
Integrating Ensemble of Intelligent Systems for
Modeling Stock Indices

Ajith Abraham1 and Andy AuYeung2

Department of Computer Science, Oklahoma State University, USA
ajith.abraham@ieee.org1, wingha@cs.okstate.edu2

Abstract. The use of intelligent systems for stock market predictions has
been widely established. In this paper, we investigate how the seemingly
chaotic behavior of stock markets could be well-represented using en-
semble of intelligent paradigms. To demonstrate the proposed tech-
nique, we considered Nasdaq-100 index of Nasdaq Stock MarketSM and
the S&P CNX NIFTY stock index. The intelligent paradigms consid-
ered were an artificial neural network trained using Levenberg-
Marquardt algorithm, support vector machine, Takagi-Sugeno neuro-
fuzzy model and a difference boosting neural network. The different
paradigms were combined using two different ensemble approaches so
as to optimize the performance by reducing different error measures.
The first approach is based on a direct error measure and the second
method is based on an evolutionary algorithm to search the optimal lin-
ear combination of the different. Experimental results reveal that the en-
semble techniques performed better than the individual methods and the
direct ensemble approach seems to work well for the problem consid-
ered.

1 Introduction

Prediction of stocks is generally believed to be a very difficult task. The process be-
haves more like a random walk process and time varying. The obvious complexity of
the problem paves way for the importance of intelligent prediction paradigms. During
the last decade, stocks and futures traders have come to rely upon various types of
intelligent systems to make trading decisions [1][3][4][5]. In this paper, we propose an
approach to combine different intelligent paradigms using ensemble approaches to
model the seemingly chaotic behaviour of two well-known stock indices namely
Nasdaq-100 index of NasdaqSM [9] and the S&P CNX NIFTY stock index [10].
Nasdaq-100 index reflects Nasdaq's largest companies across major industry groups,
including computer hardware and software, telecommunications, retail/wholesale trade
and biotechnology. The Nasdaq-100 index is a modified capitalization-weighted in-
dex, which is designed to limit domination of the index by a few large stocks while

generally retaining the capitalization ranking of companies. Similarly, S&P CNX
NIFTY is a well-diversified 50 stock index accounting for 25 sectors of the economy
[10]. It is used for a variety of purposes such as benchmarking fund portfolios, index
based derivatives and index funds. The CNX Indices are computed using market capi-
talisation weighted method, wherein the level of the Index reflects the total market
value of all the stocks in the index relative to a particular base period.

Our research is to investigate the combination of the four different connectionist para-
digms (using an ensemble approach) [6] for modeling the Nasdaq-100 and NIFTY
stock market indices so as to optimize the performance indices (different error meas-
ures, correlation coefficient and so on). The four different techniques considered are
an artificial neural network trained using the Levenberg-Marquardt algorithm, support
vector machine, difference boosting neural network [11] and a Takagi-Sugeno fuzzy
inference system learned using a neural network algorithm (neuro-fuzzy model) [4].
We analysed the Nasdaq-100 index value from 11 January 1995 to 11 January 2002
and the NIFTY index from 01 January 1998 to 03 December 2001. For both the indi-
ces, we divided the entire data into almost two equal parts. No special rules were used
to select the training set other than ensuring a reasonable representation of the parame-
ter space of the problem domain [3]. The trained connectionist paradigms were tested
and the ensembles were integrated using two approaches. In Section 2, we briefly
describe the different connectionist paradigms and the proposed ensemble approaches
followed by experimentation setup and results in Section 3. Some conclusions are also
provided towards the end.

2. Connectionist Paradigms

Connectionist models “learn” by adjusting the interconnections between layers. When
the network is adequately trained, it is able to generalize relevant output for a set of
input data.

2.1 Artificial Neural Networks

The artificial neural network (ANN) methodology enables us to design useful nonlin-
ear systems accepting large numbers of inputs, with the design based solely on in-
stances of input-output relationships. When the performance function has the form of

a sum of squares, then the Hessian matrix can be approximated to JJH T= ; and the

gradient can be computed as eJg T= , where J is the Jacobian matrix, which contains
first derivatives of the network errors with respect to the weights, and e is a vector of
network errors. The Jacobian matrix can be computed through a standard backpropa-
gation technique that is less complex than computing the Hessian matrix. The Leven-
berg-Marquardt (LM) algorithm uses this approximation to the Hessian matrix in the
following Newton-like update:

eJIJJkxkx TT 1][1
−+−=+ µ (1)

When the scalar � is zero, this is just Newton's method, using the approximate Hessian
matrix. When � is large, this becomes gradient descent with a small step size. As New-
ton's method is more accurate, � is decreased after each successful step (reduction in
performance function) and is increased only when a tentative step would increase the
performance function. By doing this, the performance function will always be reduced
in each iteration of the algorithm.

2.2 Support Vector Machines (SVM)
The SVM approach transforms data into a feature space F that usually has a huge
dimension. It is interesting to note that SVM generalization depends on the geometri-
cal characteristics of the training data, not on the dimensions of the input space. Train-
ing a support vector machine (SVM) leads to a quadratic optimization problem with
bound constraints and one linear equality constraint. Vapnik shows how training a
SVM for the pattern recognition problem leads to the following quadratic optimization
problem [12]

Minimize: � ��
= ==

+−=
l

i
ji

l

j
jiji

l

i
i xxkyyW

1 11

),(
2
1

)(αααα (2)

Subject to

Ci

y

i

l

i
ii

≤≤∀

�
=

α

α

0:
1

 (3)

Where l is the number of training examples α is a vector of l variables and each com-
ponent iα corresponds to a training example (xi, yi). The solution of (2) is the vector

*α for which (2) is minimized and (3) is fulfilled.

2.3 Neuro-Fuzzy System
Neuro Fuzzy (NF) computing is a popular framework for solving complex problems
[2]. If we have knowledge expressed in linguistic rules, we can build a Fuzzy Infer-
ence System (FIS), and if we have data, or can learn from a simulation (training) then
we can use ANNs. For building a FIS, we have to specify the fuzzy sets, fuzzy opera-
tors and the knowledge base. Similarly for constructing an ANN for an application the
user needs to specify the architecture and learning algorithm. An analysis reveals that
the drawbacks pertaining to these approaches seem complementary and therefore it is
natural to consider building an integrated system combining the concepts. While the
learning capability is an advantage from the viewpoint of FIS, the formation of lin-
guistic rule base will be advantage from the viewpoint of ANN. We used the Adaptive
Neuro Fuzzy Inference System (ANFIS) implementing a Takagi-Sugeno type FIS [7].

2.4 Difference Boosting Neural Network (DBNN)

DBNN is based on the Bayes principle that assumes the clustering of attribute values
while boosting the attribute differences. Boosting is an iterative process by which the
network places emphasis on misclassified examples in the training set until it is cor-

rectly classified [11]. The method considers the error produced by each example in the
training set in turn and updates the connection weights associated to the probability P
(UmCk) of each attribute of that example (Um is the attribute value and Ck a particular
class in k number of different classes in the dataset). In this process, the probability
density of identical attribute values flattens out and the differences get boosted up.
Instead of the serial classifiers used in the AdaBoost algorithm, DBNN approach uses
the same classifier throughout the training process. An error function is defined for
each of the miss classified examples based on it distance from the computed probabil-
ity of its nearest rival.

Data
preprocessor

index
values

Neural network

Support vector machine

Neuro-fuzzy system

Probabilistic neural network
Stock analysis

Direct approach
(Ensemble 1)

GA approach
(Ensemble 2)

Figure 1. Ensemble approach to combine intelligent paradigms for stock modeling

2.5 Ensemble of Intelligent Paradigms

Optimal linear combination of neural networks has been investigated and has found to
be very useful [6]. The optimal weights were decided based on the ordinary least
squares regression coefficients in an attempt to minimize the mean squared error. The
problem becomes more complicated when we have to optimize several other error
measures. In addition to the Root Mean Squared Error (RMSE) and Correlation Coef-
ficient (CC), we attempted to optimize the Maximum Absolute Percentage Error
(MAP) and Mean Absolute Percentage Error (MAPE)

��
�

�

�

��
�

�

�
×

−
= 100max

,

,,

ipredicted

ipredictediactual

P

PP
MAP , Where Pactual, i is the actual index value

on day i and Ppredicted, i is the forecast value of the index on that day.

100
1

1 ,

,,
×
�
�

	

�
�

�

 −
= �

=

N

i iactual

ipredictediactual

P

PP

N
MAPE , Where N = total number of days.

The first step is to carefully construct the different connectional models to achieve the
best generalization performance. Test data is then passed through these individual
models and the corresponding outputs are recorded. Suppose the daily index value
predicted by DBNN, SVM, NF and ANN are an, bn, cn and dn respectively and the
corresponding desired value is xn. Our task is to combine an, bn, cn and dn so as to get
the best output value that maximizes the CC and minimizes the RMSE, MAP and
MAPE values. We propose the following two ensemble approaches.

Ensemble 1 (E-1): Determine the individual absolute error differences (example,

nn ax −) and get the output value corresponding to the lowest absolute difference.

nnnnnnnn d,c,b ,amin xxxx −−−− (4)

Ensemble 2 (E-2). Using a Genetic Algorithm (GA) search the optimal values for the
linear parameters m, n, o and p such that

m + n + o + p = 1 and nnnnn xp doc nb ma ≈×+×+×+× (5)

so as to minimize RMSE, MAP and MAPE values and maximize the CC.

The fitness function could be modeled as

CC)-(1)MAPEMAP(RMSE (Z) Minimize 0.20.1 ×++= (6)

3. Experimentation Setup and Results
We considered 7 year’s month’s stock data for Nasdaq-100 Index and 4 year’s for
NIFTY index. Our target is to develop efficient forecast models that could predict the
index value of the following trade day based on the opening, closing and maximum
values of the same on a given day. For the Nasdaq-100index the data sets were repre-
sented by the ‘opening value’, ‘low value’ and ‘high value’. NIFTY index data sets
were represented by ‘opening value’, ‘low value’, ‘high value’ and ‘closing value’.
We used the same training and test data sets to evaluate the different connectionist
models. More details are reported in the following sections. The assessment of the
prediction performance of the different connectionist paradigms and the ensemble
method were done by quantifying the prediction obtained on an independent data set.

Figure 2. GA learning convergence using the ensemble (E-2) approach

• Training of connectionist paradigms
We used a feedforward neural network with 4 input nodes and a single hidden layer
consisting of 26 neurons. We used tanh-sigmoidal activation function for the hidden

neurons. The training using LM algorithm was terminated after 50 epochs and it took
about 4 seconds to train each dataset. For the neuro-fuzzy system, we used 3 triangular
membership functions for each of the input variable and the 27 if-then fuzzy rules
were learned for the Nasdaq-100 index and 81 if-then fuzzy rules for the NIFTY in-
dex. Training was terminated after 12 epochs and it took about 3 seconds to train each
dataset. Both SVM� (Gaussian kernel with � = 3) [8] and DBNN took less than one
second to learn the two data sets [3].

• Parameter settings for the genetic algorithm

Initial population was randomly created with the parameter settings as shown in Table
1. Each chromosome was represented using a 128 bits string having 32 bits for m, n, o
and p. Figure 2 illustrates the GA convergence during the 10 iterations. Experiments
were repeated 20 times for each data set and each trail run took about 4 seconds.

Population size 300
Iterations 15
Single point crossover and mutation 0.3 and 0.1
Selection strategy Probabilistic

Table 1. Parameter settings of the genetic algorithm

• Performance and results achieved

Table 2 summarizes the training and test results achieved for the two stock indices
using the four connectionist paradigms and the two ensemble approaches. Figures 3
and 4 depict the test results for the one-day ahead prediction of Nasdaq-100 index and
NIFTY index respectively.

Figure 3. NIFTY index: performance of the different methods

Figure 4. Nasdaq-100 index: performance of the different methods

Table 2: Empirical comparison of performance (training and test)

 SVM NF ANN DBNN E -1 E -2

Training results (RMSE)
Nasdaq 0.0261 0.0221 0.0292 0.0292
NIFTY 0.0173 0.0152 0.0143 0.0174

Test results - Nasdaq
RMSE 0.0180 0.0183 0.0284 0.0286 0.0121 0.0174

CC 0.9977 0.9976 0.9955 0.9940 0.9989 0.9979
MAP 481.50 520.84 481.71 116.98 94.20 436.3

MAPE 7.170 7.615 9.032 9.429 4.199 7.103
Test results - NIFTY

RMSE 0.0149 0.0127 0.0122 0.0225 0.0081 0.0130
CC 0.9968 0.9967 0.9968 0.9890 0.9988 0.9969

MAP 72.53 40.37 73.94 37.99 23.62 64.070
MAPE 4.416 3.320 3.353 5.086 1.453 2.9049

4. Conclusions

In this paper, we have demonstrated how the chaotic behavior of stock indices could
be well represented by ensembles of intelligent paradigms. Empirical results on the
two data sets using the two ensemble approaches clearly depict the importance of the
ensemble approach. It is interesting to note that the ensemble approach based on the
direct error measurement (E-1) performed better than the GA approach. The output
created by the E-1 approach has the lowest RMSE, MAP, MAPE values and the high-
est correlation coefficient values for Nasdaq and Nifty indices. As depicted in Table 2,

E-2 approach could not optimize all the four objectives for the two problems consid-
ered.

Our research has clearly shown the importance of using ensemble approach for model-
ing stock indices. An ensemble helps to indirectly combine the synergistic and com-
plementary features of the different learning paradigms without any complex hybridi-
zation. Since all the considered performance measures could be optimized such sys-
tems could be helpful in several real world applications. The developed E-1 ensemble
was to predict accurately the index values for the following trade day based on the
opening, closing and maximum values of the same on a given day. Our experimenta-
tion results indicate that the most prominent parameters that affect share prices are
their immediate opening and closing values. The fluctuations in the share market are
chaotic in the sense that they heavily depend on the values of their immediate forerun-
ning fluctuations. Our study focus on short term, on floor trades, in which the risk is
higher. However, the results of our study show that even in the seemingly random
fluctuations, there is an underlying deterministic feature that is directly enciphered in
the opening, closing and maximum values of the index of any day making predictabil-
ity possible.

References
[1] Abraham A., Nath B. and Mahanti P.K., Hybrid Intelligent Systems for Stock Market

Analysis, Computational Science, Springer-Verlag Germany, Vassil N Alexandrov et al
(Editors), USA, pp. 337-345, May 2001.

[2] Abraham A., Neuro-Fuzzy Systems: State-of-the-Art Modeling Techniques, Connection-
ist Models of Neurons, Learning Processes, and Artificial Intelligence, Springer-Verlag
Germany, Jose Mira and Alberto Prieto (Eds.), Granada, Spain, pp. 269-276, 2001.

[3] Abraham A., Philip N.S., Nath B. and Saratchandran P., Performance Analysis of Con-
nectionist Paradigms for Modeling Chaotic Behavior of Stock Indices, Computational In-
telligence and Applications, Dynamic Publishers Inc., USA, pp. 181-186, 2002.

[4] Abraham A., Philip N.S. and Saratchandran P., Modeling Chaotic Behavior of Stock
Indices Using Intelligent Paradigms, International Journal of Neural, Parallel & Scientific
Computations, USA, Volume 11, Issue (1&2), 2003.

[5] Francis E.H. Tay and L.J. Cao, Modified Support Vector Machines in Financial Time
Series Forecasting, Neurocomputing 48(1-4): pp. 847-861, 2002.

[6] Hashem, S., Optimal Linear Combination of Neural Networks, Neural Network, Volume
10, No. 3. pp. 792-994, 1995.

[7] Jang J. S. R., Sun C. T. and Mizutani E., Neuro-Fuzzy and Soft Computing: A Computa-
tional Approach to Learning and Machine Intelligence, Prentice Hall Inc, USA, 1997.

[8] Joachims T., Making large-Scale SVM Learning Practical. Advances in Kernel Methods -
Support Vector Learning, B. Schölkopf and C. Burges and A. Smola (Eds.), MIT-Press,
1999.

[9] Nasdaq Stock MarketSM: http://www.nasdaq.com.
[10] National Stock Exchange of India Limited: http://www.nse-india.com.
[11] Philip N.S. and Joseph K.B., Boosting the Differences: A Fast Bayesian classifier neural

network, Intelligent Data Analysis, Vol. 4, pp. 463-473, IOS Press, 2000.
[12] Vapnik V. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

