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Microarray Data Analysis

Chapter 11

An Introduction to
Microarray Data Analysis

M. Madan Babu

Abstract
This chapter aims to provide an introduction to the analysis of gene expression data obtained 
using microarray experiments. It has been divided into four sections. The fi rst section 
provides basic concepts on the working of microarrays and describes the basic principles 
behind a microarray experiment. The second section deals with the representation and 
extraction of information from images obtained from microarray experiments. The third 
section addresses different methods for comparing expression profi les of genes and also 
provides an overview of different methods for clustering genes with similar expression 
profi les. The last section focuses on relating gene expression data with other biological 
information; it will provide the readers with a feel for the kind of biological discoveries 
one can make by integrating gene expression data with external information.

1. INTRODUCTION
Functional genomics involves the analysis of large datasets of information derived from 
various biological experiments. One such type of large-scale experiment involves monitoring 
the expression levels of thousands of genes simultaneously under a particular condition, 
called gene expression analysis. Microarray technology makes this possible and the quantity 
of data generated from each experiment is enormous, dwarfi ng the amount of data generated 
by genome sequencing projects. This chapter is a brief overview of the basic concepts 
involved in a microarray experiment; it gives a feeling for what the data actually represents, 
and will provide information on the various computational methods that one can employ 
to derive meaningful results from such experiments.

1.1 What are microarrays and how do they work?
Microarray technology has become one of the indispensable tools that many biologists use 
to monitor genome wide expression levels of genes in a given organism. A microarray is 
typically a glass slide on to which DNA molecules are fi xed in an orderly manner at specifi c 
locations called spots (or features). A microarray may contain thousands of spots and each 
spot may contain a few million copies of identical DNA molecules that uniquely correspond 
to a gene (Figure 1A). The DNA in a spot may either be genomic DNA or short stretch of 
oligo-nucleotide strands that correspond to a gene. The spots are printed on to the glass 
slide by a robot or are synthesised by the process of photolithography.

Microarrays may be used to measure gene expression in many ways, but one of the 
most popular applications is to compare expression of a set of genes from a cell maintained 
in a particular condition (condition A) to the same set of genes from a reference cell 
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maintained under normal conditions (condition B). Figure 1B gives a general picture of the 
experimental steps involved. First, RNA is extracted from the cells. Next, RNA molecules 
in the extract are reverse transcribed into cDNA by using an enzyme reverse transcriptase 
and nucleotides labelled with different fl uorescent dyes. For example, cDNA from cells 
grown in condition A may be labelled with a red dye and from cells grown in condition B 
with a green dye. Once the samples have been differentially labelled, they are allowed to 
hybridize onto the same glass slide. At this point, any cDNA sequence in the sample will 
hybridize to specifi c spots on the glass slide containing its complementary sequence. The 
amount of cDNA bound to a spot will be directly proportional to the initial number of RNA 
molecules present for that gene in both samples.

Following the hybridization step, the spots in the hybridized microarray are excited by 
a laser and scanned at suitable wavelengths to detect the red and green dyes. The amount 
of fl uorescence emitted upon excitation corresponds to the amount of bound nucleic acid. 
For instance, if cDNA from condition A for a particular gene was in greater abundance than 

Figure 1. (A) A microarray may contain thousands of ʻspotsʼ. Each spot contains many copies of the same DNA 
sequence that uniquely represents a gene from an organism. Spots are arranged in an orderly fashion into Pen-
groups. (B) Schematic of the experimental protocol to study differential expression of genes. The organism is 
grown in two different conditions (a reference condition and a test condition). RNA is extracted from the two 
cells, and is labelled with different dyes (red and green) during the synthesis of cDNA by reverse transcriptase. 
Following this step, cDNA is hybridized onto the microarray slide, where each cDNA molecule representing a 
gene will bind to the spot containing its complementary DNA sequence. The microarray slide is then excited 
with a laser at suitable wavelengths to detect the red and green dyes. The fi nal image is stored as a fi le for further 
analysis. Colour fi gure at: http://www.mrc-lmb.cam.ac.uk/genomes/madanm/microarray/.
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that from condition B, one would fi nd the spot to be red. If it was the other way, the spot 
would be green. If the gene was expressed to the same extent in both conditions, one would 
fi nd the spot to be yellow, and if the gene was not expressed in both conditions, the spot 
would be black. Thus, what is seen at the end of the experimental stage is an image of the 
microarray, in which each spot that corresponds to a gene has an associated fl uorescence 
value representing the relative expression level of that gene.

2. OVERVIEW OF IMAGE PROCESSING, TRANSFORMATION AND 
NORMALIZATION

2.1 Image processing and analysis
In the previous section, we saw that the relative expression level for each gene (population 
of RNA in the two samples) can be stored as an image. The fi rst step in the analysis of 
microarray data is to process this image. Most manufacturers of microarray scanners 
provide their own software; however, it is important to understand how data is actually 
being extracted from images, as this represents the primary data collection step and forms 
the basis of any further analysis.

Image processing involves the following steps:

1. Identifi cation of the spots and distinguishing them from spurious signals.
The microarray is scanned following hybridization and a TIFF image fi le is normally 
generated. Once image generation is completed, the image is analysed to identify spots. 
In the case of microarrays, the spots are arranged in an orderly manner into sub-arrays 
or pen groups (Figure 1A), which makes spot identifi cation straightforward. Most image 

Figure 2. Zooming onto a spot on the microarray slide. The spot area and the background area are depicted by a blue 
circle and a white box, respectively. A pixel in the spot area is also shown. Any pixel within the blue circle will be 
treated as a signal from the spot. Pixels outside the blue circle but within the white box will be treated as a signal from 
the background. One can see that the images are not perfect, as it is often the case, which leads to many problems 
with spurious signals from dust particles, scratches, bright arrays, etc. This image was retrieved from Stanford 
Microarray Database. Colour fi gure at: http://www.mrc-lmb.cam.ac.uk/genomes/madanm/microarray/.
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processing software requires the user to specify approximately where each sub-array 
lies and also additional parameters relevant to the spotted array. This information is 
then used to identify regions that correspond to spots.

2. Determination of the spot area to be surveyed, determination of the local region to 
estimate background hybridization.
After identifying regions that correspond to sub-arrays, an area within the sub-array 
must be selected to get a measure of the spot signal and an estimate for background 
intensity (Figure 2). There are two methods to defi ne the spot signal. The fi rst method 
is to use an area of a fi xed size that is centred on the centre of mass of the spot. This 
method has an advantage that it is computationally less expensive, but a disadvantage 
of being more error-prone in estimating spot intensity and background intensity. An 
alternative method is to precisely defi ne the boundary for a spot and only include pixels 
within the boundary. This method has an advantage that it can give a better estimate of 
the spot intensity, but also has a disadvantage of being computationally intensive and 
time-consuming.

3. Reporting summary statistics and assigning spot intensity after subtracting for 
background intensity.
Once the spot and background areas have been defi ned, a variety of summary statistics 
for each spot in each channel (red and green channels) are reported. Typically, each 
pixel (Figure 2) within the area is taken into account, and the mean, median, and total 
values for the intensity considering all the pixels in the defi ned area are reported for 
both the spot and background. Most approaches use the spot median value, with the 
background median value subtracted from it, as the metric to represent spot intensity. 
The median intensity is a value where half the measured pixels have intensities greater 
than this value and the other half of the measured pixels have intensities less than 
this value. The “background subtracted median value” approach has an advantage of 
being relatively insensitive to a few pixels with anomalous fl uorescent values in one 
or both channels, but has a disadvantage of being sensitive to misidentifi cation of spot 
and background areas. The other method is to use total intensity values, which has an 
advantage of being insensitive to misidentifi cation of spots (as few more pixels with 
zero value in the background will not affect the total intensity), but has a disadvantage 
of being prone to be skewed by a few pixels with extreme intensity values.

Another consideration in image processing is the number of pixels to be included for 
measurement in the spot image. For many scanners, the default pixel size is 10μm. This 
means that an average spot of diameter of 200μm will have ~314 pixels. However, for a 
smaller spot diameter, it is better to use a smaller pixel size to ensure enough pixels are 
sampled. Most scanners now allow the pixel size of 5μm. Even though using a smaller 
pixel size increases our confi dence in the measurement, the only disadvantage is that the 
image fi le size tends to be much bigger when compared with image fi le sizes created using 
larger pixel sizes.

2.2 Expression ratios: the primary comparison
We saw that the relative expression level for a gene can be measured as the amount of red or 
green light emitted after excitation. The most common metric used to relate this information 
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is called expression ratio. It is denoted here as TkTkT  and defi ned as:k and defi ned as:k

                                                         
Tk =Tk =T Rk

Gk

For each gene k on the array, where k on the array, where k Rk represents the spot intensity metric for the test 
sample and Gk represents the spot intensity metric for the reference sample. As mentioned 
above, the spot intensity metric for each gene can be represented as a total intensity value 
or a background subtracted median value. If we choose the median pixel value, then the 
median expression ratio for a given spot is:
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respectively, for the test sample.

2.3 Transformations of the expression ratio
The expression ratio is a relevant way of representing expression differences in a very 
intuitive manner. For example, genes that do not differ in their expression level will have 
an expression ratio of 1. However, this representation may be unhelpful when one has to 
represent up-regulation and down-regulation. For example, a gene that is up-regulated by a 
factor of 4 has an expression ratio of 4 (R/G = 4G/G = 4). However, for the case where a gene 
is down regulated by a factor of 4, the expression ratio becomes 0.25 (R/G = R/4R = 1/4). 
Thus up-regulation is blown up and mapped between 1 and infi nity, whereas down-regulation 
is compressed and mapped between 0 and 1.

                                           [ ]∞ →− ,1    regulationUp mapped

                                                    
[ ]0,1    regulationDown mapped →−

To eliminate this inconsistency in the mapping interval, one can perform two kinds of 
transformations of the expression ratio, namely, inverse transformation and logarithmic 
transformation.

Inverse or reciprocal transformation
The inverse or reciprocal transformation converts the expression ratio into a fold-change, 
where for genes with an expression ratio of less than 1 the reciprocal of the expression 
ratio is multiplied by -1. If the expression ratio is ≥  1 then the fold change is equal to the 
expression ratio. The advantage of such a transformation is that one can represent up-
regulation and down-regulation with a similar mapping interval.
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However, this method also has a problem in that the mapping space is discontinuous between 
–1 and +1 and hence becomes a problem in most mathematical analyses downstream of 
this step.

Logarithmic transformation
A better transformation procedure is to take the logarithm base 2 value of the expression 
ratio (i.e. log2 (expression ratio)). This has the major advantage that it treats differential 
up-regulation and down-regulation equally, and also has a continuous mapping space. 
For example, if the expression ratio is 1, then log2 (1) equals 0 represents no change in 
expression. If the expression ratio is 4, then log2 (4) equals +2 and for expression ratio of  
log2 (1/4) equals -2. Thus, in this transformation the mapping space is continuous and up-
regulation and down-regulation are comparable.

Having explained the advantages of using expression ratios as a metric for gene 
expression, it should also be understood that there are disadvantages of using expression 
ratios or transformations of the ratios for data analysis. Even though expression ratios can 
reveal patterns inherent in the data, they remove all information about absolute expression 
levels of the genes. For example, genes that have R/G ratios of  400/100  and  4/1  will end up 
having the same expression ratio of 4, and associated problems will surface when one tries 
to reliably identify differentially regulated genes.

2.4 Data normalization
In the last section, it was shown that expression ratios and their transformations is 
a reasonable measure to detect differentially expressed genes. However, when one 
compares the expression levels of genes that should not change in the two conditions (say, 
housekeeping genes), what one quite often fi nds is that an average expression ratio of such 
genes deviates from 1. This may be due to various reasons, for example, variation caused by 
differential labelling effi ciency of the two fl uorescent dyes or different amounts of starting 
mRNA material in the two samples. Thus, in the case of microarray experiments, as for 
any large-scale experiments, there are many sources of systematic variation that affect 
measurements of gene expression levels.

Normalization is a term that is used to describe the process of eliminating such variations 
to allow appropriate comparison of data obtained from the two samples. There are many 
methods of normalization and discussing each one of them is beyond the scope of this 
chapter.

The fi rst step in a normalization procedure is to choose a gene-set (which consists of 
genes for which expression levels should not change under the conditions studied, that 
is the expression ratio for all genes in the gene-set is expected to be 1. From that set, a 
normalization factor, which is a number that accounts for the variability seen in the gene-
set, is calculated. It is then applied to the other genes in the microarray experiment. One 
should note that the normalization procedure changes the data, and is carried out only on 
the background corrected values for each spot. Figure 3 shows expression data before and 
after the normalization procedure.

Total intensity normalization
The basic assumption in a total intensity normalization is that the total quantity of RNA for 
the two samples is the same. Also assuming that the same number of molecules of RNA 



231

Microarray Data Analysis

from both samples hybridize to the microarray, the total hybridization intensities for the 
gene-sets should be equal. So, a normalization factor can be calculated as:
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Figure 3. Gene expression data before and after the normalization procedure. Note that before normalization the 
image had many spots of different intensities, but after normalization only spots that are really different light up. 
This image was kindly provided by N. Luscombe. Colour fi gure at: http://www.mrc-lmb.cam.ac.uk/genomes/
madanm/microarray/.
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Which is equivalent to:
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This now adjusts the ratio such that the mean ratio for the gene set is equal to 1.

Mean log centring
In this method, the basic assumption is that the mean log2 (expression ratio) should be equal 
to 0 for the gene-set. In this case, the normalization factor can be calculated as:
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This adjusts the ratio such that the mean log2 (expression ratio) for the gene-set is equal 
to 0.

Other normalization methods include: linear regression, Chenʼs ratio statistics and 
Lowess normalization. The next step following the normalization procedure is to fi lter 
low intensity data using specifi c threshold or relative threshold imposed according to the 
background intensity. If the experimental procedure included a replicate, averaging the 
values using the replicate data is the next step to be performed after data fi ltering. Finally, 
differentially expressed genes are identifi ed. For an excellent review of normalization 
procedures, fi ltering methods and averaging procedures using replicate data, please refer 
to Quackenbush, (2002) and references therein.

3. ANALYSIS OF GENE EXPRESSION DATA
One of the reasons to carry out a microarray experiment is to monitor the expression level of 
genes at a genome scale. Patterns could be derived from analysing the change in expression 
of the genes, and new insights could be gained into the underlying biology. In this section, 
basic terminologies, representations of the microarray data and the various methods by 
which expression data can be analysed will be introduced.

The processed data, after the normalization procedure, can then be represented in the form 
of a matrix, often called gene expression matrix (Table 1A). Each row in the matrix corresponds 
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to a particular gene and each column could either correspond to an experimental condition 
or a specifi c time point at which expression of the genes has been measured. The expression 
levels for a gene across different experimental conditions are cumulatively called the gene 
expression profi le, and the expression levels for all genes under an experimental condition are 
cumulatively called the sample expression profi le. Once we have obtained the gene expression 
matrix (Table 1A), additional levels of annotation can be added either to the gene or to the 
sample. For example, the function of the genes can be provided, or the additional details on 
the biology of the sample may be provided, such as ʻdisease state  ̓or ʻnormal stateʼ.

Depending on whether the annotation is used or not, analysis of gene expression data 
can be classifi ed into two different types, namely supervised or unsupervised learning. In 
the case of a supervised learning, we do use the annotation of either the gene or the sample, 
and create clusters of genes or samples in order to identify patterns that are characteristic 
for the cluster. For example, we could separate sample expression profi les into ʻdisease 
state  ̓and ʻnormal state  ̓groups, and then look for patterns that separate the sample profi le 
of the ʻdisease state  ̓from the sample profi le of the ʻnormal stateʼ.

In the case of an unsupervised learning, the expression data is analysed to identify 
patterns that can group genes or samples into clusters without the use of any form of 

Table 1. A: Gene expression matrix that contains rows representing genes and columns representing particular 
conditions. Each cell contains a value, given in arbitrary units, that refl ects the expression level of a gene under 
a corresponding condition. B: Condition C4 is used as a reference and all other conditions are normalized with 
respect to C4 to obtain expression ratios. C: In this table all expression ratios were converted into the log2 
(expression ratio) values. This representation has an advantage of treating up-regulation and down-regulation on 
comparable scales. D: Discrete values for the elements in Table 1.C. Genes with log2 (expression ratio) values 
greater than 1 were changed to 1, genes with values less than –1 were changed to –1. Any value between –1 and 
1 was changed to 0.
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annotation. For example, genes with similar expression profi les can be clustered together 
without the use of any annotation. However, annotation information may be taken into 
account at a later stage to make meaningful biological inferences. Throughout this section, 
set of genes or set of experimental conditions that have similar expression profi les will be 
referred to as a ̒ clusterʼ. Thus, a cluster consists of ̒ objects  ̓with similar expression profi les, 
where an object may either refer to genes or samples.

3.1 Representation of gene expression data
To make any meaningful comparison or biological analysis, one should know what the 
data in the gene expression matrix represents. Expression data can be represented in fi ve 
different ways, which are described below:

Absolute measurement
In the case of an absolute measurement, each cell in the matrix will represent the expression 
level of the gene in abstract units. Note that it is not meaningful to compare expression levels 
of genes across two different conditions in absolute units, because the starting amounts of 
mRNA could be different. Table 1A shows a sample gene expression matrix with each cell 
containing the expression level in abstract units.

Relative measurement or expression ratio
In the case of a relative measurement or representations involving expression ratio, the 
expression level of a gene in abstract units is normalized with respect to its expression in a 
reference condition. This gives the expression ratio of the gene in relative units. Note that 
in such cases, a ratio of 4000/100 will lead to the same result as 40/10. Thus any information on 
absolute measurement will be lost in such a representation, but now meaningful comparison 
across different conditions can be made as long as the same reference condition is used to get 
the expression ratio. As mentioned before, this representation does not treat up-regulation 
and down-regulation in a comparable manner. Table 1B shows the gene expression matrix 
with each cell representing the expression ratio normalized with respect to a reference 
condition.

log2(expression ratio)
In the case of tables representing the log2 (expression ratio) values, information on up-
regulation and down-regulation is captured and is mapped in a symmetric manner. For 
example, 4-fold up-regulation maps to log2 (4) = 2 and a 4-fold down-regulation maps to 
log2 (1/4) = -2. Thus, from this table the fold-change for a differentially regulated gene 
under any condition can be easily recognised. Table 1C shows the log2 (expression ratio) 
values of the genes under different conditions.

Discrete values
Another way of representing information is to convert to discrete numbers the values in 
the tables mentioned above. In the case of converting the absolute measurement to discrete 
numbers, a binary expression matrix of 1 and 0 can be used, where 1 means that the gene is 
expressed above a user defi ned threshold, and 0 means that the gene is expressed below this 
threshold. In the case of making the relative expression tables or log2 (expression ratio) tables 
discrete, values can be divided into 3 classes, +1, 0 and –1, where +1 represents a gene that is 
positively regulated, 0 represents a gene that is not differentially regulated and –1 represents 
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a gene that is repressed. The process of making the values discrete loses a lot of information, 
but is useful to analyse expression profi les using algorithms that cannot handle real value 
expression matrices, for example algorithms calculating mutual information between genes 
or samples. Table 1D shows discrete values for the log2 (expression ratio) table.

Representation of expression profi les as vectors
So far we have seen how individual cells in the gene expression matrix can be represented. 
Similarly, an expression profi le (of a gene or a sample) can be thought of as a vector and 
can be represented in vector space. For example, an expression profi le of a gene can be 
considered as a vector in n dimensional space (where n is the number of conditions), and an 
expression profi le of a sample with m genes can be considered as a vector in m dimensional 
space (where m is the number of genes). In the example given below, the gene expression 
matrix X with m genes across n conditions is considered to be an m x n matrix, where the 
expression value for gene i in condition j is denoted as xj is denoted as xj ij:
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The expression profi le of a gene i can be represented as a row vector:
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The expression profi le of a sample j can be represented as a column vector: j can be represented as a column vector: j
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In the next section, we will see how expression profi les that are represented as vectors can 
be used to compare how similar or different are the pairs of objects (remember, an object 
may refer to a gene or a sample).

3.2 Distance measures
Analysis of gene expression data is primarily based on comparison of gene expression 
profi les or sample expression profi les. In order to compare expression profi les, we need a 
measure to quantify how similar or dissimilar are the objects that are being considered. A 
variety of distance measures can be used to calculate similarity in expression profi les and 
these are discussed below.
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Euclidean distance
Euclidean distance is one of the common distance measures used to calculate similarity 
between expression profi les. The Euclidean distance between two vectors of dimension 2, 
say A=[a1, a2] and B=[b1, b2] can be calculated as:

                                
2

22
2
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For instance two genes with expression profi les in two conditions G1=[1,2] and G2=[2,3], 
the Euclidean distance can be calculated as:
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Thus for genes with expression data available for n conditions, represented as
A=[a1, .., an] and B=[b1, .., bn], Euclidean distance can be calculated as:
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In other words, the Euclidean distance between two genes is the square root of the sum of 
the squares of the distances between the values in each condition (dimension).

A more general form of the Euclidean distance is called the Minkowski distance, 
calculated as:
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A special case of the Minkowski distance when p=1 is called rectilinear distance. When 
applied to binary expression profi les (i.e. expression levels changed to 1 and 0), it is called 
hamming distance.

Pearson correlation coeffi cient
One of the most commonly used metrics to measure similarity between expression profi les 
is the Pearson correlation coeffi cient (PCC) (Eisen et al. 1998). Given the expression 
ratios for two genes under three conditions A=[a1, a2, a3] and B=[b1, b2, b3], PCC can be 
computed as follows:

Step1: Compute mean
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Step2: “Mean centre” expression profi les
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Step3: Calculate PCC as the cosine of the angle between the mean-centred profi les
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The reason why we “mean centre” the expression profi les is to make sure that we compare 
ʻshapes  ̓of the expression profi les and not their magnitude. Mean centring maintains the 
shape of the profi le, but it changes the magnitude of the profi le as shown in Figure 4.

A PCC value of 1 essentially means that the two genes have similar expression profi les 
and a value of –1 means that the two genes have exactly opposite expression profi les. A value 
of 0 means that no relationship can be inferred between the expression profi les of genes. In 
reality, PCC values range from –1 to +1. A PCC value ≥  0.7 suggests that the genes behave 
similarly and a PCC value ≤  -0.7 suggests that the genes have opposite behaviour. The 
value of 0.7 is an arbitrary cut-off, and in real cases this value can be chosen depending on 
the dataset used. An example calculation is shown below:

Figure 4. Expression profi le before and after ʻmean centringʼ. Note that after mean centring, the relative ʻshapes  ̓
of the expression profi les are still maintained, but the magnitude changes. The graphs do not show the actual 
result of PCC analysis.
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Consider two genes with expression profi les A = [1, 3, 5, 6, 9] and B=[2, 6, 9, 12, 19]. 
The PCC can be calculated as follows:

a = 4.8 and b = 9.6, the mean centred expression profi les become:

                   A = [-3.8, -1.8, 0.2, 1.2, 4.2] and B = [-7.6, -3.6, -0.6, 2.4, 9.4]

Therefore,                 
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Rank correlation coeffi cient
Rank correlation coeffi cient (RCC) is a distance measure that does not take into account 
the actual magnitude of the expression ratio in each condition, but takes into account the 
ʻrank  ̓of the expression ratio. For example, consider two genes A = [2, 3, 9, 15, 8] and B
= [2, 7, 15, 25, 13]. When we consider the rank of the values for different conditions for 
gene A, we get the following:

2 (rank = 1) < 3 (rank = 2) < 8 (rank = 3) < 9 (rank = 4) < 15 (rank = 5) which is equivalent 
to A = [1, 2, 4, 5, 3].

Similarly, for gene B, we get the ranks for the values for the different conditions as:

2 (rank = 1) < 7 (rank = 2) < 13 (rank = 3) < 15 (rank = 4) < 25 (rank = 5), which is 
equivalent to B = [1, 2, 4, 5, 3].

Rank correlation coeffi cient is the PCC calculated on the expression profi les converted 
into their rank profi les. In the above case the two genes have exactly the same rank profi le, 
thus rank correlation coeffi cient becomes 1. However, PCC is not applicable when two 
values within a rank profi le are repeated. In this case, the rank correlation coeffi cient can 
be directly computed as:

                                       
∑

= −
×−=

n

i

i
rank nn

d
BAD

1
2

2

)1(
61),(

Where n is the number of conditions (dimension of the profi le) and di is the difference 
between ranks for the two genes at condition i. An advantage of RCC is that it is not 
sensitive to outliers in the data.
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Mutual information
A distance measure to compare genes whose profi les have been made discrete can be 
calculated using an entropy notion, called Shannon s̓ entropy. This measure gives us a metric 
that is indicative of how much ʻinformation  ̓from the expression profi le of one gene can 
be obtained to predict the behaviour of the other gene.

Consider the discrete expression profi les for two genes, A = [1, 1, 0, 1, -1] and B = [1, 
-1, 0, 1, -1]. We know that at any condition, the values that have been made discrete can 
be 1, 0 or –1. Thus, the probability for each state to occur in the profi le for the two genes 
can be computed as follows:

Genes Probability
P(1) P(0) P(-1) P(1)+P(0)+P(-1)

A
5

3

(3 occurrences
in 5 conditions)

5
1

(1 occurrence
in 5 conditions)

5
1

(1 occurrence
in 5 conditions)

( )
1

5

113 =++

B
5

2

(2 occurrences
in 5 conditions)

5
1

(1 occurrence
in 5 conditions)

5
2

(2 occurrences
in 5 conditions)

( )
1

5

212 =++

From this table, the Shannonʼs entropy for the genes can be calculated as:

                                             
∑

=

×−=
3

1
2log)(

i
ii PPgeneH

Note that i runs from 1 to 3 because there are three possible states (1, 0 and –1).

                  
371.15

1log5
1

5
1log5

1
5

3log5
3(1 222  = ) × +  × + ××=   -H(A) 

                  
522.15

2log5
2

5
1log5

1
5

2log5
2(1 222  = ) × +  × + ××=   -H(B) 

The next step in our calculation is to consider how often gene A and gene B have the same 
state (1, 0, or -1) across given conditions. There are 9 possible pairwise combinations of 
states, and they are calculated for our example in the following manner:

P(A,B) Occurrence P(A,B) Occurrence P(A,B) Occurrence

P(1,1) 5
2 P(0,1) 5

0 P(-1,1) 5
0

P(1,0) 5
0 P(0,0) 5

1 P(-1,0) 5
0

P(1,-1) 5
1 P(0,-1) 5

0 P(-1,-1) 5
1

The number of conditions in which both gene A and gene B have their values equal to 1 
over all conditions is 2 out of 5 conditions, and so on.
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Another parameter we will need to calculate mutual information is joint entropy H(A,B):

                                              
∑

=

×−=
3

1,
2log),(

ji
ijij PPBAH

when both i and j independently run from 1 to 3, corresponding to the three states (1, 0 and –1).j independently run from 1 to 3, corresponding to the three states (1, 0 and –1).j

     
923.15

1log5
1

5
1log5

1
5

1log5
1

5
2log5

2(, 2222  =  ) × +  × +  × + ××=   -1B) H(A

For the above example, the mutual information between the two expression profi les, which 
provides a measure of the similarity between the two genes can be calculated as:

                  970.0923.1522.1371.1),()()(),( =−+=−+= BAHBHAHBAM

In general, the higher the mutual information score, the more similar are the two profi les. 
However, precise state and consequently, interpretation of the observed score would 
depend on the number of conditions for which measurements were available. For our case 
of 5 conditions, the obtained score of 0.97 is high. But reader is advised to consult more 
specialised sources for understanding of states associated with mutual information distance 
measure (Shannon, 1949). One should note that a distance measure has to be chosen only 
after considering the data to be analysed and that there is no single distance measure that 
is appropriate for all types of data.

3.3 Clustering methods
One of the goals of microarray data analysis is to cluster genes or samples with similar 
expression profi les together, to make meaningful biological inference about the set of genes 
or samples. Clustering is one of the unsupervised approaches to classify data into groups 
of genes or samples with similar patterns that are characteristic to the group. Clustering 
methods can be hierarchical (grouping objects into clusters and specifying relationships 
among objects in a cluster, resembling a phylogenetic tree) or non-hierarchical (grouping 

Figure 5. An overview of the different clustering methods. 
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into clusters without specifying relationships between objects in a cluster) as schematically 
represented in Figure 5. Remember, an object may refer to a gene or a sample, and a cluster 
refers to a set of objects that behave in a similar manner.

Hierarchical clustering
Hierarchical clustering may be agglomerative (starting with the assumption that each 
object is a cluster and grouping similar objects into bigger clusters) or divisive (starting 
from grouping all objects into one cluster and subsequently breaking the big cluster into 
smaller clusters with similar properties). The basic idea behind agglomerative and divisive 
hierarchical clustering is shown in Figure 6. There are many different types of clustering 
methods and a few commonly used ones are described below.

Figure 6. Schematic diagram showing the principle behind agglomerative and divisive clustering. The colour 
code represents the log2 (expression ratio), where red represents up-regulation, green represents down-regulation, 
and black represents no change in expression. In agglomerative clustering, genes that are similar to each other 
are grouped together, and an average expression profi le is calculated for the group by using the average linkage 
algorithm. This step is performed iteratively until all genes are included into one cluster. In the case of divisive 
clustering, the whole set of genes is considered as a single cluster and is broken down iteratively into sub-clusters 
with similar expression profi les until each cluster contains only one gene. This information can be represented 
as a tree, where the terminal nodes represent genes and all branches represent different clusters. The distance 
from the branch point provides a measure of the distance between two objects. This image was adapted from 
Dopazo et al., (2001). Notice that the ordered matrix at the top is the actual product of either agglomerative or 
divisive clustering, and genes A to E are given in the fi nal order for the simplicity of illustration; initially rows 
corresponding to genes A to E could be arranged in any order and it is the task of the methods to arrange them 
meaningfully. Colour fi gure at: http://www.mrc-lmb.cam.ac.uk/genomes/madanm/microarray/.
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Hierarchical clustering: agglomerative
In the case of a hierarchical agglomerative clustering, the objects are successively fused 
until all the objects are included. For a hierarchical agglomerative clustering procedure, 
each object is considered as a cluster. The fi rst step is the calculation of pairwise distance 
measures for the objects to be clustered. Based on the pairwise distances between them, 
objects that are similar to each other are grouped into clusters. After this is done, pairwise 
distances between the clusters are re-calculated, and clusters that are similar are grouped 
together in an iterative manner until all the objects are included into a single cluster. This 
information can be represented as a dendrogram, where the distance from the branch point 
is indicative of the distance between the two clusters or objects.

Comparison of clusters with another cluster or an object can be carried out using four 
approaches (Figure 7).

Single linkage clustering (Minimum distance)
In single linkage clustering, distance between two clusters is calculated as the minimum 
distance between all possible pairs of objects, one from each cluster. This method has 
an advantage that it is insensitive to outliers. This method is also known as the nearest 
neighbour linkage.

Complete linkage clustering (Maximum distance)
In complete linkage clustering, distance between two clusters is calculated as the maximum 
distance between all possible pairs of objects, one from each cluster. The disadvantage 
of this method is that it is sensitive to outliers. This method is also known as the farthest 
neighbour linkage.

Average linkage clustering
In average linkage clustering, distance between two clusters is calculated as the average of 
distances between all possible pairs of objects in the two clusters.

Figure 7. Different algorithms to fi nd distance between two clusters. 
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Centroid linkage clustering
In centroid linkage clustering, an average expression profi le (called a centroid) is calculated 
in two steps. First, the mean in each dimension of the expression profi les is calculated for 
all objects in a cluster. Then, distance between the clusters is measured as the distance 
between the average expression profi les of the two clusters. 

An example of the hierarchical agglomerative clustering using single linkage clustering 
is shown in Figure 8.

Hierarchical clustering: divisive
Hierarchical divisive clustering is the opposite of the agglomerative method, where the entire 
set of objects is considered as a single cluster and is broken down into two or more clusters 
that have similar expression profi les. After this is done, each cluster is considered separately 
and the divisive  process is repeated iteratively until all objects have been separated into 
single objects. The division of objects into clusters on each iterative step may be decided 
upon by principal component analysis which determines a vector that separates given objects. 
This method is less popular than agglomerative clustering, but has successfully been used 
in the analysis of gene expression data by Alon et al. (1999).

Non-hierarchical clustering
One of the major criticisms of hierarchical clustering is that there is no compelling evidence 
that a hierarchical structure best suits grouping of the expression profi les. An alternative to 
this method is a non-hierarchical clustering, which requires predetermination of the number 
of clusters. Non-hierarchical clustering then groups existing objects into these predefi ned 
clusters rather than organizing them into a hierarchical structure.

Figure 8. An example of a hierarchical clustering using single linkage algorithm. Consider fi ve genes and the 
distances between them as shown in the table. In the fi rst step, genes that are close to each other are grouped 
together and the distances are re-calculated using the single linkage algorithm. This procedure is repeated until 
all genes are grouped into one cluster. This information can be represented as a tree (shown to the right), where 
the distance from the branch point refl ects the distance between genes or clusters. This image was adapted from 
Causton et al. (2003).
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Non-hierarchical clustering: K-means
K-means is a popular non-hierarchical clustering method (Figure 9A). In K-means 
clustering, the fi rst step is to arbitrarily group objects into a predetermined number of 
clusters. The number of clusters can be chosen randomly or estimated by fi rst performing 
a hierarchical clustering of the data. Following this step, an average expression profi le 
(centroid) is calculated for each cluster, this is called initialization. Next, individual objects 
are reattributed from one cluster to the other depending on which centroid is closer to the 
gene (or sample). This procedure of calculating the centroid for each cluster and re-grouping 
objects closer to available centroids is performed in an iterative manner for a fi xed number 
of times, or until convergence (state when composition of clusters remains unaltered by 
further iterations). Typically, the number of iterations required to obtain stable clusters ranges 
from 20,000 to 100,000. However, there is no guarantee that the clusters will converge. 
This method has an advantage that it is scalable for large datasets.

Non-hierarchical clustering: Self Organizing Maps
Self Organizing Maps (SOMs) work in a manner similar to K-means clustering (Figure 9B). 
In K-means clustering, one chooses the number of clusters to fi t the data, whereas with SOM 
the fi rst step is to choose the number and orientation of the clusters with respect to each 
other. For example, a two-dimensional grid of ʻnodes  ̓(which may end up being clusters) 

Figure 9. A: The principle behind K-means clustering. Objects are grouped into a predefi ned number of clusters 
during the initialization step. Centroid for each cluster is calculated, and objects are re-grouped depending on how 
close they are to available centroids. This step is performed iteratively until convergence or is performed for a 
fi xed number of iterations to get fi nal clusters of objects. B: The principle behind SOMs. During the initialization 
step, a grid of nodes is projected onto the expression space and each gene is assigned its closest node. Following 
this step, one gene is chosen at random and the assigned node is ʻmoved  ̓towards it. The other nodes are moved 
towards this gene depending on how close they are to the selected gene. This step is performed iteratively until 
convergence or is performed for a fi xed number of iterations to get a fi nal map of nodes.
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could be the starting point. The grid is projected onto the expression space, and each object 
is assigned a node that is nearest to it – this is called initialization. In the next step, a random 
object is chosen and the node (called a reference vector) which is in the ʻneighbourhood  ̓
of the object is moved closer to it. The other nodes are moved to a small extent depending 
on how close they are to the object chosen. In successive iterations, with randomly chosen 
objects, the positions of the nodes are refi ned and the ʻradius of neighbourhood  ̓becomes 
confi ned. In this way, the grid of nodes (initially a two-dimensional grid) is deformed to 
fi t the data. The advantage of this method, unlike K-means, is that SOM does not force the 
number of clusters to be equal to the number of starting nodes in the chosen grid. This is 
because some nodes may have no objects associated with them when the map is complete. 
Other advantages of SOM include providing information on the similarity between the 
nodes, and the ability of SOM to produce reliable results even with noisy data.

4. RELATING EXPRESSION DATA TO OTHER BIOLOGICAL INFORMATION
Gene expression profi les can be linked to external information to gain insight into biological 
processes and to make new discoveries. Some of the possible questions that can be addressed 
after analysing gene expression data will be discussed in this section.

4.1 Predicting binding sites
It is reasonable to assume that genes with similar expression profi les are regulated by the 
same set of transcription factors. If this happens to be the case, then genes that have similar 
expression profi les should have similar transcription factor binding sites upstream of the 
coding sequence in the DNA. Various research groups have exploited this assumption. 
Brazma et al. (1998) and others (Bussemaker et al., 2001; Conlon et al., 2003) have studied 
the occurrence of sequence patterns and discovered ̒ putative binding sites  ̓in the promoter 
regions of genes that are co-expressed. The steps involved in such studies are the following: 
(1) Find a set of genes that have similar expression profi les. (2) Extract promoter sequences 
of the co-expressed genes. (3) Identify statistically over-represented sequence patterns. (4) 
Assess quality of the discovered pattern using statistical signifi cance criteria.

4.2 Predicting protein interactions and protein functions
Integrating expression data with other external information, for example evolutionary 
conservation of proteins, have been used to predict interacting proteins, protein complexes, 
and protein function. Work by Ge et al. (2001) and Jansen and Gerstein (2000) have shown 
that genes with similar expression profi les are more likely to encode proteins that interact. 
When this information is combined with evolutionary conservation of proteins, meaningful 
predictions can be made. In a recent work by Teichmann and Madan Babu (2002) it was 
shown that proteins that are evolutionarily conserved in yeast and worm and that have 
similar expression profi les in both organisms tend to be a part of the same stable complex 
or interact physically. Noort et al. (2003) have also shown that the encoded proteins of 
conserved, co-expressed gene pairs are highly likely to be part of the same pathway. Such 
studies enable us to predict specifi c gene functions. The steps involved in such studies are 
the following: (1) Identify co-expressed genes in the two studied organisms. (2) Identify 
conserved (orthologous) proteins. (3) Find instances where conserved (orthologous) proteins 
are co-expressed in both organisms. (4) Map information on protein interaction or metabolic 
pathway available for one organism to predict interacting proteins or function of the proteins 
in the other organism.
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4.3 Predicting functionally conserved modules
Genes that have similar expression profi les often have related functions. Instead of studying 
co-expressed pairs of genes, one can view sets of co-expressed genes that are known to 
interact as a functional module involved in a particular biological process (Madan Babu et al., 
2004). This information, when integrated with the evolutionary conservation of proteins in 
more than two organisms, provides knowledge of the signifi cance of the functional modules 
that have been conserved in evolution. Stuart et al. (2003) have addressed this issue in great 
detail and have identifi ed one evolutionarily conserved functional module which belongs 
to an as yet unknown biological process. For other modules that are known to be involved 
in previously well-studied biological process, new module members were discovered by 
Stuart et al. (2003), providing clues about unknown candidates involved in the processes. 
The steps involved in such studies are similar to those discussed in the previous section. 
Instead of two organisms, one has to consider three or more organisms, and should also 
address other issues related to identifying orthologous proteins.

4.4 ‘Reverse-engineering’ of gene regulatory networks
Gene expression data can also be used to infer regulatory relationships. This approach is 
known as reverse engineering of regulatory networks. Research by Segal et al. (2003) and 
Gardner et al. (2003) clearly highlights that we are now in a good position to use expression 
data to make predictions about the transcriptional regulators for a given gene or sets of 
genes. Segal et al. (2003) have developed a probabilistic model to identify modules of co-
regulated genes, their transcriptional regulators and conditions that infl uence regulation. 
This new knowledge allowed them to generate further hypotheses, which are experimentally 
testable. Gardner et al. (2003) described a method to infer regulatory relationships, called 
NIR (Network Identifi cation by multiple Regression), which uses non-linear differential 
equations to model regulatory networks. In this method, a model of connections between 
genes in a network is inferred from measurements of system dynamics (i.e. response of 
genes and proteins to perturbations).

5. WEBSITE REFERENCES, ACADEMIC SOFTWARE AND WEB 
SUPPLEMENT

5.1 Website references
Some websites that provide a reference to various aspects of microarrays are given 
below:

Portals:
http://ihome.cuhk.edu.hk/%7Eb400559/array.html
A comprehensive web portal on microarrays.

http://www.bioinformatics.vg/biolinks/bioinformatics/Microarrays.shtml
A web-portal on microarrays.

http://www.hgmp.mrc.ac.uk/GenomeWeb/nuc-genexp.html
A collection of gene expression and microarray links at the HGMP (Human Genome 
Mapping Project).
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Tutorials:
http://www.ucl.ac.uk/oncology/MicroCore/HTML_resource/tut_frameset.htm
A website that provides a tutorial on the various aspects of microarray data analysis 
discussed in this chapter.

Software links:
http://genome-www5.stanford.edu/restech.html
This website provides a list of software available for microarray data analysis with a brief 
description of what the software does and the platform on which it can be run.

Microarray databases:
http://genome-www5.stanford.edu/
Stanford Microarray Database (SMD) – contains raw and normalized data from microarray 
experiments as well as their image fi les. SMD also provides interfaces for data retrieval, 
analysis and visualisation.

http://www.ebi.ac.uk/arrayexpress/
ArrayExpress – public repository for microarray data at the EMBL-EBI.

http://info.med.yale.edu/microarray/
Yale Microarray Database (YMD)

http://www.ncbi.nlm.nih.gov/geo/
Gene Expression Omnibus at the NCBI, NIH.

Table 2. List of software available for academic use.
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5.2 Software available for non-commercial use
The list of software provided here is by no means exhaustive. The readers are urged to 
visit the reference websites provided above to get a more comprehensive list of available 
programs (Table 2).

5.3 Supplementary material on the web
The web-supplement is available at:
http://www.mrc-lmb.cam.ac.uk/genomes/madanm/microarray/

It has PERL scripts to calculate the following statistics:

1. Euclidean distance.
2. Pearson correlation coeffi cient.
3. Rank correlation coeffi cient.

Expression datasets for the yeast genome from Cho et al. (1998) and Spellman et al. (1998) 
are also provided.
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