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Abstract

An important competence for a mobile robot system is the ability to localize and
perform context interpretation. This is required to perform basic navigation and to
facilitate local specific services. Recent advances in vision have made this modality
a viable alternative to the traditional range sensors and visual place recognition
algorithms emerged as a useful and widely applied tool for obtaining information
about robot’s position. Several place recognition methods have been proposed using
vision alone or combined with sonar and/or laser. This research calls for standard
benchmark datasets for development, evaluation and comparison of solutions. To
this end, this paper presents two carefully designed and annotated image databases
augmented with an experimental procedure and extensive baseline evaluation. The
databases were gathered in an uncontrolled indoor office environment using two
mobile robots and a standard camera. The acquisition spanned across a time range
of several months and different illumination and weather conditions. Thus, the
databases are very well suited for evaluating the robustness of algorithms with
respect to a broad range of variations, often occurring in real-world settings. We
thoroughly assessed the databases with a purely appearance-based place recogni-
tion method based on Support Vector Machines and two types of rich visual features
(global and local).

Key words: Visual place recognition, Robot topological localization, Standard
robotic benchmark

Preprint submitted to Elsevier 21 September 2009



1 Introduction

A fundamental competence for an autonomous agent is to know its position
in the world. Providing mobile robots with abilities to build an internal repre-
sentation of space and obtain robust information about their location therein
can be considered as one of the most urgent problems. The topic is vastly
researched. This resulted, over the years, in a broad range of approaches span-
ning from purely metric [27,18,63], to topological [59,58,17], and hybrid [54,12].
As robots break down the fences and start to interact with people [64] and
operate in large-scale environments [17,58], topological models are gaining
popularity for augmenting or replacing purely metric space representations.
In particular, the research on topological mapping has pushed methods for
place recognition. Scalability, loop closing, and the kidnapped robot problem
have been at the forefront of the issues to be addressed.

Traditionally, sonar and/or laser have been the sensory modalities of choice
for place recognition and topological localization [42,38]. The assumption that
the world can be represented in terms of two dimensional geometrical informa-
tion allowed for many practical implementations. Yet, the inability to capture
many aspects of complex realistic environments leads to the problem of per-
ceptual aliasing [29], and greatly limits the usefulness of purely geometrical
methods. Recent advances in vision have made this modality emerge as a natu-
ral and viable solution. Vision provides richer sensory input allowing for better
discrimination. It opens new possibilities for building cognitive systems, ac-
tively relying on semantic context. Not unimportant is the cost effectiveness,
portability and popularity of visual sensors. As a result, this research line is
attracting more and more attention, and several methods have been proposed
using vision alone [56,48,51,17], or combined with more traditional range sen-
sors [28,53,50].

In spite of large progress, vision-based localization still represents a major
challenge. First of all, visual information tends to be noisy and difficult to
interpret. The visual appearance of places varies in time because of illumina-
tion changes (day and night, artificial light on and off) and because of human
activities (furniture moved around, objects being taken out of drawers, and so
on). Thus, the solutions must be highly robust, provide good generalization
abilities and in general be adaptive. Additionally, the application puts strong
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constraints on the computational complexity, and the increased resolution and
dimensionality of the visual data still constitutes a problem.

The fact that so many different parameters influence the accuracy of a vision-
based localization system is another challenge itself, especially burdensome
at the design stage. As the results depend greatly on the choice of training
and test input data, which are unstable over time, it is hard to measure the
influence of the different parameters on the overall performance of the system.
For the same reason, it becomes nearly impossible to compare fairly solu-
tions which are usually evaluated in different environments, under different
conditions, and with different assumptions. This is a major obstacle slowing
down progress in the field. There is a need for standardized benchmarks and
databases which would allow for fair comparisons, simplify the experimental
process and boost development of new solutions.

Databases are heavily exploited in the computer vision community, especially
for object recognition and categorization [25,4,3]. As the community acknowl-
edges the need for benchmarking, a lot of attention is directed towards design-
ing new datasets, reflecting the increasing capabilities of visual algorithms [45].
Also in robotics, research on Simultaneous Localization and Mapping (SLAM)
makes use of several publicly available datasets [26,40]. Still, no database
emerged as a standard benchmark for visual place recognition applied to robot
localization.

This paper aims at filling this gap, and presents a benchmark consisting of
two different image databases gathered in the same indoor environment. The
databases are augmented with an experimental procedure as well as extensive
baseline evaluation. The datasets were carefully designed and later annotated.
Three different imaging devices were used for acquisition (two mobile robot
platforms and a standard camera), resulting in data of different characteristics
and quality. In order to create a realistic and challenging test bed, the acqui-
sition process was performed in an uncontrolled typical office environment,
under various illumination and weather conditions (sunny, cloudy, night), and
over a significant span of time. All of this makes the databases very well suited
for evaluating robustness of visual place recognition algorithms, applied to the
problem of robot topological localization, in presence of different types of vari-
ations often occurring in real-world indoor settings.

An important component when providing the community with a new col-
lection of data is to provide a baseline evaluation that illustrates the na-
ture of the dataset (see Section 5.1 for explanation). We thoroughly assessed
the databases with a purely appearance-based place recognition method. The
method uses two types of image descriptors, local and global, in order to
extract rich visual information. Both descriptors have shown remarkable per-
formances, coupled with computational efficiency on challenging object recog-
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nition scenarios [31,30]. The classification step is performed using Support
Vector Machines [16] and specialized kernels are used for each descriptor. Re-
sults show that the method is able to recognize places with high precision
and robustness under varying illumination conditions, even when training on
images from one camera device and testing on another.

The rest of the paper is organized as follows: after a review of related literature
(Section 2), we discuss the problem and challenges we addressed with the
benchmark (Section 3). Then, Section 4 gives a detailed description of the data
acquisition process and scenario and presents the acquisition results. Finally,
the algorithm used for the baseline evaluation as well as the experimental
procedure are described in Section 5, and the experimental results are given
in Section 6. The paper concludes with a summary (Section 7).

2 Related work

Place recognition and topological localization are vastly researched topics in
the robotic community, where vision and laser range sensors are usually the
privileged modalities. Although laser-based solutions have proven to be suc-
cessful for certain tasks [38], their limitations inspired many researchers to turn
towards vision which nowadays becomes tractable in real-time applications.
The available methods employ either perspective [56,52,20] or omnidirectional
cameras [23,9,59,35,6,39,60]. The main differences between the approaches re-
late to the way the scene is perceived, and thus the method used to extract
characteristic features from the scene. Landmark-based techniques make use
of either artificial or natural landmarks in order to extract information about
a place. Mata et al. [34] proposed a system able to interpret information signs
through its ability to read text and recognize icons. Visually distinctive image
regions were also used as landmarks [51]. Other solutions employed mainly
local image features such as SIFT [31,6,48], SURF [8,39,60], also using the
bag-of-words approach [20,22,17], or representation based on information ex-
tracted from local patches using Kernel PCA [52]. Global features are also
commonly used for place recognition. Torralba et al. [57,56,55] suggested to
use a representation called the “gist” of the scene, which is a vector of principal
components of outputs of a bank of spatially organized filters applied to the
image. Other approaches use color histograms [59,9], gradient orientation his-
tograms [11], eigenspace representation of images [23], or Fourier coefficients
of low frequency image components [35]. Recently, several authors observed
that robustness and efficiency of the recognition system can be improved by
combining information provided by both types of visual cues (global and lo-
cal) [48,51,62]. Although vision-based localization methods are now commonly
applied, it remains extremely difficult to compare the different approaches, as
the evaluations presented by the authors usually follow different procedures
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and are performed on different sets of visual data.

There are a number of heavily used standard databases in robotics and com-
puter vision. In robotics, these databases are used mainly for testing algo-
rithms for simultaneous localization and mapping (SLAM) [26,40] and mostly
contain odometry and range sensor data. In case of the computer vision com-
munity, the effort concentrated on creating standard benchmarks for such
problems as object [25,4,45], action [33], scene [3], or texture recognition and
categorization [2]. The MIT-CSAIL Database of Objects and Scenes [3] is a
notable exception as it provides several image sequences acquired in both in-
door and outdoor environments and was used to evaluate performance of a
visual place recognition system.

This paper makes an important contribution by providing annotated data
from visual and laser range sensors together with an experimental procedure
that can be followed in order to evaluate place recognition and localization
systems. In contrast to the previously available benchmarking solutions, the
databases contain several sets of images and image sequences acquired in the
same environment under various conditions and over a significant span of time.
This makes them perfect for evaluating robustness of the algorithms under
dynamic variations that often occur in realistic settings. The introduction of
standard benchmark databases has made an impact on the research on such
problems as object categorization or simultaneous localization and mapping
(SLAM), allowing different methods to be more fairly compared in the same
scenario. The authors hope that the benchmark proposed in this paper will
similarly influence the research on visual place recognition in the context of
mobile robot localization.

3 Design strategy

This section defines and characterizes the problem that we address with the
benchmark (Section 3.1) and analyzes the difficulties and open challenges in
visual place recognition that have to be considered in a realistic scenario (Sec-
tion 3.2).

3.1 Problem Statement

Let us begin with a brief definition of a place and the place recognition problem
that we will use throughout this paper. A place can be regarded as a usually
nameable segment of a real-world environment distinguished due to different
functionality, appearance or artificial boundary. In view of this definition, the
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place recognition or identification problem can be characterized as follows.
Given a set of training sensory data, captured in each of the considered places,
build models of the places reflecting their inherent properties. Next, when
presented with new test data, unavailable during training, acquired in one
of the same places, identify the place where the acquisition was performed
(e.g. Barbara’s office) based on the knowledge encoded in the models. This is
different from the problem of place categorization where the task is to classify
test data captured in a novel place as belonging to one of the place categories
(e.g. an office). As the partition of space into different places can be based on
several criteria, here we consider a supervised scenario where the algorithm
has to distinguish between five areas of different functionality, selected by a
teacher.

This benchmark is designed to test the performance of a visual place recogni-
tion system on images acquired within an indoor office environment. As the
primary scenario, we consider the case where a place recognition system is used
to provide a mobile robot with information about its location. For this reason,
part of the data presented in this paper was acquired using cameras mounted
on mobile robot platforms. While designing the benchmark, we concentrated
on testing the ability of a visual recognition system to identify a place based
on one image only. This makes the problem harder, but also makes it possible
to perform global localization where no prior knowledge about the position
is available (e.g. in case of the kidnapped robot problem). Spatial or tem-
poral filtering can be used together with the presented methods to enhance
performance.

We concentrate on indoor environments, since in the considered scenario, they
play a crucial role, being typical spaces for the interaction between humans and
service robots or robotic assistants [64]. At the same time, office environments,
just like home environments, constitute an important class of indoor spaces
for robotic companions. In this benchmark, our aim is to provide datasets
and experimental procedures that will allow for evaluating robustness of place
recognition systems based on different types of visual cues to typical variations
that occur in an indoor environment for the considered scenario. These include
illumination changes, variations introduced by human activity and viewpoint
changes. As a consequence, instead of providing datasets spanning over a very
large portion of space, we provide image sequences acquired over a time span
of several months, under various illumination conditions and using different
devices. The proposed evaluation framework should allow for concluding that
an algorithm robust to the variations captured in the benchmark data will be
robust to similar types of variations within other indoor office environments.

The benchmark is designed for evaluating vision-based methods. We choose
vision as sensory modality for several reasons. First, the visual sensor is very
rich and, although also very noisy, provides great descriptive capabilities. This
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is crucial in indoor environments where other sensors, such as a laser range
finder, suffer from the problem of perceptual aliasing (different places look the
same [29]). Furthermore, the visual appearance of places encodes information
about their semantics, which plays a major role in enabling systems to interact
with the environment. Finally, in the era of cheap portable devices equipped
with digital cameras, it is also one of the most affordable and commonly
available solutions.

3.2 Challenges

Recognizing indoor places based on their visual appearance is a particularly
challenging task. First of all, in case of indoor environments, there is no obvious
spatial layout that once observed could be used to distinguish between differ-
ent places. Moreover, viewpoint variations cause the visual sensor to capture
different aspects of the same place, which often can only be learned if enough
training data are provided. At the same time, real-world environments are usu-
ally dynamic and their appearance changes over time. The visual recognition
system must be robust to variations introduced by changing illumination as
well as human activity. For a visual sensor, the same room might look different
during the day, during sunny weather, under direct natural illumination, and
at night with only artificial light turned on. Moreover, if the environment is
being used, the fact that people appear in the images, objects are being moved
or furniture relocated may greatly influence the performance of the system.
All these issues were taken into consideration while designing this benchmark
in order to create a realistic test bed.

4 Data Acquisition

Based on the analysis of the problem presented in the previous section, we
carefully designed and acquired two databases comprising images captured in
the same indoor environment, but using different devices: the INDECS (IN-
Door Environment under Changing conditionS) database [47] and the IDOL
(Image Database for rObot Localization) database [32]. This section describes
the resulting data acquisition procedure. In case of INDECS, we acquired im-
ages of the environment from a fixed set of points using a standard camera
mounted on a tripod. The resolution of the images is high; this makes this
database suitable for context-based object recognition. The IDOL database,
instead, consists of image sequences recorded using two mobile robot plat-
forms equipped with perspective cameras, and thus is well suited for exper-
iments with robot localization. All three devices are shown in Fig. 1. The
databases represent a different approach to the problem and can be used to
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(a) Minnie (b) Camera (c) Dumbo

Fig. 1. Devices employed in the acquisition: the two mobile robot platforms “Minnie”
(a) and “Dumbo” (c) as well as the standard camera on a tripod (b).

analyze different properties of a place recognition system. The acquisition was
performed under several different illumination settings and over a significant
span of time. Both databases are publicly available and can be downloaded
from http://www.csc.kth.se/~pronobis.

The rest of the section is organized as follows: Section 4.1 presents the acquisi-
tion scenario, as to say the environment where both databases were acquired.
Then, Section 4.2 provides a description of the INDECS database, and Sec-
tion 4.3 gives detailed information on the robot platforms and IDOL. Finally,
we perform an analysis of the obtained data in Section 4.4.

4.1 Acquisition Scenario

The acquisition was conducted within a five room subsection of a larger office
environment of the Computer Vision and Active Perception Laboratory at the
Royal Institute of Technology in Stockholm, Sweden. Each of the five rooms
represents a different type of functional area: a one-person office, a two-persons
office, a kitchen, a corridor, and a printer area (in fact a continuation of the
corridor). The function that a room fulfills determines the furniture, objects,
and activity that is likely to be found there. Places like the corridor, the printer
area and the kitchen can be regarded as public which implies that various
people may be present. On the other hand, offices were imaged usually empty
or with their owners at work. In the corridor and the printer area, furniture

8



Fig. 2. A general map of the part of the office environment that was imaged during
acquisition of the INDECS and IDOL databases. Boundaries between the five rooms
were marked with dashed lines. Dotted lines were used to draw an approximate
outline of furniture. Moreover, the location of points at which the tripod was placed
while recording the INDECS database were marked. The pictures are taken from
the database and show the interiors of the five rooms. The small arrows were used
to indicate the viewpoints at which the presented pictures were taken.

is mostly fixed and objects are less moveable. As a result, these areas were
less susceptible to variations caused by human activity in comparison to the
kitchen or the offices, where furniture (e.g. chairs) is relocated more often and
objects (e.g. cups, laptops etc.) are frequently moved.

The rooms are physically separated by sliding glass doors. The printer area
is an exception and was treated as a separate place only due to its different
functionality (the border between the corridor and the printer area was ar-
bitrarily defined). The laboratory contains additional rooms which were not
taken into consideration while creating the database. However, because of the
glass door, other parts of the environment can still be visible in the images.
Examples of pictures showing the interior of each room as well as a general
map of the environment are presented in Fig. 2.

As already mentioned, the visual data were acquired with three different de-
vices. In each case, the appearance of the rooms was captured under three
different illumination and weather conditions: in cloudy weather (natural and
artificial light), in sunny weather (direct natural light dominates), and at night
(only artificial light). Since all the rooms have windows, the influence of natural
illumination was significant. The image acquisition was spread over a period
of time of three months, for the INDECS database, and over two weeks for the
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Fig. 3. Example pictures taken from the INDECS and IDOL databases acquired with
the camera and the two robot platforms under various illumination conditions. The
pictures show the influence of illumination (especially (a) and (c)) and illustrate
the differences between images acquired in a cluttered environment using different
devices (b). Additional variability caused by natural activities in the rooms is also
apparent (presence of people, relocated objects and furniture).

IDOL database. Additionally, the INDECS database was acquired ten months
before the experiments with the robots. In this way, we captured the visual
variability that occurs in realistic environments due to varying illumination
and natural activities in the rooms. Fig. 3 presents a comparison of images
taken under different illumination conditions and using various devices.
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Fig. 4. Pictures from the INDECS database taken from several angles at the same
location in the two-persons office.

4.2 The INDECS database

The INDECS database consists of pictures of the environment described above,
gathered from different viewpoints using a standard camera mounted on a tri-
pod. We marked several points in each room (approximately one meter apart)
where we positioned the camera for each acquisition. The rough positions of
all points are shown on the map in Fig. 2. The number of points changed
with the dimension of the room, from a minimum of 9 for the one-person
office to a maximum of 32 for the corridor. At each location we acquired 12
images, one every 30◦, even when the tripod was located very close to a wall
or furniture. Examples of images taken at the same location and from sev-
eral angles are presented in Fig. 4. Images were acquired using an Olympus
C-3030ZOOM digital camera and the height of the tripod was constant and
equal to 76 cm. All images in the INDECS database were acquired with a reso-
lution of 1024x768 pixels, the auto-exposure mode enabled, flash disabled, the
zoom set to wide-angle mode, and the auto-focus enabled. In this paper, the
INDECS images were subsampled to 512x386 before being used in the exper-
iments. The images were labeled according to the position of the point where
the acquisition happened. As a consequence, images taken, for example, from
the corridor but looking into a room are labeled as the corridor. The images
were acquired across a time span of three months and under varying illumi-
nation conditions (sunny, cloudy and night). For each illumination setting, we
captured one full set of images. In total, there are 3264 images (324 for the
one-person office, 492 for the two-persons office, 648 each for the kitchen and
the printer area, and 1152 for the corridor) in the INDECS database.

4.3 The IDOL database

The IDOL database was acquired using cameras on two mobile robot plat-
forms. Both robots, the PeopleBot Minnie and the PowerBot Dumbo, were
equipped with a pan-tilt-zoom Canon VC-C4 camera, a SICK laser range
finder, and wheel encoders. However, as it can be seen from Fig. 1, the cam-
eras were mounted at different height. On Minnie, the camera was 98cm above
the floor, whereas on Dumbo it was 36cm. Furthermore, the camera on Dumbo
was tilted up approximately 13◦, to reduce the amount of floor captured in the
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images. The selected positions of the cameras result in different characteristics
of the environment being captured in the images. Due to the low placement of
the camera on Dumbo, the captured images are less susceptible to variations
introduced by human activity in the environment and direct sunlight coming
through the windows. At the same time, the camera on Minnie was able to
capture the appearance of objects located on the desks and provide more in-
formation about the semantics of a place. All images were acquired with a
resolution of 320x240 pixels, with the zoom fixed to wide-angle (roughly 45◦

horizontal and 35◦ vertical field of view), the auto-exposure and the auto-focus
modes enabled.

We followed the same procedure during image acquisition with both robot
platforms. Each robot was manually driven (average speed around 0.3-0.35m/s)
through each of the five rooms while continuously acquiring images at the rate
of five frames per second. The path was roughly planned so that the robots
could capture the visual appearance of all the rooms. For the different il-
lumination conditions (sunny, cloudy, night), the acquisition procedure was
performed twice, resulting in two image sequences acquired one after another
giving a total of six sequences for each robot platform across a span of over two
weeks. Each of the image sequences in the database is accompanied by laser
scans and odometry data. Due to the manual control, the path of the robot
was slightly different for every sequence. Examples of paths are presented in
Fig. 7, 8, and 9. Each image sequence consists of 1000-1300 frames. To au-
tomate the process of labeling the images for the supervision, the robot pose
was estimated during the acquisition process using a laser based localization
method [21]. Again, each image was labeled as belonging to one of the five
rooms based on the position from where it was taken.

4.4 Acquisition Results

Examples illustrating the properties of images that can be found in both
databases are given in Fig. 3. First of all, we can observe a significant influ-
ence of illumination. The appearance of the rooms is affected by highlights,
shadows and reflections, especially in case of strong direct sunlight. Moreover,
the fact that the auto-exposure mode was on, resulted in a lower contrast in the
informative parts of images, when the camera was directed towards a bright
window in sunny weather. At the same time, the conditions observed during
cloudy weather were much more stable and could be seen as intermediate be-
tween those during sunny weather and at night. A second important type of
variability was introduced by human presence and activities. In some cases,
people partially occluded the view. Furthermore, the fact that the environ-
ment was observed for some time, allowed to capture different configurations
of furniture or objects placed on the desks or kitchen tables. The fact that ob-
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jects could be observed in the images makes it possible to use the database in
more complex scenarios where place recognition and object recognition com-
plement each other e.g. by contextual priming [56,55] (especially in case of the
high resolution images in the INDECS database). Finally, we can compare the
images acquired using the three different devices. We see that each device cap-
tures different aspects of the same environment, mainly due to the variations
in viewpoint caused by the different heights of the cameras. The influence of
viewpoint is substantial, especially for cluttered scenes, when the camera was
close to the furniture.

For both databases, the environment was observed from multiple viewpoints.
For INDECS, the viewpoints are stable over different weather conditions, but
the appearance of the rooms is almost fully captured as the images were taken
in 12 directions. In case of IDOL, we observe changes in viewpoint due to
manual control of the robot, but since the robot was driven in a particular
direction, parts of the environment might not be observed. As previously men-
tioned, labelling was based on the position of the camera rather than contents
of the images, and acquisition was performed even close to walls or furniture.
As a result, both databases contain difficult cases, where the contents of the
image is either non-informative or is weakly associated with the label.

To summarize, despite the fact that the acquisition was performed in a rel-
atively small environment (consisting of 5 different rooms), there are several
types of variability captured which pose a challenge to a recognition system.
These range from different acquisition conditions to large viewpoint variations
across the devices. Moreover, the acquisition procedure was carefully designed,
and each single dataset offers different, but usually well specified, type of vari-
ability. As a result, the influence of different factors on the accuracy of the
system can be isolated and precisely measured. The relatively small environ-
ment does not allow for concluding that a system evaluated on the data will
offer similar absolute performance in a different environment. However, since
the data capture the influence of a large amount of variations on the appear-
ance of a standard office environment, we can expect that an algorithm robust
to those variations will be robust to similar types of variations within other
indoor office environments.

5 Baseline Evaluation

This section presents the visual place recognition system with which we as-
sessed the INDECS and IDOL databases. We applied a fully supervised,
appearance-based method. It assumes that each room is represented, dur-
ing training, by a collection of images capturing its visual appearance under
different viewpoints, at a given time and illumination. During testing, the al-

13



gorithm is shown images of the same rooms, acquired under roughly similar
viewpoints but possibly under different illumination conditions and after some
time (where the time range goes from some minutes to several months). The
goal is to recognize correctly each single image seen by the system. The method
is based on a large-margin discriminative classifier, namely the Support Vector
Machines (SVMs) [16] and two different image representations. We use global
and local image features, and we combine them with SVMs through special-
ized kernels. As a result, the recognition process always consists of two steps:
feature extraction and classification.

In the rest of this section, we first motivate the decision to provide a baseline
evaluation with the presented datasets (Section 5.1). Then, we describe the
employed image representations (Section 5.2) and the classifier (Section 5.3).
Finally, we explain the procedure followed in our experiments (Section 5.4).

5.1 Motivation

An important component when providing the community with a new collec-
tion of data is to give a quantitative measure of how hard the database is.
Benchmark databases have become a very popular tool in several research
communities during the last years [25,33], because they provide at the same
time an instrument to develop new state of the art algorithms, and a way
to call attention on a research topic. When a database is used for developing
a new algorithm, it is extremely useful to be able to compare the obtained
results with those obtained by some other established technique: this permits
to understand what are the advantages of the new method over existing ap-
proaches. At the same time, presenting a new corpus together with a baseline
evaluation helps the community to quickly identify the open challenges of the
problem and therefore concentrate there their research efforts. While often the
baseline evaluation consists of a newly developed method, very often it is a
well known, off the shelf solution: again, the goal of a baseline evaluation is
not that of presenting new theory, but to provide a quantitative evaluation of
how challenging the new dataset is, coupled with a well defined experimental
protocol.

The computer vision community has been traditionally very open to the in-
troduction of publicly available databases [25,33] and associated benchmark
challenges [4]. These two tools, combined together, have heavily contributed
to set the research agenda of the last years. The robotics community has re-
cently started to acknowledge the value and power of such collections, as it is
witnessed by several successful benchmark evaluations [5,1].
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Fig. 5. The process of generating multi-dimensional receptive field histograms shown
on the example of the first-order derivatives computed at the same scale t = 4 from
the illumination channel.

5.2 Feature Extraction

The feature extraction step aims at providing a representation of the input
data that minimizes the within-class variability while at the same time max-
imizing the between-class variability. Additionally, this representation is usu-
ally more compact than raw input data and therefore allows to reduce the
computational load imposed by the classification process. Features can be de-
rived from the whole image (global features) or can be computed locally, based
on its salient parts (local features).

As environments can be described differently, depending on the considered
scale, scale-space theory appears as a suitable framework for deriving effective
representations here. Following this intuition, we chose to use two scale-space
theory based features, one global (Composed Receptive Field Histograms,
CRFH [30]) and one local (Scale Invariant Feature Transform, SIFT [31]).
The rest of the section describes briefly the two approaches.

5.2.1 Global Features: Compose Receptive Field Histograms

CRFH is a multi-dimensional statistical representation of the occurrence of
responses of several image descriptors applied to the image. This idea is illus-
trated in Fig. 5. Each dimension corresponds to one descriptor and the cells
of the histogram count the pixels sharing similar responses of all descriptors.
This approach allows to capture various properties of the image as well as
relations that occur between them.
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Multi-dimensional histograms can be extremely memory consuming and com-
putationally expensive if the number of dimensions grows. For example, a
9-dimensional histogram with 16 quantization levels per dimension contains
approximately 7 · 1010 cells. In [30], Linde and Lindeberg suggest to exploit
the fact that most of the cells are usually empty, and to store only those
that are non-zero. The histogram can be stored in a sparse form as an ar-
ray [(c1, v1), (c2, v2), . . . , (cn, vn)], where ci denotes the index of the cell con-
taining the non-zero value vi. This representation allows not only to reduce
the amount of memory required, but also to perform operations such as his-
togram accumulation and comparison efficiently. For our experiments, we built
multi-dimensional histograms using combinations of several image descriptors,
applied to the scale-space representation at various scales, namely: first- and
second-order Gaussian derivatives, gradient magnitude, Laplacian and Hessian
determinant applied to both intensity and color channels.

5.2.2 Local Features: Scale Invariant Feature Transform

The idea behind local features is to represent the appearance of an image
only around a set of characteristic points known as the interest points. The
similarity between two images is then measured by solving the correspondence
problem. Local features are known to be robust to occlusions, as the absence
of some interest points does not affect the features extracted from other local
patches.

The process of local feature extraction consists of two stages: interest point

detection and description. The interest point detector identifies a set of char-
acteristic points in the image that could be re-detected even in spite of various
transformations (e.g. rotation and scaling) and variations in illumination con-
ditions. The role of the descriptor is to extract robust features from the local
patches located at the detected points.

In this paper, we used the scale, rotation, and translation invariant Harris-
Laplace detector [36] and the commonly used SIFT descriptor [31]. Compar-
isons of local descriptors and interest point detectors, presented in [37], show
that both algorithms are highly reliable. Moreover, the SIFT descriptor has
shown to perform well for object classification ([19]) and mobile robot local-
ization ([6,20]).

5.3 Classification: Support Vector Machines

The choice of the classifier is the second key ingredient for an effective visual
place recognition system. In this paper, we chose Support Vector Machines
(SVMs) based on their state-of-the-art performances in several visual recog-

16



nition domains [41,13,7]. The rest of this section reviews briefly the theory
behind the algorithm, and describes our choices for the kernel function. We
refer the readers to [16] for a thorough introduction to the subject.

5.3.1 Linear SVM

Consider the problem of separating a set of training data (x1, y1), ...(xm, ym)
into two classes, where xi ∈ ℜN is a feature vector and yi ∈ {−1, +1} its
class label. Assuming that the two classes can be separated by a hyperplane
w · x + b = 0, then the optimal hyperplane will be the one with maximum
distance to the closest points in the training set. The optimal values for w and
b can be found by solving a constrained minimization problem via Lagrange
multipliers, resulting in a classification function

f(x) = sgn

(

m
∑

i=1

αiyixi · x + b

)

, (1)

where αi and b can be found efficiently using the Sequential Minimal Opti-
mization (SMO, [43]) algorithm. The xi with αi 6= 0 are called support vectors.

5.3.2 Non-linear SVM and Kernel Functions

To obtain a nonlinear classifier, one maps the data from the input space ℜN to
a higher dimensional feature space H by x → Φ(x) ∈ H, such that the mapped
data points of the two classes are linearly separable in the feature space.
Assuming there exists a kernel function K such that K(x, y) = Φ(x) · Φ(y),
a nonlinear SVM can be constructed by replacing the inner product xi · x by
the kernel function K(xi, x) in Eqn. (1). This corresponds to constructing an
optimal separating hyperplane in the feature space.

The choice of the kernel function is a key ingredient for the good performance
of SVMs; based on results reported in the literature, we chose in this paper the
χ2 kernel [15] for global features and the match kernel [61] for local features.

The χ2 kernel belongs to the family of exponential kernels, and is given by

K(x, y) = exp
{

−γχ2(x, y)
}

, χ2(x, y) =
∑

i

||xi − yi||
2

||xi + yi||
. (2)

The match kernel is given by [61]
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K(Lh, Lk) =
1

nh

nh
∑

jh=1

max
jk=1,...,nk

{

Kl(L
jh

h , Ljk

k )
}

, (3)

where Lh, Lk are local feature sets and L
jh

h , Ljk

k are two single local features.
The sum is always calculated over the smaller set of local features and only
some fixed amount of best matches is considered in order to exclude outliers.
The local feature similarity kernel Kl can be any Mercer kernel. We used the
RBF kernel based on the Euclidean distance for the SIFT features:

Kl(L
jh

h , Ljk

k ) = exp
{

−γ||Ljh

h − L
jk

k ||2
}

. (4)

The match kernel was introduced in [61], and despite the claim in the paper,
it is not a Mercer kernel [10]. Still, it can be shown that it statistically ap-
proximates a Mercer kernel in a way that makes it a suitable kernel for visual
applications [10]. On the basis of this finding, and of its reported effectiveness
for object categorization [41], we will use it here.

5.3.3 Multi-class SVM

The extension of SVM to multi class problems can be done mainly in two
ways:

• One-vs-all strategy. If M is the number of classes, M SVMs are trained,
each separating a single class from all remaining classes. The decision is
then based on the distance of the classified sample to each hyperplane and
the final output is the class corresponding to the hyperplane for which the
distance is largest.

• One-vs-one strategy. In this case, M(M−1)/2 two-class machines are trained
for each pair of classes. The final decision can then be taken in different
ways, based on the M(M −1)/2 outputs. A popular choice is to consider as
output of each classifier the class label and count votes for each class; the
test image is then assigned to the class that received more votes. Another
alternative is to use signed distance from the hyperplane and sum distances
for each class. Other solutions based on the idea to arrange the pairwise
classifiers in trees, where each tree node represents an SVM, have also been
proposed [44,16].

In this paper, for efficiency reasons, we will use the pairwise approach and
the voting-based method, which we found to constantly outperform the sec-
ond variant in preliminary experiments (the complexity of the SVM training
algorithm is approximately O(n2) and smaller training subsets of the binary
classifiers make the training procedure faster).
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5.4 Experimental Setup

We conducted four series of experiments in order to assess thoroughly the
INDECS and IDOL databases. For each series of experiments, we evaluated
the performance of both local and global image representations. We divided
the databases into several subsets with respect to the illumination conditions
that prevailed during acquisition and the device employed. For the INDECS
database, we considered three image sets, one for each illumination setting
(cloudy, night, sunny). Since the IDOL database consists of 12 image se-
quences, we used each full sequence as a separate set. The system was al-
ways trained in a supervised fashion on one, two or three data sets and tested
on a fourth different set. In order to test the limits of the underlying visual
recognition algorithm, we considered each image in the test set separately,
and as a final measure of performance, we used the percentage of properly
recognized images. As the number of acquired images varied across rooms,
the performance obtained for each place was considered separately during the
experiments. The final classification rate was then computed as the average
between all the rooms results. This procedure ensures that performance on
each place contributes equally to the overall result, thus avoiding the biases
towards areas with many acquired images, such as the corridor.

We started with a set of reference experiments, assessing the data acquired
under stable illumination. To achieve this, for training and testing we used
data sets acquired with the same device and under similar conditions. Next,
we increased the difficulty of the problem and tested the robustness of the
system to changing illumination conditions as well as to other variations that
may occur in real-world environments. Training and recognition were in this
case performed on data sets consisting of images captured under different illu-
mination settings and usually on different days. The third set of experiments
aimed to reveal whether a model trained on an image set acquired with one
device can be useful for solving localization problem with a different device
(and usually after some time). Finally, we checked whether the robustness of
the recognition algorithm can be increased by providing additional training
data capturing a wider spectrum of visual variability. For that, we trained
the system on two or three image sets gathered under different illumination
conditions. Additionally, before carrying out the benchmarks described above,
we conducted a set of preliminary experiments in order to select proper kernel
functions and feature extractor parameters. All the results obtained on these
experiments are reported in Section 6.

For all experiments, we used our extended implementation of Support Vector
Machines based on the libsvm software [14]. We set the value of the error
penalty C to be equal to 100 and we determined the kernel parameters via
cross-validation.
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6 Experimental Results

This section reports the results of the baseline evaluation of the INDECS
and IDOL databases, according to the procedure described in Section 5.4. We
present the results in consecutive subsections, and we give a brief summary in
Section 6.5.

As described in Section 5.4, before performing the actual benchmark, we
ran a set of preliminary experiments on the INDECS database, mainly us-
ing the global features (CRFH). We evaluated the performance of the multi-
dimensional histograms built from a wide variety of combinations of global
image descriptors listed in Section 5.2 for several scale levels and numbers of
histogram bins per dimension. A comprehensive report on the obtained results
can be found in [46]. The experiments revealed that the most valuable global
features can be extracted using non-isotropic, derivative-based descriptors,
and that chromatic cues are more susceptible to illumination variations. As
a result, here we used composed receptive field histograms of six dimensions
with 28 bins per dimension, computed from second order normalized Gaussian
derivative filters, applied to the illumination channel at two scales. The scale
levels were different for the experiments with IDOL (σ = 1 and 4) and with
INDECS (σ = 2 and 8). This was motivated by the fact that the cameras
mounted on the robots obtained images of lower quality, and their movement
introduced additional distortions.

6.1 Stable Illumination Conditions

In order to evaluate our method under stable illumination conditions, we
trained and tested the system on pairs of image sequences taken from the
IDOL database acquired one after the other using the same robot. As men-
tioned previously, we analyzed performance of both global (CRFH) and local
(SIFT) image descriptors. We did not use the INDECS database for these ex-
periments since only one set of data for each illumination setting was available.
Although the illumination conditions for both training and test images were
in this case very similar, the algorithm had to tackle other kinds of variability
such as viewpoint changes (caused mainly by the manual control of the robot)
and presence/absence of people. The results of the performed experiments are
presented in Fig. 6a,c for CRFH and in Fig. 6b,d for SIFT. For each platform
and type of illumination conditions used for training, the first bar presents
an average classification rate over the two possible permutations of the image
sequences in the training and test sets 1 . On average, the system classified

1 Training on the first sequence, testing on the second sequence, and vice versa.
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(a) Training on global features (CRFH ) extracted
from images acquired with Minnie.
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(b) Training on local features (SIFT ) extracted
from images acquired with Minnie.

Cloudy Night Sunny

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

C
la

s
s
if
ic

a
ti
o

n
 r

a
te

 [
%

]

Training

Testing

Dum
bo Cloudy

Dum
bo Night

Dum
bo Sunny

M
innie Cloudy

Dum
bo Night

Dum
bo Cloudy

Dum
bo Sunny

M
innie Night

Dum
bo Sunny

Dum
bo Cloudy

Dum
bo Night

M
innie Sunny

E
x
p

. 
1

E
x
p

. 
2

E
x
p

. 
2

E
x
p

. 
3

E
x
p

. 
1

E
x
p

. 
2

E
x
p

. 
2

E
x
p

. 
3

E
x
p

. 
1

E
x
p

. 
2

E
x
p

. 
2

E
x
p

. 
3

9
7

.2
5

8
0

.3
5 8
8

.7
8

5
9

.2
0

9
6

.6
7

7
8

.2
1

7
3

.2
2

6
8

.0
4

9
7

.8
5

8
7

.5
2

7
5

.1
9

5
8

.6
7

(c) Training on global features (CRFH ) extracted
from images acquired with Dumbo.
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(d) Training on local features (SIFT ) extracted
from images acquired with Dumbo.
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(e) Training on global features (CRFH ) extracted
from images acquired with the standard camera.
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(f) Training on local features (SIFT ) extracted
from images acquired with the standard camera.

Fig. 6. Average results of the first three experiments on the IDOL and INDECS
databases with both image representations. In each figure, the results are grouped
according to the type of illumination conditions under which the training images
were acquired. The bottom axes indicate the platform and illumination conditions
used for testing. The uncertainties are given as one standard deviation.
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properly 95.5% of the images acquired with Minnie and 97.3% of images ac-
quired with Dumbo when global features were used. When local features were
applied, the average recognition rates were slightly lower and equal to 94.4%
and 94.9% respectively.

Detailed results for two experiments conducted on data captured with each of
the platforms are shown in Fig. 7. The figure presents maps of the environment
with plotted paths of the robot during acquisition of the training and test
sequences used during each of the experiments. Moreover, the symbols used
to draw the test path indicate the results of recognition performed using image
acquired at each location. Each experiment started at the point marked with
the label “Start” and the arrows show the direction of driving. The position of
the furniture (plotted with gray line) is approximate and sometimes slightly
varied between the experiments. It can be observed that the errors are usually
not a result of viewpoint variations (compare the training and test paths in
the kitchen, especially in Fig. 7c,d) and mostly occur near the borders of the
rooms. This can be explained by the relatively narrow field of view of the
cameras as well as the fact that the images were not labeled according to
their content but to the position of the robot at the time of acquisition. Since
these experiments were conducted with the sequences captured under similar
conditions, we treat them as a reference for other results.

6.2 Varying Illumination Conditions

We also conducted a series of experiments aiming to test the robustness of
our method to changing illumination conditions as well as to other variations
caused by normal activities in the rooms. The experiments were conducted
on both INDECS and IDOL databases. As with the previous experiments,
the same device was used for both training and testing. This time, however,
the selected training and testing data sets consisted of images acquired under
different illumination conditions and usually on different days. Fig. 6a-d show
average results of the experiments with the image sequences from the IDOL
database acquired with both robots for each permutation of the illumination
conditions used for training and testing and both image representations (the
two middle bars for each figure and type of training conditions). The presented
classification rates obtained on the IDOL database were always averaged over
two experiments with different image sequences. Fig. 6e,f gives corresponding
results obtained on the INDECS database.

We see that, in general, the system performs best when trained on the images
acquired in cloudy weather. The explanation for this is straightforward: the
illumination conditions on a cloudy day can be seen as intermediate between
those at night (only artificial light) and on a sunny day (direct natural light
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Fig. 7. Maps of the environment with plotted paths of the robot during acquisition of
the training (black line) and test (points) sequences taken from the IDOL database
and used during the experiments with stable illumination conditions. The shape of
each point on the test path indicates the result of recognition.
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dominates). In such case, the average classification rate computed over two
testing illumination conditions (sunny and night) for both CRFH and SIFT
was equal to 84.6% and 87.3% for Dumbo, 74.5% and 75.1% for Minnie, and
81.3% and 76.4% for the INDECS database. In general, local features per-
formed slightly better than the global features (in average 71.9% vs. 72.6% for
Minnie and 80.5% vs. 83.2% for Dumbo), although it was usually not the case
for the INDECS database (in average 75.9% vs. 72.5%). Fig. 8 presents de-
tailed results for two example runs and both feature types. The errors occurred
mainly for the same reasons as in the previous experiments and additionally in
places heavily affected by the natural light e.g. when the camera was directed
towards a bright window or, in particular, large glass door in the printer area.
In such cases, the automatic exposure system with which all the cameras were
equipped caused the pictures to darken. Minnie was more susceptible to this
phenomenon due to the higher position of its camera.

6.3 Recognition Across Platforms

The third set of experiments was designed to test the portability of the ac-
quired model across different platforms. For that purpose we trained and tested
the system on image sets acquired under similar illumination conditions using
different devices. We started with the experiments on image sequences from
the IDOL database. We trained the system on the images acquired using either
Minnie or Dumbo and tested with the images captured with the other robot.
We conducted the experiments for all illumination conditions and both image
representations. The main difference between the platforms from the point of
view of our experiments lies in the height at which the cameras are mounted
(98cm for Minnie and 36cm for Dumbo). The results presented in Fig. 6a-d
indicate that our method was still able to classify correctly up to about 70%
of images for CRFH and 65% of images for SIFT. There was no clear advan-
tage of using one particular feature type. The system performed better when
trained on the images captured with Minnie. This can be explained by the
fact that the lower mounted camera on Dumbo provided less diagnostic in-
formation. It can also be observed from Fig. 9 that, in general, the additional
errors occurred when the robot was positioned close to the walls or furniture.
In such cases the height of the camera influenced the content of the images
the most.

We followed a similar procedure using the INDECS database as a source of
training data and different image sequences taken from the IDOL database
for testing. It is important to note that the acquisition procedure differed in
case of both databases, and the INDECS database was gathered ten months
before the acquisition of IDOL. The points at which the pictures were taken
were positioned approximately 1m from each other and, in case of the kitchen,
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Fig. 8. Maps of the environment with plotted paths of the robot during acquisition of
the training (black line) and test (points) sequences taken from the IDOL database
and used during the experiments with varying illumination conditions. The shape
of each point on the test path indicates the result of recognition.
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Fig. 9. Maps of the environment with plotted paths of the robot during acquisition of
the training (black line) and test (points) sequences taken from the IDOL database
and used during the experiments with recognition across platforms. The shape of
each point on the test path indicates the result of recognition.
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(a) Training on global features (CRFH ) extracted
from images acquired with Minnie.
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(b) Training on local features (SIFT ) extracted
from images acquired with Minnie.
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(c) Training on global features (CRFH ) extracted
from images acquired with Dumbo.
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(d) Training on local features (SIFT ) extracted
from images acquired with Dumbo.

Fig. 10. Performance of the system trained on two or three image sequences acquired
under different illumination conditions for both mobile platforms and image repre-
sentations. The classification rates were averaged over all possible combinations of
training and test sequences. The uncertainties are given as one standard deviation.

covered different area of the room due to reorganization of the furniture. Con-
sequently, the problem required that the algorithm was invariant not only
to various acquisition techniques but also offered great robustness to large
changes in viewpoint and the appearance of the rooms introduced by long-
time human activity. The experimental results are presented in Fig. 6e,f. We
see that the algorithm obtains a recognition performance of about 50%. While
this result is surely disappointing if compared to the 70% reported above, ob-
tained for the two robot platforms, it is still quite remarkable considering the
very high degree of variability between training and test data, and that re-
sults are significantly above chance (which in this case would be 20% as the
datasets contain images acquired in 5 rooms).

6.4 Training-based Robustness

The final series of experiments aimed at revealing whether the robustness
of the recognition algorithm can be boosted by providing additional train-
ing data capturing a wider spectrum of visual variability that might occur
in a real-world environment. In particular, we concentrated on invariance to
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changing illumination conditions as this is the kind of variability that a con-
tinuously running visual recognition system has to deal with every day. To
achieve that, we trained the system on two or three image sequences from
the IDOL database gathered under different illumination conditions, and we
evaluated the recognition performance on another, fourth, image set. The ob-
tained results for both platforms, all combinations of image sequences used
for training as well as both CRFH and SIFT are presented in Fig. 10a-d. The
darker bars indicate the results of experiments corresponding to those dis-
cussed in Section 6.1, when training was done on an image sequence acquired
under conditions similar to those used for testing. The results shown using the
brighter bars can be compared with those of the experiments under varying
illumination conditions analyzed in Section 6.2.

It is apparent that including images acquired under different conditions into
the training set improves recognition accuracy. Although the algorithm has to
incorporate much more information about each of the places into the model,
the recognition accuracy for test sets acquired under similar conditions as
those used for training is even greater than this obtained when each training
sequence was used separately (as for the experiments discussed in Section 6.1).
For example, the average recognition rate over all test sets and illumination
settings for models trained on three sequences acquired using Dumbo was
equal to 98.1% for CRFH and 97.1% for SIFT. At the same time, for the
experiments with stable illumination conditions reported in Section 6.1 (see
Fig. 6), we got only 97.3% and 94.9%. The same trend can be observed for
sequences captured using Minnie. Concluding, the ability of the algorithm
to handle large within-class variability is clearly not a limiting factor. It is
important to note, that the recognition rate for conditions which were not
used during training is also greatly improved when more training data are
provided. For example, if the system was trained using the images captured
during sunny weather and at night using Minnie, the average classification
rate for testing image sequence acquired with cloudy weather was equal to
86.95% for CRFH and 89.59% for SIFT. Consequently, the classification rate
improved by 9.9% in case of CRFH and 11.2% in case of SIFT for testing
conditions not known during training, at the same time slightly improving the
rates for testing conditions used also for training.

It has to be pointed out that due to the larger number of training images
capturing different types of variability, the number of support vectors stored
in the final model grows as well. In such case, the user pays the price of the
recognition time and the memory requirements, which in case of SVMs grow
linearly with the number of support vectors.
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6.5 Discussion

The results of the extensive experimental evaluation presented in this section
indicate that our method is able to perform place recognition using standard
visual sensors with high precision. It offers good robustness to changes in
the illumination conditions as well as to additional variations introduced by
the natural variability that occurs in real-world environments. At the same
time, there is a difference in performance of the system between the experi-
ments under stable and varying conditions, indicating that there is room for
improvement in this matter.

As the system is to be used on a robot platform, it must not only be accurate
but also efficient. For this reason we tried to provide the highest possible ro-
bustness using relatively small amount of training data acquired during only
one run. We managed to achieve a recognition time of less than 200ms per
frame on a Pentium IV 2.6 GHz using the global image representation. The
results reported in Section 6.4 indicate that it is possible to significantly im-
prove the robustness by incorporating images acquired during two or three
runs under different illumination conditions into one training set. However,
the higher performance does not come without a price. Since the number of
support vectors in such case even doubles, the recognition time increased by
about 50ms.

In all the experiments, we evaluated both global (CRFH) and local (SIFT)
image descriptors. In general, we did not find any clear advantage of using
one feature type over the other, and each representation has its strengths and
weaknesses. The global features, however, clearly outperform SIFT in terms of
efficiency, since the matching process required in order to compare two sets of
local patches is computationally expensive. The efficiency of the solution based
on local features could be improved by applying a more efficient matching
algorithm (e.g. by using a pyramid match SVM kernel [24]) or faster interest
point detector and more compact descriptor (e.g. SURF [8,39]). Since global
and local representations capture different aspects of a scene, the robustness of
the final solution can be further improved by integrating both cues as proposed
in [48,50].

7 Summary

This paper discussed the need for standard benchmarking solutions for vision-
based topological localization, with particular emphasis on visual place recog-
nition. We defined and analyzed carefully the problem, and we specified the
open challenges that need to be addressed by a realistic benchmark. We pre-
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sented two new databases, acquired on the basis of this analysis. The first,
the INDECS database, contains pictures captured with a standard camera
mounted on a tripod. The second, the IDOL database, contains image se-
quences acquired using cameras mounted on two mobile robot platforms. The
two databases were recorded within the same indoor office environment. They
capture a wide spectrum of natural variations introduced by both changing
illumination and human activity. Each database can be seen as a different ap-
proach to the problem; thus, they can be used to analyze different properties
of a place recognition system.

We assessed both databases with a large set of baseline experiments, using
a fully supervised visual place recognition system. The method employs a
large-margin discriminative classifier and two different image representations:
a local representation, based on SIFT features, and a global representation,
consisting of multidimensional histograms of receptive fields. We conducted
the experiments according to an experimental procedure designed to contain
problems of varying complexity and exploit most of the variability captured
in the datasets. The experimental procedure can be seen as a part of the
benchmark proposed in this paper. We started from experiments performed
under stable illumination settings. We then performed experiments testing the
robustness of the algorithms to changing illumination and human activity. Fi-
nally, we conducted experiments with large viewpoint variations and different
acquisition methods.

The reported results show that the method is able to recognize places with
high precision when training and testing is performed within a relatively stable
environment, or when enough training data is provided. At the same time,
there is space for improvement in the robustness to illumination and large
viewpoint variations. The database still poses a challenge to the system which
should provide stable performance in presence of variability usually observed
in real-world environments.

Finally, the dependency between the overall performance of the system and
the particular set of data becomes visible as the complexity of the problem
grows. Moreover, different methods (in this case different image descriptors)
perform differently for different types of variations. This emphasizes the need
for an extensive experimental evaluation, on a common benchmark dataset,
for comparison of different approaches. When realistic datasets are available,
more extensive evaluation can be conducted as the data can be reused, fully
exploited, and less effort is required for acquisition and annotation. The au-
thors believe that benchmarking solutions, such as the one presented in this
paper, will make an impact on the research on visual place recognition and
topological localization as was the case for other localization and visual recog-
nition problems.
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