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Abstract 

The performance of an open or closed loop ground source heat pump system depends on 

local geological conditions. It is important these are determined as accurately as possible 

when designing a system in order to maximise efficiency and minimise installation costs. 

Factors that need to be considered are surface temperature, sub-surface temperatures down to 

100 – 200 m, thermal conductivities and diffusivities of the soil and rock layers, groundwater 

levels and flows and aquifer properties. In addition rock strength is a critical factor in 

determining the excavation or drilling method required at a site and the associated costs. The 

key to determining all of these factors is an accurate conceptual site scale model of the 

ground conditions (soils, geology, thermogeology, engineering geology and hydrogeology). 

The British Geological Survey has used the modern digital geological mapping of the UK as 

a base onto which appropriate attributes can be assigned. As a result it is possible to generate 

regional maps of surface and sub-surface temperatures, rock strength and depth to water. This 

information can be used by designers, planners and installers of ground source heat pump 

systems. The use of appropriate geological factors will assist in creating a system that meets 

the heating or cooling load of the building without unnecessary over engineering. 
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Introduction 

This paper is one of a thematic set entitled Hydrogeology and Heat Engineering.  The use of 

groundwater, abstracted via open loop systems, is increasingly being considered as a means 

to provide heating and cooling for buildings, particularly in London.  In order to avoid 

unnecessary repetition between papers in the set, the background to the science of 

thermogeology and the exploitation of ground source heat is described by Banks (2009) and 

the UK regulatory environment by Fry (2009) in which paper is also to be found an outline of 

the hydrogeology of the London Basin where many of the UK’s largest open loop ground 

source heating and cooling schemes are located. 

The uptake of Ground Source Heat Pump (GSHP) technology in the UK has been slow and 

has lagged behind that of much of continental Europe (EEBPP, 2000; Sanner et al., 2003; 

Curtis et al., 2005). However, increasing fossil fuel prices and a greater awareness of 

environmental issues are creating an ever greater demand for both heating and cooling GSHP 

systems. Recent figures released by the UK Department for Business Enterprise and 

Regulatory Reform (DBERR, 2007) estimate that the number of installations could increase 

to 10,000 units installed by 2010, 35,000 by 2015 and 55,000 by 2020. 

GSHPs can be installed at virtually any location (Rybach & Sanner, 2000), but the type of 

system, open or closed loop; the choice of ground collector loop, horizontal or vertical and 

the size of the loop all depend on local geological conditions (Sanner et al., 2003; HEEBPP, 

2003; Ondreka et al., 2007). To date most installations in the UK have been for heating (with 

the exception of recent demand for cooling in London). It is essential that the design of the 

wells for an open loop system or the collector loop for a closed loop system are optimised to 

meet the heating or cooling demand of the building. Since the drilling of boreholes or 

emplacement of the ground collector loop represents a significant proportion of the 

installation costs it is important that these are not unnecessarily over engineered. The UK has 
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a complex geology and this has been cited as one of the factors that has led to a slow uptake 

of GSHPs in the UK (Curtis, 2001). Publications are available that list information sources 

for the geological conditions for some countries, e.g. Rafferty (2001) for the USA. This paper 

reviews the geological factors that are pertinent to the choice and design of the ground 

component of a GSHP system and presents data relevant to the UK. 

Factors impacting on the ground component of a GSHP system 

Figure 1 is a sketch of the main factors that impact on the design of the ground component of 

a GSHP system. It shows a hypothetical situation where the bedrock geology is dipping and 

is exposed on the flanks of a hill. At the top of the hill the bedrock is overlain by superficial 

deposits. The location of ground collector loops for a horizontal closed loop system and a 

vertical closed loop system are indicated by HL and VL respectively. The temperature of the 

ground in the vicinity of the loops determines the temperature gradient between the ground 

and the loops that drives the heat transfer. Hence, ground temperature impacts directly on the 

heating or cooling efficiency of the system. The rock strength, thickness of superficial 

deposits and depth of weathered bedrock all affect the ground conditions and hence the 

trenching or drilling methods used and their associated costs. When drilling to depths of 100 

m, several formations with different physical properties might be encountered. Each of the 

formations around the ground collector loop may have different thermal properties and these 

will affect the heat exchange performance. Groundwater has major impacts for both open and 

closed loop systems. Thermal properties are diminished when rocks become unsaturated and 

hence groundwater levels impact on heat exchange performance. Groundwater flow will 

transport heat and affects the heating and cooling performance for both open and closed loop 

systems. Downward groundwater flow is detrimental for heating applications as it generally 

transports cooler water to depth, whilst upward flow has the opposite effect. Mine workings 

can present a hazard when shallow as they may unexpectedly be encountered when drilling. 



4 

However, at depth, mine workings can be exploited as a possible source for open loop or 

standing water column systems (Banks et al., 2009a). 

Thermal properties 

The rate at which heat can be transferred to the heat exchanger from the ground, or to the 

ground, is determined mainly by the thermal properties of the earth, i.e. thermal conductivity 

and thermal diffusivity. Thermal conductivity is the capacity of a material to conduct or 

transmit heat, whilst thermal diffusivity describes the rate at which heat is conducted through 

a medium. It is related to thermal conductivity, heat capacity and density via the equation: 

ρ
λα
pC

=  

Where α = thermal diffusivity (m2s-1), λ = thermal conductivity (W m-1 K-1), Cp = specific 

heat capacity (J kg-1 K-1) and ρ = density (kg m-3). 

General tables of thermal conductivities are available (e.g. Robertson, 1988) and typical 

values for UK rocks have been published by Rollin (1987) and Bloomer (1981). Thermal 

conductivity varies by a factor of more than two for the range of common rocks encountered 

at the surface. Superficial deposits and soils are complex aggregates of mineral and organic 

particles and so exhibit a wide range of thermal characteristics. The level of water saturation 

has a significant impact on the thermal conductivity of superficial deposits; typical values for 

which are shown in Table 1. For sedimentary rocks, the primary controls on thermal 

conductivity are the lithology, porosity, and extent of saturation. Mudstones and clays have 

thermal conductivities in the range 1.2-2.3 W m-1 K-1. For low porosity (<30%) shale, 

sandstone and siltstone the mean thermal conductivity is in the range 2.2-2.6 W m-1 K-1. 

Water has a thermal conductivity of 0.6 W m-1 K-1 and air a thermal conductivity of 0.0252 

W m-1 K-1. A saturated quartz sandstone with 5% porosity might have a thermal conductivity 

of about 6.5 W m-1 K-1  but this would decrease to about 2.5 W m-1 K-1  if the rock had a 
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porosity of 30%. Porosity is also the main influence on thermal conductivity of volcanic 

rocks. Low porosity tuffs, lavas and basalts may have values above 2 W m-1 K-1, but at 10% 

porosity with water saturation this might reduce to about 1.5 W m-1 K-1. For intrusive igneous 

rocks, which generally have a much lower porosity, the thermal conductivity variation is less. 

Intrusive rocks with low feldspar content (<60%), including granite, granodiorite, diorite, 

gabbro and many dykes, have a mean thermal conductivity of about 3.0  W m-1 K-1. For 

metamorphic rocks, porosity is often very low and thermal conductivity can be related to 

quartz content. The thermal conductivity of quartzites is high, typically above 5.5 W m-1 K-1. 

For schists, hornfels, quartz mica schists, serpentinites and marbles the mean thermal 

conductivity is about 2.9 W m-1 K-1. 

Typical rock thermal diffusivities range from about 0.75 x 10-6 m2 s-1 for clays to about 2.0 x 

10-6 m2 s-1 for high conductivity rocks such as anhydrite and pure quartzites. Most rocks have 

thermal diffusivities in the range 0.9-1.2 10-6 m2 s-1. Generally, thermal conductivity and 

specific heat are increased for saturated rocks and diffusivity is also enhanced. Table 2 gives 

representative values of thermal diffusivity and conductivity for various rock types. 

Temperature 

The ground surface of the earth is heated by solar radiation. It has been estimated that the 

annual mean net incoming radiation is typically within the range 40-80 W m-2 for temperate 

Europe (Linacre and Geerts, 1997). Soil temperatures vary both with daily and seasonal 

cycles, the former dying out within a few 10s of cm and the latter at greater depths, but at 

depths of about 15 m the temperature is approximately constant and equal to the mean annual 

air temperature (Rybach & Sanner, 2000). The annual function of air temperature is 

transmitted down through the earth at a rate dependent on thermal diffusivity. Consequently 

the temperature function in the near sub-surface has a progressive phase shift (e.g. Keery et 

al., 2007). This means that at times of minimum air temperature ground temperatures are 
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generally slightly higher and at times of maximum air temperatures ground temperatures are 

lower (see Figure 2). This effect is well known to anyone with a cellar and is beneficial for 

GSHP heating and cooling. 

The UK Meteorological Office collects and archives climate temperature data. Monthly and 

annual long-term average datasets have been generated for the periods 1961-1990 and 1971-

2000 (Perry & Hollis, 2005a). Mean annual air temperatures at sea level in mainland UK 

varies from north to south from about 8 – 12 °C and the January - July mean air temperature 

swing for much of the UK is less than 15 °C (Perry & Hollis, 2005b). Mean annual air 

temperatures show a general decrease eastwards and northwards from highest values in the 

SW of England. Since the contribution to surface temperature from terrestrial heat flow is 

very small, the mean annual ground surface temperature should be close to the mean annual 

air temperature, although it often shows a variation of ± 1 °C (Rollin, 2002). Mean annual air 

temperatures are mainly affected by position and elevation. The slope of the local terrain, 

aspect of the site, i.e. whether south or north facing and exposure of the site, i.e. sheltered or 

open also have an effect, but it is generally small.  

Given a location and height, an estimate of the mean annual air temperature can be made. A 

simple seven point polynomial function has been fitted to the UKMO annual long-term 

average data to create a model of mean annual air temperature. A sample of UKMO stations 

for 1995 was tested using this model. Of 451 stations the root mean square error for the fit 

was 0.75 °C with maximum and minimum errors of +3.0 °C and –4.1 °C respectively. 

Including distance from the sea as a further element in the polynomial gave no significant 

improvement in the model fit. Hence, a reasonable estimate of mean annual air temperature 

can be made for anywhere in Great Britain. 

Below a depth of around 15 m, temperatures are also affected by the small amount of heat 

that is conducted upwards from the interior of the earth. This component is the heat flow and 
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a heat flow map for the UK is shown in Figure 3 (Lee et al., 1987; Downing & Gray, 1986; 

Rollin, 1995; Barker et al., 2000). There is a fairly uniform background field of around 0.052 

W m-2. Areas of increased heat flow are associated with the radiogenic granites of the SW of 

England and the buried granites of northern England. Values are also above the regional 

background over the batholith in the Eastern Highlands of Scotland. As a result of the heat 

flow, temperatures increase with depth; the average UK geothermal gradient is 0.026 °C m-1, 

but locally it can be in excess of  0.035 °C m-1. 

It is possible to estimate temperatures at 100 m depth by applying Fourier’s Law of heat 

conduction: 

q = - λ grad T 

where q = heat flow (W m-2), λ = thermal conductivity (W m-1 K-1) and grad T = temperature 

gradient (K m-1). Thermal conductivity has been taken as the thermal conductivity of the 

bedrock geology (i.e. the rock below the soil and superficial deposits layers). The calculated 

temperature gradient has been added to the estimate of the mean annual air temperature to 

generate the estimate of temperature at 100 m depth and is shown for Great Britain  in Figure 

4. The assumptions of consistent geology to 100 m depth and no contribution from 

groundwater flow are clearly simplistic, but should not result in serious errors for the upper 

100 m. These modelled values have been compared to 90 equilibrium borehole temperature 

measurements at a depth of 100 m. The root mean square error between the two data sets is 

1.6 °C. The most likely cause of discrepancies between the two data sets is upwelling of 

warmer water from depth (e.g. Brassington, 2007; Shepley, 2007). However, the effect of 

urban areas may also be significant locally (Banks et al., 2009b, Headon et al., 2009).  The 

data reflect the two major influences of location and elevation on air temperature. The range 

in values is 4 – 17 °C with the lowest values corresponding with the highest topography. 

Variation occurs between regions; the SW and eastern England are warmer and there are 
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localised higher values across the Central Belt of Scotland.  There is also however 

considerable variation within regions. For instance, within the SW of England temperatures at 

100 m depth vary between 10 °C and 17 °C. 

Groundwater 

Groundwater conditions can affect the efficiency of a closed loop system, particularly as the 

thermal properties of unconsolidated sediments and rock are dependent upon the level of 

saturation. Low permeability rocks such as mudstones are generally saturated within a few 

metres of the ground surface, irrespective of elevation. In more permeable sandstones and 

limestones, the unsaturated zone thickness can be large, particularly at high elevations, and 

may alter seasonally. Sandstones, unless Palaeozoic or older in age, tend to have both 

primary intergranular and secondary fracture permeability and hence seasonal water level 

fluctuations are generally less than those observed in limestones where the predominant 

mechanism of groundwater flow is via secondary fractures. Therefore, in the UK, the main 

areas where closed loop collector systems will be less efficient are beneath areas of higher 

ground underlain by limestone (e.g. the Lincolnshire Wolds and the Cotswolds). The Chalk is 

an exception to this, as due to its very small pore throat size (median 0.7 μm or less; Allen el 

al., 1997), the water content of the unsaturated zone is nearly as high as that of the saturated 

zone and hence the thermal conductivities of both will be similar. Hence, even where the 

water level is deep, the Chalk may be suitable for closed loop collector systems. Figure 5 

shows that for most of Great Britain the unsaturated zone is likely to be effectively less than 

10 m thick. 

In confined aquifers the water level may rise above the depth at which water is first struck, 

and, if overflowing artesian conditions are encountered, this can complicate the construction 

and completion of the borehole. Other potential issues include drilling on contaminated sites 

that can result in the pollution of aquifers by the migration of surface contaminants down 
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poorly constructed boreholes or piles (Westcott et al., 2003) and the connection of separate 

aquifer horizons which can be prevented by casing through the upper aquifer or a securely 

grouted section in the intervening aquitard. The requirement for grouting also has the 

advantage of providing a good thermal contact above the water table provided that a suitable, 

high thermal conductivity grout is used. Unless a biodegradable or low toxicity fluid is used 

within the collector loops, the hydrogeology and direction of groundwater flow need to be 

considered in closed loop systems, particularly in horizontal slinky systems (which are more 

prone to accidental damage) or in aquifers used for potable supplies.  

Poor quality groundwater can also be an issue, as high total dissolved solids contents, 

particularly high chloride and sulphate ion concentrations, can be corrosive to some casing 

materials. The oxidation of sulphide minerals by exposure to air, in underground mines or 

surface spoil heaps, produces acidic, dissolved metals and sulphate. Acid mine drainage is a 

major source of pollution in many mining areas, however as the sulphide oxidation reaction is 

exothermic, Banks et al. (2004) have speculated that this geochemical energy could be used 

by heat pumps.  

Where the collector loop is below the water table in an aquifer with significant groundwater 

flow, heat transport away from the site will occur. This can be helpful for single borehole 

cooling or heating systems in dispersing warmth or coolth, respectively, away from the 

borehole and bringing new cooler or warmer groundwater towards the borehole. However, 

where several boreholes are drilled for a larger cooling or heating system, or separate 

schemes are in close proximity, thermal interference can occur causing problems. 

Groundwater flow can have a significant impact on the GSHP design. The complexity of both 

the GSHP design and the heat flow equations means that analytical solutions are not suitable 

and numerical modelling may be required. However, an indication of whether groundwater 

flow might be significant can be gained by comparing the relative impact on the heat 
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transport caused by conduction and that caused by convection (also referred to as forced 

convection or advection). This comparison can be used to decide whether further numerical 

modelling is required.  The parameter that is used for this comparison is the Peclet number 

for energy transport, which is a dimensionless variable obtained from consideration of the 

convection-conduction equation, i.e. 

 

where Pe = Peclet number, ρw = density of water (kg m-3), cw = specific heat of water, (J kg-1 

K-1), q = water specific discharge (m s-1), L = length scale (m), keff = thermal conductivity of 

aquifer (W m-1 K-1), [Note: q = hydraulic conductivity x hydraulic gradient]. 

Large Peclet numbers mean that convective transport is dominant whilst small numbers imply 

that conductive transport is dominant. In principle this convection becomes important when 

the Peclet number exceeds 1, but this is slightly dependent on the choice of the characteristic 

length (Bear, 1972). This length scale is an indication of both the borehole spacing and depth 

(thickness of saturated aquifer penetrated). Table 3 indicates the Peclet number for a variety 

of materials and groundwater flow velocities. 

Open loop systems can provide more energy than closed loop systems for the same depth of 

borehole, but can only be constructed where it is possible to abstract significant amounts of 

groundwater from an aquifer as, although systems are generally non-consumptive overall 

(due to reinjection), they require the availability of a water resource in the first place. 

Hydrogeological (or aquifer) maps are available for the UK indicating areas where there may 

be potential for significant abstractions. In addition to the above considerations for closed 

loop systems, the following also need to be taken into account. 
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The aquifer properties of the rock (porosity, permeability, hydraulic conductivity, 

transmissivity and storage coefficient) will affect both the availability of the required yield 

and also the interference (both hydraulic and thermal) of any multi-borehole system. For UK 

aquifers, the aquifer properties manuals (Allen et al, 1997, Jones et al, 2000, Graham et al, 

2006) are useful sources of these data. When several boreholes are constructed to obtain the 

required yield, it is possible that interference effects (between the zones of drawdown) could 

have a significant impact on yield. Interference effects can be minimised by the careful siting 

of the boreholes but this requires a detailed knowledge of the hydrogeology of the site. 

Licences are required for both abstraction and the discharge (or reinjection) of the hotter or 

cooler water. 

Generally, large scale systems are designed for cooling or for aquifer thermal energy storage 

and there is a requirement to reinject large volumes of groundwater back into the aquifer. 

This is more difficult if the aquifer is artesian. The hydraulic gradient induced by abstraction 

(drawdown) and reinjection (hydraulic mound) from two relatively closely spaced boreholes 

is likely to greatly exceed the natural hydraulic gradient. If the system is used solely for 

cooling, thermal interference is likely to eventually become a problem and, in aquifer thermal 

energy storage schemes, it is important they are designed with balanced thermal loads over 

each annual operating cycle. It is possible that the injection borehole will not accept water at 

the same rate that it was abstracted, due to air entrainment and/or borehole clogging by 

particulate matter or growth of biofilms. Altering the temperature of the water will alter the 

solubility of some minerals and hence the water chemistry.  

Water quality, as well as possibly being corrosive to any casing, is of importance in open 

loop systems, particularly if the water is pumped through the heat exchanger. If ions such as 

iron and manganese precipitate due to oxidation, they can cause clogging. It is therefore 

important to keep reducing groundwaters in a closed system, preventing them coming into 
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contact with the oxygen in the atmosphere. Calcite may precipitate due to differences in 

carbon dioxide concentration and/or temperature and cause scaling and hydrogen sulphide 

may accumulate. Therefore groundwaters containing dissolved gases need to be kept at a high 

pressure to prevent degassing. If the water quality is particularly poor, a ‘prophylactic’ heat 

exchanger, often with a storage tank to buffer variations in flow, can be installed (Banks, 

2008). 

However, not all the heat added to the water from cooling systems will be dissipated via 

natural or induced groundwater flow. A large proportion of the heat will be absorbed and 

stored in the rocks themselves and may provide a useable source of heat. The converse 

applies if the system is used for heating purposes.  

Ground conditions and geotechnical properties 

When a GSHP system is installed there are a number of preliminary ground engineering 

aspects that need to be considered, in particular: the thickness and the nature of any 

superficial deposits; the depth of any weathered bedrock geology; the strength of the bedrock 

geology and any hazardous ground conditions. It is vital that these aspects are assessed to 

ensure that the appropriate GSHP installation is designed, the correct method of installation is 

used (drilling or trenching) and hence the installation is appropriately costed. In the UK the 

superficial and bedrock geology are very variable and form some of the most complex 

geological terrains in the world. There are a number of datasets, now in digital form, that are 

of particular interest at the preliminary desk study phase for a GSHP installation. These are 

briefly discussed below. 

DigMapGB is a digital geological data set that covers all of Great Britain’s bedrock (formerly 

known as solid), superficial (formerly known as Quaternary), artificial (man-made e.g. 

embankments, road cuttings) and mass movement (e.g. landslides and foundered strata) 
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deposits. These data sets allow the geological conditions encountered at a site to be identified 

and hence the ground conditions for a ground source heat pump installation to be predicted. 

The characteristics (lithology) of the bedrock, superficial, artificial and mass movement 

deposits are derived from the British Geological Survey’s mapped 1:50,000 scale data. 

The superficial thickness map for Great Britain has been created by assessing and modelling 

over one million borehole records held in the BGS archives. The model has been derived 

from geological rockhead information and provides an estimated thickness of superficial 

material and therefore a depth to bedrock units. The modelling uses geological map and 

digital terrain data to assist in the interpolation of the borehole dataset and the data provides 

thickness estimates on a 50m by 50m grid basis (see Figure 6).  

The Superficial and Bedrock Engineering Strength and Relative Density dataset has been 

created using a classification that has applied the geotechnical parameter ranges for strength 

and density as described by BS5930:1999: Code of practice for site investigations (British 

Standards Institution, 1999); see Table 4 and 5. This classification has then been applied to 

all deposits in the BGS DigMapGB Superficial and Bedrock (1:50, 000 scale) geological data 

sets. Each deposit has been given a range of either strength or relative density values 

depending on whether the material is consolidated or granular in nature. This has then 

enabled a minimum and maximum strength and combined density map of Great Britain to be 

produced (Figures 7a and b). A combination of geotechnical data cited in the literature and, 

where possible, site specific drilling data extracted from site investigation borehole records 

held in the BGS National Geoscience Data Centre (NGDC) and National Geotechnical 

Database has been used to aid in the classification of the dataset. 
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Conclusions 

The preceding sections have discussed some of the geological factors that influence the 

performance and hence design of a GSHP system and this has been illustrated with some UK 

data. The geology of the UK is complex and varied and so it is not possible to have general 

design rules for the ground collector loops of closed loop systems or for the collector wells 

for open loop systems. For any individual system design, site specific information is required. 

For high capacity GSHP systems it is likely that some site investigation will be necessary. 

This is likely to include a thermal response test that provides the most accurate estimate of 

the thermal properties at a site (Banks, 2008). However, such investigations are expensive 

and are unlikely to be undertaken for individual domestic properties. For these cases the data 

sets described in this paper should be of use in designing the system. It is possible to obtain 

customised reports from the British Geological Survey on a site specific basis, but this does 

incur a fee. Alternatively individual GSHP installers may be able to apply their own 

experience in order to create the optimum design. 

The effective use of site specific geological information will lead to improved GSHP design 

that will in turn encourage the take-up of GSHPs. 
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Table 1 
Class Thermal Conductivity 

W m-1 K-1 
Thermal diffusivity 

10-6 m2 s-1 

Sand (gravel) 0.77 0.45 

Silt 1.67 0.60 

Clay 1.11 0.54 

Loam 0.91 0.49 

Saturated sand 2.50 0.93 

Saturated silt or clay 1.67 0.66 

 

Table 1. Typical thermal properties for superficial deposits (Gale, 2004). 

 

 

 

Table 2 
Rock Thermal conductivity 

W m-1 K-1 
Thermal diffusivity 

10-6 m2 s-1 

Basalt 1.80 0.685 

Dunite 4.56 0.947 

Granite 3.30 1.000 

Granodiorite  3.18 0.719 

Gneiss 3.01 1.224 

Quartzite 5.03 2.952 

Salt 4.87 3.060 

Anhydrite  5.40 2.242 

Clay 1.50 0.950 

Clay marl 2.13 0.934 

Limestone 2.73 1.054 

Marl 2.69 1.118 

Marly clay 2.30 0.894 

Sandstone 2.80 1.645 

 

Table 2. Representative values of thermal diffusivity and thermal conductivity for 
various rock types (Rollin, 2002). 
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Table 3 
Geology 

(Saturated) 

Typical Hydraulic 
gradient (m km-1) and 
as a [ratio] 

Hydraulic 
conductivity, 
(m d-1) 

Thermal 
conductivity (W 
m-1 K-1)  

Peclet 
number 

Chalk dipslope 1        [0.001] 10 1.8 2.7 

Sherwood Sst. (unconfined.) 2        [0.002] 5 3.4 1.4 

Lincs. Lst. (unconfined) 1        [0.001] 10 2.2 2.2 

Jurassic Clay 10      [0.010] 0.001 1.5 3.2 x 10-3 

Tertiary sands and clay 5        [0.005] 4.0 1.9 5.1 

Metamorphic upland 5        [0.005] 0.001 3.2 7.6 x 10-4 

Igneous upland 10      [0.010] 0.001 3.1 1.6 x 10-3 

 

Table 3. Typical values of hydraulic gradient, hydraulic conductivity and thermal 
conductivity for British aquifers and the resultant Peclet number (bold where 
convective flow of groundwater can be expected to impact on the design of GSHP 
schemes). 

 

Table 4 

  
Term Uniaxial Compressive 

Strength (MPa) 
SPT N-values 
(blows/300mm 

penetration) 

Extremely Strong >200 - 

Very Strong 100 - 200 - 

Strong  50 - 100 - 

Moderately Strong 12.5 - 50 - 

Moderately Weak 5.0 - 12.5 - 

Weak 1.25 - 5.0 - 

R
ocks 

Very weak rock / hard soil 0.60 - 1.25 - 

Very Stiff 0.30 - 0.60 >30 

Stiff 0.15 - 0.30 15 to 30 

Firm 0.08 - 0.15 8 to 15 

Soft 0.04 - 0.08 4 to 8 

Fine Soils 

Very soft <0.04 <4 

 

Table 4. Engineering strength classification for superficial and bedrock geology. The 
Standard Penetration Test (SPT) for granular soils is determined from the number of 
blows (N) from a 45 Kg hammer required to drive a rod 300 mm into the ground. 
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Table 5 

  TERM 
SPT N-values 
(blows/300mm 

penetration) 
Density Code FIELD ASSESSMENT             

(very approximate) 

Very dense >50 VDEN 

Dense 30 to 50 DENS 

Medium dense 10 to 30 MDEN 

Requires pick for 
excavation. 50 mm 
wooden peg hard to 

drive. 

Loose 4 to 10 LOOS 

C
oarse S

oils 

Very loose <4 VLOO 

Can be excavated 
with spade. 50 mm 
wooden peg easily 

driven. 

Compact / COMP Easily moulded or 
crushed in fingers 

Fine Soils 

Uncompact / UNCO 
Can be moulded or 
crushed by strong 

pressure in the fingers 

 

Table 5. Density classification for unconsolidated material. 
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Figure captions 

Figure 1. Sketch illustrating the main factors that impact on the design of the ground 

component of a GSHP system. Superficial deposits (drift cover) overlie dipping solid 

geology indicated by their thermal conductivities k0-k4. The depth extent of the 

weathered zone is indicated by the dotted line WZ and the water level by the dotted 

line WT. The solid line labelled temperature is an isotherm. HL and VL are horizontal 

and vertical collector loops respectively. 

Figure 2. Seasonal variation of the near surface temperature profile. Note there is a 

progressive phase shift with depth of the temperature function. 

Figure 3. Heat flow map of the UK. Note values are in milliWatts per metre squared. 

Figure 4. Estimated temperatures for Great Britain at 100 m depth, based on estimated 

mean annual air temperatures and one dimensional, vertical, heat conduction. 

Figure 5. Map showing depth to groundwater for Great Britain  Chalk outcrop areas 

are shown as having water within 2.5 m of the ground surface, as the presence of 

porewater in the unsaturated zone means that its thermal properties are similar to 

those of the saturated zone. 

Figure 6. Superficial Thickness map of Great Britain. 

Figure 7a and b. (a) Engineering strength and density maximum and (b) engineering 

strength and density minimum maps of Great Britain. For an explanation of the terms 

in the key see Tables 4 and 5. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7a 

 

Figure 7b 
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