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Abstract  The present paper uses the mathematical software Maple for the auxiliary tool to study four types of 
definite integrals. The closed forms of these definite integrals can be obtained mainly using Poisson integral formula. 
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1. Introduction 
The computer algebra system (CAS) has been widely 

employed in mathematical and scientific studies. The 
rapid computations and the visually appealing graphical 
interface of the program render creative research possible. 
Maple possesses significance among mathematical 
calculation systems and can be considered a leading tool 
in the CAS field. The superiority of Maple lies in its 
simple instructions and ease of use, which enable 
beginners to learn the operating techniques in a short 
period. In addition, through the numerical and symbolic 
computations performed by Maple, the logic of thinking 
can be converted into a series of instructions. The 
computation results of Maple can be used to modify our 
previous thinking directions, thereby forming direct and 
constructive feedback that can aid in improving 
understanding of problems and cultivating research interests. 

In calculus and engineering mathematics, there are 
many methods to solve the integral problems including 
change of variables method, integration by parts method, 
partial fractions method, trigonometric substitution 
method, etc. This article considers the following four 
types of definite integrals which are not easy to obtain 
their answers using the methods mentioned above.  
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where , , , , , ,r s t q φ ω ψ  are real numbers, s r t< < , and 
,m n  are positive integers. The closed forms of these 

definite integrals can be obtained mainly using Poisson 
integral formula; these are the major results of this paper 
(i.e., Theorems 1 and 2). Adams et al. [1], Nyblom [2], 
and Oster [3] provided some techniques to solve the 
integral problems. Yu [4-29], Yu and B. -H. Chen [30], 
and T. -J. Chen and Yu [31,32,33] used complex power 
series method, integration term by term theorem, 
differentiation with respect to a parameter, Parseval’s 
theorem, and generalized Cauchy integral formula to solve 
some types of integrals. In this paper, some examples are 
used to demonstrate the proposed calculations, and the 
manual calculations are verified using Maple. 

2. Preliminaries and Main Results 
Some notations and formulas used in this paper are 

introduced below. 

2.1. Notations 
Suppose that a  is a real number, and p is a positive 

integer. Define ( ) ( 1) ( 1)pa a a a p= − ⋅⋅⋅ − + , and 0( ) 1a = . 
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2.2. Formulas 

2.2.1. Euler’s formula 

xixeix sincos += , where 1i = − , and x is any 
real number. 

2.2.2. DeMoivre’s formula 

(cos sin ) cos sinmx i x mx i mx+ = + , where m  is an 
integer, and x  is a real number. 

The following is an important formula used in this 
study, which can be found in [[34], p 145]. 

2.2.3. Poisson integral formula 

Suppose that ,r s  are real numbers, and s r< . If f is 

defined and continuous on the closed disc { }z C z r∈ ≤  

and is analytic on the open disc { }z C z r∈ < , then 
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numbers, and n  is a positive integer. 
In the following, we determine the closed forms of the 

definite integrals (1) and (2). 
Theorem 1. If , , , ,r s t φ ω  are real numbers, 

s r t< < , and ,m n  are positive integers, then the 
definite integrals  
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and  
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, then ( )f z  is defined and 

continuous on the closed disc { }z C z r∈ ≤ , and it is 

analytic on the open disc { }z C z r∈ < . Let iz se φ= , 

then using Poisson integral formula for ( )f z  yields 
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By Euler’s formula and DeMoivre’s formula, we have 

 

2
2 20

2 2

[ 2 cos( ) ]( )

2
( )

im

i i n

m im

i i n

e d
r rs s re te

s e
rr s se te

θπ
θ ω

φ

φ ω

θ
θ φ

π

− − + +

 =  
 − +

∫
 (8) 

It follows that 
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Using binomial theorem yields 
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By the equality of real parts of both sides of Eq. (10), 
we obtain Eq. (5). Also, using the equality of imaginary 
parts of both sides of Eq. (10) yields Eq. (6) holds.  

Next, the closed forms of the definite integrals (3) and 
(4) can be obtained below. 

Theorem 2. Let , , , , , ,r s t q φ ω ψ  be real numbers, 
s r t< < , and n  be a positive integer, then the definite 

integrals  
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and  
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analytic on the open disc { }z C z r∈ < . If iz se φ= , then 

by Poisson integral formula for ( )g z we obtain 
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It follows that 
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By binomial theorem, we have 
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Using the equality of real parts of both sides of Eq. (15) 
yields Eq. (11) holds. Also, Eq. (12) can be obtained using 
the equality of imaginary parts of both sides of Eq. (15).  

3. Examples 
In the following, for the four types of definite integrals 

in this study, we provide two examples and use Theorems 
1 and 2 to obtain their closed forms. In addition, Maple is 
used to calculate the approximations of these definite 
integrals and their solutions for verifying our answers. 

3.1. Example 
In Eq. (5), if 2, 3, 4, / 6s r t φ π= = = = , 

/ 3, 4mω π= = , and 2n = , then the definite integral 
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Next, we use Maple to verify the correctness of Eq. (16). 
>evalf(int((16*cos(4*theta-2*Pi/3)+24*cos(3*theta-

Pi/3)+9*cos(2*theta))/((13-12*cos(theta-
Pi/6))*(25+24*cos(theta-Pi/3))^2),theta=0..2*Pi),18); 

0.00689858296836092382 
>evalf((36+16*sqrt(3))*Pi/(14985+8100*sqrt(3)),18); 
0.00689858296836092381 
On the other hand, if 3, 5, 6, / 3s r t φ π= = − = − = − , 

/ 4, 5mω π= = , and 3n =  in Eq. (6), then 
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We also use Maple to verify the correctness of Eq. (17). 
>evalf(int((-216*sin(5*theta-3*Pi/4)-540*sin(4*theta-

Pi/2)-450*sin(3*theta-Pi/4)-125*sin(2*theta))/ 
((34+30*cos(theta+Pi/3))*(61+60*cos(theta-i/4))^3), 
theta=0..2*Pi),18); 

-0.0000443409234263192035 
>evalf(-243*Pi/25000*(216*sin(5*Pi/12)+162-

81*sqrt(2)-27/2*sqrt(3))/(45-36*cos(7*Pi/12))^3,18); 
-0.0000443409234263192039 

3.2. Example 
In Eq. (11), if 4, 6, 7,s r t= − = = −  

2, 3 / 4, / 4, / 4q φ π ω π ψ π= = = − = , and 1n = , then 
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Using Maple to verify the correctness of Eq. (18) as 
follows: 

>evalf(int(exp(12*cos(theta+Pi/4))*(-7*cos(12*sin 
(theta+Pi/4)+Pi/4)+6*cos(12*sin(theta+Pi/4)-theta))/ 
((52+48*cos(theta-3*Pi/4))*(85-4*cos(theta+Pi/4))), 
theta=0..2*Pi),18); 

-220.734122999910046 
>evalf(-exp(8)*sqrt(2)*Pi/60,18); 
-220.734122999910047 
Also, let 3, 8, 9, 3, / 4, 2 / 3,s r t q φ π ω π= = − = = = − =  

/ 6ψ π= − , and 1n =  in Eq. (12), then the definite 
integral 
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>evalf(int(exp(-24*cos(theta-Pi/6))*(9*sin(-
24*sin(theta-Pi/6)-2*Pi/3)-8*sin(-24*sin(theta-Pi/6)-
theta))/((73+48*cos(theta+Pi/4))*(145-144*cos(theta-
2*Pi/3))),theta=0..2*Pi),18); 

0.1801875656110764 
>evalf(2*Pi/55*(exp(9*cos(5*Pi/12))*(9*sin(-

9*sin(5*Pi/12)-2*Pi/3)+3*sin(-9*sin(5*Pi/12)+Pi/4)))/ 
(90+54*cos(11*Pi/12)),16); 

0.1801875656110781 

4. Conclusion 
In this study, we mainly use Poisson integral formula to 

solve some definite integrals. In fact, the applications of 
this formula are extensive, and can be used to easily solve 
many difficult problems; we endeavor to conduct further 
studies on related applications. In addition, Maple also 
plays a vital assistive role in problem-solving. In the 
future, we will extend the research topic to other calculus 
and engineering mathematics problems and use Maple to 
verify our answers. These results will be used as teaching 
materials for Maple on education and research to enhance 
the connotations of calculus and engineering mathematics. 
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