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Abstract. We study representations of the knot groups of twist knots into SL2(C).
The set of nonabelian SL2(C) representations of a twist knot K is described as the zero
set in C × C of a polynomial PK(x, y) = QK(y) + x2RK(y) ∈ Z[x, y], where x is the
trace of a meridian. We prove some properties of PK(x, y). In particular, we prove that
PK(2, y) ∈ Z[y] is irreducible over Q. As a consequence, we obtain an alternative proof
of a result of Hoste and Shanahan that the degree of the trace field is precisely two less
than the minimal crossing number of a twist knot.

1. Introduction

Let J(k, l) be the two-bridge knot/link in Figure 1, where k, l ̸= 0 denote the numbers
of half twists in the boxes. Positive (resp. negative) numbers correspond to right-handed
(resp. left-handed) twists. Note that J(k, l) is a knot if and only if kl is even. The knots
J(2, 2n), where n ̸= 0, are known as twist knots. Moreover, J(2, 2) is the trefoil knot and
J(2,−2) is the figure eight knot. For more information about J(k, l), see [HS1].
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Figure 1. The two-bridge knot/link J(k, l).

We study representations of the knot groups of twist knots into SL2(C), where SL2(C)
denotes the set of all 2 × 2 matrices with determinant one. From now on we fix a twist
knot J(2, 2n). By [HS2] the knot group of J(2, 2n) has a presentation π1(J(2, 2n)) =
⟨c, d | cu = ud⟩, where c, d are meridians and u = (cd−1c−1d)n. This presentation is
closely related to the standard presentation of the knot group of a two-bridge knot. Note
that J(2, 2n) is the twist knot K2n in [HS2]. In this note we will follow [Tr2, Lemma 1.1]
and use a different presentation

π1(J(2, 2n)) = ⟨a, b | aw = wb⟩

where a, b are meridians and w = (ab−1)−na(ab−1)n. This presentation has shown to be
useful for studying invariants of twist knots, see [NT, Tr1, Tr2, Tr3].
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A representation ρ : π1(J(2, 2n)) → SL2(C) is called nonabelian if the image of ρ is
a nonabelian subgroup of SL2(C). Suppose ρ : π1(J(2, 2n)) → SL2(C) is a nonabelian
representation. Up to conjugation, we may assume that

ρ(a) =

[
s 1
0 s−1

]
and ρ(b) =

[
s 0

2− y s−1

]
where s ̸= 0 and y ̸= 2 satisfy a polynomial equation Pn(s, y) = 0. The polynomial Pn can
be chosen so that Pn(s, y) = Pn(s

−1, y), and hence it can be considered as a polynomial
in the variables x := s + s−1 and y. Note that x = tr ρ(a) = tr ρ(b) and y = tr ρ(ab−1).
An explicit formula for Pn(x, y) will be derived in Section 2.2 and it is given by

Pn(x, y) = 1− (y + 2− x2)Sn−1(y)(Sn−1(y)− Sn−2(y)),

where Sk(z)’s are the Chebychev polynomials of the second kind defined by S0(z) = 1,
S1(z) = z and Sk(z) = zSk−1(z)−Sk−2(z) for all integers k. Note that Pn(x, y) is different
from the Riley polynomial [Ri] of the two-bridge knot J(2, 2n), see e.g. [NT]. Moreover,
Pn(2, y) is also different from the polynomial Φ−n(y) studied in [HS2].
In this note we prove the following two properties of Pn(x, y).

Theorem 1. Suppose x2
0 ∈ R such that 4− 1

|n| < x2
0 ≤ 4. Then the polynomial Pn(x0, y)

has no real roots y if n < 0, and has exactly one real root y if n > 0.

Theorem 2. The polynomial Pn(2, y) ∈ Z[y] is irreducible over Q.

A nonabelian representation ρ : π1(J(2, 2n)) → SL2(C) is called parabolic if the trace
of a meridian is equal to 2. The zero set in C of the polynomial Pn(2, y) describes the set
of all parabolic representations of the knot group of J(2, 2n) into SL2(C). Theorem 1 is
related to the problem of determining the existence of real parabolic representations in
the study of the left-orderability of the fundamental groups of cyclic branched covers of
two-bridge knots, see [Hu, Tr1].
As in the proof of [HS2, Theorem 1], Theorem 2 gives an alternative proof of a result of

Hoste and Shanahan that the degree of the trace field is precisely two less than the minimal
crossing number of a twist knot. Indeed, by definition the trace field of a hyperbolic knot
K is the extension field Q(tr ρ0(g) : g ∈ π1(K)), where ρ0 : π1(K) → SL2(C) is a discrete
faithful representation. The representation ρ0 is a parabolic representation. Since Pn(2, y)
is irreducible over Q, the trace field of the twist knot J(2, 2n) is Q(y0), where y0 is a certain
complex root of Pn(2, y) corresponding to the presentation ρ0. Consequently, the degree
of Pn(2, y) gives the degree of the trace field. The conclusion follows, since the minimal
crossing number of J(2, 2n) is 2n+ 1 if n > 0 and is 2− 2n if n < 0.
The rest of this note is devoted to the proofs of Theorems 1 and 2.

2. Proofs of Theorems 1 and 2

In this section we first recall some properties of the Chebychev polynomials Sk(z). We
then compute the polynomial Pn(x, y). Finally, we prove Theorems 1 and 2.

2.1. Chebychev polynomials. Recall that Sk(z)’s are the Chebychev polynomials de-
fined by S0(z) = 1, S1(z) = z and Sk(z) = zSk−1(z) − Sk−2(z) for all integers k. Note
that Sk(2) = k + 1 and Sk(−2) = (−1)k(k + 1). Moreover if z = t + t−1, where t ̸= ±1,

then Sk(z) =
tk+1−t−(k+1)

t−t−1 . It is easy to see that S−k(z) = −Sk−2(z) for all integers k.
The following lemma is elementary, see e.g. [Tr4, Lemma 1.4].
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Lemma 2.1. One has

S2
k(z)− zSk(z)Sk−1(z) + S2

k−1(z) = 1

for all integers k.

Lemma 2.2. For all k ≥ 1 one has

Sk(z) =
k∏

j=1

(
z − 2 cos

jπ

k + 1

)
,

Sk(z)− Sk−1(z) =
k∏

j=1

(
z − 2 cos

(2j − 1)π

2k + 1

)
.

Proof. We prove the second formula. The first one can be proved similarly.
Since Sk(z) − Sk−1(z) is a polynomial of degree k, it suffices to show that its roots

are 2 cos (2j−1)π
2k+1

, where 1 ≤ j ≤ k. Let θj = (2j−1)π
2k+1

. Then ei(2k+1)θj = −1. Hence, if

z = 2 cos θj = eiθj + e−iθj then we have

Sk(z) =
ei(k+1)θj − e−i(k+1)θj

eiθj − e−iθj
=

−e−ikθj + eikθj

eiθj − e−iθj
= Sk−1(z).

This means that z = 2 cos θj is a root of Sk(z)− Sk−1(z). �
Lemma 2.3. Suppose z ∈ R such that −2 ≤ z ≤ 2. Then

|Sk−1(z)| ≤ |k|
for all integers k.

Proof. See [Tr1, Lemma 2.6]. �
Lemma 2.4. Suppose M ∈ SL2(C). Then

Mk = Sk−1(z)M − Sk−2(z)I

for all integers k, where I is the identity 2× 2 matrix and z := trM .

Proof. Since detM = 1, by the Cayley-Hamilton theorem we have M2 − zM + I = 0.
This implies that Mk − zMk−1 +Mk−2 = 0 for all integers k. Then, by induction on k
we have Mk = Sk−1(z)M − Sk−2(z)I for all k ≥ 0.
For k < 0, since trM−1 = trM = z we have

Mk = (M−1)−k = S−k−1(z)M
−1 − S−k−2(z)I

= −Sk−1(z)(zI −M) + Sk(z)I.

The lemma follows, since zSk−1(z)− Sk(z) = Sk−2(z). �
2.2. The polynomial Pn. Recall that we use the following presentation of the knot
group of J(2, 2n):

π1(J(2, 2n)) = ⟨a, b | aw = wb⟩
where a, b are meridians and w = (ab−1)−na(ab−1)n. See [Tr2, Lemma 1.1].
Suppose ρ : π1(J(2, 2n)) → SL2(C) is a nonabelian representation. Up to conjugation,

we may assume that

ρ(a) =

[
s 1
0 s−1

]
and ρ(b) =

[
s 0

2− y s−1

]
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where s ̸= 0 and y ̸= 2 satisfy a polynomial equation Pn(s, y) = 0. We now compute the
polynomial Pn from the matrix equation ρ(aw) = ρ(wb).

Since ρ(ab−1) =

[
y − 1 s

s−1(y − 2) 1

]
, by Lemma 2.4 we have

ρ((ab−1)n) = Sn−1(y)ρ(ab
−1)− Sn−2(y)I

=

[
(y − 1)Sn−1(y)− Sn−2(y) sSn−1(y)

s−1(y − 2)Sn−1(y) Sn−1(y)− Sn−2(y)

]
.

Hence, by a direct (but lengthy) calculation we have

ρ(aw)− ρ(wb) = ρ
(
a(ab−1)−na(ab−1)n

)
− ρ

(
(ab−1)−na(ab−1)nb

)
=

[
(y − 2)Pn(s, y) sPn(s, y)

−s−1(y − 2)Pn(s, y) 0

]
where Pn(s, y) = (s2 + s−2 + 1− y)S2

n−1(y)− (s2 + s−2)Sn−1(y)Sn−2(y) + S2
n−2(y).

By Lemma 2.1 we have S2
n−1(y)− ySn−1(y)Sn−2(y) + S2

n−2(y) = 1. Hence

Pn(s, y) = 1− (y − s2 − s−2)Sn−1(y)(Sn−1(y)− Sn−2(y)).

Since Pn(s, y) = Pn(s
−1, y), from now on we consider Pn as a polynomial in the variables

x = s+ s−1 and y. With these new variables we have

Pn(x, y) = 1− (y + 2− x2)Sn−1(y)(Sn−1(y)− Sn−2(y)).

2.3. Proof of Theorem 1. We first prove the following lemma.

Lemma 2.5. Suppose x2
0 ∈ R such that 4− 1

|n| < x2
0 ≤ 4. If y ∈ R satisfying Pn(x0, y) = 0,

then y > 2.

Proof. Since Pn(x0, y) = 0 we have Sn−1(y)(Sn−1(y)− Sn−2(y)) = (y + 2− x2
0)

−1. Hence(
(y + 2− x2

0)Sn−1(y)
)−2

=
(
Sn−1(y)− Sn−2(y)

)2
= 1 + (y − 2)Sn−1(y)Sn−2(y)

= 1 + (y − 2)
(
S2
n−1(y)− (y + 2− x2

0)
−1
)
,

which implies that

1 = (y + 2− x2
0)(4− x2

0)S
2
n−1(y) + (y − 2)(y + 2− x2

0)
2S4

n−1(y).

Assume y ≤ 2. Then it follows from the above equation that

(2.1) 1 ≤ (y + 2− x2
0)(4− x2

0)S
2
n−1(y).

In particular, y > x2
0 − 2 > −2. Since −2 < y ≤ 2, by Lemma 2.3 we have S2

n−1(y) ≤ n2.
Hence (y + 2− x2

0)(4− x2
0)S

2
n−1(y) ≤ (4− x2

0)
2n2 < 1. This contradicts (2.1). �

We now complete the proof of Theorem 1. Suppose x2
0 ∈ R and 4 − 1

|n| < x2
0 ≤ 4. By

Lemma 2.5, it suffices to consider Pn(x0, y) where y is a real number greater than 2. The
equation P (x0, y) = 0 is equivalent to

(2.2) x2
0 − 4 = y − 2− 1

Sn−1(y)(Sn−1(y)− Sn−2(y))
.

Denote by fn(y) the right hand side of (2.2), where y > 2. We now use the factorizations
of Sn−1(y) and Sn−1(y)− Sn−2(y) in Lemma 2.2.
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If n = −1 then fn(y) = y−2+ 1
y−1

> 0 ≥ x2
0−4. Hence fn(y) = x2

0−4 has no solutions

on (2,∞).
If n < −1 then, by letting m = −n > 1, we have

fn(y) = y − 2 +
1

Sm−1(y)(Sm(y))− Sm−1(y))

= y − 2 +
1∏m−1

k=1

(
y − 2 cos kπ

m

)∏m
l=1

(
y − 2 cos (2l−1)π

2m+1

) > 0 ≥ x2
0 − 4.

Hence fn(y) = x2
0 − 4 has no solutions on (2,∞).

If n = 1 then fn(y) = y − 3. Since x2
0 > 3, the equation fn(y) = x2

0 − 4 has a unique
solution y = x2

0 − 1 on (2,∞).
If n > 1 then we have

fn(y) = y − 2− 1∏n−1
k=1

(
y − 2 cos kπ

n

)∏n−1
l=1

(
y − 2 cos (2l−1)π

2n−1

) .
It is easy to see that fn(y) is an increasing function on (2,∞). Moreover limy→∞ fn(y) = ∞
and limy→2 fn(y) = − 1

n
< x2

0 − 4. Hence fn(y) = x2
0 − 4 has a unique solution on (2,∞).

The proof of Theorem 1 is complete.

2.4. Proof of Theorem 2. We write Pn(y) for Pn(2, y). Let y = t2 + t−2. Then

Pn(y) =
(
Sn−1(y)− Sn−2(y)

)2 − (y − 2)S2
n−1(y)

=
(t2n + t2−2n)2 − t2(t2n − t−2n)2

(t2 + 1)2

=
(t2n + t2−2n + t2n+1 − t1−2n)(t2n + t2−2n − t2n+1 + t1−2n)

(t2 + 1)2
.

Up to a factor tk, each of the polynomials t2n + t2−2n + t2n+1 − t1−2n and t2n + t2−2n −
t2n+1 + t1−2n is obtained from the other by replacing t by t−1. To show that Pn(y) is
irreducible over Q, it suffices to show that

(2.3) t4n + t4n−1 + t− 1 = (t2 + 1)Qn(t)

where Qn(t) ∈ Z[t] is irreducible over Q.
As in the proof of [BP, Lemma 6.8], we will use the following theorem of Ljunggren

[Lj]. Consider a polynomial of the form R(t) = tk1 + ε1t
k2 + ε2t

k3 + ε3 where εj = ±1 for
j = 1, 2, 3. Then, if R has r > 0 roots of unity as roots then R can be decomposed into
two factors, one of degree r which has these roots of unity as zeros and the other which
is irreducible over Q. Hence, to prove (2.3) it suffices to show that ±i are the only roots
of unity which are roots of t4n + t4n−1 + t− 1 and these occur with multiplicity one.
Let t be a root of unity such that t4n + t4n−1 + t − 1 = 0. Write t = eiθ where θ ∈ R.

Since t2n−1 + t1−2n + t2n − t−2n = 0 we have

2 cos(2n− 1)θ + 2i sin 2nθ = 0,

which implies that both cos(2n− 1)θ and sin 2nθ are equal to zero. There exist integers
k, l such that (2n − 1)θ = (k + 1

2
)π and 2nθ = lπ. This implies that 2k+1

l
= 2n−1

n
. Since

2n−1
n

is a reduced fraction, there exists an odd integer m such that 2k + 1 = m(2n − 1)

and l = mn. Hence θ = m
2
π, which implies that t = eiθ = ±i. It is easy to verify that ±i

are roots of t4n + t4n−1 + t− 1 = 0 with multiplicity one.
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Ljunggren’s theorem then completes the proof of Theorem 2.
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