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Abstract 
 
We describe how we lead students through the process of 
specifying and implementing a design of mutable tree data 
structures as an object-oriented framework.  Our design entails 
generalizing the visitor pattern in which the tree structure serves 
as host with a varying number of states and the algorithms 
operating on the tree act as visitors. 
 
We demonstrate the capabilities of our tree framework with an 
object-oriented insertion algorithm and its matching deletion 
algorithm, which maintain the host tree’s height balance while 
constrained to a maximum number of elements per node.  We 
implement our algorithms in Java and make extensive use of 
anonymous inner classes.  The key design elements are 
commands manufactured on the fly as anonymous inner objects.  
Their closures provide the appropriate context for them to operate 
with little parameter passing and thus promote a declarative style 
of programming with minimal flow control, reducing code 
complexity. 
 
Our framework serves to illustrate how proper abstraction 
liberates us from thinking of low-level procedural details and 
leads us to implementations that closely reflect the essence of the 
system behavior.  Our formulation is also an example of how 
object-oriented design principles overlap if not encompass those 
of functional and declarative programming. 
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1 Introduction 
 

Lists and trees are standard topics in a computer science 
curriculum.  In many applications, they are used to implement 
containers whose main behaviors consist of storage, retrieval and 

removal of data objects.  Various forms of self-balancing trees 
(SBTs) such as B-trees guarantee a O(logN) efficiency for these 
computations.  Current textbooks on this subject (see for example 
[2]) discuss them in terms of complicated, low-level pseudo-code.  
The abstract nature of the data structures and the algorithms that 
manipulate them is lost in a sea of details.  The problem lies in the 
lack of delineation between the intrinsic structural operations of a 
tree and the extrinsic, order-dependent calculations needed to 
maintain its balance.  The resulting morass of data manipulations 
hides the underlying concepts and hampers the students’ learning. 
 
We seek to alleviate the difficulties faced by students by offering 
an object-oriented (OO) formulation of SBTs, which is much 
easier to express and implement.  We cover SBTs towards the end 
of our second semester (CS2) course.  Our CS2 course introduces 
students to OO program design and the fundamental data 
structures and algorithms.  It emphasizes proper formulation and 
abstraction of the problem domain in the programming process in 
order to build programs that are robust, flexible, and extensible.  It 
teaches how design patterns help formulate and implement 
abstractions in effective and elegant ways.  By the end the course, 
when the SBT material is presented, the students are already 
grounded in such principles as data and behavioral abstraction and 
the separation of variant (extrinsic) from invariant (intrinsic) 
behaviors.  They are also familiar with common design patterns 
such as composite, state, visitor and command.  An important 
lesson they learn from designing the SBT is how to abstractly 
decompose a problem by asking fundamental questions about the 
system and focusing on its intrinsic requirements.  Hence, a major 
focus of this paper will be the thought progression involved with 
the design process.  This advanced topic serves to hone and 
coalesce the concepts and skills practiced throughout the 
semester. 
 
Our work is based on the framework proposed in 1999 by Nguyen 
and Wong [3].  Their framework decouples algorithms and data 
structures using a combination of composite, state and visitor 
design patterns.  Later they illustrated its extensibility and 
flexibility by transparently adding lazy evaluation capabilities [4].  
However, their simple framework proves to be inadequate to 
model self-balancing trees due to the inherent limitation of the 
visitor design pattern with regards to dynamically changing 
numbers of hosts.  In this paper, we present enhancements to the 
previous Nguyen/Wong framework that overcomes the original 
limitations and produces an object-oriented SBT implementation 
that closely matches the abstract view of the structure. 
 
Our paper serves a second purpose of exemplifying how good OO 
design enables one to re-focus on the fundamental nature of the 
problem and create solutions that are both simple and powerful.  
Effective use of polymorphism streamlines the code, facilitates 

 



straightforward proofs of correctness and trivializes the 
complexity analysis. 
 
Section 2 explores the fundamental nature of trees with multiple 
data elements per node.  The result is a specification and 
implementation of a minimal and complete set of behaviors that 
are intrinsic to the tree structure.  The number of elements in the 
root node is used to represent the current state of the tree.  We 
design such a tree as a composite structure, which behaves as a 
finite state machine whose number of states can vary dynamically 
at run-time. 
 
Section 3 describes how we generalize the visitor pattern to 
decouple the extrinsic algorithms that operate on a tree from its 
intrinsic structural behaviors.  In our formulation, the extrinsic 
algorithms act as visitors to the host tree.  The standard visitor 
pattern is extended to handle the arbitrary numbers of hosts 
encountered in an SBT system.  The tree structure and its visitors 
thus form a framework with dynamically re-configurable 
components. 
 
Section 4 defines the notion of a height-balanced tree and 
discusses four basic operations that transport data vertically by 
one level and modify the tree structure while maintaining its 
balance.  These operations serve as building blocks for the 
insertion and deletion algorithms. 
 
Section 5 describes our SBT insertion algorithm and its Java 
implementation.  The algorithm’s intuitive heuristics will lead to a 
rigorous proof of correctness. The complexity analysis will be 
shown to be straightforward, simple and intuitive. 
 
Section 6 describes our SBT deletion algorithm and its Java 
implementation.  As with the insertion algorithm, the deletion 
algorithm’s heuristics are intuitive and lead to a rigorous proof-of-
correctness.  Since both insertion and deletion rely on vertical 
transportation of data, their complexity analyses are identical. 
 

2 The Tree Structure 
 
We consider trees, called TreeN, that can hold multiple data 
elements in each node and where each node can have multiple 
child trees.  Without loss of generality, we limit the data elements 
to be of Integer type.  The first step with the students is to lead 
them to a concise and precise definition of the problem, that is, 
what exactly is the data structure under consideration?  Recursive 

data definitions are fundamental not only to good OO design but 
to computing in general. 
 
2.1 Data Definition 
 
A TreeN can be either empty or non-empty. 
 
x� An empty TreeN contains nothing. 
x� A non-empty TreeN holds an arbitrary, positive, number of 

data elements, n, and n+1 TreeN objects called “child 
trees”.  For 0 <= i < n, the ith and the i+1th child trees are 
called the left child tree and the right child tree of the ith data 
element respectively. 

 
The above inductive definition for the tree is well represented by 
the composite design pattern [1].  Since the operations on a tree 
often depend on the number of data elements in the nodes, we can 
model the tree as having different “states” which determine the 
tree’s behavior at any given moment.  The state of the tree is 
defined by the number of data elements in the root node of the 
tree.  We can thus identify each state with an integer value.  For 
instance, an empty tree has state = 0, while a tree with one data 
element and two child trees (commonly referred to as a “2-node 
tree”) is in state = 1.  Operations on the tree may cause the tree to 
transition from one state to another as data elements and 
associated child trees are added or removed.  The tree thus 
behaves as a finite state machine. 
 
2.2 Intrinsic vs. Extrinsic Behavior 
 
The next step with the students is to identify the intrinsic 
behaviors of the system and declare them as the public methods of 
the tree.  For maximal decoupling and flexibility, the methods 
should form a complete and minimal set of operations from which 
all other possible operations on the tree can be constructed.  The 
intrinsic structural behaviors of the tree are those that serve 
exactly two purposes: 
 
x� Provide access to the tree’s data and structural 

subcomponents, and 
x� Perform constructive and destructive modifications of the 

tree’s internal structure, thus enabling the tree to transition 
from one state to another. 

 

 

 
Figure 1 : UML class diagram for the tree and algorithms as visitors. 



The intrinsic structural behaviors of the tree are invariant, that is 
they remain fixed in all applications, and enable us to build trees 
of any shape that can hold an arbitrary number of data elements 
in any node.  Extrinsic behaviors are those that are dependent on a 
particular application of the tree and are thus variant.  The variant 
behaviors will be addressed in Section 3.  Distinguishing and 
separating intrinsic from extrinsic object behaviors is a central 
theme in our approach to OO pedagogy throughout the course. 
 
To identify the intrinsic operations of the tree, it is crucial that we 
separate the operations that manipulate data elements from those 
that modify the tree’s structure.  Structural modification should 
involve trees as atomic units and have well defined behavior for 
any tree.  Data operations are relegated to the construction of new 
trees and to simple gettor methods.  The intrinsic behaviors of a 
tree can thus be classified as constructors, structural modifiers and 
gettors.  Delineating data manipulators from structural modifiers 
eliminates the usual problem of insertions and deletions that can 
only be unambiguously applied to a limited number of tree 
configurations. 
 
Figure  1 depicts the UML class diagram of TreeN together with 
algorithms that act as visitors (discussed in Section 3).   
Figure 2  illustrates the intrinsic structural operations of the tree 
(discussed below) and Listing 1  shows the Java implementation 
of TreeN. 
 
2.3 Constructors 
 
The purpose of a constructor is to initialize the instantiated object 
to a well-defined state.  Since there are two clearly distinct states 
of a tree, empty and non-empty, each has an associated 

constructor.  The empty tree constructor, TreeN(), creates a 
empty (state = 0) tree.  The non-empty constructor, 
TreeN(Integer n) ,  takes a single data element and constructs a 
2-node (state = 1) leaf tree.  This can be viewed as providing the 
base case and inductive case construction for the system.  There is 
no need for construction of states > 1 as they can be created 
through structural modifications of 2-node leaf trees.  The set of 
constructors is thus complete and minimal. 
 
2.4 Structural Modifiers 
 
Structural modifiers are methods with side effects that work 
strictly on trees and not on data.  They are also well defined for all 
trees in all possible states.  To span the space of all possible 
structural modifications, one must fundamentally be able to 
modify the tree, a 2-dimensional entity, in both its width and 
height directions.  In addition to constructive processes in the two 
directions, a destructive process must also be provided.  This only 
implies that the complete and minimal set of structural modifies 
must consist of three methods, none of which can be constructed 
from the other two.  A full proof that only three methods 
constitute a complete and minimal set is beyond the scope of this 
paper.  An examination of the following three methods in  
Figure 2  reveals that they create constructive and destructive 
behavior in both the horizontal and vertical directions.  
 
splitUpAt(int i)  mutates the receiver, in state s, into a 2-node 
tree (state = 1), where the i th element becomes the root data and 
the left child’s root contains the 0 through i-1 elements of the 
original root and the right child’s root contains the i+1 through s 
elements of the original root.  Splitting up on an empty tree is a 
no-operation. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Figure 2 : Intrinsic structural operations on the tree. 
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splitDownAt(int i)  removes the ith element from the root of the 
receiver including its corresponding left and right child trees.  The 
resultant new child tree is a 2-node tree where its root data is the 
original i th element and where its left and right children are the 
original i th element’s left and right children respectively.  Splitting 
down a 2-node tree results in an empty tree and is equivalent to a 
deletion of a single data element.  Splitting down an empty tree is 
a no-operation. 
 
spliceAt(int i, TreeN t)  joins the supplied source tree t to the 
receiver at index i: the ith child of the receiver is deleted and the 
root node of t is “spliced” between the ith and i+1th elements of 
the receiver.  The children of t remain in their respective places 
with regards to the original elements of t.  Splicing an empty 
source tree into a non-empty tree is a no-operation.  Splicing a 
non-empty source tree into an empty tree will mutate the empty 
receiver tree into a shallow copy of the source tree. 
 
2.5 Data Accessors 
 
getDat(int i)  and getChild(int i)  are the standard “gettors” that 
provide access to data and child trees without side-effect.  The 
root node’s data elements can be accessed via an index i, where 0 
�� i < state (= node size).  The root node’s child trees can be 
accessed similarly but where 0 ��i ��VWDWH���6LQFH�DOO�GDWD�HOHPHQWV�
and child trees can be accessed through these methods and only 
through these methods, the set of gettors is thus minimal and 
complete. 
 
The standard “settors” that set a child tree to a new tree at index i, 
and that set a data element at index i, can be easily replicated 
using a combination of the above methods.  This is a simple and 
elucidating exercise for the students. 
 
We do not consider operations such as specific insertion and 
deletion algorithms that maintain the balance of a tree as intrinsic 
to the tree’s behavior.  The tree is simply a structure and has no 
inherent knowledge of the properties of the data it contains or the 
heights of its child trees.  These operations are extrinsic to the tree 
structure, and as Nguyen and Wong advocated in [3], they should 
be decoupled from the intrinsic structural behaviors of the tree.  
The visitor pattern, with the extrinsic algorithms as visitors and 
the tree structure as the host, was used to achieve this decoupling.  
The ability of the tree structure to perform all possible extrinsic 
operations is an intrinsic behavior of the tree and can be expressed 
as a “hook” method. 
 
2.6 Extensibility Hook 
 
execute( ITreeNAlgo algo, Object param)  is the “accept” 
method for a host in the visitor design pattern [1].  It provides a 
“hook” for all algorithms defined externally to the tree to operate 
properly on the tree without knowing the state of the tree.  The 
abstraction for all such extrinsic operations is encapsulated in an 
interface called ITreeNAlgo, which acts as a visitor to the tree 
host. 
 

3 The Visitors 
 
With the intrinsic behaviors aside, the students can now 
concentrate on the extrinsic, variant behaviors of the system.  The 
students are lead to focus on the following two key characteristics 
of the system. 

public  class  TreeN { 
private  Vector _children = new Vector(); 
private  Vector _data = new Vector(); 

public  TreeN() { } 
public  TreeN(Integer n) {  this (new TreeN(), n, new TreeN()); } 

private  TreeN(Vector data, Vector children) { 
_data = data; _children = children; 

} 
 
private  TreeN(TreeN lTree, Object n, TreeN rTree) { 

_data.add(n); _children.add(lTree); _children.add(rTree); 
} 
public  Integer getDat(int i) { return (Integer)_data.get(i); } 
public  TreeN getChild(int i) { return (TreeN)_children.get(i); } 

 
public  TreeN spliceAt(int i, TreeN tree) { 

int k =tree.data.size(); 
if (k > 0) { 

if (_data.size() > 0)   _children.set(i, tree.getChild(k--)); 
else    _children.add(i, tree.getChild(k--)); 
for  (; k >= 0, k--) { 

_data.add(i, tree.getDat(k)); 
_children.add(i, tree.getChild(k)); 

} 
} 
return this ; 

} 

public  TreeN splitUpAt(int i) { 
if (_data.size() > 1) { 

TreeN lTree, rTree; 
Vector newData = new  Vector(), newChildren = new  Vector(); 
Object rootDat = _data.remove(i); 
for  (int k = 0; k < i; k++) { 

newData.add(_data.remove(0)); 
newChildren.add(_children.remove(0)); 

} 
newChildren.add(_children.remove(0)); 
if (newData.size() > 0) 

lTree = new TreeN(newData, newChildren); 
else    lTree = (TreeN)newChildren.firstElement(); 
if (_data.size() > 0)   rTree = new TreeN(_data, _children); 
else    rTree = (TreeN)_children.firstElement(); 
(_data = new  Vector()).add(rootDat); 
(_children = new  Vector()).add(lTree); 
_children.add(rTree); 

} 
return this ; 

} 

public  TreeN splitDownAt(int i) { 
if (_data.size() > 1) { 

TreeN newChild =  
new TreeN(getChild(i),_data.remove(i),getChild(i+1)); 
_children.remove(i); 
_children.set(i, newChild); 

} 
else  { 

_data.clear(); 
_children.clear(); 

} 
return this ; 

} 

public  Object execute(ITreeNAlgo algo, Object param) { 
return algo.caseAt(_data.size(), this , param); 

} 
} 

Listing 1 : TreeN implementation 



 
1. All extrinsic operations can be constructed solely from the 

intrinsic behaviors. 
2. Extrinsic behaviors can depend on the state of the tree, which 

is dynamic and arbitrary. 
 
The visitor design pattern has been proven useful for 
implementing extrinsic operations [3] but is inadequate for the 
problem at hand.  The students’ prior grounding in the visitor 
pattern enables them to easily understand its limitations and the 
extensions required to overcome them. 
 
Algorithms on a host tree often depend on its state, the size of its 
root node.  The ITreeNAlgo visitor interface (see  
Figure 1 ) thus must provide a specific method for each of the 
host states.  Since any tree node can hold an arbitrary number of 
data elements, an arbitrary number of visiting methods must be 
defined.  That is, the visitor must have a varying number of 
visiting methods to match the host’s states.  Since standard 
visitors would match one method per host state, the system is 
hamstrung by physical limitation that only a fixed number of 
methods can be defined.  This limitation can be overcome by 
replacing the multiple different methods of the visitor with a 
single “caseAt ” method parameterized by an integer index.  The 
individual hosts are now identified by an integer value, the state 
number, and they can now parametrically call their respective 
method in the visitor.  Since the host structure provides a 
complete set of public primitive behaviors, all other algorithms on 
the tree can be expressed in terms of these primitive behaviors and 
encapsulated as visitors. 
 
The contractual obligations of ITreeNAlgo as a visitor and 
TreeN as a host of are summarized in the following. 
 
Visitor (implements ITreeNAlgo) must 
 
x� provide a “visiting” method, namely 

Object caseAt(int s, TreeN h, Object p) , to operate on 
a host tree h that is in state s with a given input p; 

x� guarantee that this visiting method has a well-defined 
behavior for all values of s.  This includes the possibility of 
throwing an exception or of performing a no-operation. 

 
Host (TreeN) must 
 
x� be in some state characterized by an integer s; 
x� provide 

 
o a complete set of public methods for all intrinsic 

structural and data access operations, and 
o a “hook” method, namely 

Object execute(ITreeNAlgo v, Object p) , to 
perform any extrinsic tree algorithm v with a given 
input p.  v.caseAt(…)  is guaranteed to be called with 
the host’s current state, the host and p as arguments.  
The result will be returned. 

 
The visitor design pattern is a small-scale example of a 
component-framework system.  One of the benefits of the 
inverted control structure of component-framework systems is 
that the component (the visitor) is guaranteed to have the correct 
behavior called for any given state of the framework (the host). 
 

4 Self-Balancing Trees 
 
As before, students are lead to a recursive definition of a balanced 
tree: 
 
x� An empty tree is balanced. 
x� A non-empty tree is balanced if and only if all its child trees 

are balanced and all have the same height. 
 
Fundamentally, a tree is not constrained to any sort of ordering or 
balancing—this is the bailiwick of particular insertion/deletion 
algorithms.  A SBT is one whose insertion and deletion 
algorithms maintain the tree’s height balance.  SBTs are usually 
considered for trees whose elements are totally ordered.  We will 
thus consider trees with the following “search tree property” 
(STP): 
 
1. The root data elements, x i are in strict ascending order. 
2. All data elements in the ith child tree, if it exists, are less than 

x i. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3 : Height-preserving vertical data movement in the tree. 
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3. All elements in the i+1th child tree, if it exists, are greater 
than x i. 

4. All subtrees satisfy the STP. 
 
As a result, there are no duplicate elements. 
 
The need for non-trivial balancing only arises when there is an 
imposed maximum on the number of data elements per node. We 
call this maximum number the “order” of the tree, and we will 
consider only trees with order > 1.  For example, the well-known 
“2-3-4 tree” is of order 3. 
 
To help students craft algorithms for creating and maintaining a 
balanced tree of a given order, we first discuss four simple 
operations that, in effect, move data elements vertically by one 
level, mutating the tree structure and yet preserving the tree’s 
balance and order.  Students will discover that vertical 
transportation of data in a tree, without disturbing the height 
balance, is crucial in insertion and deletion into/from balanced 
trees.  Understanding this process will enable them to design and 
implement a relatively simple yet efficient insertion or deletion 
algorithm for SBTs. 
 
4.1 Splitting up the root node 
 
For a tree whose root node has more than one data element, it is 
evident that growing the tree upward at the root will increase the 
overall tree height by one and still maintain the tree’s balance.  
This can be done by a simple call to splitUpAt(…)  as illustrated 
in Figure 2 . 
 
4.2 Collapsing the root node 
 
Splicing all the children into the root (“collapsing”) will decrease 
the overall tree height by one and still maintain the tree’s balance.  
This can be done by repeated calls to spliceAt(…)  as illustrated 
in Figure 2  (consider t2 as a child tree of t1). 
 
4.3 Lifting data upward 
 
To move a data element up one level in a tree, without disturbing 
the height balance or ordering, can be accomplished by combining 
a split-up operation, splitUpAt(…) , with a splice operation, 
spliceAt(…) .  This process is illustrated in Figure 3 , reading 
left to right.  Here we wish to move the element “5”, which is 
located in the set of data elements in the root of a child tree.  This 
child tree is at the parent’s #3 index.  The desired destination for 
the “5” is in the #3 data element location in the parent tree.  A 
split-up operation followed by a splice operation neatly moves the 
5 up one level without disturbing the height balance or ordering. 
 
4.4 Pushing data downward 
Moving data down one level in the tree without disturbing its 
height balance and ordering can be accomplished by combining a 
split-down operation, splitDownAt(…) , with a collapse 
operation (4.2).  Once again, consider the example in Figure 3 , 
reading from right to left this time, where we will move the 5 
back to its original position.  This is easily accomplished by a 
split-down operation followed by a collapse operation.  Clearly, 
height balance and ordering is preserved. 
 
The above four operations serve as basic building blocks for 
maintaining the invariants of the tree’s balance and ordering.  The 

students are now ready for the discussion of the insertion and 
deletion algorithms. 
 

5 Self-Balancing Tree Insertion 
 
Self-balancing tree insertion of a key k into a TreeN T entails 
applying the spliceAt(…)  method to an appropriate subtree of T 
while maintaining three invariants: the STP (search tree property), 
the height balance constraint, and the order constraint. 
 
5.1 Heuristics 
 
It is easy to convince students that, when the tree T is not empty, 
insertion of the key k must take place at a leaf because only by 
traversing T all the way down to a leaf can one make the 
determination whether or not k already exists in the tree.  Once 
we are at the appropriate leaf L, the call L.spliceAt(x, new 
TreeN(k))  will insert k into L at an appropriate index x and 
maintain the STP of T.  However, such splicing may cause the 
number of data element in the leaf node to exceed the prescribed 
order by one.  In this case, L is said to be in a “virtual state” 
because such a state violates the order constraint, but is still a 
valid operational state of the tree. 
 
The discussion in the preceding section (4) suggests transporting 
the excess data upward towards the root in order to re-attain the 
normal state while maintaining the tree’s height balance and STP.  
This can be accomplished by repeated application of the split-up 
and splice combination described in subsection 4.3, before 
reaching the root.  When the data transport reaches the root, only 
a split-up (4.1) is required if the root in a virtual state.  This is 
equivalent to a split-up followed by a no-op.  We focus the 
students on this vertical data transport, as it is the key to self-
balancing. 
 
We abstract the splice and no-op into an abstract function, or in 
the parlance of design patterns, a “command,” ILambda (see 
Listing 2 ).  This interface performs an arbitrary task on its 
parameter when its apply(…)  method is called.  Consider for 
example the following command: 
 
ILambda cmd  = new ILambda() { 

 public Object apply(Object tree) { 
return T.spliceAt(x, (TreeN)tree); 

 } 
}; 

 
cmd.apply(S)  will splice any TreeN S to the given tree T at the 
given index x.  On the other hand, the anonymous ILambda 
object 
 
new ILambda() { 
    public Object apply(Object tree) { 
        return T; 
    } 
} 
 
can serve as a no-op command. 
 
In the above two commands, T and x are free and must be bound 
in some non-local environment in order for the commands to 
make sense.  In Java, such bindings are made possible using inner 
classes.  The commands are created anonymously on-the-fly and 



passed as input parameters to the process of transporting data 
upward encapsulated in a ITreeNAlgo visitor called 
SplitUpAndApply  (see Listing 2 ) which can be expressed as 
follows. 
 
x� Host state  d order : do nothing. 
x� Host state  > order : Split up the host and apply the supplied 

abstract ILambda command to the host which will either 
perform a no-op or a splice. 

 
Listing 3  shows the code for our insertion algorithm that makes 
use of the above SplitUpAndApply  visitor and ILambda 
commands.  Our implementation is an adaptation of a common 
technique in functional programming (for example, see [5]).  
More specifically, in the case of non-empty host trees, the 
insertion algorithm simply sets up a “helper” algorithm and passes 
a no-op command to it since at the top level call the host is the 
root. 
 
As shown in Listing 3 , the helper algorithm and the splice 
commands are created on the fly as an anonymous inner objects, 
which are analogous to lambda expressions in functional 
programming.  They allow us to express computations in terms of 
data in their closures.  The use of anonymous inner classes greatly 
simplifies the code by minimizing parameter passing and control 
structures.  This often results in program code that is declarative, 
clear and concise. 
 
5.2 Correctness 
 
To help the students gain a deeper understanding of the algorithm, 
we need to lead them through a more rigorous proof of 
correctness. 
 
Case 0 of InsertNAlgo  is trivial.  The correctness of the default 
case hinges on the fact that the recursive call inside the helper 
algorithm does indeed insert the key into the host tree and 
maintains the host’s STP and height balance.  We label the 
anonymous helper algorithm instance insertHelper  and claim 
the following. 
 
Lemma 1: Let T be a balanced non-empty TreeN of order > 1 
that satisfies the STP, and suppose key  is not in the root node of 
T.  Let x be the index at the root of T such that if the x-1th data 
element exists, it is strictly less than key  and if the xth data 

element exists, it is strictly greater than key .  Let S be the xth 
child tree of T.  Then, the following post-conditions hold for 
 
S.execute(insertHelper , new ILambda() { 
    public Object apply(Object tree) { 
        return T.spliceAt(x, (TreeN)tree); 
  } 
}): 
 
x� T contains key  and preserves the STP and its height. 
x� All subtrees of T satisfy the order constraint. 
 
Proof of lemma 1: We shall prove by induction on the height of T. 
 
x� Case height = 1: S is empty, and x = 0.  Thus case 0 of 

insertHelper  is called and evaluates to T.spliceAt(0, new 
TreeN(key)) .  As a result, T contains only key  at the root, 
clearly satisfies the STP and preserves its height.  All 
subtrees of T are empty and trivially satisfy the order 
constraint. 

x� Suppose the lemma holds for all TreeN T of order > 1 and 
of heights h that satisfy the STP and such that 1 � h � n.  We 
will prove the lemma holds for the case of any TreeN T of 
order > 1 and of height n+1 that satisfies the STP. 
a) Here, S is not empty and thus the default case of 

insertHelper  is called with the parameter h bound to S 
and the parameter cmd  bound to the anonymous object 

new ILambda() { 
    public Object  apply(Object tree) {  
        return T.spliceAt(x, (TreeN)tree); 
    } 
}. 

The body of this case consists of the following three 
computations in sequence: 
o a for  loop; 
o a call to execute recursively insertHelper ; 
o a call to execute the splitUpAndSplice  algorithm. 
We now examine the effects of each of the above 
computations. 

b) If key  is in the root node of S, the for  loop will find a 
match for key  and return.  Nothing affects T, and so the 
lemma holds. 

c) If key  is not in the root of S, by the STP, the for loop 
finds the index x[0]  of the child tree of S where key  
must be inserted in order to maintain the STP of S.  

Code Comment 

public  interface  ILambda  { 
public Object  apply(Object p); 

}  

Function abstraction representing a command.  A 
function knows how to perform an operation on an 
input Object p and return the result as an Object. 

  
public  class  SplitUpAndApply  implements  ITreeNAlgo { 

private  int  _order; 
public  SplitUpAndApply(int  order) { _order = order; } 
 

Constructor takes the order of the tree. 

public  Object caseAt(int  s, TreeN host, Object cmd) { 
if (s <= _order)  return  host; 

cmd  is an ILambda operating on TreeN. 
Case s = state <= order: do nothing (no-op). 

host.splitUpAt(s/2); 
return  ((ILambda) cmd).apply(host);  

 } 
} 

Default (state>order) case: split up host  at its 
midpoint and then apply the ILambda parameter to 
host . 

Listing 2  ILambda command and SplitUpAndApply visitor 



Consequently, the conditions of the lemma holds with S, 
S.getChild(x[0])  and x[0]  in place of T, S and x, 
respectively. 

d) By the induction hypothesis, after the recursive call 
S.getChild(x[0]) .execute(this , new ILambda() { 
    public Object apply(Object tree) { 
       return S.spliceAt(x[0 ], (TreeN)tree); 
    } 
}), 

o S contains key  and preserves the STP and height. 
o All subtrees of S satisfy the order constraint. 

e) As a result, the only place where S can break the order 
constraint is at its root node.  After the insertion of key, 
the size of the root node of S can only exceed the order 

by at most one.  Thus, splitting up S will re-satisfy the 
order constraint.  The call 

S.excecute(splitUpAndSplice , cmd ) 
splits S up at the middle and splices it to T at the index 
x, if S break the order constraint.  From the discussion in 
subsection 4.3, such a combination of operations does 
not affect the height of T and the order of the subtrees of 
T.  Moreover, from the very definition of x, the STP of T 
is preserved. 

f) Thus, the lemma holds for T of height n+1. 
x� By induction, lemma 1 holds for all balanced TreeN T or 

order > 1 and of heights ����WKDW�VDWLVI\�WKH�673� 
 

Code Comment 

public  class  InsertNAlgo implements  ITreeNAlgo { 
 

private  SplitUpAndApply  splitUpAndSplice; 
 
public  InsertNAlgo (int  order) { splitUpAndSplice = new  SplitUpAndApply(order);} 
 
public  Object caseAt(int  s, final  TreeN host, final  Object key) { 

switch (s) { 

 
 
 
Initialize the splitUpAndSplice  algorithm to split 
up only those trees whose state > order . 
 
The key to insert is the third parameter  

case  0: {  return host.spliceAt(0, new  TreeN((Integer) key)); } The empty case simply splices a new tree into the 
host to mutate it into a 2-node tree. 

default : { 
host.execute(new  ITreeNAlgo() { 

 
public  Object caseAt(int  s_help, final  TreeN h, final  Object cmd) { 

switch (s_help) { 

The default (state > 0) case simply sets up a call 
to a helper algorithm, passing a no-op command. 

  
case  0: { 

return  ((ILambda)cmd).apply(new TreeN((Integer)key)); 
} 

The helper’s empty case: The parent tree has 
height 1 here.  The empty case means that we are 
at a leaf and that the key was not found.  Thus, a 
new tree is instantiated and spliced into the parent. 

default : { 
final  int [] x = {0}; 
for (; x[0] < s_help; x[0]++) { 

int  d = h.getDat(x[0]).intValue(); 
if  (d >= ((Integer)key).intValue()) { 

if  (d == ((Integer)key).intValue()) return  h; 
else  break ; 

} 
} 

The helper’s default (state > 0) case:  The tree has 
height at least 1 here.  Linear search for the index 
of the child tree that will hold the key (the insertion 
point) and preserve the STP of the tree.  Could 
alternatively use a binary search. 
 
If the key is in the host tree already, do nothing, 
else x[0]  is the index of the child tree where the 
key should be inserted, so break out of the loop. 

h.getChild(x[0]).execute(this , new  ILambda() { 
public  Object apply(Object tree) { 

return  h.spliceAt(x[0], (TreeN)tree); 
} 

}); 

Recur on the helper, passing it an ILambda 
command to splice at the computed insertion 
point.  The splice command’s closure is effectively 
a memento that holds the previous insertion point. 

return  h.execute(splitUpAndSplice, cmd); 
} 

};  // end switch(s_help) 
} 

If necessary, split this host and splice the excess 
data into the parent using the supplied ILambda 
command. 

}, new  ILambda() { 
public  Object apply(Object tree){ 

return  host; 
} 

}); 

The no-op ILambda command is passed to the 
first call of the helper on the root node. 

return  host; 
} 

};  // end switch(s) 
} 

} 

Return the host to allow chaining. 

Listing 3 : Self-balancing tree insertion algorithm 



We are now ready to prove correctness of the insertion algorithm 
InsertNAlgo . 
 
Theorem 1: The algorithm InsertNAlgo  inserts without 
duplication an Integer key  into a balanced host  TreeN and 
maintains host ’s STP and height balance. 
 
Proof of theorem 1: We shall prove the theorem by considering 
the two cases: host  is empty and host  is not empty. 
 
x� When host  is empty, case 0 is called: host  simply mutates 

to a 2-node tree containing key .  Obviously, host  maintains 
the STP, the height balance and the order constraint. 

x� When host  is not empty, the default case is invoked, which 
calls for host  to execute the insert helper algorithm with 
parameter h bound to host  and the parameter cmd  bound to 
the no-op anonymous object 

new ILambda() { 
    public Object apply(Object tree) { 
        return host ; 
    } 
} 

a) As in the proof of lemma 1, if key  is in the root node of 
host , the for  loop will find a match for key  and return 
from the call.  Nothing affects host , and so the theorem 
holds. 

b) If key  is not in the root node, then the recursive call to 
the helper is made.  It follows from lemma 1 that host  
then contains key , preserves its STP and height and all 
subtrees of host  satisfy the order constraint. 

c) The size of the root node of host  can only exceed the 
prescribed order by at most one.  If this happens, the 
application of the splitAndSplice  algorithm on host  
will split host  up at the middle, re-establishing the order 
constraint and maintaining the height balance of host .  
There will be no splicing to a parent tree however, since 
the supplied command is a no-op.  QED 

 
The above proof illustrates many important techniques used in 
more theoretically oriented upper division courses. 
 
5.3 Complexity Analysis 
 
The complexity analysis for the insertion is trivial: 
 
1. All operations at a node are worst case O(order) . 
2. All the algorithm does is to recur once down to the bottom of 

the tree and then return. 
3. Therefore the overall complexity of the algorithm is O(log 

N) where N is the number of elements in the tree since the 
tree is balanced. 

 

6 Self-Balancing Tree Deletion 
 
Deletion of a data element is well defined only when the tree is a 
leaf.  Any other situation leads to ambiguous choices on the 
disposal of one or more of the child trees.  If the key to be deleted 
is at a leaf node, a simple call to splitDownAt(…)  will remove 
the key from the tree.  Thus, similar to the insertion case, self-
balancing tree deletion must take place at the leaf level while 
maintaining three invariants: the STP (search tree property), the 
height balance constraint, and the order constraint.  Once again, 
the students are lead to focus on the vertical transport of data. 

6.1 Heuristics 
 
Since the data element to be deleted must be ultimately located at 
the leaf level, it must be moved from its original location down to 
the leaf level for deletion.  We must therefore find a method of 
transporting data from the root to the leaves without affecting the 
height of the child trees.  The problem is that there is a possibility 
that the data to be deleted is located in a 2-node, and data cannot 
be pushed down out of a 2-node without changing the tree’s 
height.  To solve this problem, consider the following facts: 
 
1. Only trees with order > 1 can push data downwards without 

changing their height because data will be left in the node. 
2. From fact 1, if one data element is added to all nodes in the 

tree from which data is being pushed downwards, then height 
preservation is guaranteed. 

3. Any element x i in a node, when combined with its left and 
right child trees, can be considered as the root data element 
of a 2-node tree. 

4. From the STP of the tree, we can always identify a 
“candidate” element in the root node whose associated 2–
node tree is guaranteed to hold the desired data element to be 
deleted, should it exist in the tree at all. 

 
Recursively pushing a candidate element down from the root of 
the tree will effectively add one element to all child nodes along 
the path to from the root to the leaves that contains the element to 
be deleted.  When the data to be deleted is encountered, it will 
automatically become the candidate element and continue to be 
pushed down to the leaves.  Thus, except at the root and the leaf, 
height preservation is guaranteed during the data transport 
process.  At the root, a height change is possible, but that will not 
affect the balance of the tree.  At the leaf, the candidate element is 
either the element to be deleted, upon which it will be removed, or 
if it is not, just as the insertion case, this excess data will be 
transported back upwards to the root.  In either case, no height 
change takes place. 
 
The deletion algorithm is thus analogous to the insertion 
algorithm except that it transports data from the root to the leaves 
as well as from the leaves to the root.  Listing 4  shows the 
complete Java implementation.  The deletion code is essentially 
the same as the insertion code except that it identifies the state = 1 
(2-node state) as a special case, plus, it pushes data downward as 
well as upward. 
 
The 2-node case is singled out because when the root is a 2-node, 
data cannot be pushed downward from it, so it needs to be 
collapsed before the split down process begins.  This is what one 
expects because the deletion process will cause the tree to shorten 
after enough data elements have been removed.  Essentially that 
point is reached when the root runs out of data to push downward.  
Having a 2-node root does not guarantee that the tree will shorten 
on the next deletion however, due to the excess data being pushed 
upwards from the leaves. 
 
Just as in the insertion algorithm, for trees with states > 1, the 
deletion algorithm simply sets up an anonymous helper algorithm 
and passes to it an anonymous no-op splice command since the 
root of the tree has no parent.  The helper algorithm is very 
similar to that in the insertion algorithm in that it uses an 
appropriate ILambda command to splice excess data into the 
parent tree. 



In the helper algorithm, the 2-node case is singled out because 
when a data element is split down from a leaf, it forms a 2-node 
below the leaf level.  This then serves as an indication that the leaf 

level has been reached.  It also conveniently and automatically 
isolates the key to be deleted from the rest of the tree. 
 

Code Comment 

public  class  DeleteNAlgo implements  ITreeNAlgo { 
 

private  SplitUpAndApply  splitUpAndSplice; 
 
public  DeleteNAlgo (int  order) { splitUpAndSplice = new  SplitUpAndApply(order); } 
 
public  Object caseAt(int  s, final  TreeN host, final  Object key) { 

switch (s) { 

 
 
 
 
Initialize the splitUpAndSplice  algorithm to 
split up only those trees whose state > order . 
The key to insert is the third parameter. 

case  0: {  return  null; } Empty case: do nothing and return. 

case  1: { collapse2Node(host); } Case state = 1: collapse the 2-node and then 
fall through to the default case. 

default : { 
return  host.execute(new  ITreeNAlgo() { 

public  Object caseAt(int  s_help,final  TreeN h, Object cmd) { 
switch (s_help) { 

Default (state>1) case: set up a call to a helper 
algorithm, passing a no-op splice command. 

case  0: { return  null; } Helper’s empty case: key  is not in the tree; do 
nothing and return. 

case  1: { 
if  (h.getDat(0).equals(key)) { 

Object d = h.getDat(0);  
h.splitDownAt(0); 
return  d; 

} 
else  { 

((ILambda)cmd).apply(h); 
return  null; 

} 
} 

Helper’s state = 1 case: encountered only if the 
data has been pushed down through a leaf. 
 
If key  is found, then delete it from the 2-node 
using a split down. 
 
If key  is not found, splice the candidate key 
back into the parent. 

default  : { 
final  int  x = findX(h, s_help, ((Integer)key).intValue()); 
TreeN newChild =  

collapse2Node(h.splitDownAt(x).getChild(x)); 

The helper’s default (state>1): find the 
candidate key index, split h down at that point 
and collapse the resultant child tree. h still 
maintains its STP. 

Object result = newChild.execute(this , new  ILambda() { 
public  Object apply(Object child) { 

return  h.spliceAt(x, (TreeN)child); 
} 

}); 

Recur on the helper, passing it the command 
(ILambda) to splice at the computed deletion 
point.  The splice command’s closure is 
effectively a memento that holds the child 
deletion point. 

h.execute(splitUpAndSplice, cmd); 
return  result; 

} 
}  // end switch(s_help) 

} 

If necessary, split this host and splice the 
excess data into the parent using the supplied 
ILambda command. 

}, new  ILambda() { 
public  Object apply(Object child) {  return  host; } 

}); 
} 

}  // end switch(s) 
} 

The no-op ILambda command is passed to the 
first call of the helper on the root node because 
the root has no parent. 

private  TreeN collapse2Node(TreeN t) { 
t.spliceAt(1,t.getChild(1)); 
return  t.spliceAt(0,t.getChild(0)); 

} 

Utility method to collapse a 2-node tree with its 
children.   

private  int  findX(TreeN t, int  state, int  k) { 
for (int  i = 0; i < state; i++)  if (t.getDat(i).intValue() >= k) return  i; 
return  state - 1; 

} 
} 

Utility method for linear search for the 
candidate data element.  Candidate may 
actually be the key.  Could use a binary search. 

Listing 4 : Self-balancing tree deletion algorithm 



Pushing the candidate data downward is accomplished by pairing 
a split down operation with a “collapse” operation as described in 
Section 4.  The collapsing process may create a tree in virtual 
state.  Once again, this is easily handled by the system, as it is still 
an operational state of the tree.  Since one of the data elements of 
the virtual state is pushed down to the next level, when the excess 
data is spliced back in during the recursion’s return, the splitting 
up process will split the virtual state in two.  As in the insertion 
algorithm, the order constraint is maintained. 
 
Conspicuously absent in the above algorithm are the traditional 
rotation operations.  Rotations occur when locally, there aren’t 
enough data elements to maintain the tree height.  The above 
algorithm ensures the proper amount of data by always pushing 
down data from the root.  In addition, the collapsing and splitting 
up of the nodes promotes tree fullness better than the single 
element transfer in a rotation operation. 
 
6.2 Correctness and Complexity 
 
Let us label the anonymous helper algorithm deleteHelper .  
Analogous to the insertion algorithm, we prove correctness for 
DeleteNAlgo  by first establishing the following lemma on 
deleteHelper : 
 
Lemma 2: Let T be a balanced non-empty TreeN of order > 1 
that satisfies the STP and key  be an Integer object.  Let x be the 
index at the root of T such that if the x-1th data element exists, it 
is strictly less than key  and if the x+1th data element exists, it is 
strictly greater than key .  Then, the following post-conditions 
hold for 
 
TreeN S = collapse2Node(T.splitDownAt(x).getChild(x)); 
S.execute(deleteHelper , new ILambda() { 
    public Object apply(Object tree) { 
        return T.spliceAt(x, (TreeN)tree); 
  } 
}): 
 
x� T does not contain key  and preserves the STP and its height. 
x� All subtrees of T satisfy the order constraint. 
 
The correctness of DeleteNAlgo  then follows. 
 
Theorem 2: The algorithm DeleteNAlgo  removes an Integer 
key  from a balanced host  TreeN and maintains host ’s STP and 
height balance. 
 
We leave as exercises the proofs for lemma 2 and theorem 2 since 
they are essentially identical to those of lemma1 and theorem 1. 
 
The complexity analysis once again is trivial and is identical to 
the analysis of the insertion algorithm. 
 

7 Conclusion 
 
We have presented our tree framework and exhibited its complete 
Java implementation.  As Listing 3  and Listing 4  show, the 
code of SBT insertion and deletion are each simple enough to 
easily fit on one page without relying on non-intuitive 
manipulations. 
 

The fundamental design principle is the separation of invariant 
behaviors from variant behaviors.  In our framework, the tree 
structure serves as the re-usable invariant component with a 
complete and minimal set of intrinsic behaviors.  The behaviors 
are partitioned into constructors, structural modifiers and data 
access.  The extrinsic algorithms on the tree act as visitors and add 
an open-ended number of variant behaviors to the tree. 
 
We generalize the visitor pattern by replacing individual visiting 
methods with a single parameterized method.  The generalized 
visitor can handle a dynamically changing number of hosts, or in 
this case, a single host with dynamically changing numbers of 
states, each of which may require a different visiting behavior. 
 
The insertion and deletion process on a SBT relies on vertical data 
movement that preserves the height balance of the tree.  The 
intrinsic structural operations of the tree were shown to easily 
support this process.  The insertion and deletion algorithms were 
then expressed in terms of leaf manipulations, vertical data 
movement and root manipulations.  Their implementations closely 
matched their abstract descriptions and lead directly to rigorous 
proofs of correctness.  The complexity analyses were simple, 
straightforward and intuitive.  These algorithms, when plugged 
into the tree framework, transform the tree structure into a SBT.  
This demonstrates the framework’s flexibility and extensibility.  
The algorithms can be easily modified to support other self-
balancing tree structures such as B-trees. 
 
Studying OO SBTs reinforces students’ understanding of abstract 
decomposition, OOP, design patterns, complexity analysis, and 
proof-of-correctness.  The drive towards proper abstraction 
unifies all the above principles.  The students can focus on the 
fundamental principles involved with the system without the 
distractions of low-level manipulation code.  Abstract concepts 
such as closures, lambda expressions, itemized case analysis and 
other abstract behaviors are well represented in our formulation.  
Functional programming and declarative programming come in 
naturally without the traditional topical boundaries that hinder 
students’ learning. 
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