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Abstract shed new light on recent algorithms. What are the key chal-
N lenges and what are the important components that make

a blurred image when the blur kernel is unknown. Recent blind deconvolution possible? Additionally, which asygect

algorithms have afforded dramatic progress, yet many as- of the problem shoul_d attract further re_zsearch eﬁorts? _
pects of the problem remain challenging and hard to under- ~ ©Oneé of the puzzling aspects of blind deconvolution is
stand. The goal of this paper is to analyze and evaluate re-the failure of the MAP approach. Recent papers empha-
cent blind deconvolution algorithms both theoreticallydan ~ SiZ€ the usage of a sparse derivative prior to favor sharp im-
experimentally. We explain the previously reported failur 9es. However, a direct application of this principle has

of the naive MAP approach by demonstrating that it mostly "0t yielded the expected results and all algorithms have
favors no-blur explanations. On the other hand we show "€duired additional components, such as marginalization
that since the kernel size is often smaller than the image@cross all possible images [16, 4, 14], spatially-varying
size a MAP estimation of the kernel alone can be well con- t€rms [7, 19], or solvers that vary their optimization eryerg
strained and accurately recover the true blur. over time [19]. In this paper we analyze _the source of the
The plethora of recent deconvolution techniques makesMAP failure. We show that counter-intuitively, the most
an experimental evaluation on ground-truth data important favorable solution under a sparse prior is usually a blurry
We have collected blur data with ground truth and com- IMmage and nota sharp one. Thus, the global optimum of the
pared recent algorithms under equal settings. Additionall MAP approach is the no-blur explanation. We discuss so-
our data demonstrates that the shift-invariant blur assump 1utions to the problem and analyze the answers provided by

tion made by most algorithms is often violated. existing algorithms. We show that one key property mak-
ing blind deconvolution possible is the strong asymmetry

. between the dimensionalities efandk. While the number
1. Introduction of unknowns inz increases with image size, the dimension-
Blind deconvolution is the problem of recovering a sharp ality of & remains small. Therefore, while a simultaneous
version of an input blurry image when the blur kernel is MAP estimation of both: andk fails, a MAP estimation of
unknown [10]. Mathematically, we wish to decompose a k alone (marginalizing over), is well constrained and re-
blurred image; as covers an accurate kernel. We suggest that while the sparse
y=ko (1) prior is helpful, the key component making blind deconvo-
wherez is a visually plausible sharp image, ahds a non lution possible is not the choice of prior, but the thought-
negative blur kernel, whose support is small compared toful choice of estimator. Furthermore, we show that with
the image size. This problem is severely ill-posed and therea proper estimation rule, blind deconvolution can be per-
is an infinite set of pairéz, k) explaining any observegd formed even with a weak Gaussian prior.
For example, One undesirable solution that perfectly satis Finally, we collect motion-blurred data with ground
fies eq. 1 is the no-blur explanatiohis the delta (identity)  truth. This data allows us to quantitatively compare re-
kernel andz = y. The ill-posed nature of the problem im-  cent blind deconvolution algorithms. Our evaluation sug-
plies that additional assumptions eror & must be intro-  gest that the variational Bayes approach of [4] outperforms
duced. all existing alternatives. This data also shows that th shi
Blind deconvolution is the subject of numerous papers jnvariance convolution model involved in most existing al-

in the signal and image processing literature, to name a fewgorithms is often violated and that realistic camera shake
consider([1, 8,22, 15, 17] and the survey in [10]. Despite the jncludes in-plane rotations.

exhaustive research, results on real world images areyrarel

produced. Recen'g algorithms ha_ve proposed to _address th?. MAP, . estimation and its limitations
ill-posedness of blind deconvolution by characterizings- '

ing natural image statistics [16, 4, 14, 6, 7, 3, 20]. While  In this paper denotes an observed blurry image, which
this principle has lead to tremendous progress, the resultds a convolution of an unknown sharp imagevith an un-
are still far from perfect. Blind deconvolution algorithms known blur kernek, plus noiser (this paper assumes i.i.d.
exhibit some common building principles, and vary in oth- Gaussian noise):

ers. The goal of this paper is to analyze the problem and y=k®x+n. 2

Blind deconvolution is the recovery of a sharp version o



Using capital letters for the Fourier transform of a signal: — orana ) — original
Y, = Ku Xy + N 3)
The goal of blind deconvolution is to infer bothandx
given a single inpuy. Additionally, k& is non negative, and
its support is often small compared to the image size. )
The simplest approach is a maximum-a-posteriori e 0
(MAP,. 1) estimation, seeking a paif, k) maximizing: (@
p(x,kly) o p(ylz, k)p(x)p(k). (4) , = b u = o
For simplicity of the exposition, we assume a uniform prior "
on k. The likelihood termp(y|z, k) is the data fitting term
logp(y|z, k) = —=A|k ® = — y||>. The priorp(z) favors
natural images, usually based on the observation that their
gradient distribution is sparse. A common measure is

logp(z) = =) |ge.i(@)|* + |gy.i(2)|* + C ®)
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whereg, ;(z) andg, ;(x) denote the horizontal and vertical

derivatives at pixef (we use the simplé-1 1] filter) and

C'is a constant normalization term. Exponent valaes 1

lead to sparse priors and natural images usually correspond

to « in the range 0f0.5, 0.8] [21]. Other choices include a

Laplacian priora = 1, and a Gaussian prier = 2. While ©

natural image gradients are very non-Gaussian, we examingsgure 1. The MAR,,, score evaluated on toy 1D signals. Left:

this model because it enables an analytical treatment. sharp and blurred signals. Right: sum of gradienteg p(z) =
The MAP, ;, approach seeks, I%) minimizing >, lgi(x)]* as afunction of.
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. e (6)
Eg. (6) reveals an immediate limitation:
Claim 1 Letz be an arbitrarily large image sampled from
the prior p(z), andy = k ® x. The pair(z, k) optimizing
the MAP, ;. score satisfiegr| — 0 and|k| — oc.

. o . i ) s

15 x 15 windows 25 x 25 windows 45 x 45 windows
Proof: For every pair(x, k) we use a scalas to define a ) 3% _ 1% _ 0% _
new pairz’ = s -z, k' = 1/s - k with equal data fitting Figure 2. MAR,. ;. failure on real image windows. Windows in
|k — sz =K@ — y||2 While the data fitting term which the sharp ex_plana}tlon is favored are marked in red. The
is constant, the prior term improvesas- 0. D percent of windows in which the sharp version is favored el@ses

This observation is not surprising. The most likely image with window size.
under the prior in Eq. (5) is a flat image with no gradients.
One attempt to fix the prObIem is to assume the mean inten- In contrast, F|g 1(b) presents a narrow peak_ B|urring
sity of the blurred and sharp images should be equal, andreduces the peak height, and as a result, the Laplacian prior
constrain the sum df: >, k; = 1. This eliminates the zero  , = 1 favors the blurryz (k is delta) because the absolute
SOlUtion, but Usua”y the no-blur solution is still favored sum of gradients is lower. Examining F|g 1(b_r|ght) sug-
To understand this, consider the 1D signals Fig. 1 gests that the blurred explanation is winning for smaller
that were convolved with a (truncated) Gaussian kekriel  yalues as well. The sharp explanation is favored only for
of standard deviation pixels. We compare two interpreta- |ow alpha values, approaching a binary penalty. However,
tions: 1) the true kernely = k* ® z. 2) the delta kernel  the sparse models describing natural images are not binary,
(no blun)y = k° @y. We evaluate the- log p(z, k|y) score  they are usually in the rangee [0.5,0.8] [21].
(Eg. (6)), while varying ther parameter in the prior. The last signal considered in Fig. 1(c) is a row cropped
For step edges (Fig. 1(a)) MAR. usually succeeds. The  from a natural image, illustrating that natural images con-
edge is sharper than its blurred version and while the Gaus+ajn a lot of medium contrast texture and noise, correspond-
sian prior favors the blurry explanation, appropriate spar  jng to the narrow peak structure. This dominates the statis-
priors (v < 1) favor the correct sharp explanation. tics more than step edges. As a result, blurring a natural
1we keep estimation variables in subscript to distinguistween a image reduces the overall contrast and, as in Fig. 1(b), even
MAP estimation of bothr: andk, to a MAP estimation of: alone. sparse priors favor the blurnyexplanation.




which exploit a MAR, , approach avoid the delta solution
using other assumptions which are less applicable for real
world images. For example, [1] assumesontains an ob-
ject on a flat background with a known compact support.

All these examples highlight the fact that the prior alone
does not favor the desired result. The source of the problem
is that for all o values, the most likely event of the prior
in Eqg. (5) is the fully flat image. This phenomenon is ro-
bust to the exact choice of prior, and replacing the model
Figure 3. (a) Comparison of gradient histograms for blumad in Eq. (5) with higher order derivatives or with more so-
unblurred images sampled frop? (). Blur reduces the aver-  phisticated natural image priors [18, 23] does not change
age gradient magnitude. (b) Expected negative likeliheotlices the result. We also note that the problem is present even if
(probability increases) with blur. the derivatives signal is sampled exactly frpfr) and the

prior is perfectly correct in the generative sense.
In the next section we suggest that, to overcome the

To confirm the above observation, we blurred the image MAP,, . limitation, one should reconsider the choice of es-
in Fig. 2 with a Gaussian kernel of standard deviaiquix- timator. We revisit a second group of blind deconvolution
els. We compared the sum of the gradients in the blurredalgorithms derived from this idea.
and sharp images using = 0.5. For 15 x 15 windows
the blurred image is favored oveT% of the windows, and 3. MAP,, estimation
this phenomenon increases with window size. Fow 45 The limitations of MAP estimation in the case of few
windows, the blurred version is favored at all windows. An- yeasurements have been pointed out many times in esti-
_other observation is_ th_a_t if the sharp explanation does win, mation theory and statistical signal processing [9, 2]. In-
it happens next to significant edges. deed, in the MAR ,, problem we can never collect enough

To understand this, note that blur has two opposite ef- measurements because the number of unknowns grows with
fects on the image likelihood: 1) it makes the signal deriva- the image size. In contrast, estimation theory tells us [9]
tives less sparse, and that reduces the likelihood. 2) It re-that, given enough measurements, MAP estimators do ap-
duces the derivatives variance and that increases its-likel proach the true solution. Therefore, the key to success is
hood. For very specific images, like ideal step edges, theto exploit a special property of blind deconvolution: the
first effect dominants and blur reduces the likelihood. How- strong asymmetry between the dimensionalities of the two
ever, for most natural images the second effect is strongerunknowns. While the dimensionality af increases with
and blur increases the likelihood. To illustrateotpis,i%t the image size, the support of the kernel is fixed and small
be a sequence sampled i.i.d. frof(a?) oc e= 711", 2f @ relative to the image size. The imageloes provide a large
sequence obtained by COﬂVO'Vim@ with a width ¢ box fil- number of measurements for estimatihg As we prove
ter (normalizing the kernel sum 1, andp’ its probability  pelow, for an increasing image size, a MABstimation of
distribution. The expected negative log likelihood (effec i alone (marginalizing over) can recover the true kernel
ing the MAR, ;) of z* under the sharp distributiop’ is: with an increasing accuracy. This result stands in contrast
Eye[~1logp®(z*)] = — [ p‘(z)log p°(z)dz. Fig. 3(a) plots  to Claim 1 which stated that a MAR, estimator continues
p' for a = 0.5, and Fig. 3(b) the expected likelihood as a to fail even as the number of measurements goes to infin-
function of £. The variance is reduced by convolution, and ity. This leads to an alternative blind deconvolution strat-

(X;
E[-log p(x)] i

0 (blur widthy

X

(@)p' fora=0.5 (b) E,i [~ log p° (z")]

hence the negative log-likelihood reduces as well. egy: use a MAR estimator to recover the kernel and, given
Revisiting the literature on the subject, Fergasl. [4] the kernel, solve for: using a non blind deconvolution al-

report that their initial attempts to approach blind deasnv  gorithm.

lution with MAP,, ;, failed, resulting in either the original Before providing a formal proof, we attempt to gain an

blurred explanation or a binary two-tone image, depending intuition about the difference between MARNd MAP, ;,

on parameter tunings. scores. A MAR estimator selects = arg max; p(k|y),

Algorithms like [7, 6] explicitly detect edges in the im- wherep(k|y) = p(y|k)p(k)/p(y), andp(y|k) is obtained
age (either manually or automatically), and seek a kernelby marginalizing overz, and evaluating the full volume of
which transfers these edges into binary ones. This is mo-possibler interpretations:
tivated by the example in Fig. 2, suggesting that MAP
could do the right thing around step edges. Another algo- p(ylk) = /p(m,ym)dx, (7)
rithm which makes usage of this property is [19]. It opti-
mizes a semi-MAR ;. score, but explicitly detects smooth To see the role of marginalization, consider the scaladblin
image regions and reweights their contribution. Thus, the deconvolution problem illustrated in [2]. Suppose a scalar
MAP,, ;. score is dominated by edges. We discuss this algo-y is observed, and should be decomposegl &sk - z + n.
rithm in detail in [13]. Earlier blind deconvolution papers Assume a zero mean Gaussian prior on the noise and signal,
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Figure 4. A toy blind deconvolution problem with one scajas
kxz +n (replotted from [2]). (a) The joint distributiop(z, k|y). A
maximum is obtained for — 0, k — oo. (b) The marginalized
scorep(k|y) produce an optimum closer to the trk&. (c) The
uncertainty ofp(k|y) reduces given multiple observatiops =
kl‘j +n;.

x ~ N(0,0%), n~ N(0,7%). Then

P(a,kly) oc e 22 P ®)
Fig. 4(a) illustrate the 2D distributiof?(z, k|y). Unsur-
prisingly, it is maximized byr — 0, k — oco. On the other
hand,p(y|k) is the integral over alt explanations:

x
202 |

Pylk — iy lka—yl?— 2
ylk) x [ e 2n o2 dx. 9)

This integral is not maximized by — oo. In fact, if we

2

consider the first term only ¢~ 27 ">~ 4z it clearly fa-
vors k — 0 values because they allow a larger volume
of possiblex values. To see that, note that for every
and everye > 0 the size of the set of values satisfying
|kz — y| < eis 2¢/k, maximized ask — 0. Combining
the two terms in (9) leads to an example in the middle of
the range, and we show in Sec. 3.1.1 thats o, which
make sense becausenow behaves like a typical sample
from the prior. This is the principle of genericity desciibe
in Bayesian terms by [2]. Fig. 4(b) plof3(y|k), which is
essentially summing the columns of Fig. 4(a).

Now consider blur in real images: for the delta kernel
there is only a single solution = y satisfyingk ® x = y.

Proof: We divide the image into small disjoint windows
{y',...,y™} and treat them as i.i.d. samplgs~ p(y|k*).

We then select™” = argmax; [, p(y’|k). Applying

the standard consistency theorem for maximum likelihood
estimators [9] we know that given enough samples, the ML
approaches the true parameters. That is, when oo

p(E™ ({y' oy ) = k) = L (10)

Due to the local form of the priop(x) (Eq. (5)), tak-
ing sufficiently far away disjoint windows will ensure that
p(ylk) =TI, p(y7|k). Thus,p(y|k) is maximized bykME.
Also, if we select an times larger image/, p(y'|k) =
p(y|k)™. Thus, ifp(y|k) < maxy, p(y|k) thenp(y|k) — 0.
Finally, if p(k*) > 0, thenk™AP ML gre equal on large
images sincearg maxy p(y|k) arg maxy, p(y|k)p(k),
and thusg™AP — k*. Similarly, if max;, p(y|k) is unique,
p(k|y) approaches a delta functidn.

Fig. 4(c) plotsp(y|k) for a scalar blind deconvolution
task with NV observationg; = kx; +nj, illustrating that as
N increases, the uncertainty around the solution decreases
(compare with Fig. 4(b)).

In [13] we also justify the MAR approach from the loss
function perspective.

3.1. Examples of MAP,, estimation

Claim 2 reduces to a robust blind deconvolution strategy:
use MAR, estimator to recovet™ 4" = arg maxy, p(k|y),
and then usé&"4” to solve forz using some non blind
deconvolution algorithm. To illustrate the MARpproach,
we start with the simple case of a Gaussian priop@n),
as it permits a derivation in closed form.

3.1.1 The Gaussian prior

The prior onX in Eq. (5) is a convolution and thus diago-
nal in the frequency domain. @&, G, denote the Fourier
transform of the derivativeg,, g, then:

X ~ N(0,diag(c2)) 02 =B(|Gawll’ +Gy0l*) ™" (11)

However, while the delta spectrum is high everywhere, the ) o .
true kernel is usually a low pass, and has low spectrum val-Note that since a derivative filter is zero at low frequencies
ues. Referring to the notation of Eq. (3),Af., = 0, an and high at higher frequencies, this is similar to the ctadsi
infinite subspace of possible explanations is available asl/f? power spectrum law for images. Denoting noise vari-
X,, can be arbitrary (and with noise, any loic,,| val-  ance byj, we can express(X, Y: K) = p(Y'|[.X; K)p(X)

ues increase the uncertainty, even if they are not exagtly S
Hence, the true kernel gets an advantage ipthé:) score.

We prove that for sufficiently large images(k|y) is
guaranteed to favor the true kernel.

Claim 2 Letx be an arbitrarily large image, sampled from
the priorp(z), andy = k£ ® « + n. Thenp(k|y) is maxi-
mized by the true kernéf*. Moreover, ifarg maxy, p(y|k)

is uniquep(k|y) approaches a delta functién

2Note that Claim 2 does not guarantee that the MA®unique. For
example, if the kernel support is not constrained enoughtipreispatial
shifts of the kernel provide equally good solutions. Thebfem can be
easily avoided by a weak prior dn(e.g. favoring centered kernels).

2 2
Ly Ko Xw =Y l? = 515 1 Xw
w .

p(X,Y;K)xe 277 (12)

(see [13] for details). Conditioned dnthe mean and mode
of a Gaussian are equal:

2\ —1
xMAP _ <|KW|2 + 2—2) KTy,

w

13)

Eq. (13) is the classic Wiener filter [5]. One can also in-
tegrateX and expresp(Y'|K) analytically. This is also a
diagonal zero mean Gaussian with

Y ~ N(0,diag(¢2)), o5 = ol|Ku|*>+1°.  (14)



Eg. (14) is maximized whet? = |Y,,|?, and for blind The independence assumption implies that instead of sum-

deconvolution, this implies: ming over image pixels, one can expregg|k) by sum-
v ming over histogram bins:
Yo" —n
R = max( 7) . (15)
o2 log p(ylk) = Zlogp (9oi(W)|k) = hylog(hy)  (17)
j

The image estimated usirg satisfies X, |2 ~ o2. There- ] ] )
fore MAP,, does not result in a triviak = 0 solutlon as  Whereh denotes the gradients histogram in the observedim-
MAP, ;. would, but in a solution whose variance matches 29€ ang is abinindex. Inasecond step, note that maximiz-

the prior variance:2, that is, a solution which looks like a N9 Ed. (17) is equivalent to minimizing the histogram dis-
typical sample from the prigs(X). tance between the observed and expected histoghdtfis

Another way to interpret the MAR is to note that This is because the Kullback Leibler divergence is equal to
’ the negative log likelihood, plus a constant that does not de

2 end onk (the negative entropy):
]MAP7Y;K)_%ZIOg <|Ij7w2| n 1 )+C p ( g py)

Dxcr(h, h*) Zh log(h Zh log(h (18)

log p(Y[K) = log p(X e

16
Referring to Eq. (12), the second term is just the Io(g (}eter-

minant of the covariance gf{ X |Y; K'). This second term  Since the KL divergence is non-negative, the likelihood is

is optimized wherk,, = 0, i.e. by kernels with more blur.  maximized when the histogramsh* are equal. This very

That is, log p(Y|K) is equal to the MAR ; score of the  simple approach is already able to avoid the delta solution

mode plus a term favoring kernels with blur. but as we demonstrate in Sec. 4.1 it is not accurately identi-
The discussion above suggests that the Gaussiany,MAP fying the exact filter width.

provides a reasonable solution to blind deconvolution. In A stronger approxima‘[ion is the variational Bayes mean-

the experiment section we evaluate this algorithm and showfield approach taken by Ferges$ al. [4]. The idea is to

that, while weaker than the sparse prior, it can provide ac-pyild an approximating distribution with a simpler paramet
ceptable solutions. This stands in contrast to the completeyic form:

failure of a MAP, ;, approach, even with the seemingly bet-
ter sparse prior. This demonstrates that a careful choice of (=, kly) ~ q(x, k) Hq 9,2 (2))q(giy( Hq - (19)
estimator is actually more critical than the choice of prior

Note that Eq. (15) is accurate if every frequency is esti- Sinceq is expressed in the gradient domain this does not
mated independently. In practice, the solution can beéurth  recoverz directly. Thus, they also pick the MAPkernel
constrained, because the limited spatial suppattiofplies  from ¢ and then solve for: using non blind deconvolution.
that the frequency coefficienfd(,, } are linearly dependent. A third way to approximate the MAPis the Laplace

Another important issue is that Eq. (15) provides informa- approximation [2], which is a generalization of Eq. (16):
tion on the kernel power spectrum alone but leaves uncer-

tainty about the phase. Many variants of Gaussian blind de- log p(y|k) ~ log p(™4T y; k) — 1 log |A| + C (20)
convolution algorithms are available in the image process- 2

ing literature (e.g. [8, 15]) but in most cases only symmet- 0?

ric kernels are considered since their phase is known to be A= .0z, - log p(2, 43 b)|p=grrar. (1)

zero. However, realistic camera shake kernels are usuallyThe Laplace apprOX|mat|on states thdy|k) can be ex-
not symmetric. In [13] we describe a Gaussian blind decon- pressed by the probability of the mod&4” plus the log
voltion algorithm which attempts to recover non symmetric determinant of the variance around the mode. As discussed

kernels as well. above, higher variance is usually achieved wieoon-
tains more zero frequencies, i.e. more blur. Therefore, the
3.1.2 Approximation strategieswith a sparse prior Laplace approximation suggests tpay|k) is the MAP;

score plus a term pulling toward kernels with more blur. Un-

The challenge with the MAPapproach is that for a general  fortunately, in the non Gaussian case the covariance matrix
sparse priorp(k|y) (Eq. (7)) cannot be computed in closed isn’t diagonal and exact inversion is less trivial. Some ear
form. Several previous blind deconvolution algorithms can Jier blind deconvolution approaches [22, 17] can be viewed
be viewed as approximation strategies for MABIthough  as simplified forms of a blur favoring term. For example,
the authors might not have motivated them in this way. they bias towered blurry kernels by adding a term penaliz-

A simple approximation is proposed by Levin [14], for ing the high frequencies df or with an explicit prior on
the 1D blur case. It assumes that the observed derivathe kernel. Another approach was exploit by Bronstsin
tives of y are independent (this is usually weaker than al. [3]. They note that in the absence of noise and with in-
assuming independent derivatives ©f. logp(y|k) = vertible kernelg(k|y) can be exactly evaluated for sparse
> logp(gx,i(y)|k). Sincep(g.,i(y)|k) is a 1D distribu-  priors as well. This reduces to optimizing the sparsity ef th
tions, it can be expressed as a 1D table, or a histogram  image plus the log determinant of the kernel spectrum.
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on 1D image signals. Su_ccessful algorithms locate thg nimim peaked at the true answer.
score at the true kernel width, denoted by the dashed line.
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cropped from a natural image. These small 1D signals al- )
low us to evaluate the marginalization integral in Eq. (7) o S
exactly even for a sparse prior. The signals were convolvedFigure 7. Ground truth data acquisition. (a) Calibratiorage.
with a 5-tap box filter (cyclic convolution was used) and (P) Smear of points at 4 corners, demonstrating that theasiyat
an i.i.d. Gaussian noise with standard deviatioh was  Uniform blurmodel is violated.
added. We explicitly search over the explanations of all box
filters of size/ = 1,..,7 taps (all filters normalized to 1).
The explicit search allows comparison of the score of dif-
ferent blind deconvolution strategies without folding io-0

timization errors. (In practice optimization errors do &av
a large effect on the successes of blind deconvolution algo-
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4. Evaluating blind deconvolution algorithms p

In this section we qualitatively compare blind deconvo-
lution strategies on the same data. We start with a synthetic
1D example and in the second part turn to real 2D motion.
4.1. 1D evaluation

As a first test, we use a set 0d00 signals of sizd 0 x 1

that the choice of estimator (MAR, v.s. MAP;), is more
critical than the actual prior (Gaussian v.s. sparse).

Since claim 2 guaranties success only for large images,
we attempt to evaluate how large an image should be in
practice. Fig. 6 plots the uncertainty jirik|y) for multi-
ple random samples @¥ 10 x 1 columns. The probability

rithms.) o ; .
o is tightly peaked at the right answer for as little /sis= 20
boICveid?r)l(?c—t;logp(ym score is minimized by the true ., ,mns " The search space in Fig. 6 is limited to the single

arameter family of box filters. In real motion deblurring
ne searches over a larger family of kernels and a larger
uncertainty is expected.

We tested the zero sheet separation (e.g. [11]), an earlielg
image processing approach with no probabilistic formula-
tion. This algorithm measures the Fourier magnitudg aff .
the zero frequencies of each box filter If the image was ~ 4-2. 2D evaluation
indeed convolved with that filter, low Fourier content is ex- To compare blind deconvolution algorithms we have col-
pected. However, this approach considers the zero frequentected blurred data with ground truth. We capture a sharp
cies alone ignoring all other information, and is known to version a planar scene (Fig. 7(a)) by mounting the camera
be noise sensitive. It is also limited to kernel familiesfro  on a tripod, as well as a few blurred shots. Using the sharp
a simple parametric form and with a clear zeros structure. reference we solve for a non-negative kerh@hinimizing

Supporting the example in Sec. 2, a pure MAPap- |lk@x—y||?. The scene in Fig. 7(a) includes high frequency
proach p(y|k) ~ p(zMAP y|k)) favors no-blur { = 1). noise patterns which helps stabilizing the constraintg.on
Reweighting the derivative penalty around edges can im- The central area of the frame includes four real images used
prove the situation, but the delta solution still provides a as input to the various blind deconvolution algorithms.
noticeable local optimum. We first observed that assuming a uniform blur over the

The correct minimum is favored with a variational Bayes image is not realistic even for planar scenes. For exam-
approximation [4] and with the semi Laplace approxima- ple Fig. 7(b) shows traces of points4atorners of an im-
tion of [3]. The independence approximation [14] is able to age captured by a hand-held camera, with a clear variation
overcome the delta solution, but does not localize the solu-between the corners. This suggests that an in-plane rota-
tion very accurately (minimum &t = 4 instead off = 5.) tion (rotation around the z-axis) is a significant component
Finally, the correct solution is identified even with the poo of human hand shake. Yet, since a uniform assumption is
image prior provided by a Gaussian model, demonstratingmade by most algorithms, we need to evaluate them on data



We used ar85mm lens and &.3 seconds exposure. The
kernels’ support varied fror0 to 25 pixels.

We can measure the SSD error between a deconvolved
output and the ground truth. However, wider kernels result
in larger deconvolution error even with the true kernel. To
normalize this effect, we measure the ratio between decon-
volution error with the estimated kernel and deconvolution
with the truth kernel. In Fig. 9 we plot the cumulative his-
togram of error ratios (e.g. bin= 3 counts the percentage
of test examples achieving error ratio beldwEmpirically,
we noticed that error ratios above 2 are already visually im-
plausible. One test image is presented in Fig. 10, all others
included in [13].

We have evaluated the algorithms of Fergtal. [4] and
Shanet al. [19] (each using the authors’ implementation),
as well as MAR estimation using a Gaussian prior [13],
and a simplified MAR ;, approach constraininy_ k; = 1
(we used coordinate descent, iterating between holding
constant and solving fdt, and then holding constant and

solving forz ). The algorithms of [14, 7, 3] were not tested
because the first was designed for 1D motion only, and the
others focus on smaller blur kernels.

We made our best attempt to adjust the parameters of

Shanet al. [19], but run all test images with equal parame-
ters. Fergut al [4] used Richardson-Lucy non blind de-
convolution in their code. Since this algorithm is a source
for ringing artifacts, we improved the results using the ker
nel estimated by the authors’ code with the (non blind)
Figure 8. Ground truth data:images an@ blur kernels, resulting ~ sparse deconvolution of [12]. Similarly, we used sparse de-
in 32 testimages convolution with the kernel estimated by Shetral.

The bars in Fig. 9 and the visual results in [13] suggest
that Ferguset al.’s algorithm [4] significantly outperforms

Il Fergus

Bl shan I all other alternatives. Many of the artifacts in the results
[shan, sps deconv || of [4] can be attributed to the Richardson-Lucy artifacts, o
0 MAPy | to non uniform blur in their test images. Our comparison
I Gaussian prior also suggests that applying sparse deconvolution using the

kernels outputted by Shaat al. [19] improves their results.
As expected, the naive MAR, approach outputs small ker-
nels approaching the delta solution.

Percentage
©

5. Discussion

This paper analyzes the major building blocks of recent
blind deconvolution algorithms. We illustrate the limita-
15 2 EAS 3 35 aboved tion of the simple MAR. ;, approach, favoring the no-blur

rror ratios . . .

(delta kernel) explanation. One class of solutions invelve
explicit edge detection. A more principled strategy exsloi
the dimensionality asymmetry, and estimates MA#hile
marginalizing over:. While the computational aspects in-

which obeys their assumption. To capture images with spa-Volved with this marginalization are more challenging, ex-
tially invariant blur we placed the camera on a tripod, lock- 1Sting approximations are powerful. _

ing the Z-axis rotation handle of the tripod but loosening ~ We have collected motion blur data with ground truth
the X andY” handles. We calibrated the blur ®6uch im- ~ and quantitatively compared existing algorithms. Our com-
ages and croppet] 255 x 255 windows from each, leading ~ Parison suggests that the variational Bayes approxima-

to 32 test images displayed in Fig. 8 and available oriline tion [4] significantly outperforms all existing alternats.
The conclusions from our analysis are useful for direct-

Swww.wisdom.weizmann.ac.il/levina/papers/LevinEdRR09Data.zip  ing future blind deconvolution research. In particular, we

Figure 9. Evaluation results: Cumulative histogram of teeah-
volution error ratio across test examples.




Ground truth

Shan et. al.
error ratio=15.2

Fergus et. al.
error ratio=1.7

Naive MAP,, ;.
error ratio=15.2

Gaussian prior
error ratio=18.6

Figure 10. Visual deconvolution results by various decdutian
algorithms. See [13] for more examples.
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