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ABSTRACT 

Clifton, H.E. and Dingier, J.R., 1984. Wave-formed structures and paleoenvironmental 
reconstruction. In: B. Greenwood and R.A. Davis, Jr. (Editors), Hydrodynamics and 
Sedimentation in Wave-Dominated Coastal Environments. Mar. Geol., 60: 165--198. 

Wave-formed sedimentary structures can be powerful interpretive tools because they 
reflect not only the velocity and direction of the oscillatory currents, but also the length 
of the horizontal component of orbital motion and the presence of velocity asymmetry 
within the flow. Several of these aspects can be related through standard wave theories to 
combinations of wave dimensions and water depth that have definable natural limits. For 
a particular grain size, threshold of particle movement and that of conversion from a 
rippled to fiat bed indicate flow-velocity limits. The ratio of ripple spacing to grain size 
provides an estimate of the length of the near-bottom orbital motion. The degree of 
velocity asymmetry is related to the asymmetry of the bedforms, though it presently 
cannot be estimated with confidence. A plot of water depth versus wave height (h--H 
diagram) provides a convenient approach for showing the combination of wave parameters 
and water depths capable of generating any particular structure in sand of a given grain 
size. Natural limits on wave height and inferences or assumptions regarding either water 
depth or wave period based on geologic evidence allow refinement of the paleoenviron- 
mental reconstruction. The assumptions and the degree of approximation involved in the 
different techniques impose significant constraints. Inferences based on wave-formed 
structures are most reliable when they are drawn in the context of other evidence such as 
the association of sedimentary features or progradational sequences. 

INTRODUCTION 

Sedimentary geologists have long sought to use depositional structures for 
interpreting ancient depositional environments. Quantitative analysis of 
paleo-processes based on such structures has proved at best only partly 
successful. Even where the structures can be related with reasonable precision 
to ancient processes, those processes commonly cannot be meaningfully incor- 
porated into a broader environmental interpretation. For example, the flow- 
regime concept provides a comprehensive model for interpreting structures 
produced by unidirectional flow (Harms et al., 1982). Nonetheless, even 
where application of the concept generates specific data on such parameters 
as flow velocity and water depth, it commonly is unclear how these param- 
eters contribute significantly to a paleoenvironmental reconstruction. 
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In contrast, parameters interpreted from wave-generated structures 
commonly can be linked clearly to important aspects of the depositional 
setting. Water depth, for example, which is of somewhat uncertain influence 
on the development of structures produced by unidirectional flow, bears in a 
direct, calculable way on the origin and nature of wave-formed structures. 

Until recently, wave-generated sedimentary structures were poorly under- 
stood, and, consequently, they could not be used to successfully interpret 
depositional environments. Considerable data based on field and laboratory 
experiments and observations have accumulated in recent years (for example, 
Lofquist, 1978; Miller and Komar, 1980a, b; Dingier and Clifton, 1984, this 
volume), and several interpretative models have been proposed based on 
wave-generated structures (e.g., Allen, 1970; Tanner, 1971; Komar, 1974; 
Clifton, 1976; Allen, 1979, 1980, 1982; Harms et al., 1982). Although the 
relations between wave-generated structures and the associated fluid dyna- 
mics are still not fully understood, useful interpretations are possible. This 
paper summarizes the published research on wave-formed sedimentary struc- 
tures and outlines a procedure whereby wave-formed structures can be used 
to interpret ancient depositional environments. The procedure is presented 
step by step, noting the physical basis for the parameters employed, and 
assessing the validity of the various approaches and techniques. In conclusion 
the procedure is applied to specific geological problems. 

THE INTERPRETIVE PROCEDURE 

The procedure of interpreting paleoenvironments from wave-generated 
structures requires three discrete steps. The first involves inferring flow param- 
eters from specific aspects of the wave-generated structures using results 
from empirical investigations or experimental studies. The second step 
employs wave theory to determine the combinations of water depth and 
wave size and shape that could produce the inferred flow parameters. The 
third step utilizes the natural limits that exist for waves, geologic reasoning, 
or wave-hindcasting techniques to constrain the range of possible combina- 
tions of water depth and wave size and to relate those that are feasible to the 
paleoenvironment. 

STEP 1. INFERRING FLOW PARAMETERS FROM WAVE-FORMED FEATURES 

Wave-formed structures 

Under wave action, the character of the flow and the composition of the 
bed (texture and mineralogy) combine to determine the general configuration 
of the bed (flat, hummocky, or rippled) and the size and shape of the bed- 
forms themselves. Accordingly, aspects of size and shape of the bedforms 
can be used to infer previously existing flow parameters, which can in turn 
be applied to the interpretation of depositional environments. 

Oscillation ripples are the predominant wave-generated bedforms. In profile, 
spacing ~, height ~ and symmetry ~/~ characterize these ripples (Fig. 1). In 
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D i r e c t i o n  of Wave Propagation 

Fig. 1. Geologically important parameters of waves, water motion and wave-formed ripples. 
Wave length (L) is the horizontal distance between successive wave crests; wave height (H) 
is the vertical distance between wave crest and trough; water depth (h) is the vertical dis- 
tance from still water level to the seafloor; orbital diameter (do) is the maximum horizon- 
tal distance of excursion of water particles as a wave passes (a circular motion in deep 
water, an elliptical motion in shallow water); ripple spacing (~.) is the average horizontal 
distance between ripple crests; ripple height (7) is the average vertical distance between 
ripple crests and troughs; ripple asymmetry (M;~) is the ratio between the average distance 
from ripple crest to leading trough (~)and the average ripple spacing (k). Not shown: the 
wave period (T), the time required for successive wave crests to pass a given point; and 
the maximum orbital velocity (urn), the maximum horizontal velocity in the direction of 
wave passage. 

plan, crest length relative to spacing and crest sinuosity are primary character- 
istics; Inman (1957) called ripples short-crested, intermediate-crested, or 
long-crested if their crest-length to spacing ratio was less than 3, 3--8, or 
greater than 8, respectively. Crest pattern ranges from straight to sinuous; in 
the extreme they can take on a crescentic shape, such as the lunate mega- 
ripples of Clifton et al. (1971). Most oscillation ripples are transverse to the 
forming current, but a few types such as the cross ripples described by Clifton 
et al. (1971) are oblique to the flow. 

The ratio of ripple height to wavelength ~/~ is the ripple steepness; it and 
its inverse, the ripple index (Reineck and Singh, 1973) or vertical form index 
(Bucher, 1919), have been used to describe ripples (e.g., Dingler, 1974; Allen, 
1980). Allen (1980) indicates that a wide range of ripple indices (steepnesses) 
is possible. Dingler and Inman (1977) showed that for fine sand near La Jolla, 
California, ripple steepness remained at a value of about 0.15 with increasing 
wave energy until, as sheet flow conditions were approached, the steepness 
decreased systematically to zero. 

Symmetric ripples have a symmetry factor (~/~) that approaches 0.5, or a 
ripple symmetry index [(~ - ~)/~; Reineck and Singh, 1973] that approaches 
1.0. The steeper side of most asymmetric ripples faces in the direction of 
ripple migration, making the symmetry factor less than 0.5 and the ripple 
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symmetry index greater than 1.0. The maximum value of  the ripple symmetry 
index acquired by asymmetric wave ripples is reportedly 3.8 (Reineck and 
Singh, 1973, p.27), equivalent to a symmetry factor of  about  0.25. 

The nature of the sediment that composes the bed is an important  and 
potentially troublesome factor. Several different aspects of  texture or com- 
position such as mean grain size (D), sorting, shape, and particle density can 
bear on bedform development.  The influence of  mean grain size is fairly well 
known (Clifton, 1976), but  very little is known about  the effects of  the other 
three factors. It would seem likely, however, that  a bed of  coquina would 
respond to a given type  of flow differently than would a bed of quartz sand 
of  similar mean grain size. 

The recognition of  structures as formed by waves is obviously critical to 
their use as interpretive tools. Symmetric ripples are generally accepted a 
priori as produced by wave activity, although the common presence of sym- 
metrical ripples in deep-sea photographs (Heezen and Hollister, 1971, p.348) 
suggests other possible mechanisms. Asymmetric bedforms generated by 
waves may be difficult to distinguish from those formed by unidirectional 
currents. Tanner (1967), Reineck and Wunderlich (1968), Boersma (1970), 
and Reineck and Singh (1973) present criteria for recognizing wave-produced 
bedforms. 

The problem of identifying effects of  waves is further complicated in expo- 
sures where the bedforms themselves are poorly expressed. In such a case, 
the influence of waves must be inferred, often with difficulty, from the 
internal structure produced by migrating bedforms. Boersma (1970) and 
Allen (1982) offer a number of criteria for recognizing wave-formed ripples 
on the basis of internal structure. The orientation of  the ripples can in some 
cases suggest their origin. Because of  the general absence of  shoreward-flowing 
currents, Clifton (1981) inferred that  ripples that faced or migrated in a 
shoreward direction were solely the product  of waves. 

Most of  the expressed relationships between wave-formed structures, f low 
parameters, and waves assume an absence of  superimposed unidirectional 
current (Clifton, 1976; Allen, 1981a). Yet in natural environments, combined 
oscillatory and unidirectional flow, in the form of tidal, rip or longshore 
currents is fairly common.  A few studies have described combined flow 
ripples (Reineck and Wunderlich, 1968; Harms, 1969; Bliven et al., 1977), 
but  presently they cannot  be used with confidence in environmental inter- 
pretation (Harms et al., 1982, pp.2--42). Distinguishing between purely 
oscillatory and combined~flow ripples may be very difficult. 

The identification of  flat bedding produced by oscillatory sheet f low can 
be particularly difficult. First, it may be impossible to recognize the contri- 
bution of superimposed unidirectional f low to the development  of  sheet 
flow conditions. Second, ripples that migrate across the seafioor may produce 
a very similar, nearly flat stratification that is analogous to the climbing 
translatent strata observed in eolian deposits (Hunter, 1977). Clifton (1976) 
suggests several criteria (mostly based on lithologic association) that may 
prove useful for distinguishing between sheet-flow laminae and subaqueous 
climbing translatent strata. 
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Flow pararneters 

The flow parameters that  can be inferred from wave-generated structures 
are relatively straightforward. As a wave travels along the surface of  the 
water, it sets the water particles in motion (Fig.l). If the water depth (h) is 
large relative to the length (L) of wave (that is, h > L/4),  the wave form is 
sinusoidal and the induced water motion is essentially circular (Fig.l). The 
diameter of the circle (do) diminishes exponentially with depth, reaching 
zero above the bottom. In shallower water, where the wave interacts with 
the bottom, the wave may retain its nearly sinusoidal shape, but the water 
particles move in ellipses that  become progressively flatter and smaller with 
depth (Fig.l).  Just above the sea floor the elliptical motion becomes a hori- 
zontal oscillation, the length of which still is referred to as "orbital diameter".  
In very shallow water, just before breaking, the wave may lose its sinusoidal 
shape, and the water motion is nearly horizontal throughout  the water 
column (Komar, 1976). 

The velocity of the water particles, which is a critical parameter in the 
threshold of grain movement  and in the shaping of bedforms, depends both 
on the magnitude of  the orbital diameter and on the wave period (T). For 
deep-water waves (where water motion is circular), the maximum orbital 
velocity (urn) equals the average orbital velocity, the circumference of  the 
orbital motion (~d0) divided by the time required to complete an orbit (T). 
In shallower water, the maximum orbital velocity above the bot tom differs 
from the average velocity, but the relation, um= ~do/T, remains valid. 

As a wave approaches the shore, its form changes (Fig.2) such that  the 
crest becomes increasingly narrow and peaked and the trough broad and flat. 
As the wave begins to break, it also becomes asymmetric about a vertical 
plane through and parallel to the crest, because its landward face steepens 
relative to its seaward face. These changes impart an asymmetry to the orbital 
motion.  

Part of  the physical basis for this asymmetry can be seen in Fig.2. If mass 
transport is assumed to be nil, the volume of  water that  moves forward under 
the crest of a wave must equal that  which moves in the opposite direction 
under the trough. Because the crest of the wave is foreshortened relative to 

DIRECTION OF WAVE PROPAGATION 

Fig.2. Typ ica l  fo rm o f  a wave as i t  passes in to  shal low water.  Note  that  the t ime available 
fo r  movemen t  o f  water  in the d i rect ion o f  wave propagat ion under the crest o f  the wave 
is substantially less than that available for movement in the opposite direction under the 
wave trough. The result is a velocity--magnitude and velocity--time asymmetry whereby 
the forward motion of the water under the crest is strong but of short duration relative to 
the reverse motion under the trough. 
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the trough, water under the crest must  move more rapidly to maintain mass 
balance. This condition causes the bo t tom orbital flow under the crest to be 
abrupt  and strong relative to that  under the trough. This onshore flow would 
be further reinforced by any shoreward mass transport. 

The resulting orbital velocity asymmetry  can be viewed as consisting of 
both a velocity-magnitude and a velocity--t ime component  (Kemp, 1975). 
Velocity--magnitude asymmetry,  as used here, refers to any difference be- 
tween the peak or maximum velocity under the crest and trough of  the wave. 
Velocity--t ime asymmetry refers to any difference between the duration of 
flow in the direction of  wave propagation and that in the opposite direction. 
Figure 3 illustrates some of the conceivable velocity profiles that  could be 
generated by shoaling waves. It should be noted that, in nature, asymmetry  
of  f low is almost always due to a combinat ion of  velocity--magnitude and 
velocity--t ime asymmetry and is therefore complex. 

The amount  of  water mass transport generated by asymmetric orbital 
motions seems variable and, under certain conditions, may be of  minimal 
importance. The character of  flow was qualitatively examined over a field of  
shoreward-facing lunate megaripples located seaward of  the surf zone on the 
southern Oregon coast, using neutrally buoyant  drifters, vertical streaks of 
dye, and clouds of  sand thrown into suspension on the leeward side of  the 
lunate megaripples (Clifton et al., 1971). In no case evidence was seen for 
shoreward water mass transport, even as the lunate megaripples migrated 
towards the shore. 

In summary,  orbital velocity asymmetry derives from differences in magni- 
tude and duration of the back-and-forth components  of oscillatory flow. Both 
aspects are important  to the movement  of  sediment. Velocity-magnitude 
asymmetry is particularly important  where only the stronger component  
exceeds the threshold velocity for movement  of  a given grain size (Kemp, 
1975). Moreover, since bedload transport  is thought  to vary approximately 
with the third or fourth power of  velocity (Inman, 1963; Wells, 1967), 
velocity--magnitude asymmetry  may significantly influence onshore/offshore 
sediment transport. Net  water transport  is an additional factor that  may be 
most  important  for the movement  of  suspended fine sand {Kemp, 1975). 

Because of  the complexities involved, an acceptable measure of  velocity 
asymmetry is yet  to be defined. Clifton's (1976) parameter A/A m is the 
absolute difference in the peak orbital velocity under the crest and the trough 
of a wave; Kemp's parameter v m is the ratio between the two. Neither mea- 
sure takes into account  the duration of the opposing flows which must  be 
accounted as important.  Other authors (Dingier, 1974; Allen, 1979, 1980) 
measure orbital asymmetry in terms of  the associated net  drift of  the water 
or the ratio of  this drift to maximum orbital velocity. This approach does 
not  accommodate  the important  influence of  the velocity--magnitude asym- 
metry. Kemp (1975) suggests using the time--velocity curves to estimate the 
potential transport of  a grain of  a particular size. Such a process is laborious 
but  should give the most  reliable measure of  the effects of  orbital velocity 
asymmetry.  
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Fig.3. Possible profiles of  velocity (u) over time (t) imparted by a wave of  period T. Ver- 
tical axis = velocity (positive in the direction of wave approach); horizontal  axis = time. 
(a) Neither velocity i=iagnitude nor velocity--t ime asymmetry;  no net  transport  (typical 
symmetrical  velocity profile under a sinusoidal wave; common in nature). (b) Velocity--  
magnitude asymmetry without  velocity--t ime asymmetry;  probable net transport  in direc- 
tion of  stronger flow (not  likely to occur in nature). (c) Veloci ty-- t ime asymmetry with- 
out  velocity--magnitude asymmetry;  probable net flow in the direction of flow with 
longer duration (not  likely to occur in nature). (d) Both velocity--magnitude and veloci ty--  
time asymmetry,  balanced such that net transport  is negligible (observed qualitatively 
over active highly asymmetric bedforms just seaward from the southern Oregon surf 
zone). (e) Both velocity--magnitude and velocity--t ime asymmetry,  some net t ransport  in 
direction of wave propagation. Note subtle difference from profile d (may be common 
under natural shoaling waves). Note that  a superimposed unidirectional flow can impart  
both velocity--magnitude and velocity--t ime asymmetry to any of  the profiles including 
profile a, where the effect can be visualized by adding a constant  velocity to the curve 
shown (i.e., moving the curve up or down relative to the zero-velocity axis. 
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The velocity asymmetry induced by shoaling waves is extremely important  
in the sorting and transport  of sand and in the development  of sedimentary 
structures. It is, however, complex,  involving both differences in the velocity 
components  of oscillatory currents and a net  transport of water. The issue 
can be further complicated by the presence of  unidirectional flows such as 
rip currents or wind-driven flow, that  are unrelated to the currents induced 
by the passing wave, but  can further modify their character (e.g., Inman and 
Bowen, 1963). 

Basis for inference of flow parameters 

The basis for inferring the foregoing flow parameters from wave-generated 
structures lies largely in either empirical analysis of  field data or experimental 
studies in the laboratory.  Neither of these approaches produces completely 
satisfactory results relative to geological applications. Field studies encompass 
such a large number  of  variables that it is difficult to ascertain the critical 
relationships, and the spectre of  metastability haunts the results. Laboratory 
experiments can reduce the number of variables and can generate equilibrium 
conditions; commonly ,  however, such experiments cannot  satisfactorily 
duplicate natural conditions. 

One approach to dealing with the variables encountered in field studies is 
to make simplifying assumptions regarding the viscosity and density of the 
water and the size, shape, and density of  the sediment (Clifton, 1976). Some 
of these assumptions, unfortunately,  have little basis. Although wave- 
winnowed sand typically is well-sorted, it is not  uniform in texture and 
composition. 

Metastability can be an important  problem attending empirical studies in 
that the observed bedforms may not  be completely in equilibrium with the 
processes active at the time of observation (Harms et al., 1982). Disequilibrium 
may result from two different factors. First, the observed bedforms may have 
developed under more energetic conditions than those at the time of  observa- 
tion and retained their initial form under the influence of  less intense pro- 
cesses. Second, the bedforms themselves may influence the flow in such a 
way as to retain their original character. Commonly  it is impossible to establ- 
ish in the field if the observed structures are responding completely to on- 
going processes wi thout  prior influence. 

Laboratory studies circumvent many of these problems because sand of  
uniform size can be used as bed material and the waves, or flow, carefully 
controlled. Although these experimental studies can do much to define the 
influence of  specific flow parameters, they can duplicate only a small range 
of  natural environmental conditions. Specifically, laboratory studies have yet  
to replicate conditions imposed by large, long-period oceanic waves. More- 
over, certain types of  experimental techniques (specifically the use of  an 
oscillating bed) may produce misleading results (Miller and Komar, 1980a; 
Harms et al., 1982). 

Empirical and experimental studies of wave-generated bedforms provide 
the basis for interpreting maximum orbital velocity, orbital diameter, wave 
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period, and questionably,  orbital velocity asymmetry.  Estimates of  orbital 
velocity are based on threshold criteria for grain movement  or for sheet flow. 
Estimates of  orbital diameter are predicated on the relation of  ripple spacing 
or steepness to grain size. Estimates of  orbital velocity asymmetry  derive 
from the degree of  asymmetry  of the depositional structures. 

Threshold velocities 
Two threshold velocities can be defined for oscillatory flow: that  required 

to initiate grain movement  and that required to produce sheet flow. Under 
the oscillatory currents produced by surface gravity waves, ripples form 
quickly upon the initiation of  grain movement  (Dingier, 1974); the lower 
flat-bed regime that  occurs in unidirectional f low appears to be largely 
suppressed. Bagnold (1946), Komar and Miller (1973, 1975), and Dingler 
(1979) are among several investigators who have studied the threshold of 
grain mot ion in oscillatory flow. The relation for  the onset  of  grain mot ion 
under oscillatory flow resembles the Shields (1936)--Bagnold (1966) relation- 
ship for onset  under unidirectional f low (Madsen and Grant, 1976; Dingler, 
1979). 

Threshold criteria are most  accurately presented in terms of  shear stress, r, 
which is related to the mean velocity by the equation ~ = f p u ~ / 2  (Jonsson, 
1967) where p is the fluid density and f is an empirically obtained friction 
factor. Because the friction factor is hard to determine, most  investigators 
present threshold curves using the calculated near-bottom maximum orbital 
velocity. Komar  and Miller (1973) defined the threshold for movement  of  
grains smaller than 0.5 mm with the dimensionless equation: 

(Ps----p)gD 0.21 - -  (1) 

where p, is sediment density and g is the gravitational constant. For quartz 
• nd o 

sand in water, the relationship ura = - gives: 
T 

Um= 0.337(g 2 TD) 1/3 (2) 

which, in units of  centimeters and seconds is equivalent to 33.3 (TD) ~/a cm s -1 
(Clifton, 1976). For  movement  of  grains coarser than 0.5 mm, Komar and 
Miller define threshold conditions by the dimensionless equation: 

(p~ - - p ) g D  = 0.46 n - -  (3) 

which for quartz sand in water reduces to: 

Um= 1.395(g 4 TD3) 11~ (4) 

In units of  seconds and centimeters, this is equivalent to 71.4(TDa) 1/7 cm s -1 
(Clifton, 1976). The threshold curves of  Komar  and Miller (1975) for mot ion 
of  sediment equivalent in density to quartz are based on eqs. 1 and 3 and 
shown in Fig.4. 
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Fig.4. Velocity thresholds for grain movement  and sheet flow of quartz sand in water. 
Solid lines are threshold curves of Komar and Miller (1975) for grain movement. Dashed 
lines connected by dots are threshold curves of Dingier (1979) in the range of experi- 
mental evidence; dots are absent where curves are extrapolated. Threshold curve for 
sheetflow, from Dingler and Inman (1977), is solid in the size range of experimental evid- 
ence and dashed where extrapolated. Note effect of differing wave period on threshold of 
motion. 

Dingler, in a separate experimental s tudy (1979), found that  motion for 
grain sizes between 0.18 and 1.454 mm commenced when the dimensionless 
criterion: 

(~_~o)4/3 [ --p)gD314/9 (-P~ --p)gT2pD = 240 - -  P(Ps /~= (5) 

is satisfied, where p is the fluid viscosity and the other terms as defined 
above. In terms of  threshold velocity, eq. 5 reduces to: 

um= 0.052 (TD) m (6) 

which for quartz sand in water, in units of grams, centimeters, and seconds, 
is equivalent to 52.4 (TD) tI2 cm s 4 (Clifton, 1976). Threshold curves based 
on this equation are also shown in Fig.4. 

It should be noted that  all of the above threshold equations show a depen- 
dence on wave period. For any particular grain size a longer period wave 
requires a higher velocity to initiate grain movement  than does a shorter 
period wave. The basis for this relationship is unresolved. Possibly it derives 
from the more abrupt onset of  flow that  occurs under  a shorter period wave 
and the gradient of  stress that  is associated with greater acceleration. 
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The threshold curves for onset of grain motion are plot ted in Fig.4. In the 
range of fine sand, the sets of curves are fairly consistent, but  they deviate 
markedly when extrapolated to coarser bed material. Unfortunately,  it is the 
larger size ranges where threshold values are most useful for defining minimum 
possible wave size and water depth combinations. 

Dingler and Inman (1977) determined that  sheet flow occurs in fine sand 
under a relationship whereby p u 2 m / ( P s  - -  p ) g D  = 240. For quartz sand in 
water this equation reduces to: 

u m = 1 9 " 9 { g D )  m (7) 

which, in units of  centimeters and seconds is equivalent to 623 D In cm s-'. 
The threshold curve for sheetflow derived therefrom is shown on Fig.4. It 

should be noted that  this curve was observed only in a narrow range of  grain 
size (0.0128--0.0158 cm) and extrapolation beyond this range must be done 
with caution. 

All the above threshold equations assume spherical grains of  uniform size 
on a flat bed. Bagnold (1963) suggested that  sand grains on a previously 
rippled bed would move at somewhat lower flow velocities, and Southard 
and Dingler (1971) showed that  ripples under unidirectional flow could 
propagate downstream of  a disturbance under subthreshold conditions. 
Hallermeier (1981) notes that  the velocity required to initiate movement  
over a rippled bed may be half of  that  required for the same material on a 
flat bed. In the absence of  a definitive study on this problem, reliance must 
be placed on the flat-bed thresholds noted in the foregoing. 

When a range of grain sizes occurs, as is the case outside the laboratory, 
most  people use the median or arithmetic mean diameters, which are easily 
calculated. Some evidence exists that  the effective size for consideration of  
movement  of poorly sorted sediment is less than the median diameter 
(Hallermeier, 1981). Bagnold (1966) recommended that  the geometric mean 
diameter be used because it more realistically weights the size distribution. 
Inasmuch as wave-worked sands are typically well-sorted, the median diam- 
eter probably suffices. 

Threshold values commonly have their greatest use in calculating the forces 
required to move the coarsest clasts available. In many cases, the size of  
these largest clasts substantially exceeds that  of  the bulk of  the bed material. 
The assumption of  uniformly sized particles in the foregoing equations casts 
doubt  on their applicability to isolated large clasts on a smaller bed. 
Fahnestock and Haushild (1962) suggest that  isolated cobbles would move 
under unidirectional flow as easily on a plane sand bed as on a bed of  gravel. 
But would the threshold velocity thereby be significantly reduced? Prelimi- 
nary experiments in a water-tunnel indicate that  the threshold for movement  
of subspherical quartz grains about 1 cm in diameter on a bed of  about  
0.05 cm sand is not  greatly less than that  predicted by Komar and Miller 
(1975). Under the highest oscillatory velocity possible with the apparatus 
(85 cm s -~ at T = 16 s), the clasts remained immobile (R. August, pers. 
commun. ,  1983). According to the curves of  Komar and Miller (1975), 
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threshold velocity of  such clasts under 16 s waves is slightly more than 
100 cm s -1 (Fig.4). 

The effect  of  grain shape on the threshold curve has not  been determined. 
However, using the equivalent sphere diameter is satisfactory in most  situa- 
tions involving terrigenous detrital material. Shelly or other non-spherical 
biogenic material would almost certainly require different threshold equa- 
tions. 

Relations between ripple spacing and orbital diameter 
Two disparate views exist regarding the relation of  ripple spacing and 

orbital diameter. Inman (1957) suggested that  for a given grain size, ripple 
spacing is directly proportional to orbital diameter until some critical maxi- 
mum orbital diameter is reached, whereupon spacing becomes inversely pro- 
portional to orbital diameter, diminishes and ultimately reaches a constant  
intermediate value. Dingler (1974), plotting both Inman's (1957) field data 
and original field and laboratory measurements found a similar relationship. 
In contrast, Allen (1979), after plotting a large amount  of  existing data 
(mostly laboratory),  found no well-defined relation between orbital diameter 
and ripple spacing for a given size of sand. He therefore concluded that 
Inman's bell-shaped curve was spurious. Miller and Komar (1980a), after 
analysing much of the same data, concluded that there were differences in 
the data sets that  could be at tr ibuted to the type  of  laboratory device used 
to generate the oscillatory motions. In particular, the results of  oscillating 
bed experiments, which dominate Allen's data, are different from water- 
tunnel, wave-channel, and presumably, field results. Oscillating bed experi- 
ments indicate that, for a given grain size, ripple spacing increases with orbital 
diameter until it reaches a maximum and then remains constant.  Plots of  
water tunnel and wave channel experiments, in contrast, show a tendency 
toward the bell-shaped curve (Miller and Komar, 1980a). 

Figure 5a is a dimensionless plot  of  ~/D against do/D for a number  of  field 
and laboratory studies. Oscillating bed experiments are specifically omitted.  
The field data tend to dominate the right side of  the diagram (high do/D 
values), whereas the laboratory experiments dominate the plot  at low do/D 
values. As might be expected the field data are more broadly scattered, but  
both sets of  data show the bell-shaped relationship. 

Using a similar plot  that  incorporated Inman's (1957) and Dingler's (1974) 
data, Clifton (1976) subdivided symmetric ripples into three types based on 
the relationship between ripple spacing and orbital diameter. This subdivision 
(Fig.5b) appears to be valid for the larger data set presented here in Fig.5a. 

Orbital ripples are those on the left side of  Fig.5b where ripple spacing is 
proportional to orbital diameter in the approximate relationship (Miller and 
Komar, 1980a): 

X = 0.65 do (8) 

Such ripples can form under condit ions where the do/D ratio lies in the 
range of  100--3000 or more (Fig.5b). Their spacing-to-grain-size ratio (k/D) 
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Fig.5. a. Plot of ratio of ripple spacing to grain size against ratio of orbital diameter to 
grain size. Data include field observations (crosses) and experimental (wave channel, 
water tunnel) data (circles). Field data from Inman (1957),  Dingler (1974),  Miller and 
Komar (1980b) and Dingler and Clifton (this volume). Experimental data from Carstens 
et al. (1969),  Mogridge and Kamphuis (1972),  and Miller and Komar (1980a). b. Classi- 
fication of  ripples based on the distribution shown in a. 

ranges from less than 100 to more than 2000.  Because of  the requirement 
for short oscillatory motion,  orbital ripples occur most  commonly  in very 
shallow water under short-period waves. Long-period waves can generate 
similarly short orbital f low at the bottom in deeper water, but because of  the 
relationship u m = ~do/T, the velocity will be reduced and threshold conditions 
less likely to be reached. The spacing of  orbital ripples tends to increase in a 
shoreward direction, paralleling the increase in do as a wave shoals (Komar, 
1974).  The spacing appears to be independent of  grain size. 

Ripple spacing remains proportional to orbital diameter until the do/D ratio 
reaches the range of  1000- -3000  (Clifton, 1976,  and calculations from 
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Miller and Komar, 1980a). Under such conditions (Fig.5b), the tipple spacing 
decreases as orbital diameter increases. Ripples formed under these conditions 
were accordingly termed "suborbi ta l"  (Clifton, 1976). The ripple spacing 
appears to depend both on orbital diameter and grain size in some undefined 
relationship. 

At do/D values in excess of  5000, ripple spacing stabilizes at a value that  is 
independent  of orbital diameter (Fig.5b). Termed "anorbital  ripples" by 
Clifton (1976), such ripples are most  commonly  observed in fine sand where 
they have a spacing of  5--10 cm. Typically their ~/D ratio lies in the range of  
400--600 under conditions of a single train of waves. Recent  field studies 
indicate that, under a polymodal  wave spectrum (more than one wave train 
present), the spacing-to-grain size ratio of  anorbital ripples may be on the 
order of  1200 {Miller and Komar, 1980b). Anorbital ripples are probably the 
only type  to form in fine sand under very long period (> 12 s) waves (assum- 
ing a threshold velocity of  15 cm s -1 for sand 0.125 mm in median diameter, 
a 12 s wave will induce a threshold orbital diameter of  nearly 60 cm, and a 
do/D ratio of 4800). Anorbital ripples include the "reversing" ripples desc- 
ribed by Inman (1957), which alternate their direction of  asymmetry with 
each reversal of  the oscillatory flow. 

An intriguing relation exists between anorbital ripples and the "maximum 
ripples" produced by an oscillating bed. Both have been described using the 
dimensional parameter h/D m ~ 60 cm in (Clifton, 1976, for anorbital ripples; 
Bagnold, 1946, for "max imum"  or "natural p i tch"  ripples). If this relation- 
ship is not  entirely coincidental, it may provide insight into a fundamental  
difference between ripples formed on an oscillating bed and those formed 
under oscillating fluid. Both ultimately generate ripples for which the spacing 
is independent  of  orbital diameter and can be defined as ~ - 60 D m if both 

and D are in cm. Ripples on oscillating beds reach this spacing by contin- 
uously increasing their size; ripples formed by fluid mot ion such as those 
occurring in nature seem to have the potential to grow as orbital ripples 
beyond  the size of  the maximum ripple of  the oscillating bed. Miller and 
Komar (1980a) suggest that  this growth ceases at the point  whereby ), = 
14.7 D ~'68 × 103 (both ~ and D measured in cm). Further  increase in orbital 
diameter causes the spacing to shrink (suborbital ripples) until the "natural 
pi tch" is achieved (anorbital ripples). 

Except  for reversing ripples, the relationships between ~ and do described 
in the foregoing paragraphs appear to be valid only for symmetrical ripples. 
The spacing of  asymmetric ripples appears to follow a different pattern, 
which remains to be resolved {Clifton, 1976). The cont inuum that appears to 
exist between small and large symmetric bedforms is lacking for asymmetric 
bedforms. The marked difference in size between wave-formed lunate mega- 
ripples and associated long-crested asymmetric ripples near the high-energy 
surf zone (Clifton et al., 1971) suggests a discontinuity in the scale of  asym- 
metric wave-formed bedforms similar to that  within the lower regime of 
unidirectional flow. 

Nielsen (1981) relates ripple spacing to a "mobi l i ty  number"  q~ (Brebner, 
1981) that  is equivalent to the relative stress of  Komar and Miller (1972) 
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(TrdolT)2p/(ps --p)gD. Nielsen proposes that the spacing of  naturally occur- 
ring ripples is best described by the equation: 

do (' 693 --  0.37 In 8 $~ 
X = -~ exp ~,1000 + 0.75 l n ~  } (9) 

This expression is complicated by the presence of  three variables (do, D,  T), 
but can be solved as a set of  curves relating X and do for a specific grain size 
(Fig.6) or a specific wave period. As shown in Fig.6, Nielsen's equation pre- 
dicts a X/do relation similar to that described by Inman (1957) and Dingler 
(1974) in which orbital, suborbital and anorbital ripples can be readily iden- 
tified. It should be noted that on this diagram, the ripple type is no longer 
simply a function of  do/D. Nielsen (1981) suggested that the spacing of  
ripples formed in the laboratory follows a somewhat different pattern (Fig.7) 
indicated by the equation: 

1 0 0  

o~_/-w///~/~ / \ /  / ;,~z'T=2o/ ~ 
,o " 

orb!ta 

1 . 0  - uborbita 
ripples / 

D =  0 . 0 1  c m  
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Fig.6. Plot of spacing of naturally occurring quartz sand (D = 0 . 0 1  cm) ripples against 
orbital diameter for waves of  different period based on eq. 9 (Nielsen, 1981). The curve 
representing the indicated wave period is terminated on the left side of  the diagram at the 
threshold orbital diameter (using eq. 19) and on the right side of  the diagram at the 
maximum possible orbital diameter (using a combination of  Fig.9 and eq. 16). Fields for 
orbital, suborbital and anorbital ripples axe indicated as a function of  the nature of  the 
relation between spacing and orbital diameter. Lines of  equal ripple steepness (k /n)  axe 
drawn based on eq. 11 (Nielsen, 1981). Data set includes no waves with periods less than 
6s .  
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X = -~ (2.2 -- 0.345 ~0.34) (10) 

This equation is of  limited validity at larger values of  ~, where the corre- 
sponding values of  ~ become negative (see Fig.7). The difference between 
the spacing relations of  naturally occurring and laboratory ripples is attrib- 
uted without  elaboration to the irregularity of natural waves (Nielsen, 1981). 

The question of the influence of wave period on ripple spacing remains 
unresolved. Bagnold's (1949) statement that, in all of  his experimental 
studies, the pitch (spacing) was independent  of  the speed of  oscillation 
implies that period was not  a factor. The spacing of  anorbital ripples described 
by Miller and Komar (1980b) does not  change significantly under unimodal 
waves of periods that  ranged from 8 to 16 s. Nonetheless, as noted before, 
they found that the spacing of anorbital ripples under a polymodal  wave 
spectrum was more than twice that of ripples formed in sand of the same 
size under unimodal waves of  similar periods. On the basis of  experimental 
evidence, Nielsen (1981) suggests that spacing depends on wave period, partic- 
ularly at the shorter periods (in the range of 1--2 s). Nielsen's expression for 
the spacing of  naturally occurring ripples (eq. 9) contains wave period as a 
variable, the effect of which can be seen in Fig. 6. It should be noted, how- 
ever, that  the data base from which Nielsen derives his expression contains no 
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Fig.7. Comparison of spacing-orbital diameter relations for laboratory and naturally 
occurring ripples in quartz sand (D = 0.01 cm) under waves with periods of 1 and 2 s using 
eqs. 9 and 10 (Nielsen, 1981). Curves drawn for naturally occurring waves are suspect 
because o f  the absence of  data for waves of 1 and 2 s. Curve for laboratory ripples formed 
under 2-s waves is suspect at the higher values of do where it begins a precipitous decline. 
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waves with periods of  less than 6 s. For waves of  shorter period, the relation 
based on laboratory ripples (Fig. 7) may be of  greater validity, particularly at 
the less extreme values of  do for waves of  a given period. 

In summary,  field observations and laboratory experiments using wave 
channels and water tunnels suggest that orbital diameter can be estimated 
from the ratio of ripple spacing to grain size, both readily measured param- 
eters. At ~/D values less than 400, ripple spacing seems to depend on 
orbital diameter in the approximate relationship ~, = 0.65 do (orbital ripples). 
A ratio in the range of ~/D = 400--600 indicates either orbital ripples or 
anorbital ripples (do > 5000 D). Spacing-to-grain size ratios in excess of  600 
suggest either orbital ripples or suborbital ripples (do = 1000--5000 D). Where 
the type of ripple is ambiguous (orbital or anorbital, orbital or suborbital), 
the complete process of interpretation may indicate which is more likely. 
Orbital diameter cannot presently be estimated from the spacing-to-grain 
size relationship of asymmetric wave-formed ripples. Variation in wave 
period may further  complicate the interpretive process in ways that are not  
yet  fully understood. 

Relations between ripple steepness and orbital diameter 
Another  approach to determining orbital diameter is based on the ratio of 

ripple height to wavelength (~/~) or ripple steepness. Several investigators 
have described three types of  asymmetrical ripples based on steepness: 
rolling-grain ripples, vortex ripples, and post-vortex ripples. Bagnold (1946) 
gave the name rolling-grain ripples to low-amplitude ripples that form on flat 
beds under  oscillatory flows just above the threshold for grain motion. Sleath 
(1976) and Allen (1979) apply this name to all low-amplitude, wave-generated 
ripples. The steepness (7/~) of  rolling-grain ripples ranges from zero to about  
0.12 Ca VFI or ~/~ of  about 8; Allen, 1979); they are too low in amplitude 
for a vortex to form in the ripple troughs. At least in the lower part of  the 
ripple regime these ripples are metastable; they readily convert to vortex 
ripples if there are many large disturbances on the bed or if the flow velocity 
increases. The discussion by Miller and Komar (1980a)suggests that  rolling- 
grain ripples are stable bedforms only on oscillating beds. 

Vortex ripples occupy much of  the ripple regime under oscillating fluid, 
extending from near the threshold of grain mot ion to near the onset of  sheet 
flow (Miller and Komar, 1980). The large, sediment-laden vortex, which 
forms in the lee of  each crest, gives these ripples their name (Bagnold, 1946). 
Ripple steepness is essentially constant  throughout  the ripple regime, having 
a typical value of about 0.15 (Dingler and Inman, 1977) and a range of 
about 0.12--0.22 (or VFI between 4.5 and 8; Bagnold, 1946). 

As flow velocity increases over the vortex ripples, a point  is reached where 
sand is stripped from the ripple crests. Orbital diameters are very large when 
this velocity is attained, and the ripple wavelength is unchanged by increasing 
flow. The net result is post-vortex ripples (Dingler and Inman, 1977) or 
rolling-grain ripples (Allen, 1979) that show a systematic decrease in ripple 
steepness from 0.15 to 0 as sheet flow conditions are approached {Dingier 
and Inman, 1977). 
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The relationship between ripple steepness and ripple spacing for given 
values of orbital diameter and sediment grain size is not completely clear. 
Several workers (Allen, 1979; Allen, 1981a, b) equate vortex ripples with 
orbital ripples. By this interpretation, ripples that have steepness values in 
the range of 0.12--0.20 can be used to calculate orbital diameter from eq. 8. 
This approach may be overly simplistic, however. A plot of field and wave 
tank data (Fig.8) indicates that vortex ripples (V/X > 0.1) exist for do/D 
values of less than 5000. This plot confirms that orbital ripples (do/D < 1000) 
are vortex ripples, but demonstrates that the converse may not be true. 
Vortex ripples also form at do/D values of 1000--5000, where ripple spacing 
may be inversely related to orbital diameter. Post-vortex ripples appear to be 
stable only under conditions where anorbital ripples form, and therefore 
indicative of do/D values > 5000. 

Nielsen (1981) proposes that ripple steepness, like spacing, is a function of 
the mobility number ~. Using the same data set as incorporated into Fig.7, 
he suggests that for naturally occurring ripples, 

~/X = 0.342 -- 0.34(1/2 fw~ )1/4 (11) 

where fw is a friction factor equivalent to exp [5.213 (5D/do) °'194 -- 5.977]. 
Curves of equal steepness for ripples in quartz sand 0.01 cm in diameter on 
Fig.6 also indicate that the transition from vortex to post-vortex ripples (in 
the range of ~/k = 0.12) accompanies the transition to anorbital ripples. 

It should be noted that the steepness of vortex ripples may be reduced by 
faunal activity, compaction, or other post-depositional processes (Reineck 
and Wunderlich, 1968; Boersma, 1970; Allen, 1981a). Therefore, low values 
of ripple steepness may not necessarily reflect anorbital conditions. For 
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Fig.8. Plot of ripple steepness (n/;~) against the orbital diameter to grain size ratio (d0/D), 
showing the relationship between vortex and post-vortex ripples (defined by ripple steep- 
ness) and orbital and anorbital ripples (defined by the do/D ratio). Vertical form index 
(VFI) scale on right side of plot. Ripples with do/D < 1000 are assumed to be orbital; 
those with do/D ratios >5000 are assumed to be anorbital. Ripples with do/D ratios 
between 1000 and 5000 are considered to be transitional between orbital and anorbital 
ripples (suborbital ripples). Data from Inman (1957) and Dingier (1974). 
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these reasons, we feel that  ripple steepness by itself presently is not  a reliable 
indicator o f  orbital diameter in ancient deposits. 

Asymmetry of bedforms 

Little is known about  the degree of  orbital velocity asymmetry  that is 
required to generate asymmetric bedforms. Clifton {1976) used several lines 
of  reasoning to suggest that  a velocity--magnitude difference Aura of  a few 
centimeters per second could produce asymmetry in small ripples, and Allen 
(1979) concluded that the degree of  ripple asymmetry is proport ional  to the 
ratio of  the wave-drift velocity to the near-bottom velocity maximum. This 
conclusion is highly tentative and virtually no data exist regarding the nature 
of  f low that causes asymmetry of  larger ripples or wave-formed lunate mega- 
ripples (which, as noted in the foregoing, have been observed to migrate in 
the absence of  an observable wave-drift current). Tietze (1978} produced 
asymmetric ripples in a small experimental wave tank under measured ~Um 
values between 1 and 11 cm s -1. He demonstrates a relationship between the 
degree of  ripple asymmetry  and the ratio between drift velocity and maxi- 
mum orbital velocity, but  does not  indicate where in the water column the 
net drift was measured. His observation that ripple asymmetry  is increased 
by adding coarse sand to the bed strongly suggests an influence by velocity--  
magnitude asymmetry  rather than by net  drift (Kemp, 1975}. Field observa- 
tions show that shoreward-facing, wave-induced asymmetry  of  bedforms is 
most  common in shallow water near the breaker zone (Davidson-Arnott and 
Greenwood,  1974; Clifton, 1976). Without a documented  relationship, how- 
ever, between ripple shape and some measure of  f low asymmetry,  quantitative 
estimates of  the paleo-asymmetry of oscillatory f low are presently question- 
able. 

STEP 2. ESTIMATING POSSIBLE COMBINATIONS OF WAVE PARAMETERS AND 
WATER DEPTHS FROM FLOW PARAMETERS 

Once f low parameters, such as orbital diameter or maximum velocity, 
have been derived from the sedimentary structures, a range of  wave condi- 
tions and water depths can be estimated. The normal complexi ty  of  the sea 
surface forces an investigator to undertake a great deal of  simplification; 
commonly  a "typical  wave fo rm"  is identified that  can be represented by 
mathematical equations from an appropriate wave theory.  Such simple waves 
can be approximated in experimental studies. Spectral analysis provides a 
more accurate approach to describing natural waves (Dingier, 1974; Miller 
and Komar, 1980b; Dingler and Clifton, 1984, this volume). It is worth 
noting that  a complicated wave field, composed of  several different trains of  
waves can profoundly  influence the development  of  bedforms (Clifton et al., 
1971; Miller and Komar, 1980b). 

Various wave theories can be used to relate f low parameters to basic wave 
parameters. The four  most  commonly  cited are the: (1) Airy; (2) Stokes; (3) 
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cnoidal; and (4) solitary wave theories. Each is most applicable under a 
specific set o f conditions o f wave height, wave period and water depth (Fig. 9). 
Each has associated disadvantages and each should be considered only an 
approximation. A brief description of these theories is presented here; for 
further information, the reader is directed to the useful summary provided 
by Komar (1976). 

Airy theory,  which treats waves as sinusoidal forms, is the simplest in 
application. It is applicable to small amplitude waves in a wide range of 
water depths (relative to wave length) and provides for reasonable approxi- 
mation of  measured orbital diameter and near-bottom maximum velocities 
for real waves in shallow water (LeMehaute et a l .  1969). It does not~ how- 
ever, provide for asymmetric flows. 

The other  theories noted above apply to waves with peaked crests and 
flattened troughs, a shoaling transformation of  the sinusoidal wave. All 
predict asymmetric oscillatory motion.  The Stokes wave theory is relatively 
simple, but, according to Komar (1976), becomes inaccurate for large waves 
when extended into shallow water. Figure 10 indicates the combinations of  
water depth and wave height under which the Airy and Stokes theories apply 
for waves of  different periods using the criterion employed by Komar (1976) 
whereby the expression H L 2 / h  3 = 32 ~2/3 defines the boundary between 
cnoidal and Airy or Stokes waves, and H / L  = 0.0625 tanh ( 2 r r h / L )  defines 
the boundary between Airy and Stokes waves. This figure shows, for example, 
that  the Stokes wave theory can describe wave form and water motions for 
a 10 s wave in 3 m of water, provided the wave height does not  exceed 1 m. 
It should be noted that in water depths greater than about  7 m, cnoidal wave 
theory does not  apply regardless of wave height. At greater depths and/or 
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Fig.9. Condit ions of  wave length (L), wave height (H) and water dep th  (h )  for which 
different wave theories are most applicable (from Komar, 1976). Approximate theoretical 
waveform s h o w n  with in  each field. 
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Fig.10. Areas of applicability (in terms of water depth and wave height) for Airy, Stokes, 
and cnoidal wave theories for waves of different period. Limiting relations shown for 5-s 
wave are similar for the waves of other periods. Limits between Stokes and Airy theory 
defined by H/L = 0.0625 tanh (2 ~h/L) and between Stokes-Airy and cnoidal theory by 
HL2/h s = 32 lr ds (Komar, 1976). 

smaller waves, the less cumbersome Airy theory provides an equally valid 
approximation. 

Cnoidal wave theory may be more accurate than Stokes theory for large 
waves in shallow waters (Wiegel, 1960), but  its complexity severely limits its 
use. In many cases the Stokes or Airy theory may sufficiently approximate 
the water mot ion under  conditions where cnoidal wave theory is otherwise 
indicated (Komar, 1976, p.62). 

Solitary waves are individual progressive waves composed of  a single crest. 
Waves very close to shore commonly resemble the solitary wave shape 
although such waves can be described by their wavelength and period, terms 
that  are not  appropriate for true solitary waves. Although solitary wave 
theory is relatively accessible, it does not  truly describe periodic oscillatory 
mot ion of  real wind-generated waves. This and the deviation of  predicted 
results f rom measured parameters casts doubt  on the use of  solitary wave 
theory for nearshore studies (Komar, 1976, p.59). 

Wave length and period 

The flow parameters described in Step One (urn, do, etc.) result from 
different  combinations of  wave size, shape, and water depth. The size of  a 
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wave is most readily perceived in terms of  its height H and length L (Fig.l).  
The significant wave height (average of the highest 1/3 of  the waves) is often 
used to represent a wave field (Dingier, 1974), even though the root-mean- 
square wave height is naturally associated with spectral analysis. The length 
of a wave is a variable parameter inasmuch as it changes significantly as a 
wave shoals. The wave period T, the time required for one oscillation, is 
related to the wave length by T = L/C, where C is the phase velocity (velocity 
of  propagation) of  the wave in question. Both phase velocity and wave length 
decrease progressively at the same rate as a wave shoals. The wave period 
remains unchanged and is therefore a more useful description of  a wave than 
either length or velocity of  propagation. 

Airy wave theory relates the length of  a given wave to its period and to 
the water depth h by the equation: 

L = ~ tanh (12) 

Equation 12 can be simplified in deep water (h/Lo > 1/4) where the hyper- 
bolic term approaches unity: 

Lo - gT2 (13} 
2 ~  

or, in mks units, L0 = 1.56 T 2 m. This relationship implies that, for waves of  
any period, there is an associated, easily calculated deep-water wave length. 
The deep-water wave length can be introduced into eq. 12 whereby: 

L = L0 tanh (kh) (14) 

where k, the wave number,  equals 2 ~/L. Expressed this way, the hyperbolic 
term can be viewed as a shoaling factor that is applied to the deep-water 
wave length to give the wave length at any water depth. Equation 14, how- 
ever, remains complicated by the presence of  the unknown (L) on both sides 
of  the equation. 

This problem can be resolved by dividing both sides of  eq. 14 by the water 
depth h and rearranging such that: 

h h 
- tanh (kh) (15) 

L0 L 

This expression has been solved by Wiegel (1954) and presented in tabular 
form in the Shore Protection Manual (U.S. Army Coastal Engineering 
Research Center, 1973). Using these tables the solution of  many of  the wave 
equations is greatly simplified. For any ratio of  water depth to deep-water 
wave length (or, by inference, any combinat ion of  water depth and wave 
period), the tables indicate the corresponding values of  h/L, kh, the different 
hyperbolic and trigonometric functions of  (kh), and other  parameters. Such 
relations allow the wave size at any water depth to be readily expressed in 
terms of  wave height and wave period. 
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Wave height 

Some natural limits to wave height provide useful constraints to the com- 
bination of  solutions possible from the wave equations. One such limit occurs 
in shallow water whereby waves become unstable and break at some critical 
water depth. The ratio of  wave h.eight to water depth at which breaking 
occurs depends on the beach slope and the initial wave steepness (Iverson, 
1952). A value of  0.78 has been most  widely accepted for this ratio (Komar, 
1976). In deeper water, waves will break if their height exceeds the value L/7 
(Miche, 1944). Although the largest possible wind wave could theoretically 
exceed 65 m in height (Bascom, 1980, p.58), the largest recorded remains 
the 34-m wave observed from the U.S.S. "Ramapo"  in 1933. Accordingly, 
40 m seems a reasonable maximum height for a set of  wind-generated waves. 
Figure 11 illustrates the maximum stable height for waves of  different periods. 

Orbital diameter and maximum velocity 

In Airy wave theory the orbital diameter at the sea floor do is: 

H 
do = sinh (kh) (16) 
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Fig. 11. Max imum wave height  (H) for  waves of  d i f fe rent  per iod  as a func t ion  of  water  
depth .  Curves for  waves of  d i f fe ren t  per iod  te rmina te  at approx ima te ly  h = L 0 (= 1.56 T 2 m). 
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and the maximum orbital velocity at the seafloor u m under the crest of the 
wave is: 

~d0 _ ~H (17) 
Um= -~-- - T"sinh (kh) 

The velocity under the trough of an Airy wave is of similar magnitude but 
opposite in direction. Although Airy theory is specifically applicable to con- 
ditions of relatively small waves in deep water, LeMehaute et al. (1969) 
showed that it provides a reasonable approximation to measured orbital 
diameters and near-bottom maximum velocities for finite amplitude waves in 
shallow water. Equations 16 and 17 are valuable for calculating the combina- 
tions of  wave height, period, and water depth that will generate a particular 
wave-formed bedform or internal structure. One can recast these equations 
in terms of wave height 

H = do sinh (kh) = umT sinh (kh) (18) 
7T 

and then, using the structurally indicated value of do or Um, solve the equation 
for a series of  selected water depths under waves of several different periods. 
In these calculations (shown in more detail in the first example, following), 
the chosen combination of wave period and water depth determines the value 
of h/Lo (equal to h/1.56 T 2 in meters), which then can be used to enter the 
wave tables to compute the appropriate value of h/L.  The results can then be 
plot ted as curves of equal wave period on an "H--h"  (wave height vs. water 
depth) diagram. Figure 12 is an example of an H--h diagram that  shows the 
combinations of wave height and water depth required to produce sheet flow 
in medium-grained sand under waves of several different periods. 

One can also combine estimates of orbital diameter with those of  threshold 
velocity to determine the maximum wave period that  can produce the given 
combination. Longer period waves are capable of  generating the same orbital 
diameter in deeper water, but the orbital velocities will be reduced below 
threshold level. Dingler {1979) combines his threshold equation for grain 
movement  of  quartz sand with the relation urn = 7rdo/T (all measurements in 
cm and s) to derive the expression for maximum or threshold wave period: 

T = O.17(d~/D)ll3s (19) 

The threshold equations of Komar and Miller (1975) provide for similar 
expressions of threshold wave period (in units of cm and s): 

T = 0.17 ~-~]s ( fo rD < 0.05 cm) (20) 

T = 0.065 d~ s (for D > 0.05 cm) (21) 
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Fig.12. Combinations of wave height and water depth that will generate sheetflow of 
0.250 mm quartz sand (um = 100 cm s -a) under waves of different period. Curves for 
waves terminated at maximum stable wave height. 

Velocity asymmetry 

As noted in the foregoing section, the Airy theory cannot provide esti- 
mates of velocity asymmetry, and a higher order theory must be invoked. 
Stokes second-order theory provides the easiest calculable estimate of velocity 
asymmetry in shallow-water. Asymmetries can be calculated from the other 
shallow-water wave equations, but their inherent complexity generally limits 
their application in paleoenvironmental interpretations. 

Stokes' (1847) solution for waves of finite height results in water-particle 
motion that is asymmetric with respect to both maximum velocity and time. 
The velocity of the water moving forward under the wave crests exceeds the 
reverse velocity under the wave trough. The duration of forward flow is less 
than that of the reverse flow, but the net result is an onshore migration of 
the water particles. 

Stokes second-order wave theory provided equations both for velocity- 
magnitude asymmetry and for the net drift velocity of the water particles. 
The complete equation for near-bottom orbital velocity under the crest of a 
Stokes wave is: 
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~rH + 3/4 [ (•H): 7 
u~ = V sinh (kh) i T  sinh 4 (kh)j (22) 

whereas that  under the trough of the wave is: 

sin-h(kh + a/4 I L T  sinh 4 (kh)J (23) 

The first term in eqs. 22 and 23 is the expression for maximum orbital velocity 
under an Airy wave; the second term can be viewed as a correction factor 
imposed by the Stokes wave. Clifton's (1976) expression for velocity magni- 
tudes asymmetry is the sum of eqs. 22 and 23 (in effect,  twice the correction 
factor): 

3(uH) 2 14.8 H 2 
,Sum = 2 LT sinh 4 (kh) = LT sinh 4 (kh) (24) 

The net drift velocity U generated by a Stokes wave is derived by integrat- 
ing (over a wave period) the Stokes second-order equation for water particle 
displacement. The result involves assumptions (infinite channel length, con- 
stant depth, absence of  viscosity) that  are inappropriate for most  natural 
situations. Accordingly, Longuet-Higgins (1953) developed a wave drift 
relationship for the case of  a Stokes wave in a channel of  finite length with a 
real viscous fluid. The resulting equation: 

5 ( ,H) :  (25) 
U = 4 LT  sinh: (kh) 

describes a slow onshore mass transport  of  water due to wave passage. 
Unfortunately,  as noted previously, neither A u m nor U as defined in eqs. 24 

and 25 is completely satisfactory for expressing the velocity asymmetry  
imparted by shoaling waves. Compounding this problem is the fact  that  the 
Stokes second-order equation can be of uncertain validity at the shallow, 
near-breaker-zone depths where asymmetry of  f low is most  important.  Unfor- 
tunately,  cnoidal wave theory is generally too  complicated for geologic 
application and solitary wave theory has been shown to be unreliable under 
real conditions (Komar, 1976, p.59). It thus appears that,  despite its obvious 
importance in determining bedform shape and sediment transport,  there 
presently is no satisfactory means of  quantitatively estimating velocity 
asymmetry.  

STEP 3. DERIVING PALEOENVIRONMENT INTERPRETATIONS FROM INFERRED 
COMBINATIONS OF WAVE CHARACTER AND WATER DEPTH 

Typically, the results of  an analysis of  ancient, wave-generated structures 
take the form of  an H--h diagram on which are plot ted the various combina- 
tions of  wave height, period and water depth that  will generate a particular 
f low parameter. Commonly,  these combinations span a broad range of  water 
depth and wave size. To apply these data to a paleoenvironmental problem 
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requires that the combinations be restricted to a smaller range. The natural 
limits to wave height described in the foregoing section provide one such re- 
striction. Further constraints can be placed by an application of wave hind- 
casting techniques, geological reasoning, or a combination of the two. Wave 
hindcasting is a technique for estimating the height and period of waves on 
the basis of past speeds and duration of winds, fetch length and water depth. 
(Shore Protection Manual, U.S. Army Corps of Engineers Coastal Research 
Center, 1973). The inferred period and height of ancient waves can be thus 
related to basin size and wind speed and direction. Paleogeographic recon- 
struction may thereby impose limits on the waves, or conversely, the recon- 
structed waves may indicate size and shape of the depositional basin. 

Geological evidence can also place constraints on water depth. Evidence 
for water depth may be drawn from paleoecologic analyses, the nature of 
associated facies, or the vertical distance to the inferred base-of-beach in a 
prograding shoreline deposit (see Dupr~, 1984, this volume). Directional 
features may indicate the direction of wave approach relative to the shoreline 
and the presence of wave-driven currents near the shoreline. The use of geo- 
logical reasoning is limited only by the availability of critical data and the 
resourcefulness of the investigator. 

EXAMPLES 

The following examples illustrate different ways in which wave-formed 
structures can be used to interpret aspects of the paleoenvironment. In each 
case the procedure is outlined in detail, noting particularly each of the three 
steps involved. 

Example 1. Estimating wave size from threshold velocity 

This example has been published (Hunter and Clifton, 1982} but is 
included here for analysis and to illustrate the procedure. The problem is 
determining whether or not storm waves were involved in the formation of 
hummocky cross-stratification in sandstone of Late Cretaceous age exposed 
at Cape Sebastian on the coast of southern Oregon. The hummocky cross- 
stratification occurs in the lower part of sediment cycles typically tens of 
centimeters thick. The hummocky cross-stratified sandstone overlies an 
erosional surface and grades upward into horizontally stratified sandstone 
that in turn grades upward into thoroughly bioturbated sandstone. The cycles 
are composed of slightly graded fine sand. Small pebbles are scattered in the 
hummocky cross-stratified sandstone and a few lie within the overlying hori- 
zontally stratified sand. Exposures of bedding surfaces of the horizontally 
stratified sandstone commonly show straight-crested symmetrical ripple 
marks. 

The largest pebble, about 5 cm in diameter, found in the horizontally 
stratified sandstone forms the basis for the calculations presented here. The 
common presence of symmetrical ripple marks in this facies implies the 
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presence of  waves, which suggests the possibility of using the threshold for 
movement  to calculate maximum orbital velocity. 

Step 1. The threshold velocity for moving a 5 cm pebble can be estimated 
from Fig.4. The curves of  Komar and Miller (1975) provide a more conserva- 
tive value at wave periods larger than 5 s and are therefore employed. These 
curves indicate an orbital velocity on the order of 200 cm s -1. It should be 
noted that  the fact that  the pebble moved on a bed of fine sand rather than on 
a bed of similarly sized pebbles (assumed for the threshold curves) introduces 
a measure of  uncertainty.  

Step 2. To determine the combination of  wave size and water depth that  
would produce the orbital velocity derived in Step 1 requires selection of the 
appropriate wave theory. Since asymmetry of flow is not  involved, Airy 
theory should provide for reasonable calculations based on the indicated 
maximum orbital velocity using eq. 18. A table can subsequently be con- 
structed to determine the wave height that  at given water depths will generate 
an orbital velocity of 200 cm s-'. Table I, for example, indicates the wave 
heights that  will generate this orbital velocity at a variety of  water depths for 
a 12-s wave. Similar tables can be constructed for waves of  other periods and 
the results plotted on an H--h diagram (Fig.13) that  indicates the combina- 
tion of water depth and wave height at which waves of several specific periods 
will generate a near-bottom maximum orbital velocity of 200 cm s-'. Note 
that  the curves for the waves of smaller period are terminated at their maxi- 
mum stable wave height. 

Step 3. Figure 13 indicates that  the specified orbital velocity of  200 cm s -1 
can be generated by waves of widely varying size. Constraints, however, can 
be imposed by geologic reasoning. The absence of unidirectional crossbedding 
and shoreline progradational sequences from the cyclic part of the Upper 
Cretaceous sandstone at Cape Sebastian led Hunter and Clifton (1982) to 
conclude that  deposition did not  occur in very shallow water close to a 

T A B L E  I 

C o m p u t a t i o n  of  wave he ights  (H)  requ i red  to genera te  u m = 2.0 m s- '  a t  var ious  wate r  
d e p t h s  (h)  u n d e r  a 12 s wave, using Airy  wave t h e o r y  (eq. 18). L 0 = 1.56 T2m ffi 225 m;  
H m  = 0 .142  L0 ~- 32 m 

hl h/L°2 sinh (_~_) 3 H4 

5 0 .022 0 .390  3.0 
10 0 .044 0 .579 4.4 
20 0 .089  0 .922  7.0 
30  0 .133 1.27 9.7 
50 0 .222  2.21 17.0 
70 0 .311 3.72 28.0 

100 0 .444  8.27 63.0  

/Selected arbi t rar i ly ;  2calcula ted  f rom ind ica ted  values;  3 c o m p u t e d  f r o m  Wave Da ta  tab les  
(U.S. A r m y  Coasta l  Eng inee r ing  Research  Center ,  1973) ;  4ca lcula ted  f r o m  eq. 18. 
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Fig.13. Combina t i ons  o f  wave he ight  and water  dep th  at  which a 5-cm quartz pebb le  will 
move (es t ima ted  u m = 200 cm s -1) unde r  waves of  d i f fe ren t  period.  Curves of  waves ter- 
mina t ed  at m a x i m u m  stable wave height.  

shoreline. Accordingly, they felt that a depth of  10 m was a conservative 
minimum for deposition of  this part  of  the unit. Applying this limit to Fig.13 
eliminates the shorter period waves and implies wave heights of  at least 4 m. 
Since these condit ions presumably prevailed during the waning phase of  the 
event that  created the sedimentary cycle, even larger waves at tended the 
development  of  the hummocky  cross-stratified sandstone. 

Example 2. Determining depositional environment on the basis of  grain size 
and ripple spacing 

The Berea Sandstone is a paraiic deposit  of  Mississippian Age that crops 
out  in a north-south belt across the state of  Ohio (Pepper et al., 1954; Coogan 
et al., 1982). In exposures southeast  of  the city of  Cleveland the unit  consists 
of  fine sandstone in which sets of  trough crossbedding 1--3 m thick alternate 
with thin (typically less than 1 m thick) sequences of  flat-bedded or wavy- 
bedded sandstone. Bedding surfaces of  the flat- or wavy-bedded sandstone 
commonly  exhibit  small symmetrical ripple marks. The, crossbeds dip to the 
west and northwest,  presumably an onshore direction, and channelling is 
conspicuously uncommon (Coogan et al., 1982). The deposit  has been vari- 
ously at t r ibuted to accumulation in a subaerial delta, river system, barrier, 
bar, lagoon, wind-tidal flat or  tidal channel system (Coogan et al., 1982). 

Step 1. The symmetrical ripples prove particularly useful in resolving the 
depositional environment of  this unit. The smallest ripples, with a spacing of  
1.5 cm, were composed of  sand of  about  0.01 cm diameter. The ~/D ratio of  
150 indicates that  the ripples are orbital ripples (~ = 0.65 do) formed under 
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an orbital diameter of 2.3 cm. This interpretation is consistent with h--d0 
relations predicted by Nielsen's equation for laboratory ripples (Fig.7), which 
may be more applicable than that for naturally occurring ripples at low values 
of ~. Equations 19 and 20 indicate maximum wave periods of 1.3 and 1.0 s, 
respectively, for forming these ripples. 

Step 2. The combinations of water depth and wave height whereby a wave 
with a period of 1.3 s (the more conservative at the indicated values) will 
generate a near-bottom orbital diameter of 2.3 cm can be estimated using 
Airy wave theory (eq. 18, this paper). Following the procedure outlined in 
the previous example, an H--h diagram can be constructed (Fig.14), which 
indicates that the observed ripples formed in very shallow water {less than 
2 m deep). 

Step 3. The inference that the ripple-marked sandstone was deposited at 
water depths smaller than the thickness of the intercalated cross-bed sets 
imposes special constraints. The nature of the contacts between the two 
lithologies becomes critical to the interpretation. In every observed case, the 
planar- or wavy-bedded sandstone sharply overlies the sandstone below and 
extends gradationally into overlying cross-bedding foresets above. This rela- 
tion implies that the bedforms that produced the crossbedding migrated over 
the planar- or wavy-bedded sandstone with the small ripples. The truncated 
top to the cross-beds indicates that the bedform relief exceeded the thick- 
ness of the cross-bedding unit, which in turn generally is greater than the 
water depth implied by the small symmetric ripples. The implication that the 
height of the bedforms exceeded (perhaps substantially) the depth of water 
into which they migrated and the scarcity of current ripples relative to sym- 
metric ripples effectively eliminate a subaqueous origin for the crossbedding. 
The bedforms are best interpreted as aeolian dunes that migrated over a 
surface that at least part of the time was the site of interdune ponds. 
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Fig .14 .  C o m b i n a t i o n s  o f  water  depth  and wave  he ight  w h e r e b y  a wave  w i th  a period o f  
1.3 s wil l  generate  a near -bot tom orbital  d iameter  o f  2.3 c m  ( threshold  for  forming  orbital  
ripples wi th  a spacing o f  1 .5  cm in 0 . 1 0 0  m m  quartz sand).  Wave curve terminated  at 
m a x i m u m  stable  wave height.  
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Further  examination of  the deposit  supports this interpretation. The wide 
variability of  the trend of  the ripple marks (sets on the same bedding surface 
may diverge by nearly 90 ° ) suggests local winds blowing over very shallow 
water. Mud cracks on a few of the ripple surfaces are consistent with a pond 
environment. The crossbedded sand locally shows subtle bedding features 
(climbing translatent strata, sandflow tongues) at tr ibuted to aeolian deposi- 
t ion (Hunter,  1977, 1981). 

Other examples. Several recent papers use wave-generated structures to 
reconstruct  paleoenvironments. Allen (1981) uses an approach similar to 
that  analysed in Example 2 to estimate the size and depth of  a Devonian lake 
on southeast  Shetland. Clifton (1981) draws heavily on the orientation of  
wave-formed structures to develop a detailed reconstruction of  a Miocene 
shoreline in the southern Coast Range of  California. Papers by Allen and 
Dupr~ in this volume provide additional examples. 

CONCLUSIONS 

Wave-formed sedimentary structures can be a valuable tool for interpreting 
paleo-environments. A number  of  caveats should be noted relative to the 
implementation of  these tools: 

(1) The results are approximations. The use of  wave equations typically 
gives precise solutions, but  the equations themselves are approximations in a 
real environment. The indicated values should be considered as reasonable 
estimates only. 

(2) Much uncertainty exists regarding the nature of  the structures and the 
hydrodynamic  processes involved in their formation. Threshold equations 
should be extrapolated with care, particularly to the coarser grain sizes. The 
threshold of  movement  of  large isolated clasts on a bed of  smaller material 
requires further study. The relations between ripple spacing, grain size and 
orbital diameter need to be defined more closely particularly in terms of  the 
influence of  wave period. The basis for asymmetry  of  wave-formed structures 
is controversial and awaits further s tudy before being applicable in any 
hydrodynamic  sense. 

(3) The interpretation of  wave-formed structures is best done in conjunc- 
tion with other  geologic evidence. Inferences of  water depth or wave size 
based on wave-formed features are most  credible when supported by  other  
observations. 

Much further field observation and experimental s tudy must  be done 
before Wave-formed structures reach their full potential  for paleoenviron- 
mental interpretation. Presently, they can provide powerful,  but  often 
tantalizing, clues regarding ancient environmental conditions. 
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