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Abstract

The rules of d -separation provide a theoret-
ical and algorithmic framework for deriving
conditional independence facts from model
structure. However, this theory only applies
to Bayesian networks. Many real-world sys-
tems are characterized by interacting het-
erogeneous entities and probabilistic depen-
dencies that cross the boundaries of entities.
Consequently, researchers have developed ex-
tensions to Bayesian networks that can repre-
sent these relational dependencies. We show
that the theory of d -separation inaccurately
infers conditional independence when applied
directly to the structure of probabilistic mod-
els of relational data. We introduce rela-
tional d -separation, a theory for deriving con-
ditional independence facts from relational
models, and we provide a new representa-
tion, the abstract ground graph, that enables
a sound, complete, and computationally ef-
ficient method for answering d -separation
queries about relational models.

1 INTRODUCTION

The rules of d -separation are the foundation for al-
gorithmic derivation of the conditional independence
facts implied by the structure of Bayesian networks
(Geiger et al., 1990). Accurate reasoning about condi-
tional independence facts is the basis for constraint-
based algorithms, such as PC and FCI (Spirtes
et al., 2000), and hybrid approaches, such as MMHC
(Tsamardinos et al., 2006), that learn the structure of
Bayesian networks. When interpreting a Bayesian net-
work causally, the causal Markov condition (variables
are independent of their non-effects given their direct
causes) and d -separation connect the causal structure
and conditional independence (Scheines, 1997).

Bayesian networks assume that data instances are
independent and identically distributed (i.i.d.), but
many real-world systems are characterized by inter-
acting, heterogeneous entities. For example, citation
data involve researchers collaborating and authoring
scholarly papers that cite prior work. Over the past
15 years, researchers in statistics and computer sci-
ence have devised more expressive classes of directed
graphical models, such as probabilistic relational mod-
els (PRMs), which remove the assumptions of i.i.d.
data (Getoor and Taskar, 2007). Relational models
generalize other classes of models that incorporate in-
terference, spillover effects, or violations of the stable
unit treatment value assumption (SUTVA) (Hudgens
and Halloran, 2008; Tchetgen and VanderWeele, 2012)
and multilevel or hierarchical models (Gelman and
Hill, 2007). Many applications have benefited from
learning and reasoning with relational models, such
as the analysis of gene regulatory interactions (Segal
et al., 2001), scholarly citations (Taskar et al., 2001),
and biological cellular networks (Friedman, 2004).

In this paper, we show that d -separation does not cor-
rectly produce conditional independence facts when
applied directly to relational models. We introduce an
alternative representation, the abstract ground graph,
that enables algorithmic derivation of conditional in-
dependence facts from relational models. We show
that this algorithm is sound, complete, and computa-
tionally efficient. Proofs and empirical results can be
found in an extended version (Maier et al., 2013).

1.1 WHY D-SEPARATION IS USEFUL

A Bayesian network, as a model of a joint probability
distribution, enables a wide array of useful tasks by
supporting inference over an entire system of variables.
Näıvely specifying a joint distribution by hand requires
an exponential number of states; however, Bayesian
networks leverage the Markov condition to represent
conditional independencies in order to compactly spec-
ify a joint probability distribution.



Alternative to the Markov condition, but equivalent in
its implications (Neapolitan, 2004), d -separation pro-
vides an algorithmic framework to derive the condi-
tional independencies encoded by the model. These
conditional independence facts are guaranteed to hold
in every faithful distribution the model represents and,
consequently, any sampled data instance. The seman-
tics of holding across all distributions is the main rea-
son why d -separation is a useful theory.

Causal discovery, the task of learning generative mod-
els of observational data, superficially appears to be
a futile endeavor. Yet learning and reasoning about
the causal structure of real domains is a primary goal
for many researchers. Fortunately, d -separation of-
fers a connection between causal structure and con-
ditional independence. The theory of d -separation
can be leveraged to constrain the hypothesis space by
eliminating models that are inconsistent with observed
conditional independence facts. While many distribu-
tions do not lead to uniquely identifiable models, this
approach (under simple assumptions) frequently dis-
covers useful causal knowledge for domains that can
be represented as a Bayesian network.

As described above, relational models more closely
represent the real-world domains that many social sci-
entists and other researchers investigate. To success-
fully learn causal models from observational data of
relational domains, we need a similar theory for deriv-
ing conditional independence from relational models.
In this paper, we formalize the theory of relational d -
separation, providing a theoretical framework for algo-
rithms that learn causal models of relational domains.

2 EXAMPLE

Consider a corporate analyst who was hired to iden-
tify which products and employees are effective and
productive for some organization. If the company is
structured as a pure project-based organization, the
analyst may collect data as described by the rela-
tional schema in Figure 1(a) (without the dependen-
cies). The schema denotes that employees can collab-
orate and work on multiple products, each of which
is funded by a specific business unit. The analyst has
also obtained variables on each entity—competence of
employees, the success of each product, and the rev-
enue of business units. In this example, the organi-
zation consists of two employees, two products, and a
single business unit, shown in the relational skeleton
(in gray) in Figure 1(b).

The analyst may believe that the organization oper-
ates under the model depicted in Figure 1(a). The
competence of an employee affects the success of prod-
ucts they develop, and the revenue of a business unit

DEVELOPS

PRODUCT
Success FUNDS

EMPLOYEE

Competence

BUSINESS-UNIT

Revenue

[PRODUCT, DEVELOPS, EMPLOYEE].Competence  [PRODUCT].Success
[BUSINESS-UNIT, FUNDS, PRODUCT].Success  [BUSINESS-UNIT].Revenue

(a) Example relational model. Competence of employ-
ees cause the success of products they develop, which in
turn influences the revenue received by the business unit
funding the product. The dependencies are specified by
relational paths, listed below the graphical model.
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(b) Example fragment of a ground graph. The success
of Laptop is influenced by the competence of both Roger
and Sally. The revenue of Devices is caused by the suc-
cess of all its funded products—Laptop and Tablet.

Figure 1: An example relational model and ground
graph for the organization domain.

is influenced by the success of products that it funds.
The analyst then needs to verify the model structure
in order to accurately advise executive decisions, such
as determining which business units should have in-
creased funding. Perhaps the analyst has experience
in graphical models and decides to check that the con-
ditional independencies encoded by the model are re-
flected in the data, assuming the faithfulness condi-
tion. The analyst then näıvely applies d -separation
to the model structure in an attempt to derive these
conditional independencies. However, applying d -
separation directly to relational models does not cor-
rectly derive the set of conditional independencies. In
other words, d -separation applied directly to relational
models is not equivalent to the Markov condition.

Näıvely applying d -separation to the model in Fig-
ure 1(a) suggests that employee competence is condi-
tionally independent of the revenue of business units
given the success of products. To see why this ap-
proach is flawed, we must consider the ground graph.
A necessary precondition for inference is to apply a
model to a data instantiation, which yields a ground
graph to which d -separation can be applied. For a
Bayesian network, a ground graph consists of repli-
cates of the model structure for each data instance.
In contrast, a relational model defines a template that
results in ground graphs with varying structure de-
pending on the data instantiation.

Figure 1(b) shows the ground graph for the relational
model in Figure 1(a) applied to the relational skele-
ton corresponding to this small company. This ground
graph illustrates that conditioning on product success



activates a path through the competence of other em-
ployees who develop the same products—we call this a
relational d-connecting path.1 Checking d -separation
on the ground graph indicates that to d -separate em-
ployee competence from business unit revenue, we can-
not condition only on the success of developed prod-
ucts, but should also condition on the competence of
other employees who work on those products, e.g.,
Roger.Competence ⊥⊥ Devices.Revenue |

{Laptop.Success, Sally.Competence}.

In fact, this is not the only conditional independence
fact for which d -separation produces an incorrect re-
sult for this example model. Only 25% of the pairs
of relational variables can be described by direct in-
spection of the model, and of those (such as the above
example), 75% yield an incorrect conclusion.

It might appear that, since the standard rules of d -
separation apply to Bayesian networks and the ground
graphs of relational models are also Bayesian networks,
that applying d -separation to relational models is a
non-issue. However, applying d -separation to a single
ground graph may result in excessively long runtime
if the instantiation is large—especially given that re-
lational databases can be arbitrarily large. Further,
and more importantly, the semantics of d -separation
require that conditional independencies hold across all
possible model instantiations. Although d -separation
can apply directly to a ground graph, this semantics
prohibits reasoning about a single ground graph.

The conditional independence facts derived from d -
separation hold for all faithful distributions repre-
sented by a Bayesian network. Therefore, the impli-
cations of relational d -separation should analogously
hold for all faithful distributions of variables for the
space of all possible ground graphs. It is simple to
show that d -separation holds for any ground graph of
a Bayesian network—every ground graph consists of
a set of disconnected subgraphs, each of which has a
structure identical to that of the model. However, re-
lational models produce ground graphs that vary with
the relational structure of the underlying data (e.g.,
different products are developed by varying numbers
of employees). As a result, relational d -separation
queries must be answered without respect to ground
graphs. Additionally, the example illustrates how re-
lational dependencies can exhibit d -connecting paths
that are only manifest in ground graphs, not the model
representation. In Section 4, we describe a new repre-
sentation, the abstract ground graph, that can be used
to reason about d -separation for relational models.

1The indirect effect attributed to a relational d-
connecting path is often referred to as interference, a
spillover effect, or a violation of SUTVA because the treat-
ment of one instance affects the outcome of another.

3 CONCEPTS OF RELATIONAL

DATA AND MODELS

In this section, we formally define the concepts of re-
lational data and models, providing the basis for the
theory of relational d -separation. Note that the rela-
tional representation is strictly more expressive than
the representation assumed by Bayesian networks.

A relational schema is a top-level description of
what data exist in a particular domain. Specifically
(adapted from Heckerman et al., 2007):

Definition 1 (Relational schema) A relational

schema S = (E ,R,A) consists of a set of entity
classes E = {E1, . . . , Em}; relationship classes
R = {R1, . . . , Rn}, where each Ri = {E1, . . . , Ej}
with Ei, Ej ∈ E and Ei �= Ej ; attribute classes A(I)
for each item I ∈ E ∪ R; and cardinality function
card(R,E)={one, many} for each R∈R and E∈R.

A relational schema can be represented graphically
with an entity-relationship (ER) diagram. An exam-
ple relational schema is shown in Figure 1(a), with
the exception of the model’s dependencies (directed
arrows). Entities are rectangular boxes, relationships
are diamonds connected to their associated entities, at-
tributes are ovals residing on entities and relationships,
and cardinalities are represented with crow’s foot no-
tation.

A relational schema is a template for a relational
skeleton—an instantiation of entities and relation-
ships. Specifically (adapted from Heckerman et al.,
2007):

Definition 2 (Relational skeleton) A relational

skeleton σ is an instantiation of entity sets σ(E) for
each E ∈ E and relationship sets σ(R) for each R ∈ R,
adhering to its cardinality constraints. Let r ∈ σ(R)
where R = {E1, . . . , Ej} be denoted as r(e1, . . . , ej)
where ei ∈ σ(Ei) and Ei ∈ E .

An example of a relational skeleton can be seen (in
gray) underlying the ground graph of Figure 1(b).

In order to specify a model over a relational domain,
we must define a space of possible variables and de-
pendencies. For relational data, the variable space in-
cludes intrinsic entity and relationship attributes, and
also the variables on other entities and relationships
that are reachable by paths along the relational skele-
ton. As above, paths in a relational skeleton are in-
stantiations of path templates on a relational schema.

Definition 3 (Relational path) A relational path

[I1, . . . , Ik] for relational schema S is an alternating
sequence of entity and relationship classes I1, . . . , Ik ∈



E ∪ R such that for all j > 1: (1) if Ij ∈ E , then
Ij−1 ∈ R and Ij participates in Ij−1 (Ij ∈ Ij−1),
(2) if Ij ∈ R, then Ij−1 ∈ E and Ij−1 partici-
pates in Ij (Ij−1 ∈ Ij), and (3) for each ordered
triple �Ij−1, Ij , Ij+1� in [I1, . . . , Ik], if Ij ∈ R, then
Ij−1 �= Ij+1; otherwise, if Ij ∈ E , then if Ij−1 = Ij+1

then card(Ij−1, Ij) = many. I1 is called the base item,
or perspective, of the relational path.

Definition 3 generalizes the notion of “slot chains”
from PRMs (Getoor et al., 2007) by including cardi-
nality constraints and formally describing the seman-
tics under which repeated item classes may appear on
a path. Condition (3) in the definition removes paths
that would invariably reach an empty terminal set (see
Definition 4). Also, since relational paths may become
arbitrarily long, the path length is ordinarily limited
by a user-specified, domain-specific hop threshold.

An instantiated relational path produces a set of
traversals on a relational skeleton. However, the quan-
tity of interest is not the paths themselves, but the set
of reachable item instances:

Definition 4 (Terminal set: relational path)
For any skeleton σ and any i1 ∈ σ(I1), a terminal set

P |i1 for relational path P = [I1, . . . , Ik] can be defined
inductively as

[I1]|i1 = {i1}
[I1, . . . , Ik−1, Ik]|i1 =�

ik−1∈[I1,...,Ik−1]|i1
{ik | ((ik−1 ∈ ik if Ik ∈ R)

∨ (ik ∈ ik−1 if Ik ∈ E))
∧ ik /∈ [I1, . . . , Ij ]|i1 for j = 1 to k − 1}

A terminal set of a relational path consists of reachable
instances of class Ik, the terminal item on the path.
Conceptually, a terminal set is produced by traversing
the skeleton beginning at a single base item i1 ∈ σ(I1),
following instances of the items in the relational path,
and reaching a target set of Ik instances. The defini-
tion implies a “bridge burning” semantics under which
no instantiated items are revisited.2

Example 1 The set of relational paths for the
schema in Figure 1(a) from the Employee perspec-
tive with hop threshold h = 4 includes the follow-
ing: [Employee] (employees, 0 hops), [Employee,
Develops, Product] (products developed by em-
ployees, 2 hops), and [Employee, Develops, Prod-
uct, Develops, Employee] (other employees devel-
oping the same products, 4 hops). Let Sally be a

2The bridge burning semantics yields terminal sets that
are necessarily subsets of terminal sets which would other-
wise be produced without bridge burning. Although this
appears to be limiting, it actually enables a strictly more
expressive class of relational models.

base item instance. Then terminal sets for the previ-
ous relational paths are: [Employee]|Sally = {Sally},
[Employee, Develops, Product]|Sally = {Laptop,
Tablet}, and [Employee, Develops, Product, De-
velops, Employee]|Sally = {Roger}. The bridge
burning semantics enforces that Sally is not also in-
cluded in this last terminal set. �

Most relational paths start and end with different item
classes. However, there are pairs of distinct relational
paths that start and end with the same item classes.
For these pairs, it is possible that their terminal sets,
when originating at the same base item instance, will
have items in common. The following lemma states
that if two relational paths with the same base and
target items diverge in the middle of the path, then for
some relational skeleton, their terminal sets will have
a non-empty intersection. This property is important
to consider for relational d -separation, and this is the
only form for which non-empty intersection can occur.

Lemma 1 For any schema S and any two rela-

tional paths P1 = [I1, . . . , Im, . . . , Ik] and P2 =
[I1, . . . , In, . . . , Ik] with Im �= In, there exists a skele-

ton σ such that P1|i1 ∩ P2|i1 �= ∅ for some i1 ∈ σ(I1).

Example 2 Let Path1 = [Employee, Devel-
ops, Product, Develops, Employee, Devel-
ops, Product], for which terminal sets yield other
products developed by collaborating employees. Let
Path2 = [Employee, Develops, Product, Funds,
Business-Unit, Funds, Product], for which termi-
nal sets consist of other products funded by the busi-
ness units funding products developed by a given em-
ployee. For base item instance Roger: Path1|Roger =
{Tablet} and Path2|Roger = {Tablet}. �

Given the definition for relational paths, it is simple
to define relational variables and their terminal sets.

Definition 5 (Relational variable) A relational

variable [I1, . . . , Ik].V consists of a relational path
[I1, . . . , Ik] and an attribute class V ∈ A(Ik).

Definition 6 (Terminal set: relational variable)
For any skeleton σ and i1∈σ(I1), a terminal set P.V |i1
for relational variable P.V = [I1, . . . , Ik].V is the set
of variable instances {ik.V | V ∈ A(ik) ∧ ik ∈ P |i1}.

As a notational convenience, if X is a set of relational
variables, all from a common perspective I1, then we
say that X|i1 for some item i1 ∈ σ(I1) is the union of
all terminal sets, {x | x ∈ X|i1 ∧ X ∈ X}. Given the
formal definitions for relational variables, we can now
define relational dependencies.

Definition 7 (Relational dependency) A rela-

tional dependency [I1, . . . , Ik].V1 → [I1].V2 consists of



two relational variables with a common base item and
corresponds to a directed probabilistic dependence
from [I1, . . . , Ik].V1 to [I1].V2.

Depending on the context, [I1, . . . , Ik].V1 and [I1].V2

can be referred to as treatment and outcome, cause

and effect, or parent and child. Without loss of gen-
erality, Definition 7 provides a canonical specification
for dependencies, with the child relational variable re-
stricted to singleton paths, thus ensuring that terminal
sets of child relational variables consist of single values.

Example 3 The dependencies in the relational
model displayed in Figure 1(a) can be specified as:
[Product, Develops, Employee].Competence →
[Product].Success (product success is influenced
by the competence of the employees developing
the product), and [Business-Unit, Funds, Prod-
uct].Success → [Business-Unit].Revenue (the suc-
cess of the products funded by a business unit influ-
ences that unit’s revenue). �

A relational model is a schema paired with a collection
of relational dependencies, defined as:

Definition 8 (Relational model) The structure of
a relational model M = (S,D) consists of a schema S
and a set of relational dependencies D defined over S.

A relational model can be represented graphically by
superimposing dependencies on the ER diagram of a
relational schema (see Figure 1(a) for an example).
This definition of relational models is consistent with
and yields structures expressible as DAPER models
(Heckerman et al., 2007). These relational models are
also equivalent to PRMs, but we generalize slot chains
as relational paths and provide a formal semantics for
their instantiation. These models also generalize plate
models because dependencies can be specified with ar-
bitrary relational paths as opposed to simple intersec-
tions among plates (Buntine, 1994; Gilks et al., 1994).

Relational models only define coherent joint probabil-
ity distributions if they produce acyclic model instan-
tiations (i.e., ground graphs, defined below). A useful
construct for checking model acyclicity is the class de-
pendency graph—a directed graph with nodes for each
attribute of each item class and edges between pairs of
attributes supported by relational dependencies in the
model (Getoor et al., 2007). If the relational depen-
dencies form an acyclic class dependency graph, then
every possible ground graph of that model is acyclic as
well. All future references to acyclic relational models
refer to relational models having dependency struc-
tures that form acyclic class dependency graphs.

A parameterized relational model contains conditional
probability distributions for every attribute class A(I)

for each I ∈ E ∪R in order to represent a joint proba-
bility distribution. Similar to Bayesian networks, the
joint distribution factorizes according to the condi-
tional distributions given a relational skeleton σ as

P (GGMσ)=
�

I∈E∪R

�

X∈A(I)

�

i∈σ(I)

P (i.X | parents(i.X))

where GGMσ is the ground graph of the model and
skeleton, defined below. Note that without a gen-
erative model of relational skeletons, these relational
models are not truly generative as the skeleton must be
generated prior to the attributes. However, the same
issue occurs for Bayesian networks—relational skele-
tons consist of disconnected entity instances, but the
number of such instances to create is not described by
the model. We choose simple processes for generating
skeletons and focus on relational models of attributes,
leaving structural causes and effects as future work.

Just as the relational schema is a template for skele-
tons, a relational model is a template for ground
graphs—dependencies applied to skeletons.

Definition 9 (Ground graph) The ground graph

GGMσ = (V,E) for relational model M = (S,D) and
skeleton σ is a directed graph with nodes V = A(σ) =
{i.X | I ∈ E ∪R ∧ X ∈ A(I) ∧ i ∈ σ(I)} and edges
E = {ik.Y → ij .X | ik.Y, ij .X ∈ V ∧ ik.Y

∈ [Ij , . . . , Ik].Y |ij ∧ [Ij , . . . , Ik].Y → [Ij ].X ∈ D}.

A ground graph is a directed graph, with a node for
every variable of every entity and relationship instance
in a skeleton, and an edge between pairs of variable in-
stances belonging to the terminal sets of the relational
variables of all dependencies in a model. In fact, given
an acyclic relational model, the ground graph has the
same semantics as a Bayesian network (Getoor, 2001;
Heckerman et al., 2007). Figure 1(b) displays an ex-
ample ground graph superimposed on a skeleton.

By Lemma 1 and Definition 9, the same canonical de-
pendency can connect many relational variables. If
the terminal sets involve ik.Y and ij .X, then there
is a dependency between all relational variables for
which ik.Y and ij .X are elements. These implied
dependencies form part of the challenge of identify-
ing independence in relational models. Additionally,
the intersection between the terminal sets of two re-
lational paths is crucial for reasoning about indepen-
dence. Since d -separation only guarantees indepen-
dence when there are no d -connecting paths, we must
consider all possible paths among variable instances,
any one of which may be a member of multiple rela-
tional variables. In Section 4, we define relational d -
separation and provide an appropriate representation,
the abstract ground graph, that enables straightfor-
ward reasoning about d -separation.



4 RELATIONAL D-SEPARATION

Conditional independence facts are entailed by the
rules of d -separation, but only for simple directed
acyclic graphs. Recall that every ground graph of a
Bayesian network consists of a set of identical copies
of the model structure. Thus, the implications of d -
separation on Bayesian networks hold for every ground
graph. In contrast, relational models are templates
for ground graphs that vary with underlying skeletons.
That is, the set of distributions represented by a rela-
tional model is not only parameterized by conditional
probabilities, but also by the space of valid skeletons
given by the schema. Since conditional independence
facts are only useful when they hold across all possible
model instantiations, reasoning about d -separation for
relational models is inherently more challenging and
leads to the following definition:

Definition 10 (Relational d-separation) Let X,
Y, and Z be three distinct sets of relational vari-
ables for perspective B ∈ E ∪R defined over relational
schema S. Then, for relational model M, X and Y
are d -separated by Z if and only if, for any skeleton σ,
X|b and Y|b are d -separated by Z|b in ground graph
GGMσ for all b ∈ σ(B).

In other words, for X and Y to be d -separated by
Z for relational model M, d -separation must hold for
all instantiations of those relational variables for any
possible skeleton. This is a conservative definition, but
it is consistent with the semantics of d -separation on
Bayesian networks—it guarantees independence, but
it does not guarantee dependence. If there exists even
one valid skeleton and faithful distribution represented
by the relational model for which X⊥⊥/ Y | Z, then X
and Y are not d -separated by Z.

Given the semantics specified in Definition 10, answer-
ing relational d -separation queries is challenging for
the following reasons:

All-ground-graphs semantics: Although it is possible
to verify d -separation on a single ground graph of a re-
lational model, the conclusion may not generalize and
ground graphs can be arbitrarily large. The semantics
of d -separation on Bayesian networks also holds for all
possible ground graphs. However, the ground graphs
of a Bayesian network consist of identical copies of the
structure of the model, and it is sufficient to reason
about d -separation on a single subgraph.

Relational models are templates: Relational models
appear to be directed acyclic graphs, but they are tem-
plates for constructing ground graphs. The rules of
d -separation do not directly apply to relational mod-
els, only to their ground graphs. Applying the rules

of d -separation to a relational model frequently leads
to incorrect conclusions because of confounding paths
that are only manifest in ground graphs.

Terminal sets of relational variables may intersect :
The terminal sets of two different relational variables
may have non-empty intersections, as described by
Lemma 1. Consequently, there exist non-intuitive im-
plications of dependencies that d -separation must ac-
count for, such as the relational d -connecting paths in
the example in Section 2.

Relational dependency specification: Relational mod-
els are defined with canonical dependencies, each spec-
ified from a single perspective. However, variables in
a ground graph may contribute to the terminal sets of
multiple relational variables, each defined from differ-

ent perspectives. Thus, we need methods to translate
canonical dependencies to produce the implied depen-
dencies between arbitrary relational variables.

4.1 ABSTRACT GROUND GRAPHS

The definition of relational d -separation and its chal-
lenges suggest a solution that abstracts over all possi-
ble ground graphs and explicitly represents the poten-
tial intersection between the terminal sets of pairs of
relational variables. We introduce a new lifted repre-
sentation, called the abstract ground graph, that cap-
tures all dependencies among arbitrary relational vari-
ables for any ground graph, using knowledge of only
the schema and the model.

Definition 11 (Abstract ground graph) An ab-

stract ground graph AGGMBh = (V,E) for relational
model M = (S,D), perspective B ∈ E ∪ R, and hop
threshold h ∈ N0 is an abstraction of the dependen-
cies D for all possible ground graphs GGMσ of M on
arbitrary skeletons σ.

The set of nodes in AGGMBh, V = RV ∪ IV ,
is the union of all relational variables RV =�
[B, . . . , Ij ].V | length([B, . . . , Ij ]) ≤ h + 1

�
and the

intersection between pairs of relational variables that
may intersect IV =

�
X ∩ Y | X,Y ∈ RV ∧ X =

[B, . . . , Ik, . . . , Ij ].V ∧ Y = [B, . . . , Il, . . . , Ij ].V ∧
Ik �= Il

�
.

The set of edges in AGGMBh is E = RVE ∪ IVE ,
where RVE ⊂ RV × RV and IVE ⊂ IV × RV ∪
RV × IV . RVE is the set of edges between pairs
of relational variables: RVE =

�
[B, . . . , Ik].V1 →

[B, . . . , Ij ].V2 | [Ij , . . . , Ik].V1 → [Ij ].V2 ∈ D ∧
[B, . . . , Ik] ∈ extend([B, . . . , Ij ], [Ij , . . . , Ik])

�
.

IVE is the set of edges inherited from both rela-
tional variable sources of every intersection variable:
IVE =

�
X → [B, . . . , Ij ].V2 | X = P1.V1 ∩ P2.V1 ∈



IV ∧ (P1.V 1 → [B, . . . , Ij ].V2 ∈ RVE ∨ P2.V1 →
[B, . . . , Ij ].V2 ∈ RVE )

�
∪

�
[B, . . . , Ij ].V1 → X | X =

P1.V2 ∩ P2.V2 ∈ IV ∧ ([B, . . . , Ij ].V1 → P1.V 1 ∈
RVE ∨ [B, . . . , Ij ].V1 → P2.V1 ∈ RVE )

�
.

The extend method is described extensively in Maier
et al. (2013). Informally, this method translates de-
pendencies specified in the model into dependencies
in the abstract ground graph. The construction of an
abstract ground graph for relational model M, per-
spective B, and hop threshold h follows three sim-
ple steps: (1) Add a node for all relational variables,
with relational path length limited by h. (2) Insert
edges for the direct causes of every relational variable.
(3) For each pair of potentially intersecting relational
variables, add a new “intersection” node that inherits
the direct causes and effects from both of its sources.
Then, to answer queries of the form “Are X and Y
d -separated by Z?”, simply (1) augment X, Y, and Z
with their corresponding intersection variables and (2)
apply the rules of d -separation on the abstract ground
graph for the common perspective of X, Y, and Z.

Example 4 Figure 2 shows the abstract ground
graph AGGM,Employee,6 from the Employee perspec-
tive with h = 6. As in Section 2, we are in-
terested in d -separating individual employee compe-
tence (X = {[Employee].Competence}) from the
revenue of the employee’s funding business units
(Y = {[Employee, Develops, Product, Funds,
Business-Unit].Revenue}). Applying the rules of
d -separation to the abstract ground graph, we see
that the conditioning set Z must include both product
success ([Employee, Develops, Product].Success)
and the competence of other employees developing the
same products ([Employee, Develops, Product,
Develops, Employee].Competence). For h = 6,
augmenting X, Y, and Z with their corresponding
intersection variables does not result in any changes.
For h = 8, the abstract ground graph includes a node
for relational variable [Employee, Develops, Prod-
uct, Develops, Employee, Develops, Product,
Funds, Business-Unit].Revenue (the revenue of the
business units funding the other products of collabo-
rating employees) which, by Lemma 1, could have a
non-empty intersection with [Employee, Develops,
Product, Funds, Business-Unit].Revenue. There-
fore, Y would also include the intersection with this
other relational variable. However, for this query, the
conditioning set Z for h = 6 happens to also d -separate
at h = 8 (and any h ∈ N0). �

Using the algorithm devised by Geiger et al. (1990),
relational d -separation queries can be answered in
O(|E|) time with respect to the number of edges in
the abstract ground graph. In practice, the size of an

abstract ground graph depends on properties of the
relational schema and model (e.g., the number of enti-
ties, the types of cardinalties, the number of dependen-
cies), as well as the hop threshold. For the example in
Figure 2, the abstract ground graph has 7 nodes and 7
edges (including 1 intersection node with 2 edges); for
h = 8, it would have 13 nodes and 21 edges (including
4 intersection nodes with 13 edges). Abstract ground
graphs are invariant to the size of ground graphs, even
though ground graphs can be arbitrarily large—that
is, relational databases have no maximum size.

4.2 PROOF OF CORRECTNESS

The correctness of our approach to relational d -
separation relies on several facts: (1) d -separation is
valid for directed acyclic graphs (DAGs); (2) ground
graphs are DAGs; and (3) abstract ground graphs
are directed acyclic graphs that represent exactly the
edges that could appear in all possible ground graphs.
It follows that d -separation on abstract ground graphs,
augmented by intersection variables, is sound and com-
plete for all ground graphs. Using the previous defi-
nitions and lemmas, the following sequence of results
proves the correctness of our approach to identifying
independence in relational models.

Theorem 1 The rules of d-separation are sound and

complete for directed acyclic graphs.

This result is due to Verma and Pearl (1988) for sound-
ness and Geiger and Pearl (1988) for completeness.
Theorem 1 implies that (1) all conditional indepen-
dence facts derived by d -separation on a Bayesian net-
work hold in any faithful distribution represented by
that model (soundness) and (2) all conditional inde-
pendence facts that hold in a faithful distribution can
be inferred from d -separation applied to the Bayesian
network encoding that distribution (completeness).

Lemma 2 For any acyclic relational model M and

skeleton σ, the ground graph GGMσ is a directed

acyclic graph.

This result is due to both Heckerman et al. (2007)
for DAPER models and Getoor (2001) for PRMs.
Lemma 2 states that any ground graph of an acyclic
relational model is just a Bayesian network. By The-
orem 1, d -separation is sound and complete when ap-
plied directly to a ground graph. However, Defini-
tion 10 explicitly states that relational d -separation
must hold across all possible ground graphs, which
is the reason for constructing the abstract ground
graph representation. Next, we introduce the notion
of (B, h)-reachability, which describes the conditions
under which we can expect an edge in a ground graph
to be represented in an abstract ground graph.



[EMPLOYEE].Competence [EMPLOYEE, DEVELOPS, PRODUCT].Success [EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT].Revenue

[EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT, FUNDS, PRODUCT].Success

[EMPLOYEE, DEVELOPS, PRODUCT, DEVELOPS, EMPLOYEE].Competence

[EMPLOYEE, DEVELOPS, PRODUCT, DEVELOPS, EMPLOYEE, DEVELOPS, PRODUCT].Success
 
�

[EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT, FUNDS, PRODUCT].Success

[EMPLOYEE, DEVELOPS, PRODUCT, DEVELOPS, EMPLOYEE, DEVELOPS, PRODUCT].Success

Figure 2: The abstract ground graph for the organization domain model in Figure 1(a) from the Employee
perspective with hop threshold h = 6. This abstract ground graph includes one intersection node.

Definition 12 ((B, h)-reachability) Let GGMσ be
the ground graph for some relational model M and
skeleton σ. Then, ik.V1 → ij .V2 ∈ GGMσ is (B, h)-
reachable for perspective B and hop threshold h if
there exist relational variables Pk.V1 = [B, . . . , Ik].V1

and Pj .V2 = [B, . . . , Ij ].V2 such that length(Pk) ≤
h + 1, length(Pj) ≤ h + 1, and there exists a b ∈ σ(B)
where ik ∈ Pk|b and ij ∈ Pj |b.

Example 5 For the ground graph in Figure 1(b),
let B = Employee, h = 6, and let ik.V1 → ij .V2

be the edge Laptop.Success → Devices.Revenue in
the ground graph. This edge is (B, h)-reachable: Set
Pk.V1 = [Employee, Develops, Product].Success,
Pj .V2 = [Employee, Develops, Product, Funds,
Business-Unit].Revenue, and let b= Sally. We have
length(Pk) < 7, length(Pj) < 7, Laptop ∈ Pk|Sally,
and Devices ∈ Pj |Sally. �

Since Definition 12 pertains to edges reachable via a
particular perspective B and hop threshold h, it re-
lates to the reachability of edges in abstract ground
graphs. Specifically, Definition 12 implies that (1) for
an edge in any GGMσ, we can derive a set of abstract
ground graphs for which that edge is (B, h)-reachable,
and (2) for any AGGMBh, we can derive the set of
(B, h)-reachable edges for a given ground graph. Given
(B, h)-reachability, we can now express the soundness
and completeness of abstract ground graphs.

Theorem 2 For any acyclic relational model M, per-

spective B ∈ E ∪ R, and hop threshold h ∈ N0
, the

abstract ground graph AGGMBh is (B, h)-reachably
sound and complete for any ground graph GGMσ for

all skeletons σ.

Theorem 2 guarantees that, up to the hop threshold for
a given perspective, abstract ground graphs capture
all possible paths of dependence between any pair of
variables in any ground graph.

Theorem 3 For any acyclic relational model M, per-

spective B ∈ E ∪R, and hop threshold h ∈ N0
, the ab-

stract ground graph AGGMBh is directed and acyclic.

Theorem 3 ensures that the standard rules of d -
separation can apply directly to abstract ground
graphs because they are acyclic given an acyclic
model. In the following theorem, we define W̄ as
the set of nodes augmented with their correspond-
ing intersection nodes for the set of relational vari-
ables W: W̄ = W ∪

�
W∈W{W ∩ W � | W ∩

W � is an intersection node in AGGMBh}. We also
say that d -separation holds up to a hop threshold h if
there are no d -connecting paths involving a relational
variable with path length greater than h + 1.

Theorem 4 Relational d-separation is sound and

complete for abstract ground graphs up to a specified

hop threshold. Let X, Y, and Z be three distinct sets

of relational variables for perspective B ∈ E ∪ R de-

fined over relational schema S. Then, for any skeleton

σ and for all b ∈ σ(B), X|b and Y|b are d-separated

by Z|b up to hop threshold h in ground graph GGMσ

if and only if X̄ and Ȳ are d-separated by Z̄ on the

abstract ground graph AGGMBh.

Theorem 4 states that d -separation on abstract ground
graphs is a sound and complete solution to identifying
independence in relational models. Given Theorem 1,
the set of conditional independence facts derived from
d -separation on abstract ground graphs is identical to
(up to a specified hop threshold) the set of conditional
independencies in common with all faithful distribu-
tions represented by all possible ground graphs.

5 EXPERIMENTS

To complement the theoretical results, Maier et al.
(2013) presented a series of four experiments to demon-
strate the necessity of the abstract ground graph rep-
resentation and the feasibility of applying relational d -
separation in practice. Here, we summarize the main
conclusions of these four experiments.

First, we tested how frequently d -separation applied
directly to the model structure derived incorrect con-
ditional independencies. We found that 56% of all
queries could not even be represented, and of those



that could be represented and required a non-empty
conditioning set, up to 57% were wrong. These results
indicate that fully specifying abstract ground graphs
is critical for accurately deriving most conditional in-
dependence facts from relational models.

Second, we provided an empirical characterization of
the factors that influence the size of abstract ground
graphs, and, thus, the computational complexity of re-
lational d -separation. This analysis showed that (1)
as the number of entities, relationships, attributes,
and many cardinalities increases, the abstract ground
graph grows exponentially with respect to both nodes
and edges; and (2) as the number of dependencies in
the model increases, the number of edges increases lin-
early, but the number of nodes remains invariant.

Third, because abstract ground graphs can become
large, one might expect that separating sets3 would
also grow to impractical sizes. Fortunately, relational
d -separation produces minimal separating sets that
are empirically observed to be small. We discovered
that, in summation, roughly 83% were marginal in-
dependencies, 13% had separating sets of size 1, and
less than 0.1% had separating sets with more than 5
variables. These results indicate that separating set
size is strongly influenced by model density, primarily
because the number of potential d -connecting paths
increases as the number of dependencies increases.

Finally, we examined how the expectations of the rela-
tional d -separation theory match the results of statis-
tical tests on actual data. We parameterized relational
models with linear effects and found that 98% of all
expected conditional independencies had an average
effect size less than 0.01. The remaining cases that
did exhibit a positive effect were discovered to be due
to an interaction between aggregation and relational
structure, which suggests the need for more accurate
tests of conditional independence for relational data.

6 SUMMARY AND DIRECTIONS

In this paper, we extend the theory of d -separation
to graphical models of relational data. We present
the abstract ground graph, a new representation that
is (B, h)-reachably sound and complete in its abstrac-
tion of dependencies across all possible ground graphs
of a given relational model. We formally define rela-
tional d -separation and offer a sound, complete, and
computationally efficient approach to deriving condi-
tional independence facts from relational models by
exploiting their abstract ground graphs. The proofs

3If X and Y are d-separated given Z, then Z is a sep-
arating set for X and Y. A separating set Z is minimal if
there is no proper subset of Z that is also a separating set.

for all theorems presented in this paper, as well as an
empirical analysis of relational d -separation, can be
found in Maier et al. (2013).

The results of this paper imply potential flaws in the
design and analysis of some real-world studies. If re-
searchers of social or economic systems choose inap-
propriate data and model representations, then their
analyses may omit important classes of dependencies.
Our theory implies that choosing a propositional rep-
resentation from an inherently relational domain may
lead to serious errors. Abstract ground graphs define
the set of variables that should be included in proposi-
tionalizations. The absence of any relational variable
may violate causal sufficiency, which could result in the
inference of a causal dependency where conditional in-
dependence was not detected. Our work indicates that
researchers should carefully consider how to represent
their domains in order to accurately reason about con-
ditional independence.

Abstract ground graphs also present an opportunity to
derive new edge orientation rules for algorithms that
learn the structure of relational models, such as RPC
(Maier et al., 2010). Deriving and formalizing the im-
plications of relational d -separation is a main direction
of future research. This work has also focused solely
on relational models of attributes; future work should
consider models of relationship and entity existence to
fully characterize generative models of relational struc-
ture. Finally, the theory could also be extended to in-
corporate deterministic dependencies, as D-separation
extends d -separation for Bayesian networks.
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