A Method to Construct Sets of Commuting Matrices

Edgar Pereira ${ }^{1}$ \& Cecília Rosa ${ }^{2}$
${ }^{1}$ Departamento de Matemática, Universidade do Rio Grande do Norte, Natal, Brazil
${ }^{2}$ Departamento de Matemática, Instituto Politécnico da Guarda, Guarda, Portugal
Correspondence: Cecília Rosa, Instituto Politécnico da Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559, Guarda, Portugal. E-mail:cecirosa@ipg.pt

Received: May 29, 2013 Accepted: June 19, 2013 Online Published: June 28, 2013
doi:10.5539/jmr.v5n3p1
URL: http://dx.doi.org/10.5539/jmr.v5n3p1

Abstract

A method for constructing sets of matrices that pairwise commute is presented. The sets are defined such that each matrix is a combination of basic matrices. An iterative algorithm is given, where the construction approach aims to obtain appropriate basic matrices. A numerical example illustrate the proposed method.

Keywords: commuting matrices, iterative method

1. Introduction

Commuting matrices is an active topic both in pure and applied mathematics. They appear in a variety of applications in physical and general sciences (McCarthy \& Shalit, 2013; Bourgeois, 2013; De Seguins, 2013; Ogata, 2013; Shastry, 2011; Yuzbashyan \& Shastry, 2013), where several theoretical and numerical works on differential equations, matrix polynomials equations and general matrix equations get some properties of scalars (Brewer et al., 1986; Gohberg et al., 1982). In such contexts sets of matrices which pairwise commute are needed in numerical experiments. However, examples with commuting matrices often appear in works where commutativity is not the primary concern (Tisseur \& Meerbergen, 2001; Higham \& Kim, 2001; Guo et al., 2009; Han \& Kim, 2010).
The classical way to obtain matrices that commute in pairs is to consider the solutions of equation $A X=X A$. In such case any two solutions of this equation commute if and only if the matrix A is nonderogatory (Gantmacher, 1960). Probably the most simple method for practical experiments is to consider the polynomials of a matrix B (Dennis \& Weber, 1978), in the same way we have that two polynomials in B commute if and only if the matrix B is nonderogatory. Besides that, although there are works dealing with rings and other algebraic structures of commuting matrices, these are not of ease manipulation for numerical purposes (Suprenenko, 1968; Song, 1999; Britnell \& Wildon, 2011).

Our objective here is to present a method for constructing sets of commuting matrices. Summarizing the remainder of this paper, in section 2 we develop the support theory, in section 3 we state the method and in section 4 we give a numerical example together with some practical considerations.

2. Support Theory

We consider the set of complex matrices of order n

$$
V_{n_{k}}=\left\{\left[\begin{array}{cccc}
v_{11} & v_{12} & \ldots & v_{1 n} \\
v_{21} & v_{22} & \ldots & v_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
v_{n 1} & v_{n 2} & \ldots & v_{n n}
\end{array}\right], \quad v_{i j}=\sum_{l=1}^{k} \alpha_{(i j)_{l}} y_{l}\right\}
$$

where $v_{i j}$ are multivariate linear polynomials in $y_{1}, y_{2}, \ldots, y_{k} \in \mathbb{C}$, with coefficients $\alpha_{(i j)_{l}} \in \mathbb{C}, i, j=1, \ldots, n$ and $l=1, \ldots, k$ (Rosa et al., 2008).

Alternatively we can write this set as

$$
\mathcal{V}_{n_{k}}=\left\{y_{1} A_{1}+y_{2} A_{2}+\ldots+y_{k} A_{k}: \quad y_{1}, y_{2}, \ldots, y_{k} \in \mathbb{C}\right\}
$$

where A_{i} are $n \times n$ complex matrices, we call them the basic matrices of the set $\mathcal{V}_{n_{k}}$.

Example 1 Let

$$
\mathcal{V}_{2_{3}}=\left\{\left[\begin{array}{cc}
y_{1}-2 y_{2} & -y_{1}+y_{2}-4 y_{3} \\
2 y_{1}+3 y_{2}+y_{3} & y_{1}+4 y_{2}+y_{3}
\end{array}\right]\right\}
$$

We can also write

$$
\mathcal{V}_{2_{3}}=\left\{y_{1} A_{1}+y_{2} A_{2}+y_{3} A_{3}\right\}
$$

in which

$$
A_{1}=\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
-2 & 1 \\
3 & 4
\end{array}\right] \text { and } A_{3}=\left[\begin{array}{cc}
0 & -4 \\
1 & 1
\end{array}\right]
$$

Our concern is with the case when any two elements of the set $\mathcal{V}_{n_{k}}$ commute, that is when $\mathcal{V}_{n_{k}}$ is a commuting set. Conditions for this in terms of the basic matrices are stated next.
Proposition $1 \mathcal{V}_{n_{k}}=\left\{y_{1} A_{1}+y_{2} A_{2}+\ldots+y_{k} A_{k}\right\}$ is a commuting set if and only if

$$
A_{i} A_{j}=A_{j} A_{i}
$$

for $i, j=1, \ldots, k$.
Proof. (\Leftarrow) Suppose that $A_{i} A_{j}=A_{j} A_{i}$, for $i, j=1,2, \ldots, k$.
Given $A, B \in \mathcal{V}_{n_{k}}$, then there are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$, such that

$$
A=\alpha_{1} A_{1}+\alpha_{2} A_{2}+\ldots+\alpha_{k} A_{k} \text { and } B=\beta_{1} A_{1}+\beta_{2} A_{2}+\ldots+\beta_{k} A_{k}
$$

Hence,

$$
A B=\sum_{i=1}^{k} \sum_{j=1}^{k} \alpha_{i} \beta_{j} A_{i} A_{j} \text { and } B A=\sum_{j=1}^{k} \sum_{i=1}^{k} \beta_{j} \alpha_{i} A_{j} A_{i}
$$

From $A_{i} A_{j}=A_{j} A_{i}, i, j=1,2, \ldots, k$, it follows that $\alpha_{i} \beta_{j} A_{i} A_{j}=\beta_{j} \alpha_{i} A_{j} A_{i}$, then $A B=B A$.
(\Rightarrow) For A_{i} and $A_{j}, i \neq j$, consider

$$
A=0 A_{1}+0 A_{2}+\ldots+A_{i}+\ldots+0 A_{j}+\ldots+0 A_{k} \text { and } B=0 A_{1}+0 A_{2}+\ldots+0 A_{i}+\ldots+A_{j}+\ldots+0 A_{k}
$$

Hence,

$$
A B=A_{i} A_{j} \text { and } B A=A_{j} A_{i} .
$$

By hypothesis $\mathcal{V}_{n_{k}}$ is commuting, so $A B=B A$, then $A_{i} A_{j}=A_{j} A_{i}, i, j=1,2, \ldots, k$.
Example 2 Let

$$
\mathcal{V}_{3_{2}}=\left\{\left[\begin{array}{lll}
y_{1}+21 y_{2} & 4 y_{1}-24 y_{2} & y_{1} \\
3 y_{1}-24 y_{2} & 2 y_{1}+21 y_{2} & y_{1} \\
24 y_{2}-5 y_{1} & 4 y_{1}-24 y_{2} & 7 y_{1}-3 y_{2}
\end{array}\right]\right\}
$$

We can also write

$$
\mathcal{V}_{3_{2}}=\left\{y_{1} A_{1}+y_{2} A_{2}\right\},
$$

where

$$
A_{1}=\left[\begin{array}{rrr}
1 & 4 & 1 \\
3 & 2 & 1 \\
-5 & 4 & 7
\end{array}\right] \text { and } A_{2}=\left[\begin{array}{rrr}
21 & -24 & 0 \\
-24 & 21 & 0 \\
24 & -24 & -3
\end{array}\right]
$$

are commuting matrices, then $\mathcal{V}_{3_{2}}$ is a commuting set.
Next we inspect some basic facts related with a commuting $\mathcal{V}_{n_{k}}$.
If A is nonderogatory then the solution set of $A X=X A$ is a commuting set $\mathcal{V}_{n_{n}}$, which is closed under the product operation. This is illustrated in the following example.
Example 3 Let

$$
A=\left[\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
-2 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 \\
-2 & -1 & -1 & -1
\end{array}\right]
$$

A is nonderogatory matrix. If we consider

$$
X=\left[\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24} \\
x_{31} & x_{32} & x_{33} & x_{34} \\
x_{41} & x_{42} & x_{43} & x_{44}
\end{array}\right]
$$

and we choose x_{14}, x_{24}, x_{34} and x_{44} as arbitrary parameters, then the solution set of $A X=X A$ is

$$
\mathcal{V}_{44}=\left\{\left[\begin{array}{llll}
x_{24}+2 x_{34}+x_{44} & x_{14}+2 x_{24}+x_{34} & 2 x_{14}+x_{24} & x_{14} \\
-2 x_{24}-2 x_{34} & -2 x_{14}-x_{24}+x_{34}+x_{44} & -2 x_{14}+x_{24}+x_{34} & x_{24} \\
2 x_{24}+2 x_{34} & 2 x_{14}+x_{24} & 2 x_{14}+x_{34}+x_{44} & x_{34} \\
-2 x_{24}-2 x_{34} & -2 x_{14}-2 x_{24}-x_{34} & -2 x_{14}-x_{24}-x_{34} & x_{44}
\end{array}\right]\right\}
$$

which is a commuting set closed under the product.
On the other hand, it can be verified that the commuting set

$$
\mathcal{V}_{3_{3}}=\left\{\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
0 & x_{1} & 0 \\
0 & 0 & x_{1}
\end{array}\right]\right\}
$$

is not a solution set of any equation $A X=X A$. Furthermore, considering

$$
\mathcal{V}_{2_{1}}=\left\{\left[\begin{array}{cc}
0 & x_{1} \\
x_{1} & 0
\end{array}\right]\right\}
$$

we also can conclude that there are commuting sets $\mathcal{V}_{n_{k}}$ which are not closed under the product, that is, they are not rings. Although such cases can be always completed to a set closed under the product, this is an important issue to consider when dealing with commuting sets.
Now, we examine a crucial question: how many linearly independent matrices can a commuting set $\mathcal{V}_{n_{k}}$ have. The answer to this is not new. Schur gave it a century ago (Schur, 1905). The maximum number of linearly independent commutative $n \times n$ matrices is $N(n)=\frac{n^{2}}{4}+1$, that is, the greater integer less than or equal to $\frac{n^{2}}{4}+1$. Using our notation, given a commuting $\mathcal{V}_{n_{k}}$, for the basic matrices $A_{i}, i=1,2, \ldots, k$, commute it is necessary that $k \leq N(n)$. We use these in the development of our algorithm.

3. The Method

First we consider the set

$$
E=\left\{e_{i} e_{j}^{T}: i, j=1,2, \ldots, n\right\}
$$

where e_{i} is $n \times 1$ with 1 in the $i^{\text {th }}$ position and zeros elsewhere.
Conditions for the set E be commuting are stated next.
Lemma 1 Let $E=\left\{e_{i} e_{j}^{T}, i, j=1,2, \ldots, n\right\}$, if $\Pi_{a}=e_{g} e_{h}^{T}$ and $\Pi_{b}=e_{k} e_{l}^{T}$ are matrices of E, such that $\Pi_{a} \neq \Pi_{b}$, then Π_{a} commutes with Π_{b} if and only if $g \neq l e h \neq k$.
Proof. We have that

$$
e_{i}^{T} e_{j}=\left\{\begin{array}{lll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array}\right.
$$

Thus, $\Pi_{a} \Pi_{b}=e_{g} e_{h}^{T} e_{k} e_{l}^{T}$ and $\Pi_{b} \Pi_{a}=e_{k} e_{l}^{T} e_{g} e_{h}^{T}$. From $\Pi_{a} \neq \Pi_{b}$, we can conclude that $\Pi_{a} \Pi_{b}=\Pi_{b} \Pi_{a}$ if and only if $g \neq l$ and $h \neq k$.
We observe that given two elements of E, $e_{i_{1}} e_{j_{1}}^{T}$ and $e_{i_{2}} e_{j_{2}}^{T}$, if each of them commutes with $e_{i_{3}} e_{j_{3}}^{T}$, then $e_{i_{1}} e_{j_{1}}^{T}+e_{i_{2}} e_{j_{2}}^{T}$ commutes with $e_{i_{3}} e_{j_{3}}^{T}$, even if $e_{i_{1}} e_{j_{1}}^{T}$ and $e_{i_{2}} e_{j_{2}}^{T}$ do not commute.
Let now

$$
F=\left[\begin{array}{c}
e_{1} \tag{1}\\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right]\left[\begin{array}{lll}
e_{1}^{T} & e_{2}^{T} & \ldots, e_{n}^{T}
\end{array}\right]=\left[\begin{array}{cccc}
e_{1} e_{1}^{T} & e_{1} e_{2}^{T} & \ldots & e_{1} e_{n}^{T} \\
e_{2} e_{1}^{T} & e_{2} e_{2}^{T} & \ldots & e_{2} e_{n}^{T} \\
\vdots & \vdots & \ddots & \vdots \\
e_{n} e_{1}^{T} & e_{n} e_{2}^{T} & \ldots & e_{n} e_{n}^{T}
\end{array}\right]
$$

be an $n^{2} \times n^{2}$ block matrix, where the (i, j) block is $e_{i} e_{j}^{T}$.
Using the matrix F we can determine all the matrices of the set E that commute with a given matrix $e_{u} e_{v}^{T} \in E$.
Proposition 2 Let F be defined as above (1). Given a block $e_{u} e_{v}^{T} \in F$, let H be the set of blocks $e_{i} e_{j}^{T}$ of the submatrix resulting of F by deleting the block row v and the block column u, then $e_{r} e_{s}^{T} \in F$, such that $e_{r} e_{s}^{T} \neq e_{u} e_{v}^{T}$, commutes with $e_{u} e_{v}^{T}$ if and only if $e_{r} e_{s}^{T} \in H$.
Proof. Given a block $e_{u} e_{v}^{T} \in F$, we have that

$$
H=\left\{e_{r} e_{s}^{T}: r, s=1,2, \ldots, n, r \neq v, s \neq u\right\}
$$

Supposing $r \neq v$ and $s \neq u$, it follows by Lemma 1 that $e_{u} e_{v}^{T}$ commutes with $e_{r} e_{s}^{T}$ if and only if $e_{r} e_{s}^{T} \in H$.
The set H will be used in the method. It has $n^{2}-2 n$ elements if $u \neq v$; otherwise, if $e_{u} e_{u}^{T}$ is a diagonal block of F, then H has $n^{2}-2 n+1$ elements. Besides that not all of its elements commute in pairs.
The next algorithm is a successive application of Proposition 2.

Algorithm 1

1) Given n, let
2) $s:=0$
3) $G_{s}:=\left\{e_{i} e_{j}^{T}: i, j=1,2, \ldots, n\right\}$
4) $d:=0$
5) While $G_{s} \neq \emptyset$
5.1) Choose $e_{u} e_{v}^{T} \in G_{s}$ and let
5.2) $s:=s+1$
5.3) $A_{s}:=e_{u} e_{v}^{T}$
5.4) If $u=v$

$$
\begin{aligned}
\text { 5.4.1 }) d:=d+1 \\
\text { 5.5) } G_{s}:=G_{s-1}-\left(\left\{e_{r} e_{s}^{T} \in G_{s-1}: r=v \vee s=u\right\} \cup\left\{e_{u} e_{v}^{T}\right\}\right)
\end{aligned}
$$

If $d=n$
6.1) $k:=s$
6.2) $\mathcal{U}_{n_{k}}:=x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{s} A_{s}$

If $d<n$
7.1) $k:=s+1$
7.2) $A_{s+1}:=I_{n}$
7.3) $\mathcal{U}_{n_{k-1}}:=x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{s} A_{s}$
7.4) $\mathcal{U}_{n_{k}}:=x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{s} A_{s}+x_{s+1} A_{s+1}$

End.
If the matrices chosen from G_{0} are $e_{i} e_{i}^{T}, i=1,2, \ldots, n$, then the algorithm gives only one commuting set, otherwise it gives two commuting sets, where in the second set A_{s+1} is the identity.
The fact that the sets $\mathcal{U}_{n_{k}}$ and $\mathcal{U}_{n_{k-1}}$ are commuting is a direct consequence of the matrices A_{i} pairwise commute. We also observe that the set of basic matrices $\left\{A_{1}, A_{2}, \ldots, A_{s}, A_{s+1}\right\}$ is linearly independent. Besides that we have the following.

Proposition 3 The sets $\mathcal{U}_{n_{k}}$ and $\mathcal{U}_{n_{k-1}}$ are closed under the product operation.
Proof. Let $A, B \in \mathcal{U}_{n_{k-1}}$, then there exist scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k-1}$ e $\beta_{1}, \beta_{2}, \ldots, \beta_{k-1}$ such that $A=\alpha_{1} A_{1}+\alpha_{2} A_{2}+$ $\ldots+\alpha_{k-1} A_{k-1}$ and $B=\beta_{1} A_{1}+\beta_{2} A_{2}+\ldots+\beta_{k-1} A_{k-1}$, we have that $A_{i} A_{j}=0=A_{j} A_{i}$, and then $A B=0 \in \mathcal{U}_{n_{k-1}}$.
Consider now $A^{\prime}, B^{\prime} \in \mathcal{U}_{n_{k}}$, in a similar way, $A^{\prime}=\alpha_{1} A_{1}+\alpha_{2} A_{2}+\ldots+\alpha_{k-1} A_{k-1}+\alpha_{k} I_{n}$ and $B^{\prime}=\beta_{1} A_{1}+\beta_{2} A_{2}+$
$\ldots+\beta_{k-1} A_{k-1}+\beta_{k} I_{n}$, so we write $A^{\prime}=A+\alpha_{k} I_{n} \quad$ and $\quad B^{\prime}=B+\beta_{k} I_{n}$, where $A, B \in \mathcal{U}_{n_{k-1}}$, from $A B=0$, it follows that

$$
\begin{aligned}
A^{\prime} B^{\prime} & =A \beta_{k} I_{n}+B \alpha_{k} I_{n}+\alpha_{k} \beta_{k} I_{n} \\
& =\left(\alpha_{1} A_{1}+\ldots+\alpha_{k-1} A_{k-1}\right) \beta_{k}+\left(\beta_{1} A_{1}+\ldots+\beta_{k-1} A_{k-1}\right) \alpha_{k}+\alpha_{k} \beta_{k} I_{n} \\
& =\left(\alpha_{1} \beta_{k}+\beta_{1} \alpha_{k}\right) A_{1}+\ldots+\left(\alpha_{k-1} \beta_{k}+\beta_{k-1} \alpha_{k}\right) A_{k-1}+\alpha_{k} \beta_{k} I_{n},
\end{aligned}
$$

then $A^{\prime} B^{\prime} \in \mathcal{U}_{n_{k}}$.

4. Numerical Example

We implemented the algorithm in the Matlab. We use an auxiliary matrix to control the matrices of the set G_{0} that make part of the commuting set $\mathcal{U}_{n_{k}}$. The following example is for matrices of order $n=4$.

Consider

$$
G_{0}=\left\{e_{i} e_{j}^{T}: i, j=1,2,3,4\right\}
$$

and let

$$
M_{0}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

be an $n \times n$ matrix, where the $1 s$ in the positions (i, j) represent the elements $e_{i} e_{j}^{T}$ of the set G_{0} that can be taken as the matrices A_{l} to construct the commuting set

$$
\mathcal{U}_{n_{k}}=x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{s} A_{s}
$$

We choose the element $(1,2)$ of M_{0}, that is $A_{1}=e_{1} e_{2}^{T}$ as the first matrix, thus the row 2 and the column 1 of M_{0} are set to zeros, to represent the elements in G_{0} that were deleted to obtain G_{1}. Furthermore, setting $\left(M_{0}\right)_{12}=2$ we indicate that the respective element was already chosen and therefore is neither in G_{1}. Hence we get

$$
M_{1}=\left[\begin{array}{llll}
0 & 2 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

In the same way the $1 s$ in M_{1} represent the elements of G_{1}, which are the available elements that commute with A_{1}, and therefore from those we have to pick the next one.
Choosing now the element $(1,3)$ of M_{1}, that is $A_{2}=e_{1} e_{3}^{T}$. Thus deleting row 3 and column 1 from M_{1} and setting $\left(M_{1}\right)_{13}=2$, we obtain

$$
M_{2}=\left[\begin{array}{llll}
0 & 2 & 2 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

Again the $1 s$ represent the elements that commute with the matrices already picked, that are represented by the $2 s$. Continuing, we choose the element $(4,2)$ of M_{2}, then $A_{3}=e_{4} e_{2}^{T}$, thus

$$
M_{3}=\left[\begin{array}{llll}
0 & 2 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0
\end{array}\right]
$$

and finally we pick the only one left, $A_{4}=e_{4} e_{3}^{T}$. We can construct a commuting set with these elements

$$
\mathcal{U}_{4_{4}}=\left\{x_{1} e_{1} e_{2}^{T}+x_{2} e_{1} e_{3}^{T}+x_{3} e_{4} e_{2}^{T}+x_{4} e_{4} e_{3}^{T}: x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{C}\right\}
$$

or

$$
\mathcal{U}_{4_{4}}=\left\{\left[\begin{array}{cccc}
0 & x_{1} & x_{2} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & x_{3} & x_{4} & 0
\end{array}\right]: x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{C}\right\}
$$

Adding the matrix I_{4} we obtain the second commuting set

$$
\mathcal{U}_{4_{5}}=\left\{x_{1} e_{1} e_{2}^{T}+x_{2} e_{1} e_{3}^{T}+x_{3} e_{4} e_{2}^{T}+x_{4} e_{4} e_{3}^{T}+x_{5} I_{4}: x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in \mathbb{C}\right\}
$$

or

$$
\mathcal{U}_{4_{5}}=\left\{\left[\begin{array}{cccc}
x_{5} & x_{1} & x_{2} & 0 \\
0 & x_{5} & 0 & 0 \\
0 & 0 & x_{5} & 0 \\
0 & x_{3} & x_{4} & x_{5}
\end{array}\right]: x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in \mathbb{C}\right\}
$$

The maximum number of matrices linearly independent in \mathcal{U}_{45} is the Schur number $\frac{n^{2}}{4}+1=5=k$. This evidently depends on the suitable choice we perform. We could get a lesser k, either with a different choice or stopping the iterations before the set G be empty, this can be achieved including an option in step 5 of the Algorithm 1 to terminate the iterations.
The sets $\mathcal{U}_{n_{k}}$ generated by the method have a very specific form. To obtain an aleatory form we can use a nonsingular matrix S and then $\mathcal{V}_{n_{k}}=S \mathcal{U}_{n_{k}} S^{-1}$ is also commuting. For example, from

$$
\mathcal{U}_{3_{3}}=\left\{\left[\begin{array}{ccc}
x_{1} & 0 & x_{3} \\
0 & x_{1} & 0 \\
0 & x_{2} & x_{1}
\end{array}\right]\right\}
$$

obtained by Algorithm 1, if

$$
S=\left[\begin{array}{lll}
1 & 0 & 2 \\
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

then

$$
\mathcal{V}_{3_{3}}=S \mathcal{U}_{3_{3}} S^{-1}=\left\{\left[\begin{array}{ccc}
x_{1}+x_{2}-x_{3} & 4 x_{3}-x_{2} & 2 x_{3} \\
x_{2}-2 x_{3} & x_{1}-x_{2} & x_{3} \\
-4 x_{3} & 4 x_{3} & x_{1}+2 x_{3}
\end{array}\right]\right\}
$$

is a commuting set with a different form from those generated by the algorithm.
As future prospects of the presented method, we cite the extensions to block versions, fact that will permit the application of it to generalized matrices partitioned into commuting blocks, like the block companion and the block Vandermonde, among others. Such matrices are linked to systems of higher order.
The authors want to thank the referees for the comments that helped to improve the paper.

References

Bourgeois, G. (2013), Common invariant subspace and commuting matrices. Linear Algebra Appl., 438(7), 30303038. http://dx.doi.org/10.1016/j.laa.2012.11.034

Brewer, J. W., Bunce, J. W., \& Van Vleck, F. S. (1986). Linear Systems Over Commutative Rings. New York: Marcel Dekker.
Britnell, J. R., \& Wildon, M. (2011), On types and classes of commuting matrices over finite fields. J. Lond. Math. Soc., 83(2), 470-492. http://dx.doi.org/10.1112/jlms/jdq088
Dennis, J. E., Traub, J. F., \& Weber, R. P. (1978). Algorithms for solvents of matrix polynomials. SIAM J. Numer. Anal., 15(3), 523-533. http://dx.doi.org/10.1137/0715034
De Seguins, C. P. (2013). On commuting matrices and exponentials. Proc. Amer. Math. Soc., 141(3), 763-774. http://dx.doi.org/10.1090/S0002-9939-2012-11396-6
Gantmacher, F. (1960). The Theory of Matrices (Vol. 1, 2). New York: Chelsea.
Gohberg, I., Lancaster, P., \& Rodman£ L. (1982). Matrix Polynomials. London: Academic Press.
Guo, H., Liu, X., \& Wang, W. (2009). The block numerical range of matrix polynomials. Applied Mathematics and Computation, 211, 265-283. http://dx.doi.org/10.1016/j.amc.2009.01.070

Han, H., \& Kim, H. (2010), Solving a matrix polynomial by Newton's method. J. KSIAM, 14(2), 113-124.

Higham, N., \& Kim, H. (2001), Solving a quadratic matrix equation by Newton's method with exact line searches. SIAM J. Matrix Anal. Appl., 23(2), 303-316. http://dx.doi.org/10.1137/S0895479899350976

McCarthy, J., \& Shalit, O. (2013). Unitary N -dilations for tuples of commuting matrices. Proc. Amer. Math. Soc., 141(2), 563-571. http://dx.doi.org/10.1090/S0002-9939-2012-11714-9
Ogata, Y. (2013). Approximating macroscopic observables in quantum spin systems with commuting matrices. J. Funct. Anal., 264(9), 2005-2033. http://dx.doi.org/10.1016/j.jfa.2013.01.021
Rosa, C., Pereira, E., \& Cruz, H. (2008). Classes of Commuting Matrices. Southeast Asian Bulletin of Mathematics, 9, 969-984.
Schur, I. (1905). Zur theorie vertauschbaren matrizen. Crelle's J., 130, 66-76.
Shastry, B. (2011). Parameter-dependent commuting matrices, Plucker relations and related quantum glass models. J. Phys. A, 44(5), 52001-52011. http://dx.doi.org/10.1088/1751-8113/44/5/052001

Song, Y. (1999). Maximal Commutative subalgebras of matrix algebras. Communications in Algebra, 27(4), 1649-1663. http://dx.doi.org/10.1080/00927879908826519
Suprenenko, D. A., \& Tyshkevich, R. I. (1968). Commutative Matrices. New York: Academic Press.
Tisseur, F., \& Meerbergen, K. (2001). The Quadratic Eigenvalue Problem. SIAM Review, 43(2), 235-286. http://dx.doi.org/10.1137/S0036144500381988
Yuzbashyan, E., \& Shastry, B. (2013). Quantum integrability in systems with finite number of levels. J. Stat. Phys., 150(4), 704-721. http://dx.doi.org/10.1007/s10955-013-0689-9

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

