
Abstract— In this paper, we present an collision avoidance 
algorithm for unmanned aerial vehicles (UAVs) based on model 
predictive control. When a UAV encounters other aircraft that 
is estimated to approach closer than the minimum safety margin, 
the vehicle must execute an emergency evasive maneuver to 
avoid the impending collision at all cost. During this procedure, 
the unmanned vehicle must compute in real time a safe and 
plausible trajectory based on the collected information on the 
predicted future path of other vehicles. During the evasive 
maneuver, the trajectory generation and control problem is 
very stringent since the conflict-free trajectory must be 
plausible with respect to the given vehicle dynamics with limited 
control input. Therefore, in this research, we propose a model 
predictive control-based trajectory planner to satisfy the 
requirements listed so far due to its capability to explicitly 
address the control problem of constrained nonlinear dynamic 
systems. We consider a few scenarios involving nearby flying 
objects with various velocity and incident angle conditions. The 
proposed algorithm is validated in a head-on collision scenario 
using unmanned aerial vehicles.  

I. INTRODUCTION

HE concept of a highly maneuverable, situation-aware 
UAV system demands a comprehensive flight control 

system that will actively sense the surrounding and make 
intelligent decisions to accomplish the given mission over an 
extended period of time, desirably with minimum 
intervention from remotely located human operators. In near 
future, it is expected that UAVs will be found as a ubiquitous 
surrogate for manned vehicles in the field of aerial sensing, 
ordnance delivery, and real-time battle damage assessment. 
In this context, the collision avoidance for UAVs becomes a 
crucial component technology since the vehicle is flying at 
low altitude where many obstacles such as terrain and 
buildings pose constraints in motion planning.  

 In order for a UAV to avoid any imminent collision with 
other vehicles or stationary objects on the ground, it should be 
capable of sensing, obstacle tracking, collision prediction, 
dynamic path planning and tracking control. For aerial 
collision avoidance, the vehicle should be equipped with 
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active or passive sensing capability. In general, active sensing 
such as laser scanning or radar is more straightforward and 
accurate whereas, especially for covert missions, a passive 
method such as vision-based sensing will be more favored.  

When the future trajectory based on the observation of 
nearby objects is identified, a safe trajectory free from 
collision should be computed and executed. There are a few 
available techniques for real-time path planning [1]-[4]. In 
the context of emergency evasive maneuver, one should 
expect that the vehicle may need to maneuver at its full 
dynamic capability, i.e., maximum turn rate, 
acceleration/deceleration, or climb/descent. In such case, the 
control inputs can be easily saturated or the vehicle states, 
such as roll angle or cruise velocity, may exceed the 
acceptable limits. In order to compute a trajectory that the 
vehicle can actually fly along without exceeding its dynamic 
range, the applied method should be capable of taking such 
limits into account. In this research, we favor a model 
predictive control (MPC) based approach due to their 
capability to explicitly address nonlinear dynamic systems 
with state constraints and input saturation, unlike most 
control theories available as now. One drawback of MPC is, 
as often pointed out, the heavy numerical load, which 
becomes reasonable with latest CPU technology as 
demonstrated in [4].  

In this paper, we present an MPC-based collision 
avoidance algorithm for safe trajectory generation and 
control of constrained nonlinear dynamic system with input 
saturation in real-time. We also introduce realistic sensing 
range limit to the simulation.  We consider a number of 
collision scenarios in one-on-one and one-to-many 
configuration optionally with surrounding terrain. A number 
of simulation results will be given and discussed. For 
validation, a flight test was performed using two helicopter 
UAVs in a head-on collision course.  

II. REAL-TIME EVASIVE MANEUVERING USING MODEL
PREDICTIVE CONTROL

In this section, we present the formulation of an 
MPC-based approach for real-time safe trajectory generation 
during an evasive maneuver for avoiding collision. We 
consider a scenario that, while a UAV flies to a given 
destination, a collision with nearby flying or stationary 
obstacles1 is anticipated. We will not treat the theory of actual 

1 In this paper, we sometimes refer the flying objects nearby that may 
impose any potential collision as bogeys.
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detection of obstacles or tracking in this paper: the 
information is assumed to be acquired by onboard sensors or 
made available from other sources such as other cooperating 
vehicles or an eye-in- the-sky.  

A.  MPC Formulation 
Suppose we are given a nonlinear time-invariant dynamic 

system such that  

( 1) ( ( ), ( ))x k f x k u k  (1) 
                             ( ) ( ( ))y k g x k  (2) 

where , .x un nx X u U  The optimal control input 
sequence over the finite receding horizon N is obtained by 
solving the following nonlinear programming problem: 

  Find ( ), ,... 1u k k i i N such that 
         ( ) arg min ( , , )u k V x k u  (3) 
        where 

1

( , , ) ( ( ), ( )) ( ( ))
k N

i k
V x k u L x i u i F x k N  (4) 

where L is a positive definite cost function and F is the 
terminal cost. Suppose * ( ),u k ,..., 1k i i N is the 
optimal control sequence that minimizes ( , , )V x k u  such that 

* *( , ) ( , , ( , )) ( , , )V x k V x k u x k V x k u , ( )u k U . The cost 
function term L is chosen such that  

     ( , )L x u

1

1 1 ( ) ( , )
2 2

onTr r T
l

l
x x Q x x u Ru S x P x  (5) 

The first term penalizes the deviation from the original 
course. The second term penalizes the control input. ( )S x  is 
the term that penalizes any states not in X as suggested in [10]. 
Finally, ( , )v lP x is to implement the collision avoidance 
capability in this MPC framework: ( , )v lP x is a function that 
increases as 2|| || 0v lx , where 3

vx is the position of 
the vehicle and l  is the coordinates or l-th out of total on
obstacles being simultaneously tracked. As well known, 
MPC-based approaches require online optimization. During 
this process, the control input can be enforced to meet the 
saturation requirement. It is done by enforcing  

max max

min min( ) i i i
i

i i i

u if u u
u k

u if u u
 (6) 

where 1 ... .
u

T

nu u u  In this manner, one can find the 

control input sequence that will be always within the physical 
limit of the given dynamic system. We use the optimization 
method based on indirect method of Lagrangian multiplier 
suggested in [9].  

When an optimal control sequence is found at each epoch k,

the control law is computed using  

* *( ) ( ) ( ) ( )u k u k K y k y k  (7) 

where K is a explicit feedback control law, which can be 
found by approaches such as in [6]. With * ( ),u k

,..., 1k i i N , one can find * ( ),y k  by solving 
recursively the given nonlinear dynamics with 0( ) ( )x i x i  as 
the initial condition. Ideally, if the dynamic model used for 
solving the optimization problem perfectly matches the actual 
dynamics and the initial condition free from any disturbance, 
there should not be any tracking error. In real world, such 
assumption cannot be satisfied. Therefore, with a tracking 
feedback controller in the feedback loop, the system can track 
the given trajectory reliably in the presence of disturbance or 
modeling error. The architecture of the proposed flight 
control system is given in Fig. 1.  

B. Obstacle Sensing and Trajectory Prediction 
Sensing for obstacle detection can be either active or 

passive and the choice depends on many factors such as 
operating condition, accuracy, and maximum detection range. 
Laser scanning method is very accurate and straightforward, 
so it is favored for short-range detection and 
three-dimensional mapping. However, as the detection range 
depends on the intensity of the light that radiates from the 
laser source, the range is usually no longer than a few 
hundreds of meters. Active radar has similar attributes since it 
operates in a similar principle: however, the resolution is 
much lower while the detection range is significantly longer. 
Both methods are not applicable when the mission should be 
a covert one. Therefore, vision-based methods have been 
favored as it is a passive sensing method. The ranging using 
2-D cameras can be performed either by using stereo parallax 
or motion flow algorithms. In this work, we do not assume 
any coordination with other vehicles as such is not always 
available in realistic environment. 

For collision avoidance, as validated in [5], we choose 
( , )v lP x  in (5) such that  

1( , )
( ) ( )v l T

v l v l

P x
x G x

, (8) 

Fig. 1 Flight control system architecture with MPC and explicit feedback 
loop
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where G is positive definite and 0  is to prevent ill 
conditioning when 2|| || 0.v lx One can choose 

{ , , },x y zG diag g g g  0ig for an orthogonal penalty 
function. The penalty function (8) serves as a repelling field 
and has nonzero value for entire state space even when the 
vehicle is far enough from obstacles. The crucial difference 
from the potential field approach here is that we optimize 
over a finite receding horizon, not only for the current time as 
in the potential field approach. For obstacle avoidance, we 
consider two types of scenarios: 1) a situation when the 
vehicle needs to stay as far as possible from the obstacles 
even if no direct collision is anticipated and 2) a situation 
when the vehicle can be arbitrarily close to the obstacle as 
long as no direct conflict is caused. For the second situation, 
one can choose to enable (8) only when 2 min|| ||v lx ,
where min  is the minimum safety distance from other 
vehicles.  

Since MPC algorithms optimize over the receding finite 
horizon into future, the predicted obstacles’ trajectory over 

,..., 1k i i N is needed in (8). It is anticipated that the 
inclusion of predicted obstacle locations in the optimization 
will produce more efficient evasion trajectory if the 
prediction is reasonably accurate. If the obstacle detection 
system is capable of estimating the current velocity in 
addition to the position of an obstacle, one can predict ( )l k
by extrapolating it over Np steps, namely prediction Horizon,
using an equation such that 

    ( ) ( ) ( )( 1)l l lk i k tv k i , (9) 

It is noted that the prediction can be done in more elaborated 
way using a Kalman filter [7] if the dynamic characteristics is 
known at least partially in advance. 

In this research, we propose a dual-mode strategy for the 
MPC-based flight control system. In normal flight, we choose 
a parameter set that achieves good stability and tracking 
performance. When the obstacle prediction algorithm using 
(9) predicts the trajectory of a bogey over next N steps 
approach the host vehicle’s future trajectory within a 
cautionary margin c where ( ) ( )l p p ck N y k N ,

the MPC-based controller is switched to the evasion mode, in 
which the parameter set in (5) tuned for effective evasive 
maneuver to generate a conflict-free trajectory, even at the 

expense of  a large deviation from the original course or an 
aggressive maneuver with large control effort if necessary. 
The proximity penalty term is tuned to dominate the stability 
and tracking terms in L. The control effort is also less 
penalized to allow for more aggressive maneuver. This 
approach is illustrated in Fig. 2. Optionally, if the predicted 
future trajectories of the host vehicle and bogeys get closer 
within the absolute safety margin a c , the proximity 
penalty gain can be increased to allow for more clearance 
margins. We will present the demonstration of the proposed 
idea so far in the following section. 

III. SIMULATION AND EXPERIMENTS

In this section, we consider several exemplary scenarios 
that a UAV encounters another flying object. We take the 
following factors into consideration: approach speed, cruise 
speed of the UAV, angle, detection range, and MPC 
parameters, We will consider a case with multiple bogies with 
terrains in the subsequent research. In the second part of this 
section, we present an experiment result of two UAVs 
exercising identical evasion strategies to demonstrate the 
viability of the proposed algorithm in real situations. 

A. Simulation Results 
In this scenario, we consider a UV cruising at 3m/s at 10 

meters above ground level (AGL). Without loss of generality, 
we use a dynamic model for a rotorcraft UAV based on 
Yamaha R-50 industrial helicopter, whose specification is 
given in [5]. The bogeys are staged to moves along a straight 
line at a constant altitude and speed at various incident angles. 
The detection range is simulated to be 50 meters based on a 
typical laser scanner and 100 meters for a hypothetic 
vision-based system. We investigate a fraction of these 
combinations of the factors mentioned above, which would 
highlight the performance of the proposed approach so that 
we may have the insight to the behavioral patterns and 
characteristics of the algorithm with a realistic detection.  

1) One on One Situation 
In this scenario, we consider the case when a UAV 

encounters a bogey at various speed and incident angle. The 
horizon N is set to 100 with 40 ms of sampling time, so the 
prediction horizon spans over 4 seconds. For fixed obstacles, 
stationary obstacles 12 meters away can be considered in the 
optimization when cruising at 3 m/s. As expected, the moving 
obstacles will impose more challenges in detection and 
finding a safe evasion trajectory in a short time.  

First, we consider the following cases: a bogey cruising 
towards the UAV at 2 m/s, 5 m/s, 15 m/s and 30m/s. The 
cautionary margin 50c m and the absolute safety margin 

10a m. We judge the vehicles collide when the distance 
from each other is less than 5 m.  

In Fig. 3, an example when a bogey closes in at 10 m/s, 
with 0° incident angle (head-on collision course). As can be 

, , ( ) ( )
,... 1

l c

p

l k k y k
k i i N

, , ( ) ( ) , ( 0)
,... 1

l c

p

l k k y k
k i i N

Fig. 2. State transition diagram for flight mode switching algorithm    
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seen in the figures, the host UAV maintains sufficient margin, 
which decreases as low as 8 m/s, well above the minimal 
distance. 

For comparison, we consider when the horizon N is much 
shorter to demonstrate the advantage of the receding horizon 
approach. The simulation result when N is shortened to 20 
(=0.8sec) and all other parameters are fixed as before is given 
in Fig. 4. The result shows that the UAV manages to escape 
the collision, but the vehicle goes into a violent transient 
motion during the close fly-by interval.  The short horizon 
length is not believed to allow sufficient time to steer the 
vehicle when a collision is anticipated. We also note the 
heading of the vehicle is implicitly determined by the 
optimization. In the following, we also consider several 
approach velocities and incident angles.  
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Fig. 3. A head-on collision scenario ( 3m/s, 10m/s, =0cruise bogeyV V )
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Fig.4. Evasive maneuver when a short horizon N is used (=20) 
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Fig.6. Various incident angles =45 ,90 ,135 ,180 , 3m/s,cruiseV with

10m/sbogeyV
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In Fig. 5-(d), the vehicle passes the bogey with 7m distance, 
which is considered as a bare minimum.  It is expected that a 
longer horizon length will help to avoid the obstacle with a 
more sufficient margin.  In Fig. 6, the trajectory planner 
shows a reliable performance in computing safe trajectories 
when the bogey flies in at various incident angles. 

The proposed MPC algorithm is implemented in CMEX 
format to run in Simulink for faster simulation and also for 
porting to the flight control system. At typical setup given 
below, it takes about 0.23 seconds to run 1 second of 
simulation on a Pentium M 1.86GHz running Windows XP. 
Therefore, the proposed algorithm can be computed 
sufficiently fast for real applications.   

B. Experiment Results 
The proposed algorithm is implemented on MATAB 

Simulink and tested for two helicopter UAVs. The detailed 
specifications and architecture for are explained in [5]. The 
Simulink block used for simulation above is configured to run 
in soft real-time and send the trajectory commands over radio 
link so that the UAVs follow the designated path. The 
vehicles broadcast their location using GPS to the ground 
station, where the MPC-based trajectory is generated in a 
centralized manner. It is noted in [4] that a fully decentralized 
trajectory planner using the algorithm proposed in this paper 
has been successfully implemented and tested.  

The experiment result is shown in Fig. 7 and 8. Two 
vehicles are configured to fly towards each other following a 
head-on collision course. In this particular case, the vehicles 
are constrained to make evasive moves in horizontal plane as 
a safety measure although the proposed algorithm is fully 
capable of vertical evasion as well. Both vehicles are also 
executing the same evasive algorithm. As can be seen from 
the figures, the vehicles were able to pass by each other with 
sufficient safety clearance. Therefore, the proposed algorithm 
is validated as a viable approach for conflict resolution of 
UAVs in real applications. 

IV. CONCLUSION

This paper presented an emergency evasive maneuvering 
algorithm using model predictive control. The suggested 
approach is combined with a trajectory prediction algorithm 
and tested in various conditions. The previewing mechanism 
of receding horizon control is found ideal for such cases when 
the obstacles are moving at a fast speed. The proposed 
algorithm is tested on helicopter UAVs and showed a good 
performance. More tests will follow in various conditions to 
validate the proposed algorithm. 
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