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Abstract

A log-conformation formulation has alleviated the long-standing high Weissenberg
number problem associated with the viscoelastic fluid flows [R. Fattal and R. Kupfer-
man, Constitutive Laws for the Matrix-Logarithm of the Conformation Tensor, J.
Non-Newtonian Fluid Mech. 123 (2004), 281–285]. This formulation ensures the
physical correctness of the solutions, and it is able to capture sharp elastic stress
boundary layers; however, the implementation presented in literature thus far re-
quires changing the evolution equation for the conformation tensor into an equation
for its logarithm, and are based on loosely coupled solution procedures [M.A. Hulsen
et al., Flow of Viscoelastic Fluids Past a Cylinder at High Weissenberg Number:
Stabilized Simulations Using Matrix Logarithms, J. Non-Newtonian Fluid Mechan-
ics. 127 (2005), 27–39]. A simple alternate form of log-conformation formulation
is presented in this article, and an implementation is demonstrated in the DEVSS-
TG/SUPG finite element method [M. Pasquali and L.E. Scriven, Free Surface Flows
of Polymer Solutions with Models Based on the Conformation Tensor. 108 (2002),
363–409]. Besides its straight forward implementation, the new log-conformation
formulation can be used to solve all the governing equations (continuity, conserva-
tion of momentum and constitutive equation) in a strongly coupled way by Newton’s
method. The method can be applied to any conformation tensor model. In particu-
lar, the flows of Larson-type fluids and Oldroyd-B fluid are tested in two benchmark
problems: Couette flow and flow past a cylinder in a channel. The accuracy of the
method is assessed by comparing solutions with analytical and published results.
The promise of this new implementation and the pending issues are discussed.
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1 Introduction

In the past two decades, considerable effort has been given to the development
of robust and stable numerical methods for simulating complex flows of com-
plex fluids, which pose several numerical challenges. Such extensive research
is motivated by the many industrial applications and scientific importance of
complex fluids (fluids with inherent micro-macro structure such as paint or
blood).

Similar to Newtonian fluids, the flow of complex fluids is governed by the
conservation of mass and momentum equations; for cost-effective simulations,
coarse-grained constitutive models are employed to relate the fluid stresses
with the rate-of-strain. The most commonly used constitutive models involve
a hyperbolic partial differential equation that represents the transport of the
elastic stress, or the conformation tensor, a more physical quantity which
represents the local state of the fluid. The conformation must be positive-
definite at all stages of the simulation, because its eigenvalues and eigenvectors
represent the local straining and orientation of the micro constituents.

The ratio of the relaxation time and the time associated with the local rate of
deformation—the Weissenberg number Wi—is the non-dimensional number of
interest in these simulations. In all early efforts of viscoelastic fluid flow simula-
tions, a limit of Wi up to which the numerical methods remain convergent and
the results accurate was observed; this was referred to as the high Weissenberg
number problem (HWNP). This problem arises due to the development of very
steep boundary layers of conformation fields, and their poor representation by
interpolation functions based on low-order polynomial. Recently, a logarith-
mic representation of the conformation tensor (log-conformation formulation)
was proposed by Fattal and Kupferman [1, 2]; this representation ensures the
positive definiteness of the conformation tensor, and captures well the steep
boundary layers which are exponential in nature. Hulsen et al. [3] showed that
the log-conformation formulation improves the stability of numerical methods
by applying the DEVSS/DG method to simulate the flow of Oldroyd-B fluid
and Giesekus fluid past a cylinder in a channel. Similar results were shown
by Kwon [4] in the flow of a Leonov fluid through a 4:1 contraction. In both
cases, a considerable increase in the limit of Wi at which converged solutions
can be obtained was observed.

This article presents a simpler, yet effective, method to implement the log-
conformation formulation in the finite element context. The governing equa-
tions are presented in Section 2 followed by a review of the existing log-
conformation formulations in Section 3. The proposed DEVSS-TG/SUPG
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log-conformation formulation is presented in Section 4, and the results for
the standard benchmark problems of Couette flow and flow past a cylinder
in a channel are presented in Section 5. The conclusions and discussions are
presented in Section 6.

2 Equations governing the flow of viscoelastic fluids

The steady inertialess flow of an incompressible viscoelastic fluid occupying a
spatial domain Ω with boundary Γ is governed by the conservation of momen-
tum and continuity equations,

∇ · (−pI + τ + σ) =0 on Ω, (1)

∇ · v= 0 on Ω, (2)

where v is the fluid velocity, p is the pressure, I is the identity tensor, τ = 2ηs D
is the viscous stress, ηs is the solvent viscosity, D ≡ (L+LT )/2 is the rate-of-
strain tensor, and σ is the elastic stress. The variable L represents the traceless
velocity gradient [5],

L = ∇v− 1

tr I
(∇ · v)I, (3)

where tr denotes trace.

Equations (1)–(3) reach a closed form when a suitable constitutive model is
used to relate σ with the rate-of-strain. Pasquali and Scriven [6] presented a
generalized constitutive model in terms of the conformation tensor M,

−v ·∇M + 2ξ
D : M

I : M
M + ζ

(
M ·D + D · M− 2

D : M

I : M
M

)

+M ·W + WT ·M− 1

λ
(g0I + g1M + g2M

2)
︸ ︷︷ ︸

F(M)

= 0, (4)

where ξ(M) and ζ(M) are the polymer compliance to stretching and orienta-
tions, W ≡ (L − LT )/2 is the vorticity tensor, g0(M), g1(M) and g2(M) are
relaxation functions and λ is the characteristic relaxation time.

The elastic stress σ is related to M as,
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σ = 2ξ
D : M

I : M
M :

∂a

∂M
+ 2ζ

(
−D : M

I : M
M :

∂a

∂M
+ M · ∂a

∂M

)
, (5)

where a(M) is the Helmholtz free energy per unit volume of the complex
fluid [6].

3 The log-conformation formulation

The log-conformation formulation was recently proposed by Fattal and Kupfer-
man [1]; in this method, the constitutive equation is written in terms of the
logarithm of conformation tensor S = log M. This change of variable en-
sures the positive-definiteness of M, and it is able to better capture the sharp
boundary layers at high Wi due to the exponential nature of the transforma-
tion. Flow problems are solved by discretizing the governing equations, e.g.,
with the finite difference method [2].

The log-conformation formulation was first implemented in finite element con-
text by Hulsen et al. [3]. In this case, the constitutive equation was written in
terms of S, and DEVSS/DG was applied to solve the benchmark flow of an
Oldroyd-B and Giesekus fluid past a cylinder in a channel. The logarithm of
M is trivial to obtain in its principal co-ordinate system, where the eigenvalues
of M give the values in the principal directions mi and its eigenvectors give
the principal directions ni, i = 1, 2, 3, thus S = log M =

∑

i

log(mi)nini =
∑

i

sinini, where si are the principal values of S, and whose existence is always

guaranteed because the mi are always grater than zero.

Hulsen et al. [3] presented results for Oldroyd-B and Giesekus model for which
ξ = ζ = 1 (the molecules undergo affine deformations); a generalized form
applicable to any conformation tensor model [6] is presented here following
the derivations in [3],

Ṡ =
∑

i




2(ξ − ζ)∑

j

mj

∑

j

djjmj + 2(ζdii + wii) +
fi

mi


 nini

+
∑

i

∑

j

si − sj

mi −mj

[ζ(mi −mj)dij + miwij + mjwji]ninj, (6)

i 6=j

where dij and wij are the components of the rate-of-strain and vorticity tensors
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in principal direction ni, respectively. The molecular relaxation contribution
F(M), given by the last term in Eq. (4), is an isotropic function; therefore, its
components in the principal directions fi are

fi = −1

λ
(g0 + g1mi + g2m

2
i ). (7)

Following the approach of Ref. [3], the implementation of the generalized log-
conformation formulation requires:

(1) Solution of the continuity and momentum equations in a laboratory co-
ordinate system at fixed σ;

(2) Transformation of D and W from the laboratory co-ordinate system to
the co-ordinate system identified by the eigenvectors of M;

(3) Solution of Eq. (6) in the co-ordinate system of the eigenvalues of M;
(4) Back-transformation of M to the laboratory co-ordinate system (The

continuity and conservation of momentum equations are solved in the
laboratory co-ordinates uncoupled from the constitutive equation); and

(5) Computation of σ from M in the laboratory co-ordinate system.

Thus far, the log-conformation formulation [1, 3, 4] has improved the accu-
racy and stability of numerical methods at high Wi in problems considering
viscoelastic models with ξ = ζ = 1; however, no studies are available for the
case when ξ < 1 or ζ < 1.

Further improvement in the robustness of the method can be obtained by
using a coupled solution technique for solving the set of governing equations.
This implies that all the equations need to be discretized in the same system
of reference, and solved with a non-linear solver, e.g., Newton’s method. This
will increase the complexity and computational cost of the log-conformation
formulation presented in Ref. [3].

In the next Section, a different approach for implementing the log-conformation
formulation for the generalized constitutive model is proposed.

4 DEVSS-TG/SUPG log-conformation formulation

In the present work, a simpler implementation of the log-conformation formu-
lation in a finite element context is presented. Although its application is only
demonstrated in the DEVSS-TG/SUPG method [5], it can be easily applied
to any other method as well, e.g., GLS4 [7]. Here, Eq. (4) is solved coupled
with Eqs. (1)–(3) (as in DEVSS-TG/SUPG); but in this case, the variable S
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is introduced by replacing M by the exp S. By doing this, the linear interpo-
lation functions will represent S which grows roughly linearly or sub-linearly
in regions of strong flow, removing problems associated with the poor rep-
resentation by low-order polynomial interpolation functions of M, which has
an exponential behavior in strong flow regions. Therefore, the transformed
Eq. (4) is

−v ·∇(exp S) + 2ξ
D : (exp S)

I : (exp S)
(exp S)

+ ζ

(
(exp S) ·D + D · (exp S)− 2

D : (exp S)

I : (exp S)
(exp S)

)

+ (exp S) ·W + WT · (exp S)

− 1

λ

(
g0I + g1(exp S) + g2(exp S)2

)
= 0. (8)

Of course, such transformation is not done explicitly; rather, M = exp(S) is
computed at each Gauss point where the weighted residual of Eq. (8) must be
evaluated. The exp S is calculated by using spectral decomposition,

S = VΣV−1, (9)

where each column of V is an eigenvector of S, and Σ is a diagonal matrix
whose elements are the eigenvalues of S;

exp S = V(exp Σ)V−1, (10)

where the exp Σ is obtained by taking the exponential of each element of the
diagonal matrix Σ. The eigenvalues and eigenvectors of S are found analyti-
cally in 2D.

Whereas exp S can be easily obtained, ∇(exp S) in the Eq. (8) is not trivial
to compute; thus, an approximation is used. Two ways to do so are presented
here:

(1) By computing Mα = exp Sα at every node, and multiplying by the
derivative of the basis function ϕS used to approximate S ≡ ∑

α

Sαϕα
S .

∇(exp S) = ∇M ≈ ∑
α

(∇ϕα
S)Mα, (11)

where α is a dummy index from 1 to the number of basis functions for
approximating S.
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(2) By using finite differences. In this case, S(ξ, η) ≡ ∑
α

Sαϕα
S(ξ, η) is com-

puted at the points (ξ+ε, η), (ξ−ε, η) (ξ, η+ε) and (ξ, η−ε) in the local
co-ordinate system (ξ, η) and then M(ξ, η) = exp S(ξ, η) is calculated
at every point. Therefore, the components of ∇(exp S) = ∇M can be
obtained from:

∂Mij

∂η
≈ Mij(ξ + ε, η)−Mij(ξ − ε, η)

2ε
, (12)

∂Mij

∂ξ
≈ Mij(ξ, η + ε)−Mij(ξ, η − ε)

2ε
, (13)

where ε = 10−6. Unless otherwise stated, the first approximation is used in
most of the simulations. After computing the basic variables—u, p, L and
S—the conformation field M is obtained from S at every node by Eq. (10).

5 Numerical results

The DEVSS-TG/SUPG log-conformation formulation is tested in two bench-
mark problems—planar Couette flow and flow past a cylinder in a channel—
and validated against analytical results when available, and published numer-
ical results [3, 8].

Newton’s method is used to solve the nonlinear algebraic equation set arising
from the discretization of the governing equations. The analytical derivatives
of the problem equations with respect to S are not known. Thus, a mixed
Jacobian matrix is used; analytical for the derivatives respect to v, p and L,
and numerical for the derivatives with respect to S. The numerical Jacobian
part is obtained by central finite difference,

J(:, j) =
r(xj + ε)− r(xj − ε)

2ε
, (14)

where J is the Jacobian matrix, r is the residual vector, xj are the unknowns
(in this case only the components of S) and ε is the imposed perturbation.
Computationally, the numerical Jacobian is more expensive than the analytical
one; therefore, a complete analytical Jacobian is under study.
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5.1 Shear flow of fluids with non-affine deformations

The generalized constitutive equation, given by Eq. (4), represents fluids with
non-affine microstructure deformations when ξ < 1 or ζ < 1. Some consti-
tutive models considered in this category are the PTT-type [9, 10], Johnson-
Segalman [11] and Larson-2 to Larson-4 models [8].

A planar Couette flow is considered for a fluid with ξ = ξ = 0.9, ζ = 1,
g0 = −1, g1 = 1, and g2 = 0 (Larson-2 model, i.e, Eq. (54a) of Ref. [8]), and
for which the elastic stress σ is related to M as,

σ = GM, (15)

where G = ηp/λ is the elastic modulus, and ηp is the polymer contribution to
the viscosity. In a fully-developed rectilinear flow (Lij = 0 except Lxy ≡ γ̇),
the Eq. (4) can be reduced to four equations which are solved for Mxx, Myy,
Mzz and Mxy,

λ
[
−2Mxyγ̇ + 2(1− ξ)

Mxyγ̇

IM

Mxx

]
+ Mxx − 1 = 0, (16)

λ
[
−Myyγ̇ + 2(1− ξ)

Mxyγ̇

IM

Mxy

]
+ Mxy = 0, (17)

λ
[
2(1− ξ)

Mxyγ̇

IM

Myy

]
+ Myy − 1 = 0, (18)

λ
[
2(1− ξ)

Mxyγ̇

IM

Mzz

]
+ Mzz − 1 = 0, (19)

where IM = tr M = Mxx + Myy + Mzz is the first invariant of M, and γ̇ = 4
is the constant shear rate. Newton’s method is applied to solve Eqs. (16)–(19)
to compute Mij(γ̇).

Figure 1 plots the shear viscosity versus the shear rate predicted by the
DEVSS-TG/SUPG log-conformation formulation in a 1:4 (width:length) rect-
angular channel with a uniform mesh of 16 × 16 and fully-developed flow
boundary conditions. The results are compared with the analytical ones; good
agreement is observed.
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5.2 Shear flow of fluids with affine deformations

Constitutive models of affinely deforming fluids are obtained when ξ = ζ = 1,
e.g., Oldroyd-B [12], Giesekus [13], Leonov [14], FENE-type [15, 16] and
Larson-1 [8]. Planar Couette flow (as in section 5.1) of a Larson-1 fluid (Eq. (54b)
of Ref. [8]) is considered; the model parameters are ξ = 1, ζ = 1, g0 =
−1 − ζ(IM − 3), g1 = 1 + ζ(IM − 3), and g2 = 0, where ζ is a constant
parameter. The stress is

σ =
G

1 + ζ(IM − 3)
M. (20)

The DEVSS-TG/SUPG log-conformation results of shear rate vs. shear vis-
cosity considering ζ = 0.05/3 (ξ′ = 0.05 in Ref. [8]) are plotted in Fig. 2 and
compared with the results presented by Larson [8]; the agreement is excellent.

5.3 Flow past a cylinder in a channel

The effectiveness of the DEVSS-TG/SUPG log-conformation formulation is
also demonstrated in the complex problem of flow past a cylinder in a rectan-
gular channel in the case where the ratio of half channel width to the radius of
cylinder is 2:1. Details of the geometry, boundary conditions and finite element
meshes were reported in Ref. [7]. An Oldroyd-B model (ξ = 1, ζ = 1, g0 = −1,
g1 = 1, and g2 = 0) is selected, with a viscosity ratio of ηs/(ηs + ηp) = 0.59.
Because S is the basic variable in these simulations, setting boundary con-
ditions on S requires solving the fully developed flow condition analytically.
This method can be tedious for complex constitutive equations for which a
simple expression can not be derived. However, a simpler method of imposing
boundary conditions [17] is used here.

Table 1 shows the values of the drag force at different Wi, and Figure 3 plots
these values along with the values reported by Hulsen et al. [3]; good agreement
is observed. Using the first-order arc-length continuation, our simulations stop
at Wi∼ 1.1 due to the breakdown of the Newton’s method. Further studies are
underway to understand the cause of this breakdown. In comparison to the
traditional DEVSS-TG/SUPG [5], the DEVSS-TG/SUPG log-conformation
formulation shows an increase in the maximum Wi of about 40%. An addi-
tional 15% increase is found on M1 when the other approximation of ∇(exp S),
given by the Eqs. (12)–(13), is used. The breakdown of Newton’s method can
be observed in Fig. 4, where the residual norm shoots up close to the maximum
Wi at which converged solution can be obtained.
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Although mesh-converged solution for the drag force—an integral quantity
over the cylinder—is observed until Wi∼ 1.1 in Fig. 3, it does not guarantee
the accuracy and convergence of the solution in the entire domain. Figures 5–7
shows the elastic stress σxx = (ηp/λ)Mxx versus s (0 < s < πRc on the cylinder
and πRc < s < πRc + Ld − Rc in the wake along the symmetry line), where
Rc is the cylinder radius and Ld the downstream length. Figure 5 shows the
results for the three meshes at Wi=0.6, and a complete overlap is observed
proving mesh convergence. The results are also in good agreement with the
results presented by Hulsen et al. [3].

At Wi = 0.7, the results agree well on the cylinder, but differences are observed
in the wake; Fig. 6(a) shows the continued reduction of the difference of σxx

with mesh refinement, and Fig. 6(b) compares the result on the fine mesh
(M3) with published results by Hulsen et al. [3] and Fan et al. [18]. As can
be observed, the results remain close to the published results and continuing
mesh refinement shows a trend towards convergence. However, Fig. 7 shows the
results at Ws= 0.9 where no sign of mesh convergence is observed as already
reported in Ref. [3]; the numerical values of σxx continue to grow with mesh
refinement while the simulation remain stable.

6 Conclusions and discussions

A simple alternate implementation for the log-conformation formulation is
presented in this article. The implementation is demonstrated in the finite
element context, and a DEVSS-TG/SUPG log-conformation method is pro-
posed. In comparison to the initial works on log-conformation formulation
[1, 3, 4], the new implementation requires even less code modification, and
has the advantage of solving all governing equations in a coupled way in a
laboratory co-ordinate frame. Effectively the new implementation retains the
set of governing equations, and uses the matrix-logarithm as a basis function
for the conformation field which evolve exponentially near the boundaries.

The method is used to simulate flow of several viscoelastic fluids modeled by
generalized constitutive model in planar Couette flow and flow past a cylinder
in channel. Specifically, Larson-1 and Larson-2 fluids, which assume affine and
non-affine deformations for the polymer constituents, respectively, are used
in planar Couette flow, and flow of an Oldroyd-B fluid is simulated in flow
past a cylinder in a channel. It is demonstrated that the method works well
for the generalized constitutive model, and improves the numerical stability
at high Wi. In the flow past a cylinder in a channel problem, the maximum
Wi limit was extended to 1.0 as compared to 0.7 obtained with the original
DEVSS-TG/SUPG method.
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The results from the DEVSS-TG/SUPG log-conformation are found to be
promising, although there still are two issues associated with the implemen-
tation that must be resolved in future work. First, a more accurate approxi-
mation for ∇(exp S); this should improve the limit up to which the Newton’s
method will remain convergent. Second, a complete analytical Jacobian for the
Newton’s method; this will eliminate the high computational cost associated
with the numerical Jacobian.
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Table 1
Flow past a cylinder in a channel, w/Rc = 2: Finite element meshes and drag forces
at different Wis.
Mesh Elements Drag force at different Wi

0.6 0.7 0.8 0.9 1.0

M1 4788 117.97 177.56 177.62 118.06 118.81

M2 8512 117.88 117.44 117.47 117.86 118.54

M3 13300 117.84 117.39 117.41 117.78 118.43
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Fig. 1. Couette flow of Larson-2 fluid: η′ (shear viscosity) versus γ̇λ. The results of
the DVESS-TG/SUPG log conformation formulation (Numerical) for the Larson-2
model (as in Ref. [6]) presented by Larson [8] are compared with analytical solutions
for ξ = 0.9 and ζ = 1.
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Fig. 2. Couette flow of Larson-1 fluid: η′ (shear viscosity) versus γ̇λ ( γ̇ = 4 is
the shear rate). The results of the DVESS-TG/SUPG log conformation formulation
(Numerical) are compared with the results presented by Larson [8] with ζ = 0.05/3
(Larson-1 model in Ref. [6]).
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Fig. 5. Flow past a cylinder in a channel, w/Rc = 2: σxx on the cylinder and on the
symmetry line in the wake. ◦ from Hulsen et al. [3]. Wi = 0.6.
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Fig. 6. Flow past a cylinder in a channel, w/Rc = 2: (a) σxx on the cylinder and on
the symmetry line in the wake (b) σxx on the symmetry line in the wake. ◦ from
Hulsen et al. [3] and O from Fan et al. [18]. Wi = 0.7.
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Fig. 7. Flow past a cylinder in a channel, w/Rc = 2: (a) σxx on the cylinder and on
the symmetry line in the wake (b) σxx on the symmetry line in the wake. ◦ from
Fan et al. [18] for P5 and O from Fan et al. [18] for P6. P5 and P6 represent the
interpolations order of 5 and 6, respectively. Wi = 0.9.


