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Abstract—This paper proposes Multiobjective Particle Swarm
Optimization with Preference-based Sort (MOPSO-PS) in which
the user’s preference is incorporated into the PSO update process
to determine the relative merits of nondominated solutionswhile
handling the mutual dependencies and priorities of objectives. In
MOPSO-PS, the user’s preference is represented as the degree
of consideration for each objective using the fuzzy measure. The
global evaluation of a particle, which represents the quality of
the particle according to the user’s preference, is carriedout by
the fuzzy integral, which integrates the partial evaluation value
of each objective with respect to the degree of consideration.
Since the global best attractor of each particle in the population
is randomly chosen among the nondominated particles havinga
relatively higher global evaluation value in each PSO update
iteration, the optimization is gradually guided by the user’s
preference. After the optimization, the most preferable particle
can be chosen for practical use by selecting the particle with
the highest global evaluation value. The effectiveness of the
proposed MOPSO-PS is demonstrated by the application of path
following footstep optimization for humanoid robots in addition
to empirical comparison with the other algorithms. The footsteps
optimized by the MOPSO-PS were verified by simulation. The
results indicate that the user’s preference is properly reflected in
optimized solutions without any loss of overall solution quality
and diversity.

Index Terms—Particle Swarm Optimization, Multiobjective
Evolutionary Optimization, Fuzzy Integral, Preference-based
sort, Humanoid Robot, Footstep Optimization.

I. I NTRODUCTION

S
olving Multiobjective Optimization Problems (MOPs) has
become important in engineering recently. For example,

there are a lot of MOPs in robotics, such as footstep plan-
ning for humanoid robots, autonomous control for Unmanned
Aerial Vehicles (UAVs), and path planning for UAVs [1]–[3].
In order to solve MOPs, various Multiobjective Evolutionary
Algorithms (MOEAs) have been developed and have shown
outstanding results through solving complex multiobjective
benchmark functions. The Pareto Archived Evolutionary Strat-
egy (PAES) was developed by using the adaptive grid [4]. The
Strength Pareto Evolutionary Algorithm (SPEA) was created,
which used a mixture of established and new techniques in
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order to approximate the Pareto-optimal set [5]. SPEA2, the
improved version of SPEA, was developed by employing a
refined fitness assignment and an enhanced archive truncation
technique [6]. The Nondominated Sorting Genetic Algorithm
(NSGA) was developed by the classification of nondominated
fronts and the sharing operation [7]. The improved version of
NSGA, NSGA-II, was created, which is a strong elitist method
with a mechanism to maintain diversity efficiently by using a
fast nondominated sort and crowding distance assignment [8].
The Multiobjective Quantum-inspired Evolutionary Algorithm
(MQEA) was proposed to improve proximity to the Praeto-
optimal set while preserving diversity [9], [10]. The Multiob-
jective Particle Swarm Optimization (MOPSO) was developed
by extending the Particle Swarm Optimization (PSO), which
is a population-based stochastic algorithm inspired by the
interaction among the individuals of a swarm, such as a flock
of birds and insects [11]–[20].

However, for real applications, which are different from the
benchmark functions, two other issues need to be considered.
The first one is how to handle the mutual dependencies
and priorities of objectives. For example, in the problem of
the humanoid robot path following footstep optimization, the
remaining distance to the goal, the mean distance from the
path’s center line to the footsteps, the mean lateral move-
ment, and the mean rotational movement can be employed
as objectives. They are not always independent from each
other and their priorities may vary with the preference of the
user. The second one is how to determine the relative merits
of nondominated solutions. A dominance-based approach is
not effective in many-objective problems since the number
of nondominated solutions increases exponentially with the
number of objectives. Therefore, the relative merits of the
nondominated solutions should be determined to update the
population and archive at each generation. Moreover, for
real applications, such as operating humanoid robots, it is
necessary to choose the most preferable solution among the
finally obtained solutions.

To solve the issues mentioned above, MOPSO with
preference-based sort (MOPSO-PS) is proposed in this paper.
According to the results from [18], MOPSO showed a highly
competitive performance and was able to cover the full Pareto
front of all the benchmark functions used. The relatively
low computational burden of MOPSO is also an advantage
for real applications. The preference-based sorting concept
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is based on a recent algorithm, Preference-based Solution
Selection Algorithm (PSSA), in which the user’s preference
to each objective is represented by the degree of consideration
using the fuzzy measure [21]. This successfully helps MOPSO
determine the relative merits of the nondominated solutions
in the consideration of the user’s preference. In MOPSO-PS,
every particle, i.e. every solution, is updated by following the
personal best and the global best attractors. The global best
attractor of each particle in the population is randomly chosen
among the relatively more preferred particles in the archive
at each generation. Therefore, as a result, the optimization is
gradually guided by the user’s preference.

To demonstrate the effectiveness of MOPSO-PS, empirical
comparisons with NSGA-II [8], MQEA [9], [10], and MOPSO
[18] were carried out through DTLZ functions, which are well
known benchmark functions for multiobjective optimization
algorithms [22]. The experiments of the path following foot-
step optimization for humanoid robots were also performed.
For each of the three kinds of short paths, footsteps were
optimized50 times to check the robustness of the proposed
algorithm. After that, footsteps were optimized for a long com-
plex path that considers the real environment. The footsteps
optimized to the path were verified by simulation.

This paper is organized as follows. Section II proposes
MOPSO-PS and briefly introduces the fuzzy measure and
fuzzy integral. In Section III, the comparison among MOPSO-
PS and the other algorithms are discussed. Section IV presents
the application to path following footstep optimization for
humanoid robots. Finally, concluding remarks are in Section
V.

II. M ULTIOBJECTIVE PARTICLE SWARM OPTIMIZATION

WITH PREFERENCE-BASED SORT

The key point of the Multiobjective Particle Swarm Opti-
mization with Preference-based Sort (MOPSO-PS), compared
to the original MOPSO, is that user’s preference is taken into
account. In MOPSO-PS, preference-based sort is additionally
employed in order to incorporate the user’s preference into
the PSO update process. This is because the dominance-based
approach is not effective in many-objective problems since
the number of nondominated solutions increases exponentially
with the number of objectives.

The most important thing for implementing the preference-
based sort is that the Global Evaluation value (GEval) of
every particle should be carried out, which represents the
quality of the particle according to the user’s preference.
Therefore, in this paper, the user’s preference is represented as
the degree of consideration for each objective using the fuzzy
measure and the GEval of a particle is calculated by the fuzzy
integral, which integrates the Partial Evaluation value (PEval)
of each objective with respect to the degree of consideration.
The PEval of each objective can be obtained by normalizing
the objective function value. For real applications, the most
preferable solution can also be selected by the GEvals of
the solution after finishing the optimization. Note that the
fuzzy integral requires neither objectives to be independent
nor the fuzzy measure to be additive for any subset in the
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Fig. 1: The flow diagram of MOPSO-PS.

power set of objectives because it can effectively represent the
interactions, i.e. positive interactions and negative interactions
between objectives. Thus the fuzzy integral is more suitable
for determining the relative merits of the nondominated par-
ticles than the other existing methods, including multicriteria
decision making and aggregation methods [23]–[26].

In this subsection, MOPSO-PS is explained step by step and
the procedure of global evaluation is described in detail.

A. Proposed MOPSO-PS

In MOPSO-PS, the optimization is gradually guided by
the user’s preference. Each particle in the population chooses
its Global Best attractor (GBest) randomly from the GBest
candidate pool, which consists of relatively more preferable
particles. Fig. 1 shows the flow diagram of MOPSO-PS, where
At is the external archive,Pt is the population,Gt is the
GBest candidate pool,pxkt is the personal best attractor (PBest)
position of thek-th particle, andgxkt is the GBest position
of the k-th particle at generationt. As shown in Fig .1, the
GBest candidate pool is extracted from the archive by the
following three steps. First, the archive is updated and every
particle dominated by the others is discarded. Second, the
particles in the archive are sorted by Crowding Distance (CD)
and the lower half set of the archive is discarded. This is
for preserving diversity and avoiding premature convergence.
Third, the remaining particles of the archive, which have a
relatively higher crowding distance, are sorted by the GEval of
each particle and the lower half set of the archive is discarded
again. As a result, dispersed and relatively more preferable
particles are gathered in the GBest candidate pool.

The overall procedure of MOPSO-PS is summarized as
Algorithm 1 and each step of the algorithm is described in
detail in below:

1) Initialize P0 andA0

A population is a set ofN particles, which have their own
position and velocity. The positionxk and velocityvk of thek-
th particlepk, k = 1, 2, . . . , N , are theD-dimensional vectors
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Algorithm 1 Multiobjective Particle Swarm Optimization with
Preference-based Sort

• Pt: The population at iterationt
• At: The external archive at iterationt
• Gt: GBest candidate pool at iterationt
• NP : The number of particles inPt

• NA: The number of particles inAt

• NG: The number of particles inGt

• D: The dimension of the search space
• rand(L,U): Random integer value betweenL andU
• xkt : The position of thek-th particle at iterationt
• vkt : The velocity of thek-th particle at iterationt
• f(xkt ): The objective function value ofxkt
•

gxkt : GBest position of thek-th particle at iterationt
•

pxkt : PBest position of thek-th particle at iterationt

1) Initialize P0 andA0

t = 0
for k = 1, 2, . . . , NP do

xkt = random vector∈ R
D

vkt = 0
Evaluatef(xkt )
pxkt = xkt

end for
At = Null set

2) UpdateAt

t = t+ 1
At = At−1 ∪ Pt−1

Discard dominated particles out ofAt

for k = 1, 2, . . . , NA do
Evaluate the PEval of each particle inAt

Evaluate the GEval of each particle inAt

Calculate the CD of each particle inAt

end for
3) ExtractGt from At

Sort the particles inAt based on their CDs
A′

t = the upper half ofAt

Sort the particles inA′
t based on their GEvals

Gt = the upper half ofA′
t

4) Update particles

for k = 1, 2, . . . , NP do
r = rand(0, NG)
gxkt = the position of ther-th particle inGt

Updatevkt andxkt by (1)
Evaluatef(xkt )
Updatepxkt

end for
5) Go to 2) and Repeat

as follows:

vk ∈ R
D, xk ∈ R

D.

For every particle in the population, the position is randomly
initialized in aD-dimensional space and the velocity is ini-
tially set to0. TheM -objective function of each particlef(xkt )

is evaluated, which is defined as

f(xkt ) : R
D → R

M

and the PBest position of each particle is set to be the position
of itself. The external archive is also initialized as a nullset.

2) UpdateAt

The current archiveAt is updated as the union of the
previous archiveAt−1 and the previous populationPt−1.
After that, through a dominance test, the dominated particles
are discarded out ofAt. For each particle inAt, the PEval
and GEval are evaluated, which are described in Section II.B,
and CD is also calculated [27].

3) ExtractGt from At

At first, the particles inAt are sorted by their CDs and the
upper half ofAt, which is a relatively more dispersed set,
is stored intoA′

t. Then, the particles inA′
t are sorted again

based on their GEvals, and the upper half ofA′
t, which is

a relatively more preferable set, is stored intoGt. Since the
particles inGt are mutually nondominating and no particles
in Gt are dominated byxkt−1, every particle inGt can be a
candidate for the GBest of each particle inPt−1. Moreover,
by choosinggxkt from Gt, the particles are guided by the
user’s preference while maintaining diversity.

4) Update particles
For each particle,gxkt is randomly chosen fromGt. The

velocity and position of each particle are updated as follows:






vkt = w · vkt−1 + c · {φk
1,t(

pxkt−1 − xkt−1)
+φk

2,t(
gxkt − xkt−1)}

xkt = xkt−1 + vkt

(1)

wherew and c are constants andφk
1,t and φk

2,t are random
real values uniformly distributed in[0, 1]. New random values
are generated for each particle at each and every generation.
After that, f(xkt ) for every particle in the updatedPt−1 is
evaluated. Finally, the personal best position of each particle
pxkt , k = 1, 2, . . . , N , is updated.pxkt = xkt if xkt weakly
dominates pxkt−1 or they are mutually non-dominating.
Otherwise,pxkt = pxkt−1.

5) Go to 2) and Repeat
Go to 2) and repeat until a termination condition is met.

Note that the computational complexity of the proposed
algorithm is governed by the sorts, i.e. the CD-based sort and
the GEval-based sort. Since both sorts are done by the quick
sort, the proposed algorithm has an average computational
complexity of O(nlog(n)).

B. The Procedure of Global Evaluation

To carry out the GEval of each particle, the user’s preference
is represented as the degree of consideration to each objective
using the fuzzy measure and with which the PEval of each
obective is integrated by the fuzzy integral. In this study,a
method of diamond pairwise comparisons and transformation
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Algorithm 2 The Procedure of Global Evaluation

• M : The number of objectives
• O = {o1, o2, · · · , oM}: A set of objectives
• P (O): A power set ofO
• N : The number of particles
• fi(xk): Objective function value of thek-th particle over

oi
• hi(xk): Partial evaluation value of thek-th particle over

oi
• e(xk): Global evaluation value of thek-th particle

1) Fuzzy measure identification

Make a pairwise comparison matrix,P
for i = 1, 2, . . . ,M do

Calculate normalized weightwi with P by (6)
end for
Generate interaction diagram
Generate hierarchy diagram
for eachA ∈ P (O) do

Calculate fuzzy measureg(A) of P (O) by (9)-(12)
end for

2) Global evaluation of particles

for i = 1, 2, . . . ,M do
for k = 1, 2, . . . , N do

Find the maximum valuefMAX
i and the mini-

mum valuefMIN
i

end for
end for
for k = 1, 2, . . . , N do

for i = 1, 2, . . . ,M do
hi(xk) =

fi(xk)−fMIN
i

fMAX
i −fMIN

i

end for
end for
for k = 1, 2, . . . , N do

Calculatee(xk) =
∫

O
h ◦ g by (13)

end for

was employed for fuzzy measure identification [28], [29] and
Choquet fuzzy integral was employed as a fuzzy integral [30].

The overall procedure of global evaluation using the fuzzy
measure and fuzzy integral is summarized in Algorithm 2
and each step is described in the following:

1) Fuzzy measure identification

In this study,λ-fuzzy measure was used to represent the
degree of consideration for each objective. The fuzzy measure
of the power set ofX , denoted asP (X) in the finite space
X = {x1, · · · , xM} is defined as follows:

Definition 1: A fuzzy measureg defined on(X,P (X)) is
a set functiong : P (X) → [0, 1] that satisfies the following
axioms:

(1) Boundary condition

g(∅) = 0, g(X) = 1. (2)

(2) Monotonicity

∀A,B ⊆ P (X), if A ⊆ B, then g(A) ≤ g(B). (3)

As a general representation of fuzzy measure,λ-fuzzy
measure,g : P (X) → [0, 1], is defined, which additionally
satisfies the following axiom [31]:

∀Ai,j ∈ P (X), i, j = 1, · · · ,M, Ai ∩Aj = ∅ and − 1 < λ,

g(Ai ∪ Aj) = g(Ai) + g(Aj) + λg(Ai)g(Aj) (4)

where λ represents an interaction degree betweenAi and
Aj . λ-fuzzy measure is considered as a belief measure,
plausibility measure or probability measure depending on the
value ofλ. If λ > 0, λ < 0 andλ = 0, they are considered,
respectively, as a belief measure, plausibility measure and
probability measure [32]. The following procedure was
employed to calculate the fuzzy measures [28], [29]:

a) Make a pairwise comparison matrix
The pairwise comparison matrix of objectives,P , which

represents preference degrees between objectives, is defined
as follows [26]:











p11 p12 · · · p1M
p21 p22 · · · p2M
...

...
. . .

...
pM1 pM2 · · · pMM











(5)

wherepij represents the preference degree between thei-th
objectiveoi and thej-th objectiveoj , pii is 1 andpij = 1/pji.
The preference degrees of the pairwise matrix are determined
by the relative importance between each pair of objectives
from the user’s perspective, e.g., ifp12 is 10, it meanso1 is
ten times more preferable too2.

b) Calculate normalized weight
The normalized weight,wi of the i-th objective,oi, i, j =

1, · · · ,M is calculated as follows:

wi =

∑M

j=1 pij
∑M

i=1

∑M

j=1 pij
. (6)

c) Generate interaction diagram
The interaction diagram of objectives (Fig. 3 in Section IV)

shows the interaction degrees between two different objectives.
If the two objectives have a negative correlation, the interaction
degree between them has a value between0.0 and 0.5. In
contrast, if the two objectives have a positive correlation, the
interaction degree between them has a value between0.5 and
1.0. If the two objectives are independent, the interaction
degree between them has a value of0.5. Therefore, the
interaction degree between thei-th and j-th objectivesξi,j
lies in [0.0, 1.0].

d) Generate hierarchy diagram
As shown in the interaction diagram, since the interaction

degrees are different from each other, it is hard to directly
identify the fuzzy measures. In this study, a hierarchy diagram
was generated to get a merged interaction degree. The hier-
archy diagram of objectives (Fig. 3 in Section IV) represents
hierarchical interaction relations among the objectives by clus-
tering two closely-related objectives. To estimate how much
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the two objectives are related, a dissimilarity measure between
them was employed. The dissimilarityD{Gp,Gq} between two
clustersGp andGq is defined as an average distance to other
objectives, as follows:

D{Gp,Gq} =

∑

Gr∈Φ,Gr 6=Gp,Gr 6=Gq
[ξ{Gp,Gr} − ξ{Gq,Gr}]

2

|Φ| − 2
(7)

whereΦ is a set of all clusters that consist of one or more
objectives,Gp, Gq, Gr ∈ Φ are clusters,ξ{Gi,Gj} is the
interaction degree between objectivesGi and Gj , and |Φ|
is the number of clusters inΦ. Two objective clusters that
have the smallest dissimilarity are merged into one and the
interaction degrees among will clusters are recalculated.The
interaction degreeξ{Gp,Gq} between two clustersGp andGq

is calculated as

ξ{Gp,Gq} =

∑

(i,j)∈(E(Gp)×E(Gq))
ξij

|E(Gp)× E(Gq)|
(8)

whereA×B is the direct sum andE(Gp) is the function that
picks up all objectives in the setGp. The merging procedure
is done until all objectives are merged.

e) Calculate fuzzy measures
After getting the hierarchy diagram, a fuzzy measureg(A),

whereA ∈ P (O), was identified by employingφs transfor-
mation, as follows:

g(A) = φs(ξR,
∑

P⊂R

uR
P ), (9)

whereR is the root level set in the hierarchy diagram and
ξR is the interaction degree ofR. The transformationφs :
[0, 1]× [0, 1] → [0, 1] is defined as follows:

φs(ξ, u) =































1, if ξ = 1 andu > 0

0, if ξ = 1 andu = 0

1, if ξ = 0 andu = 1

0, if ξ = 0 andu < 1
su−1
s−1 , other cases

(10)

wheres = (1 − ξ)2/ξ2 anduP
Q is defined as follows:

uP
Q =







wi,whereoi ∈ Q, if |Q| = 1 andoi ∈ A
0, if |Q| = 1 andoi /∈ A

φ−1
s (ξP , φs(ξQ,

∑

V ⊂Q uQ
V )× TP

Q ), other cases
(11)

where the value ofφ−1
s (ξ, x) is u, which satisfiesφs(ξ, u) =

x. To calculate the value ofφ−1
s (ξ, x), the recursive least

squares method was employed. The conversion ratioTP
Q from

Q to P is computed as

TP
Q =

φs(ξP ,
∑

oi∈P wi)

φs(ξQ,
∑

oi∈Q wi)
. (12)

2) Global evaluation of particles
For the global evaluation of each particle over objectives

with respect to the degree of consideration for each of the
objectives, the following Choquet fuzzy integral [30] can be
used.

Definition 2: Let h : O → [0, 1], whereO can be any
set. The Choquet fuzzy integral of partial evaluation,h over a
subset ofO ∈ P (O), with respect to the fuzzy measureg, is
defined as

∫

O

h ◦ g =

M
∑

i=1

(hi − hi−1)g(Ei) (13)

whereh1 ≤ h2 ≤ · · · ≤ hM , Ei = {oi, oi+1, · · · , oM} and
h0 = 0, for oi ∈ O and i = 1, · · · ,M .

The valueh in (13) is a normalized objective function
value that represents the partial evaluation value of each
particle over each objective. The objective function values
need to be normalized to1.0 since h is defined from0.0
to 1.0. In this way, thehi(xk) of the k-th particle overoi
is calculated.g is the λ-fuzzy measure obtained from the
fuzzy measure identification. It means the global evaluation
value is calculated by considering both the user’s degree of
consideration for each objective and the partial evaluation of
the particle.

III. E XPERIMENTS FORCOMPARISON

A. Configuration for the Comparison

The parameters used in the comparison are given in Table I.
The number of variables of each DTLZ function was set to11
for DTLZ1, 16 for DTLZ2 - DTLZ6, and26 for the DTLZ7
function. For MOPSO-PS, three out of the seven objectives
in DTLZ functions were chosen as preferred objectives. Thus,
the preference degree for this was set tof1 : f2 : f3 : f4 : f5 :
f6 : f7 = 1 : 10 : 1 : 10 : 1 : 10 : 1 from which a pairwise
comparison matrix (5) was provided. The normalized weights
according to the pairwise comparison matrix were calculated
as (0.0295, 0.295, 0.0295, 0.295, 0.0295, 0.295, 0.0295). Since
it is hard to figure out the exact correlation degrees between
the objectives in DTLZ functions, it was assumed that they
have negative correlations with each other and every inter-
action degree between them was set to0.25. Therefore, the
interaction diagram and hierarchy diagram generation process
could be skipped and the fuzzy measureg(A) was identified
as follows:

g(A) = φs(ξ,
∑

oi∈A

wi) (14)

whereA is an element ofP (O).
In addition to average objective function values, two perfor-

mance metrics, the size of dominated space and diversity, were
employed to evaluate the performance of NSGA-II, MQEA,
MOPSO and MOPSO-PS. The size of dominated space,S is
defined by the hypervolume of nondominated solutions [5].
The reference point to calculateS was set to (10, 10, 10, 10,
10, 10, 10). The quality of the obtained solution set is high if
this space is large. Diversity,D is for evaluating the spread of
nondominated solutions, which is defined as follows [33]:

D =

∑n

k=1(f
(max)
k − f

(min)
k )

√

1
|N0|

∑|N0|
i=1 (di − d̄)2

(15)

where N0 is the set of nondominated solutions,di is the
minimal distance between thei-th solution and the nearest
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TABLE I: The parameter settings of the algorithms

Algorithms Parameters Values

NSGA-II
Population size (N ) 100
No. of generations 3000

Mutation probability (pm) 0.1

MQEA

Global population size (n · s) 100
No. of generations 3000

Subpoppulation size (n) 25
No. of subpopulations (s) 4

No. of multiple observations 10
The rotation angle (∆θ) 0.23π

Population size (N ) 100
MOPSO/ No. of generations 3000

MOPSO-PS Max. archive size 500
Inertia weight,w 1/(2 · log 2)

Cognitive/Social parameter,c 0.5 + log 2

neighbor, and̄d is the mean value of alldi. f
(max)
k andf (min)

k

represent the maximum and minimum objective function val-
ues of thek-th objective, respectively. A larger value means a
better diversity of the nondominated solutions.

B. Comparison Results

Sincef2, f4, andf6 were more considered in every gener-
ation of the evolutionary process, MOPSO-PS could obtain
the optimized solutions that were more focused on those
preferred objectives. Table II shows the average objective
function values over100 runs. As the table shows, the average
values off2, f4, andf6 of MOPSO-PS are the smallest among
all the algorithms, except for the DTLZ2 function. To see how
the preference degree contributes to the final solutions, the
MOPSO-PS with different preference degree settings was also
studied for the DTLZ functions. Table III shows the average
of the preferred objective function values of the three DTLZ
functions, DTLZ2, DTLZ4 and DTLZ6, over 100 runs for
each setting. As shown in the table, the preference degree had
a pronounced effect on the final solutions. For the rest of the
DTLZ functions, the result was similar. However, the effect
was not highly sensitive to the magnitude of the preference
degree.

The size of dominated spaceS and diversityD of NSGA-II,
MQEA, MOPSO and MOPSO-PS are shown respectively in
Table IV and Table V, whereS1, S2, S3 andS4 represent theS
of NSGA-II, MQEA, MOPSO and MOPSO-PS, andD1, D2,
D3 andD4 represent theD of NSGA-II, MQEA, MOPSO and
MOPSO-PS, respectively. The values were averaged over100
runs and Welch’s t-test values [34] were also calculated. At-
test valuetX1−X2

represent the statistical difference between
the two samples,X1 and X2. As the tables show, both the
S and D of MOPSO-PS were not larger than those of the
other algorithms for all DTLZ functions. However, it can
be a distinctive advantage of MOPSO-PS that itsS and D
were competitive with those of the other algorithms, even
though the preferred objectives were considered more. When
the conventional utility function method, like the weighted sum
method, is used in selection process, the weights need to be set
very carefully in order to obtain the solutions optimized, not
only for preferred objectives, but also for the other objectives
to a certain level. On the other hand, MOPSO-PS can solve

TABLE II: Average of the preferred objective function values
obtained by NSGA-II, MQEA, MOPSO, and MOPSO-PS

(a) f2

Problem NSGA-II MQEA MOPSO MOPSO-PS

DTLZ1 12.58 3.86 2.19 0.04
DTLZ2 0.29 0.12 0.43 0.18
DTLZ3 22.24 38.28 64.09 0.33
DTLZ4 0.28 0.23 0.20 0.15
DTLZ5 1.86 0.79 0.23 0.13
DTLZ6 0.33 0.21 0.16 0.13
DTLZ7 0.51 0.51 0.74 0.35

(b) f4

Problem NSGA-II MQEA MOPSO MOPSO-PS

DTLZ1 15.88 16.88 11.18 0.09
DTLZ2 0.33 0.32 0.37 0.30
DTLZ3 18.40 144.08 107.88 0.44
DTLZ4 0.26 0.31 0.24 0.12
DTLZ5 2.49 1.99 0.69 0.25
DTLZ6 0.94 0.44 0.31 0.28
DTLZ7 0.53 0.44 0.72 0.39

(c) f6

Problem NSGA-II MQEA MOPSO MOPSO-PS

DTLZ1 6.86 45.68 16.91 0.13
DTLZ2 0.31 0.73 0.44 0.41
DTLZ3 32.39 321.32 112.00 0.54
DTLZ4 0.37 0.19 0.18 0.18
DTLZ5 2.73 4.99 0.83 0.51
DTLZ6 1.34 1.02 0.70 0.67
DTLZ7 0.47 0.51 0.66 0.45

TABLE III: Average of the preferred objective function values
of the three DTLZ functions, DTLZ2, DTLZ4 and DTLZ6,
obtained by MOPSO-PS with different preference degree
settings

(a) DTLZ2

f1 : f2 : f3 : f4 : f5 : f6 : f7 f2 f4 f6

1 : 1 : 1 : 1 : 1 : 1 : 1 0.1069 0.2455 0.5735
1 : 5 : 1 : 5 : 1 : 5 : 1 0.0921 0.1577 0.1947

1 : 10 : 1 : 10 : 1 : 10 : 1 0.0959 0.1722 0.1785
1 : 20 : 1 : 20 : 1 : 20 : 1 0.0766 0.1273 0.1654
1 : 2 : 1 : 5 : 1 : 10 : 1 0.1047 0.1371 0.1419

(b) DTLZ4

f1 : f2 : f3 : f4 : f5 : f6 : f7 f2 f4 f6

1 : 1 : 1 : 1 : 1 : 1 : 1 0.0850 0.1164 0.1920
1 : 5 : 1 : 5 : 1 : 5 : 1 0.0058 0.0070 0.0023

1 : 10 : 1 : 10 : 1 : 10 : 1 0.0020 0.0009 0.0005
1 : 20 : 1 : 20 : 1 : 20 : 1 0.0001 0.0001 0.0003
1 : 2 : 1 : 5 : 1 : 10 : 1 0.0140 0.0023 0.0020

(c) DTLZ6

f1 : f2 : f3 : f4 : f5 : f6 : f7 f2 f4 f6

1 : 1 : 1 : 1 : 1 : 1 : 1 0.2036 0.4808 0.9023
1 : 5 : 1 : 5 : 1 : 5 : 1 0.0630 0.1356 0.2732

1 : 10 : 1 : 10 : 1 : 10 : 1 0.0411 0.0886 0.1751
1 : 20 : 1 : 20 : 1 : 20 : 1 0.0383 0.0767 0.1533
1 : 2 : 1 : 5 : 1 : 10 : 1 0.0500 0.1084 0.2187

this problem by employing the fuzzy measure representing the



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

TABLE IV: The average and Welch’s t-test value of the size
of the dominated space of NSGA-II, MQEA, MOPSO, and
MOPSO-PS through DTLZ functions over100 runs

(a) Average size of the dominated space

Problem (NSGA-II) (MQEA) (MOPSO) (MOPSO-PS)

DTLZ1 5061372 9974885 9998271 9996018
DTLZ2 9999093 9901558 9891993 9979433
DTLZ3 8884523 9458221 9845668 9941199
DTLZ4 9999878 9948522 9897862 9990820
DTLZ5 9876226 9851258 9750803 9848487
DTLZ6 7564857 9752218 9863796 9808835
DTLZ7 4234421 2522185 2341579 1903191

(b) Welch’s t-test value of size of the dominated
space

Problem tS4−S1
tS4−S2

tS4−S3

DTLZ1 14.28 4.62 −7.04
DTLZ2 −23.02 2.73 0.88
DTLZ3 67.21 116.20 0.96
DTLZ4 −7.58 1.31 0.93
DTLZ5 −20.08 −0.85 11.36
DTLZ6 77.70 13.97 −15.09
DTLZ7 −68.59 −21.28 −10.24

TABLE V: The average and Welch’s t-test value of the diver-
sity of NSGA-II, MQEA, MOPSO, and MOPSO-PS through
DTLZ functions over100 runs

(a) Average diversity

Problem (NSGA-II) (MQEA) (MOPSO) (MOPSO-PS)

DTLZ1 138.15 69.48 79.19 84.70
DTLZ2 93.78 58.18 105.99 103.71
DTLZ3 106.99 53.22 70.09 80.21
DTLZ4 97.64 89.43 124.62 122.67
DTLZ5 110.65 127.52 81.48 79.31
DTLZ6 90.71 79.52 73.56 78.38
DTLZ7 135.73 131.22 70.25 58.88

(b) Welch’s t-test value of diversity

Problem tD4−D1
tD4−D2

tD4−D3

DTLZ1 −31.18 9.25 3.44
DTLZ2 16.25 73.91 −3.06
DTLZ3 −22.73 32.72 11.85
DTLZ4 31.39 40.04 −2.18
DTLZ5 −59.36 −89.75 −4.66
DTLZ6 −21.14 −1.52 6.85
DTLZ7 −73.22 −64.25 −11.93

interactions between the objectives and the user’s preference
to them.

IV. A PPLICATION TO PATH FOLLOWING FOOTSTEP

OPTIMIZATION

A. Configuration for the Experiments

The main goal of this application was to make a humanoid
robot follow a predefined path with the footsteps obtained
by the MOPSO-PS by considering the objectives and the
user’s preference for them. The problem was formulated as
a Multiobjective Optimization Problem (MOP) by defining
the objective functions and setting the footsteps as variable

Fig. 2: An example of footsteps and related notations.

vectors. To solve this kind of problem, the MOPSO-PS is
more suitable than the other algorithms because the objectives
are not always independent from each other and the user’s
preference for the objectives should be considered. Moreover,
at the end of the evolutionary process, MOPSO-PS provides
the humanoid robot with one preferred solution among the
nondominated solutions, which is to be used for its footsteps.

It was assumed that a humanoid robot always started walk-
ing from the right footstep. It was also set thatK footsteps (K2
left footsteps andK2 right footsteps) was optimized at a time.
The simulation model was based on a small-sized humanoid
robot, HanSaRam-IX (HSR-IX), which subsequently verified
the optimized footsteps by simulation. The HSR-IX was de-
veloped by the Robot Intelligent Technology (RIT) laboratory
at the Korea Advanced Institute of Science and Technology
(KAIST) [35]. Its height and weight are52.8 cm and5.5 kg,
respectively. It has26 degrees of freedom, which consists of
12 dc motors with harmonic drives in the lower body and16
RC servomotors in the upper body. The on-board Pentium-
III compatible PC, running RT-Linux, calculates the proposed
algorithm every5 ms in real time. To measure the ground
reaction forces on the feet and the real ZMP trajectory while
walking, four force sensing resisters were equipped on the
sole of each foot. It can stride a maximum90.0 mm in a
sagittal direction and20.0 mm in a lateral direction at once.
The possible rotation angle of the leg is at maximum±0.15
rad. The offset length between the centers of both feet,loff ,
is 78.0 mm.

Each footstep was represented by a corresponding vector
defined as follows:

(lk, sk, φk) (16)

wherek = 1, . . . ,K andlk, sk, andφk are the lateral, sagittal,
and rotational movement of thek-th footstep from the (k −
1)-th footstep, respectively. Fig. 2 illustrates an exampleof
footsteps.

The position and orientation vector of thek-th footstep were
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calculated as follows:


























fxk = xf k−1 + (loff + lk) · cos( θf k−1 + (−1)k · π
2 )

+sk · sin( θf k−1 + (−1)k · π
2 )

fyk = yf k−1 + (loff + lk) · cos( θf k−1)

+sk · sin( θf k−1)
fθk = θf k−1 + φk

(17)

wherefxk, fyk, andfθk are the positions along the x-axis and
y-axis and the orientation of thek-th footstep, respectively.
fx0, fy0, andfθ0 were set to be0.0, 0.0, and π

2 , respectively.
Since a footstep was represented by a three dimensional vector,
it was necessary to optimize3×K variables forK footsteps.

A path can be represented by a lane which consists of
vectors, each of which,pn, n = 1, . . . , N , can be defined
as follows:

pn = (pxn,
p yn) (18)

where pxn and pyn are the positions of then-th point
of the lane along the x-axis and y-axis, respectively. In
experiments,N was set as the value which makes a dis-
tance of 1.0 mm between the two adjacent points. Thek-
th footstep was regarded as being inside of the path if
minn[

√

(fxk − pxn)2 + (fyk − pyn)2] < 60.0 mm. Other-
wise, it was regarded as being outside of the path.

Four objectives (minimum remaining distance to goal (o1),
minimum mean distance from the path’s center line (o2),
minimum mean lateral movement (o3), and minimum mean
rotational movement (o4)) were employed in experiments and
their corresponding objective functions to be minimized were
defined as follows:

f1 =
N−1
∑

n=i

|pn+1 − pn| (19)

f2 =
1

K

K
∑

k=1

min
n

[
√

(fxk − pxn)2 + (fyk − pyn)2] (20)

f3 =
1

K

K
∑

k=1

|lk| (21)

f4 =
1

K

K
∑

k=1

|φk| (22)

where i is the index of the nearest point on the path from
the last footstep. Note thatf1, f2, f3, andf4 are related with
travelling distance per step, safety, stability of walking, and
energy consumption, respectively.

In experiments, the same parameters of the MOPSO-PS
used in the performance comparison were used.K was set to
10 and the number of variables of this problem was30 (3×10
footsteps). For each of the three different kinds of short paths,
footsteps were optimized50 times to check the robustness of
the proposed algorithm. After that, footsteps were optimized
for a long complex path that assumes a real environment.
Three cases of preference degrees were considered for each
path to generate footsteps.

The preference degree, the pairwise comparison matrix,
and the normalized weights corresponding to each case is
shown in Table VI and the interaction diagram of objectives

TABLE VI: Preference degree, pairwise comparison matrix,
and normalized weights

Case
Preference degree Pairwise comparison Normalized

(o1 : o2 : o3 : o4) matrix weights

C1 10 : 1 : 1 : 5







1 10 10 2
0.1 1 1 0.2
0.1 1 1 0.2
0.5 5 5 1







w1 = 0.588
w2 = 0.059
w3 = 0.059
w4 = 0.294

C2 5 : 10 : 1 : 1







1 0.5 5 5
2 1 10 10
0.2 0.1 1 1
0.2 0.1 1 1







w1 = 0.294
w2 = 0.588
w3 = 0.059
w4 = 0.059

C3 5 : 1 : 10 : 1







1 5 0.5 5
0.2 1 0.1 1
2 10 1 10
0.2 1 0.1 1







w1 = 0.294
w2 = 0.059
w3 = 0.588
w4 = 0.059

Fig. 3: Interaction diagram of objectives.

is shown in Fig. 3. The number on the line connecting the
two objectives is the interaction degree(ξ) between them.
Every correlation between the objectives can be determined
intuitively. For example, the closer a robot follows the path’s
center line, the longer the distance to the goal remains. Since
every correlation was assumed to be negative or independent,
every interaction degree was set in[0.0 0.5].

To merge two highly related objectives into one, the dis-
similarity between them was accounted. For example, the
dissimilarity betweeno1 ando2 was calculated as

D{o1,o2} =
(ξ23 − ξ13)

2 + (ξ24 − ξ14)
2

|Φ| − 2
=

0.00

2
= 0.00.

After calculating the dissimilarity,o1 ando2 were merged into
one since they had the smallest dissimilarity. Another pairof
objectives,o3 and o4, were also merged, and the interaction
degree between the two pairs,{o1, o2} and {o3, o4}, was
computed as

ξ{{o1,o2},{o3,o4}} =
ξ13 + ξ14 + ξ23 + ξ24

4
= 0.35.

Fig. 4 shows the simplified hierarchy diagram.

The fuzzy measures of the objective sets were computed
by using (9), (10), (11), (12), and the simplified hierarchy
diagram. As an example, the fuzzy measureg(A) of A = {o1}
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Fig. 4: Simplified hierarchy diagram of objectives.

TABLE VII: Identified fuzzy measures

g(A)
A Case 1 Case 2 Case 3

{1} 0.411 0.097 0.170
{2} 0.018 0.315 0.024
{3} 0.037 0.032 0.456
{4} 0.186 0.032 0.046
{1,2} 0.501 0.809 0.224
{1,3} 0.486 0.136 0.815
{1,4} 0.785 0.136 0.234
{2,3} 0.057 0.372 0.506
{2,4} 0.212 0.372 0.072
{3,4} 0.224 0.064 0.501
{1,2,3} 0.584 0.904 0.929
{1,2,4} 0.917 0.904 0.294
{1,3,4} 0.860 0.176 0.880
{2,3,4} 0.251 0.429 0.555
{1,2,3,4} 1.000 1.000 1.000

for Case1 was calculated as

g(A) = φs(ξR, u
R
A + uR

B)

= φs(0.35, u
R
A)

= φs(0.35, φ
−1
s (0.35, φs(0.2, 0.588)× TR

A ))

= φs(0.35, φ
−1
s (0.35, 0.274× 1.50))

= φs(0.35, 0.563)

= 0.411.

Table VII shows the finally identified fuzzy measures. In
the table, objectives are abbreviated to their indices for the
simplicity of notation. These values were used for the global
evaluation.

The optimized footsteps were verified by simulation. The
HSR-IX can modify its walking period, step length, and
walking direction independently in realtime by the Modifiable
Walking Pattern Generator (MWPG) [36]. Therefore, it can
walk with the optimized footsteps by making a command
state list of MWPG that corresponds to the footsteps. The
simulation was carried out using3-D robotics simulation
software Webots [37] on which the model of the HSR-IX was
programmed.

B. Experimental Results

Table VIII presents the average and Standard Deviation
(STDEV) of the partial evaluation values for each case, where
the partial evaluation values are the normalized objective
function values between0.0 and 1.0. Since o1 for Case1,
o2 for Case2, ando3 for Case3 were set to have a relatively

TABLE VIII: Average and standard deviation (STDEV) of
partial evaluation values

f1 f2 f3 f4

Path1

Case1
Average 0.938 0.793 0.627 0.673
STDEV 0.003 0.053 0.050 0.041

Case2 Average 0.880 0.900 0.711 0.649
STDEV 0.087 0.018 0.049 0.049

Case3
Average 0.920 0.615 0.988 0.558
STDEV 0.024 0.035 0.007 0.030

Path2

Case1 Average 0.977 0.433 0.557 0.500
STDEV 0.005 0.042 0.057 0.021

Case2
Average 0.835 0.903 0.786 0.402
STDEV 0.020 0.011 0.042 0.026

Case3 Average 0.912 0.440 0.987 0.337
STDEV 0.016 0.042 0.004 0.044

Path3

Case1 Average 0.972 0.456 0.642 0.531
STDEV 0.007 0.073 0.124 0.060

Case2 Average 0.844 0.924 0.647 0.378
STDEV 0.029 0.020 0.061 0.066

Case3
Average 0.952 0.332 0.992 0.282
STDEV 0.014 0.036 0.003 0.054

high preference degree, the average off1 for Case1, f2 for
Case2, andf3 for Case3 were the highest for all given paths.
Extremely small STDEV values indicate that the MOPSO-PS
robustly optimized the footsteps, regardless of path and case.
In fact, there was no failure at all.

Figs. 5, 6, and 7 show the optimized footsteps of the median
performance for each of the three short paths and three cases.
The footsteps optimized for Case1 traveled the furthest since
f1 was considered more than the other objectives in Case1.
Similarly, the footsteps optimized for Case2 were the closest
to the path’s center line becausef2 was considered more than
the other objectives. Also, the footsteps optimized for Case
3 showed a rotational movement instead of lateral movement
when the robot needed to move in a lateral direction because
f3 was considered more than the other objectives. Note that
the there were no swaying movements in every case sincef4
was also sufficiently considered.

Fig. 8 shows the footsteps optimized for a long path.
Similarly to the short paths, the consideration in each case
was successfully reflected to the footsteps. The robot in Fig.
8(a) traveled further with the same number of footsteps than
the others. The robot in Fig. 8(b) followed the path’s center
line as close as possible. The robot in Fig. 8(c) reached the
goal with minimum lateral movement. Video (1) demonstrates
the applicability of the proposed MOPSO-PS by Webots sim-
ulation. In the simulation environment, HSR-IX successfully
walked along the path according to the preference degree in
each case.

V. CONCLUSION

In this paper, Multiobjective Particle Swarm Optimiza-
tion with Preference-based Sort (MOPSO-PS) was proposed.
It could solve the Multiobjective Optimization Problems
(MOPs) in consideration of the user’s preference by applying
preference-based sort, for which the fuzzy measure and fuzzy
integral were employed. The effectiveness of this algorithm
was demonstrated by comparison with NSGA-II, MQEA, and
MOPSO through the DTLZ functions. The comparison results
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indicated that the user’s preference was properly reflectedto
optimized solutions by MOPSO-PS without any loss of overall
solution quality and diversity. Moreover, MOPSO-PS avoided
premature convergence even though the preferred objectives
were considered more. The MOPSO-PS was also applied
to the path following footstep optimization for humanoid
robots and the footsteps optimized for predefined paths were
successfully obtained. The obtained footsteps were verified
by the simulation based on the model of humanoid robot
HanSaRam-IX (HSR-IX). Through these results, it is certain
that the MOPSO-PS can be applied to various kinds of real
world applications.
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Fig. 5: 24 footsteps optimized for Path 1 (×: foot position).
(a) Case 1. (b) Case 2. (c) Case 3.
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(a)

(b)

(c)

Fig. 6: 31 footsteps optimized for Path 2 (×: foot position).
(a) Case 1. (b) Case 2. (c) Case 3.

(a)

(b)

(c)

Fig. 7: 17 footsteps optimized for Path 3 (×: foot position).
(a) Case 1. (b) Case 2. (c) Case 3.
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(a)

(b)

(c)

Fig. 8: 76 footsteps optimized for a long path (×: foot
position). (a) Case 1. (b) Case 2. (c) Case 3.


