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Abstract—This paper proposes Multiobjective Particle Swarm
Optimization with Preference-based Sort (MOPSO-PS) in wiih
the user’s preference is incorporated into the PSO update mcess
to determine the relative merits of nondominated solutionswhile
handling the mutual dependencies and priorities of objecties. In

MOPSO-PS, the user’s preference is represented as the degre

of consideration for each objective using the fuzzy measurerhe
global evaluation of a particle, which represents the quaty of

the particle according to the user’s preference, is carriecout by

the fuzzy integral, which integrates the partial evaluation value
of each objective with respect to the degree of consideratio
Since the global best attractor of each particle in the popudtion

is randomly chosen among the nondominated particles having

relatively higher global evaluation value in each PSO updat
iteration, the optimization is gradually guided by the users

preference. After the optimization, the most preferable paticle

can be chosen for practical use by selecting the particle wit
the highest global evaluation value. The effectiveness ohe

proposed MOPSO-PS is demonstrated by the application of pat
following footstep optimization for humanoid robots in addition

to empirical comparison with the other algorithms. The footsteps
optimized by the MOPSO-PS were verified by simulation. The
results indicate that the user’s preference is properly refcted in

optimized solutions without any loss of overall solution qality

and diversity.

Index Terms—Particle Swarm Optimization, Multiobjective
Evolutionary Optimization, Fuzzy Integral, Preference-based
sort, Humanoid Robot, Footstep Optimization.

I. INTRODUCTION

S

olving Multiobjective Optimization Problems (MOPS) ha§J

become important in engineering recently. For examplgs \,nqominated solutions. A dominance-based approach is

order to approximate the Pareto-optimal set [5]. SPEA2, the
improved version of SPEA, was developed by employing a
refined fithess assignment and an enhanced archive trumcatio
technique [6]. The Nondominated Sorting Genetic Algorithm
(NSGA) was developed by the classification of nondominated
fronts and the sharing operation [7]. The improved versibn o
NSGA, NSGA-II, was created, which is a strong elitist method
with a mechanism to maintain diversity efficiently by using a
fast nondominated sort and crowding distance assignmgnt [8
The Multiobjective Quantum-inspired Evolutionary Algibrin
(MQEA) was proposed to improve proximity to the Praeto-
optimal set while preserving diversity [9], [10]. The Mualt-
jective Particle Swarm Optimization (MOPSO) was developed
by extending the Particle Swarm Optimization (PSO), which
is a population-based stochastic algorithm inspired by the
interaction among the individuals of a swarm, such as a flock
of birds and insects [11]-[20].

However, for real applications, which are different frone th
benchmark functions, two other issues need to be considered
The first one is how to handle the mutual dependencies
and priorities of objectives. For example, in the problem of
the humanoid robot path following footstep optimizatiame t
remaining distance to the goal, the mean distance from the
path’s center line to the footsteps, the mean lateral move-
ment, and the mean rotational movement can be employed
as objectives. They are not always independent from each
other and their priorities may vary with the preference & th
ser. The second one is how to determine the relative merits

there are a lot of MOPs in robotics, such as footstep plaﬁ(’)t effective in many-objective problems since the number

ning for humanoid robots, autonomous control for Unmann
Aerial Vehicles (UAVs), and path planning for UAVs [1]-[3].
In order to solve MOPs, various Multiobjective Evolutiopar

nondominated solutions increases exponentially with th
number of objectives. Therefore, the relative merits of the
nondominated solutions should be determined to update the

Algorithms (MOEAs) have been developed and have showjy jation and archive at each generation. Moreover, for

outstanding results through solving complex multiobjesti
benchmark functions. The Pareto Archived EvolutionaratStr

real applications, such as operating humanoid robots, it is
necessary to choose the most preferable solution among the

egy (PAES) was developed by using the adaptive grid [4]. Tlﬁrﬁa"y obtained solutions.

Strength Pareto Evolutionary Algorithm (SPEA) was created To solve the

issues mentioned above, MOPSO with

which used a mixture of established and new teChniquesdﬂeference-based sort (MOPSO-PS) is proposed in this paper
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is based on a recent algorithm, Preference-based Solutj Current PopulationR) e
Selection Algorithm (PSSA), in which the user’s preferen Previous archiveA(.,)

to each objective is represented by the degree of consiolera \voominancetest

using the fuzzy measure [21]. This successfully helps MOP Current archiveA) ﬂ
determine the relative merits of the nondominated solstio Crowding distance sorting

in the consideration of the user’s preference. In MOPSO-RFS, Upper half set Lower half set (Discard) ﬂ
every particle, i.e. every solution, is updated by follogvithhe Preference-based sorting

personal best and the global best attractors. The global bes e harset Lower half set Current gest Update particles
attractor of each particle in the population is randomlyssho © (iscard) (Xl ko) [] by (1)
among the relatively more preferred particles in the amhi ‘ Random selection i) T l

at each generation. Therefore, as a result, the optimizéio Previous Populatiorfly) N

gradually guided by the user’s preference.

To demonstrate the effectiveness of MOPSO-PS, empiri
comparisons with NSGA-II [8], MQEA [9], [10], and MOPSO
[18] were carried out through DTLZ functions, which are well
known benchmark functions for multiobjective optimizatio Fig. 1: The flow diagram of MOPSO-PS.
algorithms [22]. The experiments of the path following foot
step optimization for humanoid robots were also performed.

For_ e_ach of t.he three kinds of short paths, footsteps W?rciwer set of objectives because it can effectively repretben
optimized 50 times to check the robustness of the propos eractions, i.e. positive interactions and negativerattions

algorithm. After that, footsteps were optimized for a I0gne o6 objectives. Thus the fuzzy integral is more sigtabl

ple>_< patr:j thathconsiﬁers the re.?l dertlJviro_nmIenf[. The foasstep, determining the relative merits of the nondominated par
OP“”?'ZG ot © pat were veritied by simu a.t|on. ticles than the other existing methods, including multéria
This paper is organized as follows. Section Il Proposef.cision making and aggregation methods [23]-[26].

MOPSO-PS and briefly introduces the fuzzy measure andIn this subsection, MOPSO-PS is explained step by step and

fuzzy integral. In SeCt'(.)n lll, the comparison among MOPSQhe procedure of global evaluation is described in detail.
PS and the other algorithms are discussed. Section |V presen

the application to path following footstep optimizationr fo
humanoid robots. Finally, concluding remarks are in Sectio\  prgposed MOPSO-PS
V.

1% particle N™ particle condition

position
)

velosity

() | X

pbest U

In MOPSO-PS, the optimization is gradually guided by
the user’s preference. Each particle in the population ségo
its Global Best attractor (GBest) randomly from the GBest
candidate pool, which consists of relatively more preferab

The key point of the Multiobjective Particle Swarm Optifparticles. Fig. 1 shows the flow diagram of MOPSO-PS, where
mization with Preference-based Sort (MOPSO-PS), compardd is the external archiveP; is the populationG; is the
to the original MOPSO, is that user’s preference is taken infBest candidate podix; is the personal best attractor (PBest)
account. In MOPSO-PS, preference-based sort is addiljondtosition of thek-th particle, and’x} is the GBest position
employed in order to incorporate the user's preference in@ the k-th particle at generation As shown in Fig .1, the
the PSO update process. This is because the dominance-b&f@st candidate pool is extracted from the archive by the
approach is not effective in many-objective problems sindellowing three steps. First, the archive is updated andyeve
the number of nondominated solutions increases expotignti@article dominated by the others is discarded. Second, the
with the number of objectives. particles in the archive are sorted by Crowding Distance)(CD

The most important th|ng for imp|ementing the preferenc@nd the lower half set of the archive is discarded. This is
based sort is that the Global Evaluation value (GEval) @ preserving diversity and avoiding premature convecgen
every particle should be carried out, which represents tA&ird, the remaining particles of the archive, which have a
quality of the particle according to the user's preferencéglatively higher crowding distance, are sorted by the GBta
Therefore, in this paper, the user’s preference is reptedm each partiCIe and the lower half set of the archive is dissdrd
the degree of consideration for each objective using theyfuzagain. As a result, dispersed and relatively more preferabl
measure and the GEval of a particle is calculated by the fuzR§rticles are gathered in the GBest candidate pool.
integral, which integrates the Partial Evaluation value\@)  The overall procedure of MOPSO-PS is summarized as
of each objective with respect to the degree of consideratidAlgorithm 1 and each step of the algorithm is described in
The PEval of each objective can be obtained by normaliziggtail in below:
the objective function value. For real applications, thesmo
preferable solution can also be selected by the GEvals ofl) Initialize Py and A
the solution after finishing the optimization. Note that the A population is a set ofV particles, which have their own
fuzzy integral requires neither objectives to be indepehdeosition and velocity. The positiatf and velocity” of the k-
nor the fuzzy measure to be additive for any subset in thie particlep”, k = 1,2,..., N, are theD-dimensional vectors

II. MULTIOBJECTIVE PARTICLE SWARM OPTIMIZATION
WITH PREFERENCEBASED SORT
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Algorithm 1 Multiobjective Particle Swarm Optimization with js evaluated, which is defined as

Preference-based Sort

o P;: The population at iteratioh

o A;: The external archive at iteratian

o G;: GBest candidate pool at iteratian

e Np: The number of particles i,

e N4: The number of particles iA;

e N¢g: The number of particles i,

« D: The dimension of the search space

» rand(L,U): Random integer value betwednand U
« xF: The position of thek-th particle at iteratiort

« VF: The velocity of thek-th particle at iteratiort

« f(xF): The objective function value of?

« 9x¥. GBest position of the:-th particle at iteratiort
« PxF: PBest position of thé-th particle at iteratiort

1) Initialize Py andAq
t=20
for k=1,2,...,Np do
x} = random vectoe R”
vk =0
Evaluatef (xF)
pxk = xk
end for
A; = Null set
2) UpdateA,
t=t+1
A=A 1UPi
Discard dominated particles out 8§
for k=1,2,...,N, do
Evaluate the PEval of each particle An
Evaluate the GEval of each particle Ay
Calculate the CD of each particle &y
end for

3) ExtractG; from A,

Sort the particles irA; based on their CDs
A} = the upper half oA,
Sort the particles irA; based on their GEvals
G; = the upper half ofA;
4) Update particles
for k=1,2,...,Np do
r =rand(0, Ng)
9x§¥ = the position of the--th particle inG;
Updatev¥ andx¥ by (1)
Evaluatef (x})
UpdatePx¥
end for
5) Go to 2) and Repeat

as follows:
vk e RP xF e RP.

fOxF):RP = RM

and the PBest position of each patrticle is set to be the pasiti
of itself. The external archive is also initialized as a ragt.

2) UpdateA,

The current archiveA, is updated as the union of the
previous archiveA;_; and the previous populatio;_;.
After that, through a dominance test, the dominated paHicl
are discarded out of;. For each particle irA;, the PEval
and GEval are evaluated, which are described in Section I1.B
and CD is also calculated [27].

3) ExtractG; from A,

At first, the particles inA, are sorted by their CDs and the
upper half of A;, which is a relatively more dispersed set,
is stored intoA}. Then, the particles i\, are sorted again
based on their GEvals, and the upper halfAdf which is
a relatively more preferable set, is stored ifd@. Since the
particles inG; are mutually nondominating and no particles
in G, are dominated by! ;, every particle inG; can be a
candidate for the GBest of each particleRp_;. Moreover,
by choosingsxF from G, the particles are guided by the
user’s preference while maintaining diversity.

4) Update particles
For each particle?x! is randomly chosen fronG;. The
velocity and position of each particle are updated as faltow

Vi = w 'l\c’f—l 1’0' {k‘blf,t(pr—l - X )
+é5 (9% —X¢1)} 1)
XF = xF 4k

wherew and ¢ are constants and}, and ¢4, are random
real values uniformly distributed ifd, 1]. New random values
are generated for each particle at each and every generation
After that, f(xF) for every particle in the updateR; ; is
evaluated. Finally, the personal best position of eachighart
PxF k= 1,2,...,N, is updated?xf = xF if x¥ weakly
dominates Px* , or they are mutually non-dominating.
Otherwise PxF =PxF .

5) Go to 2) and Repeat
Go to 2) and repeat until a termination condition is met.

Note that the computational complexity of the proposed
algorithm is governed by the sorts, i.e. the CD-based satt an
the GEval-based sort. Since both sorts are done by the quick
sort, the proposed algorithm has an average computational
complexity of Oglog(n)).

B. The Procedure of Global Evaluation

To carry out the GEval of each particle, the user’s prefezenc
is represented as the degree of consideration to each iwbject

For every particle in the population, the position is ranfomusing the fuzzy measure and with which the PEval of each
initialized in a D-dimensional space and the velocity is iniobective is integrated by the fuzzy integral. In this study,

tially set to0. The M -objective function of each particlg(x¥)
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Algorithm 2 The Procedure of Global Evaluation (2) Monotonicity
e M: The number of objectives .
A, BCP(X ACB, th A) < g(B). 3
o O={01,02, - ,0p}: A set of objectives VA, B C P(X), if ACB, then g(4) < g(B). (3)
o P(O): A power set ofO As a general representation of fuzzy measukduzzy
e N: The number of particles measureg : P(X) — [0,1], is defined, which additionally
« fi(xx): Objective function value of thé-th particle over satisfies the following axiom [31]:
0; ..
i VA, ;e P(X),i,j=1,---, M, A;NnA; = d —1<)\,
o h;(xy): Partial evaluation value of the-th particle over 4 € PX), 0. j=0an <
0; 9(Ai U Aj) = g(Ai) + 9(4;) + Ag(Ai)g(4;)  (4)

« ¢(xx): Global evaluation value of the-th particle where )\ represents an interaction degree betwegnand

A;. Afuzzy measure is considered as a belief measure,

1) Fuzzy measure identification plausibility measure or probability measure dependinghen t
Make a pairwise comparison matrig, value of A\. If A > 0, A < 0 and A = 0, they are considered,
fori=1,2,...,M do respectively, as a belief measure, plausibility measur@ an

Calculate normalized weight; with P by (6) probability measure [32]. The following procedure was
end for employed to calculate the fuzzy measures [28], [29]:
Generate interaction diagram
Generate hierarchy diagram a) Make a pairwise comparison matrix
for eachA € P(O) do The pairwise comparison matrix of objectiveB, which

Calculate fuzzy measurg A) of P(O) by (9)-(12) represents preference degrees between objectives, isdefin
end for as follows [26]:

2) Global evaluation of particles P11 pi2 e pim
for i=1,2,...,. M do P21 P22 P2M

for k=1,2,...,N do : - : )

Find the maximum valug/4X and the mini- ' ' ' '
mum valuefMIN pvm1 Pm2 ccc PMM

end for wherep;; represents the preference degree betweern-the
end for objectiveo; and thej-th objectiveo;, p;; is 1 andp;; = 1/pj;.
for k=1,2,...,N do The preference degrees of the pairwise matrix are detedmine

for i =1,2,...,M do by the relative importance between each pair of objectives
hi(X) = % from the user’s perspective, e.qg.,zfs is 10, it meanso; is

end for ‘ ten times more preferable .
end for b) Calculate normalized weight
for k=1,2,...,N do The normalized weightyw; of the i-th objective,o;, i,j =

Calculatee(xy,) = fo ho g by (13) 1,---, M is calculated as follows:
end for it P

Wi = = —ar (6)
Dz Zj:l Dij

. e ¢) Generate interaction diagram
was employed for fuzzy measure identification [28], [29] and The interaction diagram of objectives (Fig. 3 in Section 1V)

Chogquet fuzzy integral was employed as a fuzzy integral. [3(§hows the interaction degrees between two different alagesct
The overall procedure of global evaluation using the fuzzythe two objectives have a negative correlation, the axtéon
measure and fuzzy integral is summarized in Algorithm degree between them has a value betwé#nand 0.5. In

and each step is described in the following: contrast, if the two objectives have a positive correlatitie
S interaction degree between them has a value betweeand
1) Fuzzy measure identification 1.0. If the two objectives are independent, the interaction

In this study, A\-fuzzy measure was used to represent thegree between them has a value @§. Therefore, the
degree of consideration for each objective. The fuzzy nreasinteraction degree between tligh and j-th objectivesé; ;
of the power set ofX, denoted as”(X) in the finite space lies in [0.0,1.0].

X ={x1, - ,zp} is defined as follows: d) Generate hierarchy diagram

Definition 1: A fuzzy measurey defined on(X, P(X)) is As shown in the interaction diagram, since the interaction

a set functiong : P(X) — [0,1] that satisfies the following degrees are different from each other, it is hard to directly
axioms: identify the fuzzy measures. In this study, a hierarchy @iag

was generated to get a merged interaction degree. The hier-
archy diagram of objectives (Fig. 3 in Section IV) represent
hierarchical interaction relations among the objectivweslbs-

g(0) =0, g(X)=1. (2) tering two closely-related objectives. To estimate how muc

(1) Boundary condition
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the two objectives are related, a dissimilarity measure/een Definition 2: Let h : O — [0,1], where O can be any
them was employed. The dissimilarify;, ¢,; between two set. The Choquet fuzzy integral of partial evaluatibrover a
clustersG, andG, is defined as an average distance to othsubset ofO € P(O), with respect to the fuzzy measugeis

objectives, as follows: defined as
M
> (E1e,.63 — (Ga.aiy)?

Dic.cy = Gr€9,G,#G,,Gr# G, IS{Gp,Gr} ~ & } / hog:Z(hi_hiil)g(Ei) (13)

Prq |(I)| -2 (7) 0] =1
where ® is a set of all clusters that consist of one or mor&heréf < ho < --- < hw, Ei = {0i,0i11,--- ;om} and
objectives, G,, Gy, G, € ® are clustersé(g, ¢,y is the o =0.foro;€0andi=1,..- M. o .
interaction degree between objectivés and G;, and || The valueh in (13) is a normalized objective function

is the number of clusters i®. Two objective clusters that Value that represents the partial evaluation value of each
have the smallest dissimilarity are merged into one and tR@ticle over each objective. The objective function value
interaction degrees among will clusters are recalculaibe. N€ed to be normalized 1.0 since / is defined from0.0
interaction degre€(, ) between two cluster§’, andG, to 1.0. In this way, theh;(x;) of the k-th particle overo;

is calculated as is calculated.g is the A-fuzzy measure obtained from the
fuzzy measure identification. It means the global evalumatio
€6, .G = Z(i,j)e(E(Gp)xE(Gq))5”’ 8) value is calculated by considering both the user’s degree of
e [E(Gp) x E(Gq)| consideration for each objective and the partial evalmatib

whereA x B is the direct sum and(G,)) is the function that the particle.
picks up all objectives in the se&t,. The merging procedure

is done until all objectives are merged. 1. EXPERIMENTS FORCOMPARISON

e) Calculate fuzzy measures A. Configuration for the Comparison
After getting the hierarchy diagram, a fuzzy measy(d), The parameters used in the comparison are given in Table I.
where A € P(0), was identified by employing, transfor- The number of variables of each DTLZ function was set to
mation, as follows: for DTLZ1, 16 for DTLZ2 - DTLZ6, and26 for the DTLZ7
function. For MOPSO-PS, three out of the seven objectives
9(A) = ds(Er, > uld), ©9) )

in DTLZ functions were chosen as preferred objectives. Thus
the preference degree for this was seffta fo: f3: fa: f5:
where R is the root level set in the hierarchy diagram an9}6 cfr=1:10:1:10:1:10: 1 from which a pairwise
§r is the interaction degree ak. The transformationps :  comparison matrix (5) was provided. The normalized weights
[0,1] x [0,1] — [0, 1] is defined as follows: according to the pairwise comparison matrix were calcdlate
as (.0295,0.295,0.0295,0.295, 0.0295, 0.295, 0.0295). Since

PCR

1, if ¢=1andu>0 o . :
_ it is hard to figure out the exact correlation degrees between
0, if {=1andu=0 the objectives in DTLZ functions, it was assumed that they
bs(€,u) =<1, if §=0andu=1 (10) have negative correlations with each other and every inter-
0, if {=0andu <1 action degree between them was seti®5. Therefore, the
=1 other cases interaction diagram and hierarchy diagram generationgs®c
s could be skipped and the fuzzy measyfel) was identified
wheres = (1 —¢)?/¢* anduy, is defined as follows: as follows:
w;, whereo; € Q, if |Q]=1ando; € A 9(4) = &5 (¢, X:Awi) (14)
W= o, if |Q=1ando; ¢ A e
« 61 (Ep, ds(E0, S u2) x TP), other cases where A is an element oP(O).
s WGPPSR Lvee TV Qr (11)  Inaddition to average objective function values, two perfo
where the value ob; (¢, z) is u, which satisfiesp, (¢, u) = Mance metrics, the size of dominated space and diversitg, we

z. To calculate the value ob;1(¢, ), the recursive least €mployed to evaluate the performance of NSGA-Il, MQEA,
squares method was employed. The conversion @fidrom MOPSO and MOPSO-PS. The size of dominated spéds,

Q to P is computed as defined by the hypervolume of nondominated solutions [5].
The reference point to calculatewas set to 10, 10, 10, 10,
TP _ ¢s(Ep, ZoieP w;) (12) 10, 10, 10). The quality of the obtained solution set is high if
@ g, (o, ZOIEQ w;) this space is large. Diversitf is for evaluating the spread of
nondominated solutions, which is defined as follows [33]:
2) Global evaluation of particles D= 2 zgmw) — zgmm)) (15)
For the global evaluation of each particle over objectives \/ 1 Z[No\(d —d)?
with respect to the degree of consideration for each of the [No| i=1 17

objectives, the following Choquet fuzzy integral [30] ca@ bwhere N, is the set of nondominated solutiong, is the
used. minimal distance between theth solution and the nearest

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.or
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TABLE I: The parameter settings of the algorithms  TABLE II: Average of the preferred objective function vatue
obtained by NSGA-Il, MQEA, MOPSO, and MOPSO-PS

Algorithms | Parameters | Values
Population size ) 100 @) f2
NSGA-II No. of generations 3000 - -
Mutation probability ) 01 Problem | NSGA-_MQEA  MOPSO _ MOPSO-PS
Global population sizer(- s) 100 DTLZ1 12.58 3.86 219 0.04
No. of generations 3000 DTLZ% 202-229 2.8128 %43(')9 8313?
ion si DTLZ 24 . 4. .
MQEA Subpoppulation §|zer70 25
No. of subpopulationss{ 4 DTLZ4 0.28 0.23 0.20 0.15
No. of multiple observations 10 DTLZ5 1.86 0.79 0.23 0.13
The rotation angle 46) 0.23r DTLZ6 0.33 0.21 0.16 0.13
Population size ) 100 DTLZ7 0.51 0.51 0.74 0.35
MOPSO/ No. of generations 3000
MOPSO-PS Max. archive size 500 0) f1
Inertia weight,w 1/(2-log?2)
Cognitive/Social parameter, | 0.5+ log 2 Problem | NSGA- _MQEA MOPSO _ MOPSO-PS
DTLZ1 15.88 16.88 11.18 0.09
DTLZ2 0.33 0.32 0.37 0.30
DTLZ3 18.40 14408 107.88 0.44
: =  p(maz) (min) DTLZ4 0.26 0.31 0.24 0.12
neighbor, and! is the mean value of all;. f, ™ and f,™ DTLZS 49 799 069 095
represent the maximum and minimum objective function val- DTLZ6 094 044 031 0.78
ues of thek-th objective, respectively. A larger value means a DTLZ7 0.53 0.44 0.72 0.39
better diversity of the nondominated solutions. O f
C) Je
) Problem | NSGA-_MQEA MOPSO _ MOPSO-PS
B. Comparison Results DTLZL | 686 4568 1601 013
Since f,, f4, and fs were more considered in every gener- Bpég 392-3319 3?2-1332 fi‘?oo 00;‘11
ation of_ the evolutpnary process, MOPSO-PS could obtain DTLZ4 037 519 018 018
the optimized solutions that were more focused on those DTLZ5 2.73 4.99 0.83 0.51
preferred objectives. Table Il shows the average objective DTLZ6 1.34 1.02 0.70 0.67
function values ovet00 runs. As the table shows, the average DTLZ7 | 047 051 0.66 0.45

values offs, fy4, andfs of MOPSO-PS are the smallest among
all the algorithms, except for the DTI2Zunction. To see how

the preference degree contributes to the final solutiorss, tiABLE I1I: Average of the preferred objective function valsi
MOPSO-PS with different preference degree settings was al§t the three DTLZ functions, DTLZ2, DTLZ4 and DTLZ6,

studied for the DTLZ functions. Table Ill shows the averaggptained by MOPSO-PS with different preference degree
of the preferred objective function values of the three DTLZettings

functions, DTL2, DTLZ4 and DTLZ, over 100 runs for
each setting. As shown in the table, the preference degike ha
a pronounced effect on the final solutions. For the rest of the _J1:f2fa:fa:Js :fo:fr | Jo fa fe

(a) DTLZ2

DTLZ functions, the result was similar. However, the effect } : é : } : é : } : é : } 8'(1)82? 8?;?? g'i’gi?
was not highly sensitive to the magnitude of the preference —75- 110171707 00959 01722 01755
degree. 1:20:1:20:1:20:1 0.0766__ 0.1273__ 0.1654
The size of dominated spaceand diversityD of NSGA-II, 1:2:1:5:1:10:1 0.1047 0.1371 0.1419
MQEA, MOPSO and MOPSO-PS are shown respectively in (b) DTLZ4
Table IV and Table V, wher§;, S2, S3 andS, represent the
of NSGA-Il, MQEA, MOPSO and MOPSO-PS, afl, Ds, hiferhifachifoifi]l o S K
Dj andD, represent thé® of NSGA-II, MQEA, MOPSO and R EE L B Y L
MOPSO-PS, respectively. The values were averaged dxer T:10:1:10:1:10:1 0.0020 0.0009  0.0005
runs and Welch’s t-test values [34] were also calculated- A 1:20:1:20:1:20:1 0.0001  0.0001  0.0003
test valuet x, _x, represent the statistical difference between 1:2:1:5:1:10:1 0.0140 0.0023 0.0020

the two samplesX; and X,. As the tables show, both the (c) DTLZ6
S and D of MOPSO-PS were not larger than those of the P R AT AP o .
other algorithms for all DTLZ functions. However, it can fohilsihilsidochr | f1 fo

ki T:1:1:1:1:1:1 0.2036 04808 0.9023
be a distinctive advantage of MOPSO-PS thatStsand D T:5:1:5:1:5:1 0.0630 0.1356  0.2732
were competitive with those of the other algorithms, even 1:10:1:10:1:10:1 0.0411 0.0886  0.1751

At ; 1:20:1:20:1:20:1 0.0383  0.0767 0.1533
though the preferred objectives were considered more. When T T 0050001081 0.5157

the conventional utility function method, like the weigti&um
method, is used in selection process, the weights need tetbe s
very carefully in order to obtain the solutions optimizedt n
only for preferred objectives, but also for the other objexst

to a certain level. On the other hand, MOPSO-PS can soltres problem by employing the fuzzy measure representiag th
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TABLE IV: The average and Welch's t-test value of the size
of the dominated space of NSGA-Il, MQEA, MOPSO, and
MOPSO-PS through DTLZ functions ovéf0 runs

(a) Average size of the dominated space

Problem | (NSGA-) _ (MQEA) _ (MOPSO) _ (MOPSO-PS)

DTLZ1 5061372 9974885 9998271 9996018
DTLZ2 9999093 9901558 9891993 9979433
DTLZ3 8884523 9458221 9845668 9941199
DTLZ4 9999878 9948522 9897862 9990820
DTLZ5 9876226 9851258 9750803 9848487
DTLZ6 7564857 9752218 9863796 9808835
DTLZ7 4234421 2522185 2341579 1903191

(b) Welch's t-test value of size of the dominated

space y
Problem | ts,—s, tS,—So ts,—Ss
DTLZI | 14.28 162 —7.04
DTLZ2 | —23.02 __ 2.73 0.88
DTLZ3 | 6721 11620 __ 0.96
DTLZ4 | -7.58 1.31 0.93 o
DTLZ5 | —20.08 —0.85  11.36 Fig. 2: An example of footsteps and related notations.
DTLZ6 | 7770 _ 13.97 —15.09
DTLZ7 | —6859 —21.28 —10.24

vectors. To solve this kind of problem, the MOPSO-PS is

. , . more suitable than the other algorithms because the olgscti
TABLE V: The average and Welch'’s t-test value of the dlver-re not always independent from each other and the user's

X al
g?’L;ffNS?A'“’ MQ1E(')A‘O’ MOPSO, and MOPSO-PS througtbreference for the objectives should be considered. Mareov
unctions overibb runs at the end of the evolutionary process, MOPSO-PS provides

(a) Average diversity the humanoid robot with one preferred solution among the
Problem | (NSGA-) (MQEA) (MOPSO) (MOPSO-PS) nondominated solutions, which is to be used for its footstep
DTLZ1 138.15 69.48 79.19 84.70 It was assumed that a humanoid robot always started walk-
DTLZ2 93.78 58.18 105.99 103.71 ing from the right footstep. It was also set tidtfootsteps &
DTLZ3 106.99 53.22 70.09 80.21 left & right f imized >
DTLZ4 97 64 59.43 151,63 19967 eft footsteps and;- right ootsteps) was optimized at a time.
DTLZ5 110.65 127.52 81.48 79.31 The simulation model was based on a small-sized humanoid
DTLZ6 90.71 79.52 73.56 78.38 robot, HanSaRam-IX (HSR-IX), which subsequently verified
DTLZ7 | 13573 13122  70.25 58.88 the optimized footsteps by simulation. The HSR-IX was de-

(b) Welch's t-test value of diversity veloped by the Robot Intelligent Technology (RIT) laborsgito

at the Korea Advanced Institute of Science and Technology
(KAIST) [35]. Its height and weight ar§2.8 cm and5.5 kg,

Problem | tp,—D; tp,—Dy tp,—Ds

DTLZI | —31.18 9.25 3.44 ) ) .

DTLZ2 16.25 73.01 —3.06 respectively. It hag6 degrees of freedom, which consists of
DTLZ3 | —22.73  32.72 11.85 12 dc motors with harmonic drives in the lower body ar&l
DTLZ4 | 3139 4004  —2.18 RC servomotors in the upper body. The on-board Pentium-
DTLZ5 | —59.36 —89.75  —4.66 bl . X lcul h

DTLZ6 | —21.14 =152 685 Il compatible PC, running RT-Linux, calculates the propos
DTLZ7 | —73.22 —64.25 —11.93 algorithm every5 ms in real time. To measure the ground

reaction forces on the feet and the real ZMP trajectory while
walking, four force sensing resisters were equipped on the
sole of each foot. It can stride a maximu$n.0 mm in a
sagittal direction an@0.0 mm in a lateral direction at once.
The possible rotation angle of the leg is at maximtith 15
rad. The offset length between the centers of both fiegt,
is 78.0 mm.

Each footstep was represented by a corresponding vector
defined as follows:

interactions between the objectives and the user’s pretere
to them.

IV. APPLICATION TO PATH FOLLOWING FOOTSTEP
OPTIMIZATION

A. Configuration for the Experiments

(I, Sk Pk) (16)
The main goal of this application was to make a humanoid
robot follow a predefined path with the footsteps obtainesherek =1,..., K andi, si, and¢;, are the lateral, sagittal,
by the MOPSO-PS by considering the objectives and tlaéd rotational movement of thieth footstep from the K —
user’'s preference for them. The problem was formulated &sth footstep, respectively. Fig. 2 illustrates an examgpie
a Multiobjective Optimization Problem (MOP) by definingfootsteps.
the objective functions and setting the footsteps as viariab The position and orientation vector of theh footstep were
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calculated as follows: TABLE VI: Preference degree, pairwise comparison matrix,
‘ ¢ ¢ - and normalized weights
Tap =2, + (loff + Ix) - cos(?0,_, +(=1)"- F) __ i :
. f k Case Preference degree Pairwise comparison Normalized
+sy - sin( ekfl +(-1) '}5) (01 : 02 : 03 : 04) matrix weights
Ty =Ty o+ (o + 1) - cos(T6,_,) (17) T 1 10 10 2 7 | w: =058
. f c 10:1:1:5 01 1 1 0.2 wa = 0.059
+sp - sin(0,_,) 1 slal:d 01 1 1 0.2 w3 = 0.059
f _f L 0.5 5 5 1 wy = 0.294
O =01 + O T 1 05 5 5 w; = 0.204
. . ... . 2 1 10 10 = 0.588
where/ z;., fy,, and/6,, are the positions along the x-axis and C: 5:10:1:1 02 01 1 1 o — 0,056
y-axis and the orientation of thi-th footstep, respectively. L02 01 1 1 J wq = 0.059
Fof d’o b dz ivel T 5 05 5 wy = 0.294
xo, Yo, and’ 6y were set to b@.0, 0.0, andZ, respectively. o f1.10.1 02 1 01 1 wa = 0.059
Since a footstep was represented by a three dimensionaryect ~* T 022 110 011 110 w3 = ggfjg
L J wq = UV.UO

it was necessary to optimizex K variables forK footsteps.
A path can be represented by a lane which consists of
vectors, each of whichp,,n = 1,..., N, can be defined

as follows: e . . Q
pn = Pxn,P yn) (18)

where Px,, and Py, are the positions of then-th point : :
of the lane along the x-axis and y-axis, respectively. In 0.40' \vd 0.30
experiments,N was set as the value which makes a dis- 040 030 |
tance of 1.0 mm between the two adjacent points. khe 1

th footstep was regarded as being inside of the path if S

ming [/ (Fz, —P2,)2 + (Tyr — Py, )?] < 60.0 mm. Other- o.so """" Q

wise, it was regarded as being outside of the path. ) _ ) o
Four objectives (minimum remaining distance to gaal)( Fig. 3: Interaction diagram of objectives.

minimum mean distance from the path’s center ling),(

minimum mean lateral movemenas), and minimum mean

rotational movemento)) were employed in experiments and

: : S . S Is shown in Fig. 3. The number on the line connecting the
their corresponding objective functions to be minimizedeave o : . .

: ; two objectives is the interaction degré€) between them.
defined as follows:

Every correlation between the objectives can be determined
e intuitively. For example, the closer a robot follows the st
fr= Z [Prs1 = Pal (19) center line, the longer the distance to the goal remaineSin
e every correlation was assumed to be negative or independent

K
1 N 4 i i . .
fo = = me[\/(ka —pa)? + (Fyr —Pyn)? (20) every interaction d.egree was set[i]?O O- 5] . |
=1 To merge two highly related objectives into one, the dis-
LS similarity between them was accounted. For example, the
fa= 7 Z 1 (21) dissimilarity betweerv; ando, was calculated as
k=1
1 K
- 22 — 2 4+ — 2 0.00
fa= 4 kz::l || (22) Dior.on) = (€23 513|)q)| _(324 §14)° 099 _ .00.

where i is the index of the nearest point on the path from
the last footstep. Note tha, fo, f3, and f, are related with
travelling distance per step, safety, stability of walkimmnd

energy consumption, respectively.

In experiments, the same parameters of the MOPSO
used in the performance comparison were ugédvas set to
10 and the number of variables of this problem v8as(3 x 10
footsteps). For each of the three different kinds of shotthqpa
footsteps were optimized times to check the robustness of st &ut st
the proposed algorithm. After that, footsteps were optadiz §{{o1.02} {0304} = 4 = 0.35.
for a long complex path that assumes a real environment.

Three cases of preference degrees were considered for each o ) )
path to generate footsteps. Fig. 4 shows the simplified hierarchy diagram.

The preference degree, the pairwise comparison matrix,The fuzzy measures of the objective sets were computed
and the normalized weights corresponding to each casebis using (9), (10), (11), (12), and the simplified hierarchy
shown in Table VI and the interaction diagram of objectivediagram. As an example, the fuzzy measy(d) of A = {0;}

After calculating the dissimilarityy; ando, were merged into
one since they had the smallest dissimilarity. Another péir
_B@ectives,o?, and o4, were also merged, and the interaction
dégree between the two pairp;, 02} and {os,04}, was

computed as
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Preference Evaluation of objectives (R) | TABLE VIII: Average and standard deviation (STDEV) of
partial evaluation values

&({0,.0.). (030,01 = 0.35 ----->|
Case1: TR =1.50

Case1: TR = 0.63 | A f2 f3 fa

Case2: TR =1.15 Case2: TR =0.54 Casel Average | 0.938 0.793 0.627 0.673
Case3: Tf = 2.02 Case3: T§ = 077 STDEV | 0.003 0.053 0.050 0.041

_ _ Average | 0.880 0.900 0.711 0.649

01,0,} = U, === 03,04} = U, -3
Sioven1 = 0.20 Slesou = 0:50 Pathl | Case2 | grpey | 0.087 0018 0.049 0.049
Cases | Average | 0920 0615 0988 0558
STDEV | 0.024 0.035 0.007 0.030
0; 0, 03 0

Casel Average | 0.977 0.433 0.557 0.500
. R . . — STDEV | 0.005 0.042 0.057 0.021

Fig. 4: Simplified hierarchy diagram of objectives. oatz | Case | AVeTage | 0835 0003 0.786 0402
STDEV | 0.020 0.011 0.042 0.026

TABLE VII: Identified fuzzy measures Case3 | Average | 0912 0.440 0987 0.337
STDEV | 0.016 0.042 0.004 0.044

9(A) Casel | Average | 0972 0456 0642 0531
A Casel Case2 Case3 STDEV | 0.007 0.073 0.124 0.060

{1} 0411  0.097 0.170 Path3 | Casez | Average [ 0.844 0.924 0.647 0.378
{2} 0.018 0.315  0.024 STDEV | 0.029 0.020 0.061 0.066

{3} 0.037 0.032 0.456 Case3 Average | 0.952 0.332 0.992 0.282
{4} 0.186  0.032  0.046 STDEV | 0.014 0.036 0.003 0.054

{120 | 0501 0809  0.224
{130 | 0486 0136 0815
{144 | 0785 0136  0.234
{23 | 0057 0372 0.506

24 0212 0372 0072 high preference degree, the averagefpffor Casel, f> for

(3.4} 0.224 0.064 0501 Case2, and f3 for Case3 were the highest for all given paths.
{1,2,3 | 0584 0904  0.929 Extremely small STDEV values indicate that the MOPSO-PS
ﬁgj& 8:3613(7) 8:2%‘ g:ggg robustly optimized the footsteps, regardless of path aisé.ca
{234 | 0251 0429  0.555 In fact, there was no failure at all.
{1,234 | 1.000 1.000  1.000 Figs. 5, 6, and 7 show the optimized footsteps of the median

performance for each of the three short paths and three.cases
The footsteps optimized for Cagdetraveled the furthest since

for Casel was calculated as f1 was considered more than the other objectives in Gase
Similarly, the footsteps optimized for Cagewere the closest

9(A) = ¢s(Er,ulf + up) to the path’s center line becaugewas considered more than

= ¢,(0.35,u%}) the other objectives. Also, the footsteps optimized foreCas

3 showed a rotational movement instead of lateral movement

_ —1 R
= ¢+(035, ¢, (0.35, 64(0.2,0.588) x T})) when the robot needed to move in a lateral direction because

= $5(0.35, ¢; 1 (0.35,0.274 x 1.50)) f was considered more than the other objectives. Note that
= ¢5(0.35,0.563) the there were no swaying movements in every case gince
— 0.411. was also sufficiently considered.

Fig. 8 shows the footsteps optimized for a long path.

Table VII shows the finally identified fuzzy measures. IBjmilarly to the short paths, the consideration in each case
the table, objectives are abbreviated to their indices fier tyas successfully reflected to the footsteps. The robot in Fig
simplicity of notation. These values were used for the dlobg(a) traveled further with the same number of footsteps than
evaluation. the others. The robot in Fig. 8(b) followed the path’s center

The optimized footsteps were verified by simulation. Thghe as close as possible. The robot in Fig. 8(c) reached the
HSR-IX can modify its walking period, step length, angyoal with minimum lateral movement. Vided)(demonstrates
walking direction independently in realtime by the Modit@b he applicability of the proposed MOPSO-PS by Webots sim-
Walking Pattern Generator (MWPG) [36]. Therefore, it capation. In the simulation environment, HSR-IX succedgful

walk with the optimized footsteps by making a commanggiked along the path according to the preference degree in
state list of MWPG that corresponds to the footsteps. Th&ch case.

simulation was carried out using-D robotics simulation
software Webots [37] on which the model of the HSR-1X was V. CONCLUSION

programmed. In this paper, Multiobjective Particle Swarm Optimiza-

. tion with Preference-based Sort (MOPSO-PS) was proposed.
B. Experimental Results It could solve the Multiobjective Optimization Problems
Table VIII presents the average and Standard Deviati¢llOPSs) in consideration of the user’s preference by apglyin
(STDEV) of the partial evaluation values for each case, whepreference-based sort, for which the fuzzy measure ang fuzz
the partial evaluation values are the normalized objectiugtegral were employed. The effectiveness of this algarith
function values between.0 and 1.0. Since o, for Casel, was demonstrated by comparison with NSGA-II, MQEA, and
0o for Case2, andos for Case3 were set to have a relatively MOPSO through the DTLZ functions. The comparison results
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indicated that the user’s preference was properly refletded[16] X. Hu and R. Eberhart, “Multiobjective optimization ing dynamic
Optimized solutions by MOPSO-PS without any loss of overall neighborhood particle swarm optimizationProceedings of IEEE

uti l d di itv. M MOPSO-PS avdid Congress on Evolutionary Computatjopp. 1677-1681, 2002.
solution quality an iversity. Moreover, - aV. ! ?ﬁ17] S. Mostaghim and J. Teich, “Strategies for finding goocal guides in
premature convergence even though the preferred objective multi-objective particle swarm optimization (MOPSO),” Rroceedings
were considered more. The MOPSO-PS was also applied of IEEE Swarm Intelligence Symposiu#003, pp. 26-33. =

h h followi f .. f h .&18 C. Coello, G. Pulido, and M. Lechuga, “Handling mulépbbjectives

to the path following ootst_ep_ optimization _Or umanol with particle swarm optimization,JEEE Transactions on Evolutionary
robots and the footsteps optimized for predefined paths were Computation vol. 8, no. 3, pp. 256279, 2004.
successfully obtained. The obtained footsteps were verifig® J. Alvarez-Benitez, R. Everson, and J. Fieldsend, “ARBD algorithm
by the simulation based on the model of humanoid robot
HanSaRam-IX (HSR-IX). Through these results, it is certaino]

based exclusively on pareto dominance concept&Violutionary Multi-
Criterion Optimization 2005, pp. 459-473.

that the MOPSO-PS can be applied to various kinds of real

world applications. 21]

M. Reyes-Sierra and C. Coello, “Multi-objective pal swarm op-
timizers: A survey of the state-of-the-artfhternational Journal of
Computational Intelligence Researdlol. 2, no. 3, pp. 287-308, 2006.
J.-H. Kim, J.-H. Han, Y.-H. Kim, S.-H. Choi, and E.-S. 1qj
“Preference-Based Solution Selection Algorithm for Eviolnary Mul-
tiobjective Optimization,”IEEE Transactions on Evolutionary Compu-
tation, vol. PP, no. 99, pp. 1-15, doi: 10.1109/TEVC.2010.2098 412

. . . 2011.
This research was SUpF_)orted by the Basic SC|er_1ce Reseé[‘ﬁf‘ K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scakabinulti-
Program through the National Research Foundation of Korea objective optimization test problems,” Proceedings of IEEE Congress

(NRF) funded by the Ministry of Education, Science and " Evolutionary Computationvol. 1, 2002, pp. 825-830. :
3] R. Yager, “On ordered weighted averaging aggregatiperators in
Technology (2012-0000150). multicriteria decisionmaking,JEEE Transactions on Systems, Man and

Cybernetics vol. 18, no. 1, pp. 183-190, 1988.

ACKNOWLEDGEMENT

[24] K. Miettinen, Nonlinear multiobjective optimization Springer, 1999,
REFERENCES vol. 12.
. . [25] M. Emmerich, N. Beume, and B. Naujoks, “An emo algorithusing
[1] Y.-D. Hong, Y.-H. Kim, J.-H. Han, J.-K. Yoo, and J.-H. KinfEvo- the hypervolume measure as selection criterion Fwuolutionary Multi-
lutionary multiobjective footstep planning for humanoisbots,” IEEE Criterion Optimization 2005, pp. 62-76.
Transactions on Systems, Man, and Cybernetics, Part C:iégigns [26] T. L. Saaty, “Decision making with the analytic hierayc process,”

and Reviewsno. 99, pp. 1-13, 2011.

[2] G. Barlow, C. Oh, and E. Grant, “Incremental evolutionaeftonomous
controllers for unmanned aerial vehicles using multi-otiye genetic o7
programming,” inProceedings of IEEE Conference on Cybernetics and
Intelligent Systemsvol. 2, 2004, pp. 689-694.

[3] S. Mittal and K. Deb, “Three-dimensional offline path phang for
UAVs using multiobjective evolutionary algorithms,” roceedings of [28]
IEEE Congress on Evolutionary Computatid®007, pp. 3195-3202.

[4] J. Knowles and D. Corne, “Approximating the nondomimifent using
the pareto archived evolution strategiolutionary computatiorvol. 8,
no. 2, pp. 149-172, 2000.

[5] E. Zitzler, “Evolutionary algorithms for multiobjeste optimization:
Methods and applications,Doctoral dissertation ETH 13398, Swiss[30]
Federal Institute of Technology (ETH), Zurich, Switzedath999.

International Journal of Services Sciencesl. 1, no. 1, pp. 83-98,
2008.
1 C. Raquel and P. Naval Jr, “An effective use of crowdirigtahce in
multiobjective particle swarm optimization,” iAroceedings of the 2005
conference on Genetic and evolutionary computati®@05, pp. 257—
264.
E. Takahagi, “On Identification Methods of-Fuzzy Measures using
Weights and\.” Journal of Japan Society for Fuzzy Theory and Systems
vol. 12, no. 5, pp. 665-676, 2000.
——, “A fuzzy measure identification method by diamondirpise
comparisons and transformationfPuzzy Optimization and Decision
Making vol. 7, no. 3, pp. 219-232, 2008.
M. Sugeno, “Fuzzy measures and fuzzy integrals: a s\ireéuzzy
automata and decision processesl. 78, no. 33, pp. 89-102, 1977.

[29]

[6] E. Zitzler, M. Laumanns, L. Thielegt al, “SPEA2: Improving the [31] ——, “Theory of fuzzy integrals and its application&)octoral Thesis,

strength pareto evolutionary algorithm,” BUROGEN vol. 3242, no. Tokyo Institute of Technology Tokyo, Japa®74.

103, 2001, pp. 1-21. [32] J. Marichal, “An axiomatic approach of the discrete Ghet integral
[7] N. Srinivas and K. Deb, “Muiltiobjective optimizationsing nondomi- as a tool to aggregate interacting criteritEEEE Transactions on Fuzzy

nated sorting in genetic algorithmsZvolutionary computationvol. 2, Systemsvol. 8, no. 6, pp. 800-807, 2002.

no. 3, pp. 221-248, 1994. [33] H. Li, Q. Zhang, E. Tsang, and J. Ford, “Hybrid estimatiof dis-
[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fastdaalitist tribution algorithm for multiobjective knapsack problénEvolutionary

multiobjective genetic algorithm: NSGA-II,TEEE Transactions on Computation in Combinatorial Optimizatippp. 145-154, 2004.

Evolutionary Computationvol. 6, no. 2, pp. 182-197, 2002. [34] B. Welch, “The generalization of student’s problem wheeveral dif-
[9] Y.-H.Kim, J.-H. Kim, and K.-H. Han, “Quantum-inspireduttiobjective ferent population variances are involved®fometrika vol. 34, no. 1/2,

evolutionary algorithm for multiobjective 0/1 knapsackoplems,” in pp. 28-35, 1947.

Proceedings of IEEE Congress on Evolutionary Computata@®6, pp. [35] J.-K. Yoo, B.-J. Lee, and J.-H. Kim, “Recent progressl aevelopment

2601-2606. of the humanoid robot HanSaRaniRbbotics and Autonomous Systems
[10] Y.-H. Kim and J.-H. Kim, “Multiobjective quantum-ingged evolution- vol. 57, no. 10, pp. 973-981, 2009.

ary algorithm for fuzzy path planning of mobile robot,” Rroceedings [36] B.-J. Lee, D. Stonier, Y.-D. Kim, and J.-H. Kim, “Modifiée walking

of IEEE Congress on Evolutionary Computati@®09, pp. 1185-1192. pattern of a humanoid robot by using allowable ZMP varigtidBEEE
[11] J. Kennedy and R. Eberhart, “Particle swarm optimaatiin Proceed- Transactions on Roboticsol. 24, no. 4, pp. 917-925, 2008.

ings of IEEE International Conference on Neural Networid. 4, 1995, [37] O. Michel, “Cyberbotics Ltd. WebotsTM: Professionalobile robot

[12]

(23]

[14]

[15]

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.or

pp. 1942-1948.
K.-B. Lee and J.-H. Kim, “Mass-spring-damper motiomdynics-based
particle swarm optimization,” inProceedings of IEEE Congress on
Evolutionary Computation2008, pp. 2348-2353.

H.-M. Park and J.-H. Kim, “Potential and dynamics baggatticle
swarm algorithm,” inProceedings of IEEE Congress on Evolutionary
Computation 2008, pp. 2354-2359.

K.-B. Lee and J.-H. Kim, “Particle swarm optimizationriveen by
evolving elite group,” inProceedings of IEEE Congress on Evolutionary
Computation 2009, pp. 2114-2119.

C. Coello and M. Lechuga, “MOPSO: A proposal for mukipbbjec-
tive particle swarm optimization,Proceedings of IEEE Congress on
Evolutionary Computationpp. 1051-1056, 2002.

simulation,” Int. J. Advanced Robot. Syswol. 1, no. 1, pp. 39-42,
2004.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

Ki-Baek Lee received the B.S. degree in Electrical
Engineering, in 2005, from KAIST, Daejeon, Korea,
where he is currently working toward the M.S.-Ph.D. cronpi ot et Pt
joint degree. ‘ ‘

He has researched computational intelligence, in w00 |
particular, in the area of swarm intelligence, mul-
tiobjective particle swarm optimization and multi- T
objective quantum-inspired evolutionary algorithm sonl W E - [IE e R ] |
(MQEA). His research interests also include the - - -] ] E E
real world applications of MOEA such as on-line T § 1

MOEA through distributed computing and on-line
multiobjective evolutionary navigation for humanoid r¢do

400

¥ [mm]

300~

200l B : : 1
T

Example of Walking Pattern

800}~ -

7001~ -

600}~

500

400

¥ [mm]

300~

Jong-Hwan Kim (F'09) received the B.S., M.S., and o0
Ph.D. degrees in electronics engineering from Seoul ol
National University, Seoul, Korea, in 1981, 1983,
and 1987, respectively. Since 1988, he has been witt °r
the Department of Electrical Engineering, KAIST, B | | | s | s i i
Daejeon, Korea, where he is currently KT Chair ) o
Professor and Director for the National Robotics

Research Center for Robot Intelligence Technology.

His research interests include intelligence technol-

ogy and ubiquitous and genetic robotics. He is an (b)
Associate Editor of the IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION and the IEEE COMPUTATIONAL

INTELLIGENCE MAGAZINE. His name was included in the Baron§®

Leaders for the New Century in 2000 as the Father of RobotbatloHe is

the Founder of the Federation of International Robosocesogiation (FIRA, Example o WakingPator
www.FIRA.net) and the International Robot Olympiad Contest (IROC,
www.IROC.org), and is currently the President of both.

800 -

7001~

1)
-t S s TR

5001~ -
x

a0l B i
a0} ; ; i
ol B il

_ I I I I I I I I
200 [ 200 400 600 800 1000 1200 1200
x[mm]

¥ [mm]
T
I

©

Fig. 5: 24 footsteps optimized for Path 1x( foot position).
(a) Case 1. (b) Case 2. (c) Case 3.
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Fig. 6: 31 footsteps optimized for Path 2<( foot position).

(a) Case 1. (b) Case 2. (c) Case 3.
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Fig. 7: 17 footsteps optimized for Path 3«<( foot position).

(a) Case 1. (b) Case 2. (c) Case 3.
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Fig. 8: 76 footsteps optimized for a long pathx( foot
position). (a) Case 1. (b) Case 2. (c) Case 3.
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