
1.1 Functional programming

The main subject of this book is the interesting and powerful class of functional programming
languages . The reason for choosing such a language is the ease with which

1

Chapter 1

Introduction

The two aims , on the one hand for highly -parallel hardware , and on the other for easy
and speedy creation of high -quality software , are seen by many to be directly antithetic .
J .P. Eckert wrote , when arguing for parallel data transfer and arithmetic in computers of
EDV A C's generation , that

The arguments for parallel operation are only valid provided one applies them
to the steps which the built in or wired in programming of the machine operates

. Any steps which are control led by the operator , who sets up the machine ,

should be set up only in a serial fashion . It has been shown over and over
again that any departure from this procedure results in a system which is far
too complicated to use [Eck46].

The quest to overturn this wisdom , which had been learned "over and over again" in
1946, has occupied a large portion of the computer science community since then . Why
is parallel programming difficult ?

. Performance : The performance of a parallel program is difficult to optimise -
counting the number of instructions is no longer good enough , because some of the
instructions may be executed simultaneously .

. Portability : There are many more ways in which two parallel computers may differ ,
and these can mean that quite different algorithms are suitable for different target
architectures .

. Determinacy : The order of events during parallel program execution is almost
always indeterminate . The program 's output is determinate only if it is written
carefully .

All of these problems do arise to some extent when programming sequential computers ,
but in the general case of parallel computing they are epidemic .

2

such programs can be manipulated algebraically , and the bulk of the book is devoted to

introducing and demonstrating this in action .

It is through algebraic manipulation of programs that the problems of parallel programming

are addressed . We retreat from the hope that a single program will serve for

all the different parallel computers we might wish to use , and instead begin with a single

specifying program . Versions for different target architectures can then be derived by the

application of a toolbox of mathematical transformations to the specification , leading to

versions tuned to the various machine structures available . The transformation pathways

can then be re - used when modifications to the specification are made .

1 . 2 Loosely - coupled multiprocessors

Parallel programming is much simplified if we can assume that interprocessor communication

is very efficient , as in a shared memory multiprocessor . This book is about

programming a much larger class of computers for which such simplifying assumptions do

not hold . In general , there are two distinct problems in mapping a parallel program onto

a computer : partitioning and mapping . The most important simplifying assumption often

made is to avoid mapping , and assume that performance is independent of where process es

are placed . The class of loosely - coupled multiprocessors is defined to characterise architectures

where this assumption is not valid : a loosely - coupled multiprocessor is a collection

of processing elements (PEs) , linked by an interconnection network with the property that

communication between " neighbouring " PEs is much more efficient than communication

between non - neighbours . Depending on the interconnection network ' s topology , there are

many varieties of such an interconnection network . The important feature is that not all

PEs are local to one another , so that process placement is important to program performance

.

The importance of this class of architectures is that they are easy and inexpensive to

build on a large scale . It is not , therefore , surprising to find quite a number of loosely -

coupled multiprocessors on the market and in use . Examples include Meiko ' s Computing

Surface , Parsys ' s Supernode and Intel ' siP S C .

In architectures of this kind the full generality of the software design problems for

parallel computers become apparent . We find that data communication is often a primary

computational resource , and that much of the algorithm design effort is aimed at reducing

a program ' s communications demands . Several examples are given of how this can be

done using program transformation . The techniques have application to other parallel

architectures including more closely - coupled machines and SIMD computers .

1 . 3 Neighbour - coupled multiprocessors

A neighbour - coupled multiprocessor is a more idealised abstract computer architecture ,

and is introduced here as an experiment . A neighbour - coupled multiprocessor is aloosely -

coupled multiprocessor , where each PE is very closely coupled to its neighbours , so closely

that the programmer can assume that a PE can read and write its neighbour ' s memory

as quickly as its own .

We shall return to this abstract architecture later in the book to examine whether it

1.4 A reader ' s guide

3

allows useful simplifications .

The book consists of the following components:

. Chapter 2. FUnctional Programming : This chapter introduces functional programming
from first principles. The programming language is presented by means

of examples. Simple techniques are given for manipulating programs to modify their
structure while retaining the same input / output mapping. These are augmented by
a handful of induction rules for proving generic properties about programs:

The language is based on Miranda1 and I Iaskell (a public-domain language design
for which a specification is in preparation [IIWA +88]).

. Chapter 3. Sequential and Parallel Implementation Techniques : The aim
of this chapter to sketch how our functional language might be compiled to run
efficiently on a conventional computer, and to examine how this scheme (graph
reduction) might be extended for a tightly -coupled multiprocessor.

. Chapter 4. Specifying and Deriving Parallel Algorithms : This chapter examines
how parallelism and inter-process communication are manifest in a functional

program script . Horizontal and vertical parallelism are identified and examples are
given in the form of divide-and-conquer and pipeline algorithms respectively. The
main emphasis in this chapter is the development of program transformation tech-
niques. Examples are given of introducing pipeline parallelism, and of transforming
a divide-and-conquer algorithm into a cyclic "process network" program. This is
illustrated by application to a simple ray tracing program.

. Chapter 5. Distributed Parallel Functional Programming : We can write
programs for which a good placement onto a loosely-coupled multiprocessor can be
made. This chapter applies a declarative programming language approach to actually
specifying this placement. It incorporates abstraction mechanisms to give concise
mappings for regular architectures and algorithms. The notation is illustrated with
several examples.

. Appendix A . Proofs and Derivations : This appendix gives proofs and derivations
which would have cluttered the presentation given in chapter 4. Although

quite dense later on, the earlier material in this chapter is quite tutorial in nature
and might be read concurrently with Chapter 4 by those more interested in program
derivation and verification than in parallel programming.

. Appendix B . Common Definitions : This appendix lists widely-used function
definitions for easy reference.

1 Miranda is a trademark of Research Software Ltd.

4

. Appendix C. Programming in a real functional language : The functional
language used in this book is not quite compatible with any commonly-available
language implementation . This appendix lists the small (and quite innocuous) differences

from Miranda in order to aid a reader who wishes to experiment.

Each chapter ends with some pointers for the interested reader towards other books,
articles and research papers which might be of interest.

