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Analyzing Drosophila melanogaster neural expression patterns 
in thousands of three-dimensional image stacks of individual 
brains requires registering them into a canonical framework 
based on a fiducial reference of neuropil morphology. Given a 
target brain labeled with predefined landmarks, the BrainAligner 
program automatically finds the corresponding landmarks in a 
subject brain and maps it to the coordinate system of the target 
brain via a deformable warp. using a neuropil marker (the 
antibody nc82) as a reference of the brain morphology and a 
target brain that is itself a statistical average of data for 295  
brains, we achieved a registration accuracy of 2 mm on average, 
permitting assessment of stereotypy, potential connectivity 
and functional mapping of the adult fruit fly brain. We used 
BrainAligner to generate an image pattern atlas of 2,954 
registered brains containing 470 different expression patterns 
that cover all the major compartments of the fly brain.

An adult Drosophila brain has about 100,000 neurons with cell 
bodies at the outer surface and neurites extending into the inter
ior to form the synaptic neuropil. Specific types of neurons can 
be labeled using antibody detection1 or genetic methods such as 
the upstream activating sequence–GAL4 system2, in which each 
GAL4 line drives expression of a fluorescent protein reporter in a 
different subpopulation of neurons. Computationally registering, 
or aligning, images of fruit fly brains in three dimensions is useful 
in many ways. First, automated threedimensional (3D) alignment 
of multiple identically labeled brains allows quantitative assess
ment of stereotypy: how much the expression pattern or the shape 
of identified neurons varies between individuals. Second, aligning 
brains that have different antibody or GAL4 patterns reveals areas 
of overlapping or distinctive expression that might be selected for 
genetic intersectional strategies3. Third, comparison of aligned 
neural expression patterns suggests potential neuronal circuit 
connectivity. Fourth, aligning images of a large collection of GAL4 
lines gives an estimate of how extensively they cover different 
brain areas. Finally, for behavioral screens that disrupt neural 
activity in parts of the brain using GAL4 collections, accurate 
alignment of images is a prerequisite for detecting anatomical 
features in brains that correlate with behavior phenotypes.

Earlier 3D image registration approaches4–6 have used surface 
or landmarkbased alignment modules of the commercial 3D 
visualization software Amira (Visage Imaging) to align sam
ple specimens to a template. The major disadvantages of these 
approaches are the huge amount of time needed for a user to 
manually segment the surfaces or to define the landmarks in each 
subject brain and the potential for human error.

The earliest and most relevant parallel line of research for auto
mated alignment is for 2D or 3D biomedical images such as com
puted tomography and magnetic resonance human brain scans7–9, 
and for 2D mouse brain in situ hybridization images as part of the 
Allen Brain Atlas project10. Previous efforts to automatically register 
images of the fruit fly nervous system based on image features 
include work on adult brains11,12, adult ventral nerve cord and larval  
nervous system13. In our comparison (Supplementary Note 1)  
of several widely used methods for registration11–16, all methods 
yielded unsatisfactory alignments at a rate that make them unsuit
able for use in a pipeline that involves thousands of highresolution 
3D laser scanning microscope images of Drosophila brains.

In this study we developed an automatic registration program, 
BrainAligner, for Drosophila brains and used it to align 3D laser 
scanning microscope images of thousands of brains with differ
ent neuronal expression patterns. Our algorithm combines sev
eral existing approaches into a new strategy based on reliably  
detecting landmarks in images. BrainAligner is hundreds of 
times faster than several competitive methods and automatically 
assesses alignment accuracy with a quality score. We validated 
alignment accuracy using biological ground truth represented by 
‘coexpression’. We used BrainAligner to assemble a preliminary 
3D Drosophila brain atlas, for which we assessed the stereotypy of 
neurite tract patterns throughout a Drosophila brain.

results
BrainAligner
BrainAligner registers 3D images of adult Drosophila brain into 
a common coordinate system (Fig. 1). We dissected brains that 
expressed enhanced GFP (EGFP) in various neural subsets and 
labeled them with an antibody to EGFP (Fig. 1a,b); this was the 
pattern channel. We also labeled brains with nc82, an antibody that 
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detects a ubiquitous presynaptic component and marks the entire 
synaptic neuropil17 (Fig. 1a,b); this was the reference channel. 
The brains to be registered have different orientations, sizes and 
morphological deformations that are either biological or intro
duced in sample preparation. For each subject brain, BrainAligner 
maps the reference channel to a standardized target brain image 
using a nonlinear geometrical warp. Using the same transforma
tion, the pattern channel from the subject image is then warped 
onto the target. Multiple subject images are aligned to a com
mon target so that their patterns can be compared in the same 
coordinate space (Fig. 1c and Supplementary Video 1). In this 
way, we mapped a large collection of GAL4 patterns into a common 
framework to identify intersecting expression patterns in various 
anatomical structures (Fig. 1d–h and Supplementary Video 2).

BrainAligner registers subject to target using a global 3D affine 
transformation followed by a nonlinear local 3D alignment. For 
largescale applications, brains may have different orientations, 
brightness, sizes, evenness of staining, morphological damage and 
other types of image noise, which requires our algorithm to be 
robust. Thus we optimized only the necessary degrees of freedom.

In global alignment, we sequentially optimized the displacement, 
scaling and rotation parameters of an affine transform from subject 
to target to maximize the correlation of voxel intensities between 
two images (Fig. 2a and Online Methods). We visually examined the 
transformed brains after the global alignment and found no trans
formation errors in over 99% of our samples. The cases with errors 
typically corresponded to poorly dissected brains that were either 
damaged structurally or for which excess tissues were present.
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Figure 1 | BrainAligner registers images of neurons from different brains onto a common coordinate system. (a,b) Maximum intensity projections of confocal 
images of enhancer trap GAL4 lines a64-GAL4 and a74-GAL4 brains. Neurons are visualized by membrane-targeted EGFP and brain morphology is visualized by 
staining with the antibody nc82. (c) Aligned and overlaid neuronal patterns shown in a and b. (d) Alignment of many GAL4 expression patterns. Patterns of 
interest can be selected and displayed in the common coordinate system. R1 and R2, regions of interest. (e) Screenshot from V3D-AtlasViewer software for 
viewing the 3D pattern atlas. (f–h) Close-up single-section views of regions marked R1 and R2 in d (z section numbers are indicated). Scale bars, 50 µm.

Figure 2 | Schematic illustration of the BrainAligner algorithm. (a) BrainAligner performs a global alignment followed by nonlinear local alignments 
using landmarks. Scale bars, 50 µm. (b) Outline of the RLM algorithm for detecting corresponding feature points in subject and target images.  
Same-color dots indicate the matching landmarks; PT, a target brain landmark position; PS, a subject brain landmark; and PMI, PINT and PCC, best matching 
positions based on mutual information (MI), voxel intensity (INT) and correlation coefficient (CC) of local image patches. In the first insets, only the 
considered landmark PT and the best candidate locations are displayed. In the tetrahedron-pruning step, the landmarks in a subject image that clearly 
violate the relative position relationships of the target are discarded. 
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In the local alignment step, we designed a reliable landmark 
matching (RLM) algorithm (Fig. 2b) to detect corresponding 
3D feature points, each of which we called a ‘landmark’, in every 
targetsubject pair. For the target brain we manually defined 
172 landmarks that correspond to the points of high curvature 
(‘corners’ or edge points)) of brain compartments as indicated by 
abrupt image contrast changes in the neuropil labeling. For each 
target landmark, RLM first searches for its matching landmark in 
the subject image using two or more independent matching cri
teria, such as maximizing (i) mutual information11,18, (ii) inverse 
intensity difference, (iii) correlation and (iv) similarity of invariant 
image moments15, in a small region around the landmark in the 
target and its potential match in the subject. A match confirmed 
by a consensus of these criteria is superior to a match based on 
a single criterion. Therefore, when the best matching locations 
meeting these criteria are close to each other (<5 voxels apart), 
RLM reports a preliminary landmark match (preLM), which is 
the site in the 3D bounding box of these best matching locations 
that gives the maximal product of the individual matching scores. 
These preLMs may violate the smoothness constraint, which 
states that in toto all matchinglandmark pairs should be close to 
a single global affine transform and, locally, that relative location 
relationships should be preserved. Therefore, RLM uses a random 
sample consensus algorithm19 to remove the outliers from the 
preLMs with respect to the global affine transform that produces 
the fewest outliers. Next, RLM optionally checks the remaining 
set of preLM pairs and detects those violating the relative loca
tion relationship in every corresponding tetrahedron formed by 
three additional neighboring matching points. PreLM pairs that 
clearly create a spatial twist with respect to nearby neighbors are 
removed. The landmarks that remain are usually highly faithful 
matching locations and are called reliable landmarks.

We used the reliable landmarks to generate a thinplatespline 
warping field20 and thus mapped the reference channel of a subject 
image to the target. We then applied the same warping field derived 
from the reference channel to the pattern channel. We also optimized 
BrainAligner’s running speed. For instance, to generate the warping 
field we used hierarchical interpolation (Online Methods) instead of 
using all image voxels directly, improving the speed 50fold without 
visible loss of alignment quality. Typically BrainAligner needs only 
40 min on a current single CPU (2.66 GHz Intel Gainestown) to 
align two images with 1,024 × 1,024 × 256 voxels.

One advantage of RLM is that the percentage of the target land
marks that are automatically reliably matched (Qi) can be used to 
score how many image features are preserved in the automatic 
 registration. The larger the Qi, the better the respective alignment. 
We visually inspected the aligned brains and ranked alignment 
quality using a manual score, Qv (range = 0–10; the larger, the 
 better). Qi and Qv correlated significantly (P < 10−5) on 805 
 randomly selected alignments in the central brain, left optic lobe 

and right optic lobe (Supplementary Fig. 1), suggesting that Qi is 
a good indicator of alignment quality. Empirically, for Qi > 0.5 the 
respective alignment was good; for Qi > 0.75 the alignment was 
excellent. Low Qi scores typically corresponded to poorly nc82
stained samples and brains damaged during sample preparation.

Although BrainAligner can be used to align subject brains to 
any target brain, we prefer to use an optimized ‘average’ target 
brain obtained as follows. We first selected one image of a real 
brain, TR (Supplementary Fig. 2) as the target for an initial align
ment for 295 brains that aligned to TR with Qi > 0.75. We then 
computed the mean brain image, TA, for the respective local 
alignments (Supplementary Fig. 2). Although TA was smoother 
than TR, it preserved detailed information, reflected in the strong 
correlation between TA and TR (Supplementary Fig. 2). We used 
TA as a new and more meaningful target image for BrainAligner. 
Compared to the results for TR, this led to 38% and 14% more 
brains aligning with Qi scores > 0.7 and > 0.5, respectively, in a 
dataset of 496 brains (Supplementary Fig. 3).

Assessment of BrainAligner accuracy and biological variance
The variation between individual aligned brains of the same 
genotype is a combination of biological difference, variation 
introduced during sample preparation or imaging and alignment 
error. In a previous study11, the variance of axon position had 
been estimated to be ~2.5–4.3 µm in the inner antennal cerebral 
tract and at its neurite bifurcation point. We addressed a similar 
question by aligning 20 images of a278-GAL4;UAS-mCD8-GFP 
fly brains to the common target TA. We traced the large neurite 
bundles in aligned images in three dimensions (Fig. 3a,b) using 
V3DNeuron21,22. We computed a mean tract model, Rm, of all 
these tracts (Fig. 3c and Supplementary Video 3). We compared 
the neurite tracts to Rm, at 243 evenly spaced locations. The vari
ability of tract position was 3.26 µm (~5.6 voxels in our images) 
with a range of 2.1–5.1 µm (Fig. 3d).

With ~3µm variance, BrainAligner produced reliable results. 
We also differentiated biological variability from aligner vari
ance. The existence of two binary expression systems, GAL4 
and LexA23, permits a rigorous comparison of a computational 
prediction of overlap with a biological test of ‘coexpression’.  
The LexA line (LexAP036) showed potential overlap with the  
a278-GAL4 line used above in the Ωshaped antennal lobe com
missure (ALC) when registered with BrainAligner (Fig. 4). We then 
expressed distinct reporter constructs using the LexA and GAL4 
systems simultaneously in the same fly and observed overlapping 
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Figure 3 | Stereotypy of neuronal morphology and reproducibility of GAL4 
expression patterns. (a) Two aligned and overlaid examples (magenta and 
green) of the a278-GAL4 expression pattern from different brains. (b) A 3D  
reconstruction of the major neurite tracts in a. Magenta and green, 
surface representations of the reconstructed tracts. Gray, GAL4 expression 
pattern. Scale bars, 20 µm. (c) The 3D reconstructed neurite tracts (gray) 
from 20 aligned a278-GAL4 images, along with their mean tract model 
(red; overall average deviation, 3.26 µm). (d) Average deviation of the 
mean tract model from each reconstructed tract.
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 expression in the ALC (Fig. 4d,f). We 
estimated the precision of BrainAligner’s 
registration using the absolute value of the 
difference of the biological spatial distance 
of the two overlapping patterns and their 
respective spatial distance measured from 
the computationally aligned patterns. The average distance mea
sured at 11 different spatial locations (Fig. 4d) along ALC of the 
aligned patterns and physically overlapping patterns was 1.8 ±  
1.1 µm. Therefore the estimated registration precision was 0.8– 
2.9 µm. We also saw agreement between the aligned and two 
signal images of other GAL4 and LexA pairs with expres
sion patterns in the optic tubercle (Supplementary Fig. 4 and 
Supplementary Videos 4 and 5).

We independently tested BrainAligner’s accuracy by compar
ing the computational alignment and labeling with both FasII 
antibody and various GAL4 lines that express in or near the mush
room bodies. BrainAligner accurately predicted the overlap of 
FasII antibody staining with the 201Y and OK107-GAL4 patterns, 
but C232-GAL4, which is expressed in the central complex, did 
not localize with FasII (Fig. 5).

Finally, the Flpout technique24 allows the expression of fluores
cent protein reporters in a random subset of neurons in a given 

GAL4 expression pattern. Therefore, the computational alignment 
of Flpout subsets (‘clones’) should correlate well with the expres
sion pattern of the parent GAL4 lines. We aligned the CG8916-
GAL4 expression pattern and Flpout clones of this GAL4 line. We 
observed nested expression patterns in the superior clamp, poster
ior ventrolateral protocerebrum, anterior ventrolateral protocere
brum, superior lateral protocerebrum and subesophageal ganglion 
(SOG) (Supplementary Fig. 5 and Supplementary Video 6).

Building a 3d image atlas of Drosophila brain
We automatically registered 2,954 brain images from 470 
enhancer trap GAL4 lines (unpublished data) to our optimized 
target brain. We selected a wellaligned representative image of 
each GAL4 pattern (with Qi > 0.5) and arranged them as a 3D 
image pattern atlas (Fig. 1d and Supplementary Video 2). To 
effectively browse, search and compare the expression patterns 
in these brains, we developed V3DAtlasViewer software  
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alignment of separate brains with coexpression 
data in the same brain. (a) Confocal image of 
a wild-type w1118 adult brain labeled with 
FasII antibody. (b–d) Expression patterns of 
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(Fig. 1e) based on our fast 3D image visualization and analysis 
system V3D21. V3DAtlasViewer organizes the collection of 
registered GAL4 patterns using a spreadsheet (Fig. 1e), within 
which a user can select and display any subset of patterns on 
top of a standard brain for visualization. This 3D image atlas 
revealed interesting anatomical patterns. For example, visual
izing different sections in six GAL4 patterns demonstrated the 
previously reported subdivision of the mushroom body hori
zontal lobe into gamma lobe, beta′ lobe and beta lobe25 (Fig. 1f 
and Supplementary Videos 7 and 8).

With this atlas, to our knowledge for the first time, we analyzed 
the distribution of GAL4 patterns in different brain regions in 
a common coordinate system. The 470 GAL4 lines covered all 
known brain compartments (Supplementary Fig. 6), with the 
SOG, superior lateral protocerebrum, prow, mushroom bodies 
and antennal lobes being the five most represented compartments 
in this GAL4 collection. Relatively few GAL4 lines expressed in 
superior posterior slope, inferior posterior slope, inferior bridge 
and gorget. For the central complex of a Drosophila brain, less 
than 20% of GAL4 lines expressed in the fanshape body, ellipsoid 
body and noduli. It may not be surprising that a large fraction 
of lines expressed in the SOG because this neuropil region rep
resents 7.43% of the brain by volume (Supplementary Fig. 6). 
Therefore we also produced the density map of the neuronal 
 pattern distribution in each compartment, normalizing the distri
bution by volume (Supplementary Fig. 6). The central complex 
was overrepresented in our GAL4 collection, whereas the SOG, 
normalized for its volume, was actually underrepresented.

We examined the stereotypy of 269 neurite tracts that project 
throughout all brain compartments. We reconstructed each tract 
from at least two aligned brains of each GAL4 line. We computed 
the spatial variations and represented them as the width of each 
tract for visualization (Fig. 6a and Supplementary Video 9). The 
average variation was 1.98 ± 0.83 µm (Fig. 6b), consistent with 
our previous independent test of 111 tracts21. This range of vari
ation is within the upper bound of biological stereotypy of the 
neurite tracts themselves and noise introduced in sample prepara
tion, imaging and image analysis including registration and trac
ing. The tracing error was close to zero21. Compared to the typical 
size of an adult fly brain (590 µm × 340 µm × 120 µm), this small 
variation indicated strong stereotypy of the neurite tracts.

discussion
We used BrainAligner with an optimized virtual target brain, 
consistent tissue preparation and imaging, and a library of 

GAL4 lines, to generate a pilot 3D atlas of  
neural expression patterns for Drosophila. 
We also applied BrainAligner to our ongo
ing FlyLight project that will produce an 
even higher resolution 3D digital map 
of the Drosophila brain. BrainAligner 
has robustly registered over 17,000 brain 
images of thousands of GAL4 lines within a 
few days, without any manual intervention 
during the alignment. The ability to align 
new samples, determined by Qi scores, 
is an important qualitycontrol check. 
We are developing additional methods 
to expand and query this resource, but it 

is already in use for anatomical and behavioral investigation of 
neural circuit principles.

Expression patterns generated by recombinasebased methods 
to label neurons of a common developmental lineage (mosaic 
analysis with a repressible cell marker26) and images in which 
single neurons are labeled can be aligned with our GAL4 refer
ence atlas to identify lines that have GAL4 expression in those 
cells, allowing investigation of their behavioral roles. Examination 
of different GAL4 expression patterns for proximity or overlap 
suggests which areas might be functionally connected. The 
Drosophila brain is subdivided into large regions based on divi
sions in the synaptic neuropil caused by fiber tracts, glial sheaths 
and cell bodies, but these anatomical regions may be further 
subdivided by gene expression patterns revealed by the GAL4 
lines. When the GAL4 lines are aligned to a template brain on 
which anatomical regions have been labeled, we can annotate 
the expression patterns using volume image object annotation 
(VANO) software27 faster and more uniformly. Alignment per
mits imagedbased searching, a considerable improvement over 
keyword searching based on anatomical labels. Accurate align
ment of images will also make it easier to correlate anatomy with 
behavioral consequences. Integration of aligned neuronal patterns 
with other genetic and physiological screening tools may be used 
to study different neuron types.

We optimized BrainAligner to run on large datasets of GAL4 
lines expressed in the adult fly brain and ventral nerve cord, but 
these are not the only type of data that can be aligned. Antibody 
expression patterns, in situ mRNA expression patterns and protein
trap patterns28,29 are also suitable; if the same reference antibody 
is included, images from different sources can be aligned using 
BrainAligner. Although we developed BrainAligner using the nc82 
presynaptic neuropil marker, we also aligned brains for which the 
reference channel was generated by staining with rat antibody to 
Ncadherin (Fig. 5). Other reference antibodies that label a more 
restricted area of the brain, such as FasII antibody, may also work 
with the algorithm. It is also possible to align any pair of brains 
directly rather than aligning both to a common template.

BrainAligner can be used in many situations where the image 
data have different properties than the data presented in this study. 
The optic lobes of an adult Drosophila brain shift in relation to the 
central brain and distort alignments. We developed an automated 
method to segregate the optic lobes from the central brain30, 
which was then registered using BrainAligner. For the larval 
nervous system and the adult ventral nerve cord of Drosophila, 
we detected and aligned the principal skeletons of these images13, 

a b
35

30

25

20

15

N
um

be
r 

of
 tr

ac
ts

10

5

0
0 1 2 3

Spatial variation (µm)

4 5 6

Figure 6 | A 3D atlas of neurite tracts reconstructed from aligned GAL4 patterns. (a) Distribution 
of 269 stereotyped randomly colored neurite tracts in the brain. The width of each tract equals the 
respective spatial deviation. Scale bar, 100 µm. (b) Spatial deviation of the neurite tracts.

©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



498  |  VOL.8  NO.6  |  JUNE 2011  |  nAture methods

Articles

followed by BrainAligner registration. BrainAligner automatically 
detects the corresponding landmarks, but it permits using manu
ally added landmarks to improve critical alignments or to opti
mize alignments in a particular brain region. Indeed the brains 
to be aligned may also be imaged using different magnification 
scales. Higherresolution images may have only a part of the brain 
in the field of view, complicating registration. In such a case, the 
user can manually supply as few as four to five markers using V3D 
software21 to generate a globally aligned brain, which can then be 
automatically aligned using BrainAligner.

Despite several successfully used image registration methods in 
other scenarios such as building the Allen mouse brain atlas10, we 
have not found another automated image registration method that 
performs as well as BrainAligner on our largescale applications. 
Indeed, the key algorithm in BrainAligner, the RLM method, can 
be viewed as an optimized combination of several existing meth
ods. It compares the results produced using different criteria and 
only uses results that agree with each other. BrainAligner is not 
limited to fruit fly brains and could be applied to other image data 
such as mouse brains.

methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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online methods
Immunohistochemistry and confocal imaging. Males from 
enhancer-GAL4 lines (unpublished data, J.H.S. and B. Ganetzky) 
were crossed to virgin UAS-mCD8-GFP (Bloomington #5137; ref. 26)  
that produces a membranetargeted fluorescent protein in the neu
rons. Adult brains were dissected in PBS (pH 7), fixed overnight 
in 2% paraformaldehyde, washed extensively in PBS with 0.5% 
Triton and then incubated overnight at 4 °C rotating in primary 
antibodies nc82 (1:50 Developmental Studies Hybridoma Bank17) 
and rabbit antiGFP (1:500 Molecular Probes/Invitrogen A11122). 
After washing all day at room temperature (~21 °C), brains were 
incubated overnight at 4 °C rotating with secondary antibodies: 
goat antimouse–Alexa Fluor 568 and goat antirabbit–Alexa Fluor 
488 (1:500; Molecular Probes/Invitrogen; A11034 and A11031, 
respectively). After another day of washing, brains were cleared 
and mounted in the glycerolbased Vectashield (on glass slides 
with two clear reinforcement rings as spacers (Avery). Samples 
were imaged on Zeiss Pascal Confocal microscope with 0.84 µm 
zdimension steps using a 20× airimmersion lens. Sequential 
scanning was used to ensure that there was no bleedthrough 
between the reference and pattern channels. The raw images collec
ted had 1,024 × 1,024 × N voxels (number of zdimension sec
tions, N, typically was around 160), 8 bits (voxel size = 0.58 µm ×  
0.58 µm × 0.84 µm) and two color channels. The gain was increased 
as the imaging depth increased to maintain optimal use of detector 
range; the pattern channel intensity was maintained between over 
and undersaturation. This resulted in a gain ramp of roughly 10% 
from lensproximal to lensdistal surface of sample.

The enhancer-LexA lines (A.M.S. and J.H.S., unpublished data) 
were crossed to LexOp-CD2-GFP (in attP2 generated by A.M.S.) 
and stained with nc82 and antiGFP as described above. For the 
doublelabel experiments, combination stocks of LexOp-CD2-GFP, 
pJFRC2110XUASIVSmCD8::RFP; enhancer-GAL431,32 were 
built and crossed to the LexA lines. These lines were stained with 
rabbit antiGFP (1:500) and rat antiCD8 (1:400; Invitrogen). The 
secondary antibodies were Alexa Fluor 488–labeled antirabbit and 
Alexa Fluor 568–labeled antirat (1:500). For the Flpout clones, 
GAL4 lines were crossed to hs-Flp; UAS-FRT-CD2-FRT-mCD8-GFP 
stocks33 and heatshocked at the end of embryonic development 
or in adulthood.

Other fly stocks, C232-GAL4 (ref. 34), 201Y-GAL4 (ref. 35) and 
OK107-GAL4 (ref. 36), were obtained from the Bloomington Stock 
Center. Other antibodies used were to FasII37 (1D4; 1:50) and 
to Ncadherin38 (DNEX#8; 1:50), both from the Developmental 
Studies Hybridoma Bank (developed under the auspices of the 
US National Institute of Child Health and Human Development 
and maintained by The University of Iowa, Iowa City, Department 
of Biology).

BrainAligner implementation. To maximize the robustness 
of the automatic alignment and avoid being entrapped in local 
minima, in BrainAligner we used sequential global affine align
ment in three steps. First we aligned the center of mass of a sub
ject image to that of the target image. Then we rescaled a subject 
image proportionally so that its principal axis (obtained via 
principal component analysis) had the same length with that of 
the target image. Finally, we rotated a subject image around its 
center of mass and thus detected the angle for which the target 
image and the rotated subject image had the greatest overlap.  

As normally we did not have shearing in the 3D images, we did 
not optimize it for the affine transform. The rescaling step might 
also be skipped as brains imaged under the same microscope set
ting had similar size.

For the local nonlinear alignment, we computed the features 
based on adaptively determined image patches. The radius of 
an image patch was calculated using the formula 48 × S/512, in 
which S is the largest image dimension in three dimensions. To 
reduce the computational complexity, we searched matching 
landmarks hierarchically, first at a coarse level (grid spacing of  
16 voxels) and then at a fine level (grid spacing of 1 voxel) around 
the best matching location (within a 13 voxel × 13 voxel × 7 voxel 
window) detected at a coarse level. The mutual information was 
calculated on discretized image voxel intensity, by binning the 
grayscale intensity into 16 evenly spaced intensity levels. For the 
random sample consensus (RANSAC) step, we implemented the 
constraint that all matching landmark pairs would satisfy a global 
affine transformation. Thus we computed the Euclidian distances 
of all initial matching landmark pairs after such a transformation 
and removed the matching pairs that had more than two times 
the s.d. of the distance distribution.

We designed a fast way to compute the thinplatespline20 
(TPS)based displacement field, which was used to warp images. 
We computed the displacement field using TPS for a subgrid 
(with 4 voxel × 4 voxel × 4 voxel downsampling) of an entire 
image, followed by trilinear interpolation for all remaining voxels 
to approximate the entire TPS transform. This method resulted in 
very similar displacement field compared to a direct implementa
tion of TPS but is about 50 times faster.

Data analyses. For the colocalization analysis using coexpressed 
GAL4 and LexA patterns, we measured distances between a series 
of pairs of highcurvature locations along the respective co
expressed GAL4 and LexA patterns in the ALC tract. We treated 
these distances as the ground truth of characteristic features that 
should be matched in computationally aligned brains. Then in 
the aligned brains, we visually detected these matching locations 
and produced the respective distance measurements. The error 
of registration was defined as the absolute value of the difference 
between the corresponding distances.

The correlation analysis for the Flpout data was performed 
around each of the colocalized subset clone patterns and the 
 parent pattern. We first used V3DNeuron21 to trace the co
 localized neurite tracts, which were used to define the ‘foreground’ 
image region of interest for the correlation analysis. Suppose a 
foreground region of interest had K voxels, then we randomly 
sampled another K voxels from the remaining brain area as the 
negative control for calculating the correlation coefficient for this 
colocalized subset clone pattern and the parent pattern.

In the analysis of GAL4 pattern distribution, for an aligned 
brain image, we calculated the mean value, m, and s.d. (σ) of 
the entire brain area. We defined a brain compartment as hav
ing neuronal pattern(s) if (i) it had any absolutely visible voxels 
(typically intensity > 50 for an 8bit image) and (ii) its voxel 
intensities were outstanding compared to the average expression 
signal in the entire brain area (that is, intensity > m + 3 × σ).  
The names of brain compartments we used are consistent with 
the ongoing effort of an international fruit fly brain nomencla
ture group.
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Data and software. The BrainAligner and V3DAtlasViewer soft
ware are available as Supplementary Software 1. BrainAligner,  
the optimized target brain as well as additional information 
about BrainAligner, can also be downloaded from http://penglab. 
janelia.org/proj/brainaligner/. The V3D AtlasViewer program is 
a module of V3D21, which can be freely downloaded from http://
penglab.janelia.org/proj/v3d/. Atlas files and representative con
focal images are available on request.
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