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Abstract— RCopterX is an indoor testbed for miniature re-
mote controlled helicopters build at the Automatic Control Lab-
oratory at ETH Zurich. The experimental setup includes mod-
ular custom control software, a hardware interface between a
PC and radio-control signal transmitter, off-the-shelf miniature
helicopters and an infrared vision system for global positioning
indoors. Its purpose is to experimentally validate problems of
UAVs performing multi-level controls, including stabilizing low
level controls as well as testing of high level algorithms. The
main features are the modular architecture allowing for multi-
agent support and interchangeability of the vehicle hardware
and control algorithms. For illustration, a reliable fast model
predictive control (MPC) scheme for coaxial helicopters as
well as the implementation of a formation control algorithm
is described. The presented distributed leader follower MPC
approach achieves reference tracking of the whole formation
along with maintenance of the formation shape, by having the
individual agents solve their own optimization problem based
on information from their leader. Results of the experimental
validation demonstrate the successful implementation and the
multi-agent capabilities of the setup.

I. INTRODUCTION

In recent years, autonomous vehicles have undergone a
miniaturization, enabled by remarkable advances in sensing
and computation technologies. This has led researchers to
envision and study how individual vehicles can be pushed
to their physical and dynamical limits and how cooperative
teams of vehicles could be used to accomplish tasks such
as aerial imaging or underwater exploration. There is now
a large and increasing literature on various aspects of au-
tonomous vehicle control and cooperative control of vehicle
formations.

Much of the research on cooperative control of vehicle
formations, however, is theoretical or methodological, and it
is important to develop experimental testbeds that can vali-
date control schemes and algorithms not just in simulation,
but also on real hardware. Examples of such testbeds are
described in [8], [15]. This paper describes RCopterX, an
indoor testbed built for research on both, low-level vehi-
cle control and multi-vehicle coordination algorithms using
miniature helicopters. The experimental setup is small-scale,
thus suitable for limited laboratory space, and still providing
capabilities for multi-agent scenarios at the same time. We
believe that it guarantees a flexible and efficient structure
of low complexity while preserving many of the practical
challenges of nonlinear and distributed control.

A fundamental problem in cooperative control of vehicle
formations is formation shape control. The goal is for the in-
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dividual vehicles to adjust their motion using limited relative
state information about neighboring vehicles so that the for-
mation achieves and maintains a specified geometric shape.
Among possible control strategies, the model predictive con-
trol methodology (see e.g., [16]) is suitable to tackle possibly
arising state constraints in such problems. Distributed model
predictive control has been attracted research in the last
decades [2], [3], [18] and specifically several algorithms
for multi-vehicle formation control have been proposed in
the literature [6], [10], [12], [13], [19]. To the best of our
knowledge, only two papers [12], [13] describe experimental
implementation of a distributed model predicted control algo-
rithm on a multi-vehicle testbed. However, these algorithms
are used for more sophisticated trajectory optimization with
non-convex constraints on relatively slow time scales.

We experimentally validate a fast leader-follower model
predictive control scheme, in which the solution to a global
finite-horizon optimization problem is computed by distribut-
ing the computation over a set of communicating processors
associated with each vehicle. The leader-follower structure
we consider allows terms in the objective function to be
split in a straightforward way so that each follower can
independently optimize its own decision variables based on
information from vehicles it follows. No iterative negotiation
mechanism is required, and the formation control task can be
executed at the same rate as for a single vehicle, with plans
being updated every few milliseconds using custom solvers.
All vehicles end up using reference tracking controllers with
the same structure but transformed reference trajectories,
which facilitates online changes to the formation topology,
including leader changes. The leader can be given external
commands such as set point changes and target trajectories,
and the predictive mechanism allows followers to anticipate
movements of the leader. The results of our experimental
studies show that the proposed distributed algorithm tracks
set point changes of the global position of the formation
as well as changes of its geometrical shape. The approach
is validated to work for sampling times in the range of
milli-seconds. Furthermore, the achieved solver times are fast
enough to trade off tracking errors with computation times.

The rest of the paper is structured as follows. Section II
describes the testbed hardware and software setup. Section
III describes the helicopter model. Section IV reviews a
model predictive controller for a single vehicle using an
automatically generated custom code, and Section V de-
scribes an experimental implementation and validation of the
leader-follower model predictive control scheme. Concluding
remarks are given in Section VI.



II. TESTBED DESCRIPTION

Physical Setting

The RCopterX project [9] requires only a space of about
3 m×3 m×2.5 m, where the ’flyable’ volume, i.e., the space
reliably covered by the vision system, is about 2 m× 2 m×
2.5 m. The setup incorporates an infrared vision system for
pose detection of the vehicles, the two PCs, running the
vision and the control software separately and the helicopters
with transmitters. For a more reliable detection of the objects
the flyable space is shielded from sunlight and other infrared
sources by black curtains. The cameras are mounted on
height-adjustable rails on the walls to minimize disruption
of the calibration.

Vision System

The 3D-position and orientation are recorded by a Vicon
motion capture systemwhich consists of 4 Bonita B3 cameras
with 0.3 megapixels and maximal field of view of 82◦

horizontal and 66◦ vertical. The collected data is processed
by the Vicon Tracker v1.2 software, running on a normal
Windows 7 desktop PC with an Intel Core i5-661, a dual
core processor with hyper threading at 3.33 GHz and 16 GB
RAM. The measurements are updated with 50Hz on a data
stream, which is accessible through a TCP/IP port, to match
the chosen sampling time of the entire system. In this setup
reflective markers with a diameter of 9.5 mm are attached to
the objects, which pushes the detection to its limit given the
camera type and the covered volume. In the spirit of an easy
to set up and affordable testbed, the authors would like to
note, that the professional equipment could be replaced by
inexpensive sensing systems relying on pose estimation and
filtering. A good example for such a solution can be found,
e.g., in [7].

Software Architecture

The core part of the system is the control software Coaga
[1] written in C++, running on a second PC with an Intel
Quad-Core i5-760 at 2.8 GHz and 8 GB RAM. A robust
sampling time of 20 ms is chosen to acquire measurements
via local area network, invoke the control computations and
to interact with the transmission unit. The main feature is
the modularity of the classes, e.g., supporting the switching
between controllers during flight, online tuning and addition
or removal of controlled agents during operation. Besides
the control algorithms, Coaga provides a filtering module
to implement different estimators, e.g., a Kalman Filter
for velocities and accelerations. Furthermore, it incorporates
an interface to external code written in other languages
like Python or Matlab, thus supporting a rapid prototyping
environment for low level controllers as well as high level-
algorithms. A schematic of the software structure is given in
Figure ??, illustrating the interactions between the involved
main components, classes and external communications.

Transmitter and Helicopter

The control signal is sent to the vehicles via transmitters,
connected to the USB ports of the PC running the Coaga
software. The system relies on the Spektrum DSM2 pro-
tocol, a 2.4 GHz direct sequence spread spectrum (DSSS)
system, which is also compatible with DSMx receivers and

therefore widespread in commercially available remote con-
trolled devices. Ranging from different types of helicopters to
quadrocopters, this infrastructure allows for diverse systems
to be modeled and controlled. In this work, the Blade mCX2
coaxial helicopter is used, which is 20 cm long, has a rotor
diameter of 19 cm and a weight of 28 g. It has two linear
servos to control the cyclic swash-plate movement, thus
allowing for roll, pitch, yaw and thrust control actions. In
addition, it comes with a Bell-type stabilizer bar and an on
board heading hold gyroscope for yaw angle stabilization.
Since the gyro can not be turned off in this model the yaw
control will not be in the focus of this work. No additional
sensors were added, except for a retrofitted bar carrying
infrared markers.

III. HELICOPTER MODEL

Our MPC scheme uses a discrete time linear model for
the helicopters dynamics. In this section the derivation from
[11] is quickly recalled and extended.

a) Nonlinear model: The dynamical model is based
on Newton-Euler mechanical laws for rigid bodies, which
are fully described in, e.g., [17]. We obtain a reduced-order
model by neglecting the pitch and roll angular states, which
represents the observed behavior of the coaxial helicopter
with flybar quite well.

Consider the nonlinear continuous-time system ẋ =
f(x,u) with input vector u =

[
ux, uy, uz, uΨ

]
, the state

vector x =
[
xI , yI , zI , ψ, ẋB , ẏB , żB , ψ̇, xint, yint, zint

]
and the function f(·, ·) : R11 × R4 → R11, which is given
by the state dynamics (1)

ẋI = cos(Ψ)ẋB − sin(Ψ)ẏB, żI = żB,

ẏI = sin(Ψ)ẋB + cos(Ψ)ẏB, Ψ̇ = Ψ̇

ẍB = bxux + kxẋB + Ψ̇ẏB, z̈B = bzuz − g (1)

ÿB = byuy + ky ẏB − Ψ̇ẋB, Ψ̈ = bΨuΨ + kΨΨ̇

ẋint = ki(xI − xref), żint = ki(zI − zref)

ẏint = ki(yI − yref)

Here, xI, yI, zI denote the position of the helicopter in
the inertial frame, ẋB, ẏB, żB the velocities of the helicopter
in the body frame and Ψ the yaw heading angle with its
rotational velocity Ψ̇. The body frame coordinate system
of the helicopter is fixed to the helicopter center of gravity
and xB-axis pointing towards the nose and zB-axis along the
rotor axis. The model parameters are kx, ky, kΨ, ki and the
control inputs for pitch, roll, thrust and yaw are denoted by
ux, uy, uz, uΨ. In extension of [11] a third integral state zint
is augmented to the reduce steady-state error now in all three
spatial dimension.

b) Discrete-Linear Model: A linear approximation of
(1) is derived by the first-order terms of the Taylor series
expansion around the set point (x̂(t), û(t)). The system is
zero-order hold sampled with time Ts auch that the discrete
representation is given by

xk+1 = Ad,kxk + Bduk − cd,k, (2)

where the subindex k denotes states or matrices evaluated at
t = kTs. Ad,k is the first-order approximation of the system
matrix, Bd the Euler-Integrations of the input matrix and



cd,k the Euler-Integrations of ck = Akx̂(kTs)+Bû(kTs)−
˙̂x(kTs). Previous experiments [11] showed no significant
benefit, when using more precise integration methods.

c) Hovering Simplification: In view of the formation
control task presented in Section VI-C, the helicopter is
assumed to be always in hovering mode, i.e., the model is
linearized around set points with zero velocities. Experiments
showed that this assumption is reasonable for set point
changes that are not too large. The final model used for
control is given as

Ad,k(Ψ̂k) = I11×11 +

0 0 0 0 cΨ̂k
−sΨ̂k

0 0 0 0 0
0 0 0 0 sΨ̂k

cΨ̂k
0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 kx 0 0 0 0 0 0
0 0 0 0 0 ky 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 kΨ 0 0 0
ki 0 0 0 0 0 0 0 0 0 0
0 ki 0 0 0 0 0 0 0 0 0
0 0 ki 0 0 0 0 0 0 0 0


· Ts,

Bd =


04×4

bxTs 0 0 0
0 byTs 0 0
0 0 bzTs 0
0 0 0 bΨTs

03×4

 , cd,k =


06×1

gTs

0
kixref,kTs

kiyref,kTs

kizref,kTs


where cΨ and sΨ denote the cosine and sine of Ψ.

In×m and 0n×m are the identity matrix and zero matrix
respectively in Rn×m. The derived model is time depen-
dent through the yaw-angle set point Ψ̂k and the position
reference

[
xref,k yref,k zref,k

]
. The treatment of these

dependencies will be discussed later. Also, the identified
model parameters are provided in Section VI-A.

IV. SINGLE HELICOPTER MPC

A standard MPC scheme [16] is applied, where the con-
troller solves at each time instance k a constrained multi-
stage optimization problem over the horizon i = [k, · · · , k+
N − 1]. From the obtained optimal input sequence, only the
first input is applied to the system uk = u∗1. At the next step
the horizon is shifted and the problem is solved again with
an updated measurement.

Consider a stacked notation of the decision variables
zi =

[
xi, ui

]>
, zN =

[
xN , 04×1

]
and the symmetric cost

matrices Q � 0 and R � 0 to penalize the deviations from
the reference states and inputs xref and uref respectively.
In addition, the solution P to the discrete algebraic Ricatti
equation (DARE) is used as terminal cost matrix. The
optimization problem is then given by

min
zi

1

2
z>NPzzN − z>ref,iPzzN

+

N−1∑
i=1

1

2
z>i Qz,izi − z>ref,iQz,izi (3)

subject to: x1 = x

xi+1 = Ad,ixi + Bdui + cd,i i = 1, ..., N − 1

zmin ≤ zi ≤ zmax i = 1, ..., N, (4)

where Qz = diag(Q,R) and Pz = diag(P, 04×4) are a
block-diagonal matrix of the weight matrices. Note, that for
the compact notation, the cost function was multiplied by
the factor 1

2 and constant term were dropped, which does
not alter the optimization results. Assuming box constraints
z ∈ [zmin, zmax] on the decision variables and positive
definite matrices Q and R, problem (3) is a convex quadratic
and therefore applicable to fast convex solvers. It is well
known [16], that under an appropriate choice of the terminal
set, stability of the linearized system can be guaranteed.
However, for the practical implementation, the derivation of
the terminal set is omitted and the constraints are fixed over
the whole horizon.

In the previous work [11] for the optimization problem
was generated with CVXGEN [14]. Though this implemen-
tation was delivering good performance for the fast MPC
problem, two main aspects had to be considered in view
of a multi-agent formation control task. First, the modular
and flexible structure of the RCopterX testbed, e.g., allowing
insertion of vehicles at will, is not maintainable with the
CVXGEN code, since it relies on global variables in the
controller, making it necessary to hard-code the controllers
for each helicopter. Second, the problem size is limited
by the server time required to generate the problem. We
used instead the FORCES code generator [5]. A complete
comparison between the solvers is beyond the scope of this
paper; however, the achieved solving times for the single
helicopter problem with various horizon length are discussed
in Section VI-C.

An important observation from simulations with FORCES
was, that the number of iteration needed and therefore the
solving times could be reduced significantly when the data
was scaled such that all inputs and states are within the range
of −1 to 1. It is straightforward to verify that the problem
structure does not change, when applying the transformation

z̃ =

[
x̃
ũ

]
= D−1(z− s) =

[
D−1
x (x− sx)

D−1
u (u− su)

]
, (5)

and dropping all constant terms in the cost function. The
involved matrices become

Q̃z,i = D>Qz,iD, P̃z = D>PzD, Ãd,i = D−1
x Ad,iDx,

c̃d,i = D−1
x (Ad,isx + Bdsu + cd,i − sx), B̃ = D−1

x BDu,

and the inequality (4) becomes −1 ≤ z̃i ≤ 1. The
implemented values for the diagonal scaling matrix D ∈
R15×15 and for the shift-vectors s ∈ R15 (sx ∈ R11,
su ∈ R4) are provided in Section VI-B.

V. A LEADER-FOLLOWER MPC SCHEME FOR
FORMATION CONTROL

We implemented a leader-follower model predictive for-
mation control scheme, in which global reference tracking
is delegated to a single leader vehicle and the relative shape
is maintained by the other vehicles by tracking a modified



reference based on the predicted trajectory of the leader.
The main objective of the algorithm is to maintain the
relative positions of follower helicopters with respect to
their designated leader, irrespective of planned or disturbed
movements of the leader. In this way, a global optimization
problem with terms in the objective coupling neighboring
vehicles is solved by distributing the coupling terms amongst
the followers. The desired relative state between two generic
helicopters HL and HF is expressed by an offset vector
d(L,F ) ∈ R11. Every helicopter is assumed to measure
its own global position and to receive information about
the relative state and predicted trajectory of the vehicles
it is following via a communication link. To simplify the
exposition and implementation, every follower is assumed
to follow only a single vehicle, though the scheme described
here can in principle be modified to handle any directed
acyclic communication graph.

The leader tracks a global reference using the MPC
scheme described in Section IV and obtains at each time
step k the optimal solution

[
x∗i , u

∗
i

]
for i = k, ..., k+N −1

to the problem (3). This optimized predicted trajectory x∗i ,
referred to as the plan, is communicated to the connected
followers, which track a transformed version of this plan
independently of the global reference or the other followers.
The nominal reference at horizon step i for follower HF of
leader HL is then given by

zref,(F ),i =

[
Ω(φ(L,F ),i)x

∗
(L),i + d(L,F )

uref,(F ),i

]
. (6)

The input reference is not altered, but for the state reference,
the distance d(L,F ) is added to the rotated plan x∗(L),i of the
leader to introduce the desired offset. The rotation matrix Ω
maps the variables given in the body frame coordinate system
of the leader into the followers frame. For the model derived
in Section III, where pitch and roll angles are neglected, only
the two translational velocities ẋB and ẏB need to be rotated.
Thus, the rotation is

Ω(φ(L,F ),i) =


I4×4 04×2 04×4

02×4 cφ(L,F ),i
sφ(L,F ),i

−sφ(L,F ),i
cφ(L,F ),i

05×2

05×4 05×2 I5×4

 ,
with the relative orientation φ(L,F ),i = Ψ(L),i−Ψ(F ),i. Note
that we assume the angles Ψ(L),i are communicated and
therefore known to the follower. Practical choices for the
required follower orientations will be discussed in Section
VI-C.

Scaling: Since the optimization problems are scaled,
as described in the previous section, and since in general
two helicopters could have different scaling ranges and shift-
vectors (DL, sL) and (DF , sF ), the leader plan may require
descaling, rotation, and rescaling. The scaled reference for
the follower is then given by

x̃ref,i = D−1
x,FΩDx,L︸ ︷︷ ︸

Ω̃

x̃∗(L),i

+ D−1
x,Fd(L,F ) + D−1

x,F (Ωsx,L − sx,F )︸ ︷︷ ︸
d̃(L,F )

(7)

There are three main advantages of this approach. First,
the followers use both the current relative state and plan
of the leader, allowing them to anticipate leader motion
to provide better stabilization. Second, the leader-follower
structure allows coupling terms in the objective to be straight-
forwardly distributed amongst the followers so that each
follower can independently and in parallel optimize its own
decision variables. No iterative negotiation mechanism is
required, and the formation control task can be executed at
the same rate as for a single vehicle, with all plans being
updated every few milliseconds. Third, since the optimization
problem structure is the same for follower and leader, the
same generated code can be used. This facilitates changes to
the formation structure, e.g., re-assignment of followers to
other leaders or changing the leader of the formation.

VI. EXPERIMENTAL RESULTS

A. Basic Parameter Settings
For the results presented in this paper, the following

model parameters are taken from [11] and used for all
helicopters. To match the update rate of the transmitter,
the sampling time for the discrete system was set to
Ts = 20 ms.
The time-varying system matrix Ad,k(Ψ̂k) was set
constant over the whole horizon, by linearizing around
the desired operational point, i.e., the reference orientation
Ψ̂i = Ψref,k. This approach showed better performance than
a linearization around the actual state, although the model
approximation at the beginning of the horizon might be
worse for large deviations from the reference orientation.
This is likely to be attributed to the use of the terminal cost,
which acts on the final state, where the approximation is
good for sufficiently long horizons. Note that this is done
to simplify the implementation, but in principle one can use
time-varying trajectory tracking controllers as in [11]; we
leave this for future work. Furthermore, the vector cd,k in
(2) depends on the reference as well, such that the dynamics
are only re-linearized if the reference changes.

The controller for the MPC problem (3) was set up
with the cost functions R = diag

([
5, 5, 5, 1

])
and

Q = diag
([

8, 8, 8, 4, 1, 1, 1, 1, 1, 1, 1
])

, where diag(·)
denotes the entries on the diagonal of a matrix with ap-
propriate dimension. The constraints were chosen based
on the physical bounds of the real helicopter and actua-
tor limits, determined in [4]. Further, the spatial dimen-
sions were limited as well, resulting in constraints for
xmin =

[
−1.2, −1.2, 0, −1, −1.3, −1, −25

]
, xmax =[

1.2, 1.2, 2, 1, 1.3, 1, 25
]
, umin =

[
−1, −1, 0, −0.4

]
,

umax =
[
1, 1, 1, 0.4

]
.

In general the scaling of the variables is based on
the ranges of the state and input constraints. However,
not all states necessarily are constrained, hence the
scales for these unconstrained variables were chosen
such that they have approximately the same magnitude,
based on empirical observations. The shift-vectors are
selected as sx =

[
0, 0, 1 m, 0, 0, 0, 0, 0, 0, 0, 0

]>
,

su =
[
0, 0, 0.5, 0

]>
, and the scaling matrix

D = diag(
[
1.2 m, 1.2 m, 1 m, 10 rad, 1.1 m

s , 1.3 m
s , · · ·

1 m
s , 25 rad

s , 1 ms, 1 ms, 1 ms, 1, 1, 0.5, 0.4
]
). The set



point ûz = 0.55 was chosen from experiments to keep
the helicopters hovering at the same height, which is the
reason for the entry in the shift vector and the limited input
range. Furthermore, the nominal operation height z of the
helicopters was shifted to 1 m.

B. Single Helicopter

A comparison to the controller performance of [11], using
the settings from Section VI-A, is not directly possible due to
the additional use of a terminal cost in this work. However,
using the previously reported weights, we can see in Figure 1,
that the hovering performance for 18-step horizon problems
is comparable and that the additional z-integrator has the
expected impact.
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Fig. 1: Mean square error [in mm2 and rad2] of 3 indepen-
dent hovering flights of 2 min. Red bars (1): Implementation
of [11]. Blue bars (2): Presented implementation with termi-
nal cost and z-integrator.

The code implementation was optimized in a way such that
the computation times of the control inputs are dominated
by the solver time. Figure 2 shows the controller times for
different horizons, where the maximal length considered was
110 steps. Though the average time for this case is 18 ms
and still below the sampling time, the solver occasionally
exceeded the 20 ms, when tested with bad initial conditions
or heavy disturbances. Measuring the error for a sequence
of reference changes over the different horizons reveals the
limits of the linearized and simplified model, as illustrated
in Figure 2.

C. Formation Control

For the validation of the formation control approach
presented in Section V, the following three implementation
aspects were addressed. Note that the first two of these
are implementation issues arising from the use of set point
controller instead of trajectory tracking controllers, done to
simplify and achieve fast computation times on the available
resources.

Linearization: In the single MPC scheme the required
linearization and recalculation of (2) was done only if
changes in the reference occurred. From the follower per-
spective this happens every steps, since the plan of the
leader is in general not constant. Again, for computational
reasons the dynamics were linearized at each step and then
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Fig. 2: Left: The curve with red squares indicate the
mean solver times while the blue squares show the max-
imal encountered times. The results are obtained from 3
hovering flights of 45 s for each horizon length. The red
dashes lines depicts the sampling time of the system. Right:
Weighted sum of the mean square errors without integral
states. The weights have been chosen such that a devia-
tion of approximately 0.3 rad has the same weight as a
deviation of 10 mm. Here, every 4 s the position refer-
ence (xref , yref , zref ,Ψref) was changed along the points
(300, 0, 1400, 0), (300, 300, 1400, 0), (−500, 300, 1400, 0),
(−500, 300, 1000, 0), (−500, 300, 1000, 3π). The sequence
was flown three times for each horizon length.

kept constant over the horizon. Another change to the single
MPC is, that the angular set point for the linearization has
to be chosen differently. Not knowing the global reference,
the follower should linearize around the best estimate of a
future operation point it knows. Under the assumption of
a sufficiently long optimization horizon, the last state in
the leaders optimized plan will almost coincide with the
global reference point. Therefore the shifted terminal state
vector xpF = d(L,F ) + x∗(L),N is used as the linearization
point for the followers, i.e., Ψ̂(F ),i = ∆Ψ(L,F ) + Ψ∗(L),N ,
where ∆ denotes the components of d(L,F ). Similarly cd,i
is calculated based on the first three components of xpF .

Fixed Rotation: As mentioned earlier in Section V,
the computation of the rotation matrix Ω(φ(L,F ),i) requires
knowledge of the follower orientations Ψ(F ),i over the op-
timization horizon. One approach would be to start with an
initial guess for the rotation matrices and then iteratively
solve the optimization problem, to obtain a nominal orien-
tation trajectory, and refine the rotation matrices. We chose
a computational less demanding implementation by keeping
Ω constant over the whole horizon and calculate it with the
desired orientation φ(L,F ) = ∆Ψ(L,F ).

Homogeneous group: The group of agents is considered
to be homogeneous with the same parameters and scaling.
Furthermore, the shift-vector in (VI-A) does not affect the
velocities, hence, since Ωsx−sx = 0, the last term of d̃(L,F )

in (7) becomes zero.
The approach was successfully implemented and tested

with a formation of three helicopters, with the formation
leader H1 and the two direct followers H2 and H3. In this
experiment, we only assign values to the first 4 possible
formation distances

[
∆x, ∆y, ∆z, ∆Ψ

]
and set all other to

zero. Figure 3 shows the results of a 5 min experiment, where
several set-point changes were applied to the global reference
as well as to the controlled distances d(1,2) and d(1,3). It can
be seen, that not only the controlled distances are tracked



very well, but also the distance d(2,3) between the followers,
even though it is not explicitly present in the problem
objective. In general the deviations from the desired distances
are not more than 20 cm, which is about the length of the
helicopters, since the follower anticipate the movements of
the leader through the communicated plan. It is interesting to
observe, that the largest tracking errors occur when reference
changes of orientation are applied. Though the follower track
changes in their nominal yaw distance well, they visibly
deviate from their nominal distances for changes in the global
yaw reference. However, this is not surprising because of the
implementation choices described above. The linearization of
the followers model depend on the projected orientations of
the leader and the rotation matrix on their perfect relative
orientation. While these simplifications reach their limit in
case of large step changes, experiments showed a good
performance for continuously varying changes. These results
suggest the use of time varying matrices, as already proposed
in [11], to further improve the movements of the whole
formation.
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Fig. 3: The plots show the tracking performance of the
formation for set point changes in the reference and nominal
distances. Top: State trajectory of the leader and global
formation reference. Middle plots: Distances from the two
followers to the leader and their controlled distances. Bottom:
Distance between the followers and the implicitly defined
distance d(2,3). The dashed lines represent the reference and
nominal distances whereas the solid the leaders trajectory and
the achieved distances respectively. The x-component of po-
sition and distances are shown in black, the y-component in
red and z-components in blue. Note that the Ψ-components
(green) are in radians but have been magnified by the factor
100 for visualization purpose.

VII. CONCLUSION

The setup of the RCopterX miniature helicopter testbed
was presented, which allows for a wide range of experiments.

The main advantages are its modular structure, the com-
munication which makes it possible to incorporate different
kinds of vehicles and the interchangeability of controllers
during experiments. The successful implementation of a fast
MPC scheme as low level control was described, which
enables multi-agent experiments. Finally the implementation
and experimental validation of a distributed formation con-
trol algorithm was shown. The relative simple structure of
the algorithm keeps the computational demands low, while
providing a flexible and robust leader-follower scheme.
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