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Abstract� Block�recursive codes for dense numerical linear algebra com�
putations appear to be well�suited for execution on machines with deep
memory hierarchies because they are e�ectively blocked for all levels of
the hierarchy� In this paper� we describe compiler technology to translate
iterative versions of a number of numerical kernels into block�recursive
form� We also study the cache behavior and performance of these com�
piler generated block�recursive codes�

� Introduction

Locality of reference is important for achieving good performance on modern
computers with multiple levels of memory hierarchy� Traditionally� compilers
have attempted to enhance locality of reference by tiling loop�nests for each
level of the hierarchy ��� ��� ��� In the dense numerical linear algebra commu�
nity� there is growing interest in the use of block�recursive versions of numerical
kernels such as matrix multiply and Cholesky factorization to address the same
problem� Block�recursive algorithms partition the original problem recursively
into problems with smaller working sets until a base problem size whose working
set 	ts into the highest level of the memory hierarchy is reached� This recursion
has the e
ect of blocking the data at many di
erent levels at the same time�
Experiments by Gustavson ��� and others have shown that these algorithms can
perform better than tiled versions of these codes�

To understand the idea behind block�recursive algorithms� consider the itera�
tive version of Cholesky factorization shown in Figure �� It factorizes a symmetric
positive de	nite matrix A into the product A � L � LT where L is a lower trian�
gular matrix� overwriting A with L� A block�recursive version of the algorithm
can be obtained by sub�dividing the arrays A and L into 
� 
 blocks� as shown
in Figure 
� Here� chol�X� computes the Cholesky factorization of array X � The
recursive version factorizes the A�� block� performs a division on the A�� block�
and 	nally factorizes the updated A�� block� The termination condition for the
recursion can be either a single element of A �in which case a square root op�
eration is performed� or a b � b block of A which is factored by the iterative
code�
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for j � �� n

for k � �� j��
for i � j� n

S�� A�i�j� �� A�i�k� � A�j�k�

S�� A�j�j� � dsqrt�A�j�j��
for i � j	�� n

S
� A�i�j� � A�i�j� � A�j�j�

Fig� �� Cholesky Factorization
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Fig� �� Block recursive Cholesky

A block�recursive version of matrix multiplication C � AB can also be de�
rived in a similar manner� Subdividing the arrays into 
�
 blocks results in the
following block matrix formulation �
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Each matrix multiplication results in eight recursive matrix multiplications
on sub�blocks� The natural order of traversal of a space in this recursive manner
is called a block�recursive order and is shown in Figure � for a two�dimensional
space� Since there are no dependences� the eight recursive calls to matrix mul�
tiplication can be performed in any order� Another way of ordering these calls
is to make sure that one of the operands is reused between adjacent calls�� One
such ordering corresponds to traversing the sub�blocks in the gray�code order�
A gray�code order on the set of numbers �� � � �m� arranges the numbers so that
adjacent numbers di
er by exactly � bit in their binary representation� A gray�
code order of traversing a 
�dimensional space is shown in Figure �� Such an
order is called space��lling since the order traces a complete path through all
the points� always moving from one point to an adjacent point� There are other
space�	lling orders� some of them are described in the references ���� Note that
lexicographic order� shown in Figure �� is not a space�	lling order�

In this paper� we describe compiler technology that can automatically convert
iterative versions of array programs into their recursive versions� In these pro�
grams� arrays are referenced by a�ne functions of the loop�index variables� As a
result� partitioning the iterations of a loop will result in the partitioning of data
as well� We use a�ne mapping functions to map all the statement instances
of the program to a space we call the program iteration space� This mapping
e
ectively converts the program into a perfectly�nested loop�nest in which all
statements are nested in the innermost loop� We develop legality conditions un�
der which the iteration space can be recursively divided� Code is then generated
to traverse the space in a block�recursive or space�	lling manner� and when each
point in this space is visited� the statements mapped to it are executed� This
strategy e
ectively converts the iterative versions of codes into their recursive

� Not more than one can be reused� in any case�
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Fig� �� Space�Filling

ones� The mapping functions that enable this conversion can be automatically
derived when they exist� This approach does not require that the original pro�
gram be in any speci	c form � any sequence of perfectly or imperfectly nested
loops can be transformed in this way�

The rest of this paper is organized as follows� Section 
 gives an overview
of our approach to program transformation �details are in �
��� in particular�
in Section 
��� we derive legality conditions for recursively traversing the pro�
gram iteration space� Section � describes code generation� and Section � presents
experimental results� Finally� Section � describes future work�

� The Program�Space Formulation

A program consists of statements contained within loops� All loop bounds and
array access functions are assumed to be a�ne functions of surrounding loop
indices� We will use S�� S�� � � �� Sn to name the statements of the program in
syntactic order�

A dynamic instance of a statement Sk refers to a particular execution of
that statement for a given value of index variables ik of the loops surrounding
it� and is represented by Sk�ik�� The execution order of these instances can be
represented by a statement iteration space of jikj dimensions� where each dynamic
instance Sk�ik� is mapped to the point ik� For the iterative Cholesky code shown
in Figure �� the statement iteration spaces for the three statements S�� S� and
S� are j� � k� � i�� j�� and j� � i� respectively� The program execution order
of a code fragment can be modeled in a similar manner by a program iteration

space� de	ned as follows�

�� Let P be the Cartesian product of the individual statement iteration spaces
of the statements in that program� The order in which this product is formed
is the syntactic order in which the statements appear in the program� If p is
the sum of the number of dimensions in all statement iteration spaces� then
P is p�dimensional� P is also called the product space of the program�


� Embed all statement iteration spaces Sk into P using embedding functions
�Fk which satisfy the following constraints�

�a� Each �Fk must be one�to�one�



�b� If the points in space P are traversed in lexicographic order� and all state�
ment instances mapped to a point are executed in original program order
when that point is visited� the program execution order is reproduced�

The program execution order can thus be modeled by the pair �P � �F �
f �F�� �F�� � � � � �Fng�� We will refer to the program execution order as the original

execution order� For the Cholesky example� the program iteration space is a ��
dimensional space P � j�� k�� i�� j�� j�� i�� One possible set of embedding
functions �F for this code is shown below �
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Note that all the six dimensions are not necessary for our Cholesky example�
Examining the mappings shows us that the last three dimensions are redundant
and the program iteration space could as well be ��dimensional� For simplicity�
we will drop the redundant dimensions when discussing the Cholesky example�
The redundant dimensions can be eliminated in a systematic manner by retaining
only those dimensions whose mappings are linearly independent�

In a similar manner� any other execution order of the program can be rep�
resented by an appropriate pair �P �F�� Code for executing the program in this
new order can be generated as follows� We traverse the entire product space
lexicographically� and at each point of P we execute the original program with
all statements protected by guards� These guards ensure that only statement
instances mapped to the current point are executed� For the Cholesky example�
naive code which implements the execution order �P � �F�� is shown in Figure ��
This naive code can be optimized by using standard polyhedral techniques ���
to remove the redundant loops and to 	nd the bounds of loops which are not
redundant� An optimized version of the code is shown in Figure �� The condi�
tionals in the innermost loop can be removed by index�set splitting the outer
loops�

��� Traversing the Program Iteration Space

Not all execution orders �P �F� respect the semantics of the original program� A
legal execution order must respect the dependences present in the original pro�
gram� A dependence is said to exist from instance is of statement Ss to instance
id of statement Sd if both statement instances reference the same array loca�
tion� at least one of them writes to that location� and instance is occurs before
instance id in original execution order� Since we traverse the product space lexi�
cographically� we require that the vector v � Fd�id��Fs�is� be lexicographically
positive for every pair �is� id� between which a dependence exists� We refer to v

as the di�erence vector�

� We have dropped the last three redundant dimensions for clarity�



for j� � �inf to 	inf
for k� � �inf to 	inf

for i� � �inf to 	inf
for j � �� n

for k � �� j��

for i � j� n
if �j���j �� k���k �� i���i�

S�� A�i�j� �� A�i�k� � A�j�k�

if �j���j �� k���j �� i���j�
S�� A�j�j� � dsqrt�A�j�j��

for i � j	�� n
if �j���j �� k���j �� i���i�

S
� A�i�j� � A�i�j� � A�j�j�

Fig� �� Naive code for Cholesky

for j� � ��n
for k� � ��j�

for i� � j��n
if �k� 
 j��

S�� A�i��j�� �� A�i��k�� � A�j��k��

if �k���j� �� i���j��

S�� A�j�j� � dsqrt�A�j��j���

if �k���j� �� i� � j��
S
� A�i��j�� � A�i���j� � A�j��j��

Fig� �� Optimized code for Cholesky

For a given embedding F � there may be many legal traversal orders of the
product space other than lexicographic order� The following traversal orders are
important in practice�

�� Any order of walking the product space represented by a unimodular trans�
formation matrix T is legal if T � v is lexicographically positive for every
di
erence vector v associated with the code�


� If the entries of all di
erence vectors corresponding to a set of dimensions of
the product space are non�negative� then those dimensions can be blocked�
This partitions the product space into blocks with planes parallel to the axes
of the dimensions� These blocks are visited in lexicographic order� This order
of traversal for a two�dimensional product space divided into equal�sized
blocks is shown in Figure ��
When a particular block is visited� all points within that block can be visited
in lexicographic order� Other possibilities exist� Any set of dimensions that
can be blocked can be recursively blocked� If we choose to block the program
iteration space by bisecting blocks recursively� we obtain the block�recursive
order shown in Figure ��

�� If the entries of all di
erence vectors corresponding to a dimension of the
product space are zero� then that dimension can be traversed in any order�
If a set of dimensions exhibit this property� then those dimensions can not
only be blocked� but the blocks themselves do not have to be visited in a
lexicographic order� In particular� these blocks can be traversed in a space�

�lling order� This principle can be applied recursively within each block� to
obtain space�	lling orders of traversing the entire sub�space �Figure ���

Given an execution order �P �F�� and the dependences in the program� it is
easy to check if the di
erence vectors exhibit the above properties using standard
dependence analysis ����� If we limit our embedding functions F to be a�ne
functions of the loop�index variables and symbolic constants� we can determine
functions that allow us to block dimensions �and hence also recursively block
them� or to traverse a set of dimensions in a space�	lling order� The condition



that entries corresponding to a particular dimension of all di
erence vectors
must be non�negative �for recursive�blocking� or zero �for space�	lling orders�
can be converted into a system of linear inequalities on the unknown coe�cients
of F by an application of Farkas� Lemma as discussed in �
�� If this system
has solutions� then any solution satisfying the linear inequalities would give
the required embedding functions� The embedding functions for the Cholesky
example were determined by this technology�

� Code Generation

Consider an execution order of a program represented by the pair �P �F�� We
wish to block the program iteration space recursively� terminating when blocks
of size B �B � � ��B are reached�

Let p represent the number of dimensions in the product space� To keep the
presentation simple� we assume that redundant dimensions have been removed
and that all dimensions can be blocked� We also assume that all points in the pro�
gram iteration space that have statement instances mapped to them are positive
and that they are contained in the bounding box �� � � �B�
k� � � � � � � � � �B�
kp��

Code to traverse the product space recursively is shown in Figure �� The
parameter to the procedure Recurse is the current block to be traversed� its co�
ordinates given by �lb����ub���� ���� lb�p��ub�p�	� The function HasPoints
prevents the code from recursing into blocks that have no statement instances
mapped to them� If there are points in the block and the block is not a base
block� GenerateRecursiveCalls subdivides the block into 
p sub�blocks by bi�
secting each dimension and calls Recurse recursively in a lexicographic order��
The parameter q of the procedure GenerateRecursiveCalls speci	es the di�
mension to be bisected� On the other hand� if the parameter to Recurse is a
base block� code for that block of the iteration space is executed in procedure
BaseBlockCode�

For the initial call to Recurse� the lower and upper bounds are set to the
bounding box�

Naive code for BaseBlockCode�lb�ub	 is similar to the naive code for ex�
ecuting the entire program� Instead of traversing the entire product space� we
only need to traverse the points in the current block lexicographically� and ex�
ecute statement instances mapped to them� Redundant loops and conditionals
can be hoisted out by employing polyhedral techniques�

Blocks which contain points with statement instances mapped to them can
be identi	ed by creating a linear system of inequalities with variables lbi� ubi cor�
responding to each entry of lb����p�� ub����p� and variables xi corresponding
to each dimension of the product�space� Constraints are added to ensure that
the point �x�� x�� � � � � xp� has a statement instance mapped to it and that it
lies within the block �lb� � ub�� � � � � lbp � ubp�� From the above system� we ob�
tain the condition to be tested in HasPoints�lb�ub	 by projecting out �in the
Fourier�Motzkin sense� the variables xi�

� This must be changed appropriately if space��lling orders are required



Recurse�lb����p�� ub����p��
if �HasPoints�lb�ub�� then

if ��i ub�i� �� lb�i�	B��� then

BaseBlockCode�lb�
else

GenerateRecursiveCalls�lb�ub���
endif

endif
end

GenerateRecursiveCalls�lb����p�� ub����p�� q�
if �q � p�

Recurse�lb� ub�
else

for i � ��p
lb��i� � lb�i�
ub��i� � �i��q� � �lb�i�	ub�i����

� ub�i�
GenerateRecursiveCalls�lb��ub��q	��

for i � �� p
lb��i� � �i��q� � �lb�i�	ub�i���� 	 �

� lb�i�
ub��i� � ub�i�

GenerateRecursiveCalls�lb��ub��q	��
endif

end

Fig� �� Recursive code generation

BaseBlockCode�lb����
��
for j� � lb���� lb���	B��
for k� � lb���� lb���	B��

for i� � lb�
�� lb�
�	B��
for j � �� n

for k � �� j��
for i � j� n

if �j���j �� k���k �� i���i�
S�� A�i�j� �� A�i�k� � A�j�k�

if �j���j �� k���j �� i���j�
S�� A�j�j� � dsqrt�A�j�j��

for i � j	�� n

if �j���j �� k���j �� i���i�
S
� A�i�j� � A�i�j� � A�j�j�
end

HasPoints�lb����
�� ub����
��

if �lb���
�n �� lb���
�n �� lb�
�
�n
�� lb���
�ub�
�
�� lb���
�ub���

�� lb���
�ub�
��
return true

else
return false

end

Fig� 	� Recursive code for Cholesky

For our Cholesky example� the embedding functions shown in Section 
 en�
able all dimensions to be blocked� Since there are di
erence vectors with non�zero
entries� the program iteration space cannot be walked in a space�	lling manner�
though it can be recursively blocked� The portion of the product�space that has
statement instances mapped to it is �j� k� i� � � � k � j � i � n� This is used to
obtain the condition in HasPoints�	� Naive code for executing the code in each
block is shown in Figure �� As mentioned earlier� the redundant loops must be
removed and the conditionals hoisted out for good performance�

� Experimental Results

In this section� we discuss the performance of block�recursive and space�	lling
codes produced using the technology described in this paper� All experiments
were run on an SGI R�
K machine running at ���Mhz with a �
Kb primary�data
cache �L��� 
Mb second�level cache �L
� and �� TLB entries�

The legality conditions discussed in Section 
�� permit us to conclude matrix
multiply �MMM� can be blocked both recursively and in a space�	lling manner�
The Cholesky code can only be blocked recursively� We generated four versions
of block�recursive code with di
erent base block sizes ���� �
� ��� �
�� for both
programs� These codes were compiled with the ��O� �LNO�blocking�o
� option
of the SGI compiler� At this level of optimization� the SGI compiler performs
tiling for registers and software�pipelining�
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For each program� we ran the recursive �and if legal� the space�	lling� versions
of the code for a variety of matrix sizes� For lack of space� we only present results
for a matrix size of ���� � ����� Results for other matrix sizes are similar�
In the graphs� the results marked Lexicographic correspond to executing the
code in BaseBlockCode�lb	 by visiting the base blocks in a lexicographic order�
For comparison� we also show results of executing vendor�supplied� hand�tuned
implementations of matrix multiply �BLAS� and Cholesky �LAPACK �����

Figures �� and �� show the number of L� data cache misses for the two
programs� For the larger block sizes ���� �
��� the data touched by a base�
block does not 	t in cache ��
K� and hence both the recursive and lexicographic
versions su
er the same penalty� For smaller block sizes ���� �
�� the data does
	t into cache resulting in much fewer misses� Figures �� and �� show the L

cache misses� The lexicographic versions for block sizes of �� and �
 exhibit
much higher miss numbers than the corresponding recursive versions since these
block sizes are too small to fully utilize the 
M cache� In the recursive versions�
however� even the small block sizes succeed in full utilization of the cache due to
the recursive doubling e
ect� These recursive versions will have a similar e
ect
on any further levels of caches� Of the two recursive orders� the space�	lling
orders show slightly better cache performance for both programs�

Figures �
 and �� show the number of TLB misses for the two programs�
The R�
K TLB has only �� entries� hence large block sizes �more than ��� will
exhibit high miss rates in both the lexicographic and recursive cases� Small block
sizes could work well in the lexicographic case if the loop order is chosen well� In
our case� the jki order is the best order for both the programs� There are very
few TLB misses when the block size is �� because fewer than �� TLB entries
are required at a time for this block size� In the recursive case� the recursive
doubling does cause signi	cantly more TLB misses for small block sizes� although
the recursive walks are largely immune to the e
ect of reordering the loops� By
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comparison� in the jik�order �not shown here�� the code with block size of ��
su
ers a ����fold increase in the number of TLB misses for the lexicographic
case but the number of misses remains roughly the same in the recursive cases�

Figure �� shows the performance of the two programs in MFlops� As a sanity
check� the lines marked Compiler show the performance obtained with compiling
the original code with the ��O�� �ag of the SGI compiler which attempts to tile
for cache and registers and then software�pipeline the resulting code� For both
programs� the recursive codes with block size of �
 are the best among all the
generated code� For most block sizes� the recursive codes are better than their
lexicographic counter�parts by a small percentage �
����� For a block size of ���
the recursive cases are worse due to an increase in the number of TLB misses�

For matrix multiply� the best recursive code generated by the compiler is still
substantially worse than the hand�tuned versions of the programs even though
the recursive overhead is less than �� in all cases� This di
erence could be due
to the high number of TLB misses su
ered by the recursive versions� Copying
data from base blocks into contiguous locations as is done in the hand�tuned
code might help improve performance� It is interesting to note that although
the hand�tuned version su
ers higher primary cache miss rates� the impact on
performance is small� This is not surprising in an out�of�order issue processor like
the R�
K where the latency of primary cache misses ��� cycles� can be hidden
by scheduling and software�pipelining� These misses will be more important in
an in�order issue processor like the Merced� For Cholesky factorization� on the
other hand� the best block�recursive version is comparable in performance to
LAPACK code�

� Related Work and Conclusions

Hand�coded versions of block recursive algorithms have been studied for a long
time ��� �� ��� some of them are implemented in the IBM�s Engineering and Sci�
enti	c Subroutine Library �ESSL� for example�

In this paper� we developed program restructuring technology to convert it�
erative numerical programs into block�recursive versions� Our experiments show
that the block�recursive versions of matrix multiply and Cholesky are e
ectively
blocked for all memory hierarchy levels� However� base block sizes must be cho�
sen with care � the data accessed in a base�block must 	t into the lowest level



of the cache hierarchy� the blocks must be large enough so that the recursive
overhead is negligible� and the back�end compiler must be able to schedule the
instructions in a base�block e�ciently� Unfortunately� our experiments also show
that the block�recursive algorithms do not interact well with the TLB� In spite of
this� the best compiler�generated code for the two applications was nevertheless
a recursive version� We conjecture that better interaction with the TLB requires
either �i� copying data from column�major order into recursive data layouts as
suggested by Chatterjee ��� or �ii� copying the data used by a base block into
contiguous locations as suggested by Gustavson ����

The work in this paper can be extended in a number of ways� More exper�
iments are needed to assess the importance of block�recursive codes for other
applications such as relaxation methods� Non�square base�blocks may be useful
to eliminate con�ict misses in some codes� Finally� it would be interesting to
study the e
ect of copying data into layouts that are matched to block�recursive
traversals�
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