑
m∈Mc

h4
m‖(ya)′′‖4`2ε({ξm−1+1,...,ξm−1})

)1/2

+ ε2‖(ya)′′′‖`2ε(Lb
c )

}
.

where C depends on min(ya)′ξ, on the interaction potential, and on the coercivity
constant. Moreover, using the Riesz–Thorin interpolation theorem, one can inter-
polate between the error estimates in `∞ and `2ε and obtain error estimates in all
`pε-norms, 2 ≤ p ≤ ∞,

‖(Ihya − yqc
h )′‖`pε ≤ C

{( ∑
m∈Mc

h2p
m‖(ya)′′‖2p

`2pε ({ξm−1+1,...,ξm−1})

)1/p

+ ε2‖(ya)′′′‖`pε(Lb
c )

}
.

We note that these quasi-optimal error estimates in `pε norms are not valid for the
original QCF method, and we therefore expect that in the presence of strong singu-
larities the SAC method may be superior. A careful investigation of this claim for
2D/3D examples is still open.
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Conclusion

We have formulated the force-based quasicontinuum method for a 1D periodic
chain with second-neighbour pair interactions. We have shown that this method has
some potential pitfalls for both the analysis and practical applications. The origin
of these difficulties are interface terms that appear only in the weak variational
form, and hence, we suggested a new force-based coupling scheme, based on coupling
stresses (SAC method), that circumvents many problems of the QCF method. We
gave a preliminary error and stability analysis of this new method.
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