
A Conceptual-Modeling Approach to Extracting Data
from the Web

D.W. Embley, D.M. Campbell, Y.S. Jiang, Y.-K. Ng, R.D. Smith
Department of Computer Science

Email: {embley,campbell,jiang,ng,smithr}@cs.byu.edu

S.W. Liddle∗, D.W. Quass∗

School of Accountancy and Information Systems
Email: {liddle,quass}@byu.edu

Brigham Young University, Provo, Utah 84602, U.S.A.

Phone: (801) 378-6470, Fax: (801) 378-7775

Abstract

Electronically available data on the Web is exploding at an ever increasing pace.
Much of this data is unstructured, which makes searching hard and traditional
database querying impossible. Many Web documents, however, contain an abundance
of recognizable constants that together describe the essence of a document’s content.
For these kinds of data-rich documents (e.g., advertisements, movie reviews, weather
reports, travel information, sports summaries, financial statements, obituaries, and
many others) we can apply a conceptual-modeling approach to extract and structure
data. The approach is based on an ontology—a conceptual model instance—that de-
scribes the data of interest, including relationships, lexical appearance, and context
keywords. By parsing the ontology, we can automatically produce a database scheme
and recognizers for constants and keywords, and then invoke routines to recognize
and extract data from unstructured documents and structure it according to the gen-
erated database scheme. Experiments show that it is possible to achieve good recall
and precision ratios for documents that are rich in recognizable constants and narrow
in ontological breadth.

Keywords: data extraction, data structuring, unstructured data, data-rich doc-
ument, World-Wide Web, ontology, ontological conceptual modeling, obituary.

∗Research funded in part by Faneuil Research Group

1

1 Introduction

The amount of data available on the Web has been growing explosively during the past
few years. Users commonly retrieve this data by browsing and keyword searching, which
are intuitive, but present severe limitations [Ape94]. Browsing is not suitable for locating
particular items of data because following links is tedious, and it is easy to get lost. Fur-
thermore, browsing is not cost-effective as users have to read the documents to find desired
data. Keyword searching is sometimes more efficient than browsing but often returns vast
amounts of data, much more than the user can handle.

To retrieve data more efficiently from the Web, some researchers have resorted to ideas
taken from databases techniques. Databases, however, require structured data and most
Web data is unstructured and cannot be queried using traditional query languages. To
attack this problem, various approaches for querying the Web have been suggested. These
techniques basically fall into one of two categories: querying the Web with Web query
languages (e.g., [AM98]) and generating wrappers for Web pages (e.g., [AK97]).

In this paper, we discuss an approach to extracting and structuring data from documents
posted on the Web that differs markedly from those previously suggested. Our proposed
data extraction method is based on conceptual modeling, and, as such, we also believe that
this approach represents a new direction for research in conceptual modeling.

Brian Fielding Frost
Our beloved Brian Fielding Frost,

age 41, passed away Saturday morning,
March 7, 1998, due to injuries sustained
in an automobile accident. He was born
August 4, 1956 in Salt Lake City, to
Donald Fielding and Helen Glade Frost.
He married Susan Fox on June 1, 1981.

He is survived by Susan; sons Jor-
dan (9), Travis (8), Bryce (6); parents,
three brothers, Donald Glade (Lynne),
Kenneth Wesley (Ellen), Alex Reed,
and two sisters, Anne (Dale) Elkins and
Sally (Kent) Britton. A son, Michael
Brian Frost, preceded him in death.

Funeral services will be held at 12
noon Friday, March 13, 1998 in the
Howard Stake Center, 350 South 1600
East. Friends may call 5-7 p.m. Thurs-
day at Wasatch Lawn Mortuary, 3401
S. Highland Drive, and at the Stake
Center from 10:45-11:45 a.m. Friday.
Interment at Wasatch Lawn Memorial
Park.

Figure 1: A sample obituary.

Our approach specifically focuses on unstructured
documents that are data rich and narrow in ontological
breadth. A document is data rich if it has a number
of identifiable constants such as dates, names, account
numbers, ID numbers, part numbers, times, currency
values, and so forth. A document is narrow in onto-
logical breadth if we can describe its application domain
with a relatively small ontology. Neither of these defini-
tions is exact, but they express the idea that the kinds
of Web documents we are considering have many con-
stant values and are narrow in the domain they cover.

As an example, the unstructured documents we
have chosen for illustration in this paper are obituar-
ies. Figure 1 shows an example1. An obituary is data
rich, typically including several constants such as name,
age, death date, and birth date of the deceased person; a
funeral date, time, and address; viewing and interment
dates, times, and addresses; names of related people and
family relationships. The information in an obituary is
also narrow in ontological breadth, having data within

a narrow domain of genealogical knowledge that can be described by a small ontological
model instance.

1To protect individual privacy, this obituary is not real. It based on an actual obituary, but it has been
significantly changed so as not to reveal identities. Obituaries used in our experiment reported later in this
paper are real, but only summary data and isolated occurrences of actual items of data are reported.

2

Specifically, our approach consists of the following steps. (1) We develop the ontological
model instance over the area of interest. (2) We parse this ontology to generate a database
scheme and to generate rules for matching constants and keywords. (3) To obtain data
from the Web, we invoke a record extractor that separates an unstructured Web document
into individual record-size chunks, cleans them by removing markup-language tags, and
presents them as individual unstructured documents for further processing. (4) We invoke
recognizers that use the matching rules generated by the parser to extract from the cleaned
individual unstructured documents the objects and relationships expected to populate the
model instance. (5) Finally, we populate the generated database scheme by using heuristics
to determine which constants populate which records in the database scheme. These heuris-
tics correlate extracted keywords with extracted constants and use cardinality constraints
in the ontology to determine how to construct records and insert them into the database
scheme. Once the data is extracted, we can query the structure using a standard database
query language. To make our approach general, we fix the ontology parser, Web record
extractor, keyword and constant recognizer, and database record generator; we change only
the ontology as we move from one application domain to another.

In an earlier paper [ECLS98], we presented some of these ideas for extracting and
structuring data from unstructured documents. We also presented results of experiments we
conducted on two different types of unstructured documents taken from the Web, namely,
car ads and job ads. In those experiments, our approach attained recall ratios in the
range of 90% and precision ratios near 98%. These results were encouraging; however, the
ontology we used was very narrow, essentially only allowing single constants or single sets
of constants to be associated with a given item of interest (i.e., a car or a job).

In this paper we enrich the ontology—the conceptual model—and we choose an appli-
cation that demands more attention to this richer ontology. For example, our earlier model
supported only binary relationship sets, but our current approach supports n-ary. Further-
more, we enhance the ontology in two significant ways. (1) We adopt “data frames” as a
way to encapsulate the concept of a data item with all of its essential properties. (2) We
include lexicons to enrich our ability to recognize constants that are difficult to describe as
simple patterns, such as names of people. Together, data frames and lexicons enrich the
expressiveness of an ontological model instance. This paper also extends our earlier work by
adding an automated tool for detecting and extracting unstructured records from HTML
Web documents. We are thus able to fully automate the extraction process once we have
identified a Web document from which we wish to extract data. Further enhancements are
still needed to locate documents of interest with respect to the ontology and to handle sets
of related documents that together provide the data for a given ontology. Nevertheless,
the extensions we do add in this paper significantly enhance the approach presented earlier
[ECLS98].

We present the details of our approach as follows. We first provide a context for our
research in Section 2 by showing how it aligns with the work of other researchers. In
Section 3 we discuss each of the component parts of our approach and show, for any given
application ontology, how they work together to process data-rich, unstructured documents
such as obituaries. In Section 4 we report results as recall and precision ratios for retrieved
data for the experiment we conducted on obituaries. In Section 5 we state our conclusions.

3

2 Related Work

With the explosion of textual information available in electronic form, a large research effort
has sprung up in the database community around making the information queryable, using
query languages more powerful than keyword search.

One approach is to enhance traditional query languages to make them “Web aware”
[AM98, KS95, LSS96, MMM96, MMM97], so that data in web pages can be queried directly.
In general, these languages view the web as a graph and allow specification of queries to
navigate the graph. [AM98] and [LSS96] also include the ability to query the structure of
individual web pages.

Another approach is to extract the information contained within Web pages using “wrap-
pers.” The notion of using a wrapper to extract information from non-database sources
has been around for several years in the area of data integration (e.g., [CGMH+94]). If
the extracted information is well structured, say in the form of relational tuples, then it
can be queried using a relational query language such as SQL. Otherwise, if the extracted
information contains some structure, but does not conform entirely to a predefined schema,
then special “semistructured” query languages may be used [ACC+97, AQM+97, BDHS96].

The approach we take in this paper to extract data uses wrappers. A wrapper for
extracting data from a text-based information source generally consists of two parts: (1)
extracting attribute values from the text, and (2) composing the extracted values for at-
tributes into complex data structures. Wrappers have been written either fully manually
[AM97, GHR97, HGMC+97], or with some degree of automation [Ade98, AK97, DEW97,
KWD97, Sod97]. The work on automating wrapper writing focuses primarily on using
syntactic clues, such as HTML tags, to identify and direct the composition of extraction
of attribute values. Our work differs fundamentally from this approach to wrapper writing
because it focuses on conceptual modeling to identify and direct extraction and composition
(although we do use syntactic clues to distinguish between record boundaries in unstruc-
tured documents). In our approach, once the conceptual-model instance representing the
application ontology has been written, wrapper generation is fully automatic.

A large body of research exists in the area of information extraction using natural-
language understanding techniques [CL96]. The goal of these natural-language techniques
is to extract conceptual information from the text through the use of lexicons identifying
important keywords combined with sentence analysis. In comparison, our work does not
attempt to extract such a deep level of understanding of the text but also does not depend
upon complete sentences, which their work does. We believe our approach to be more
appropriate for web pages and classified ads, which often do not contain complete sentences.

The work closest to ours is [SL97]. In this work, the authors explain how they extract
information from text-based data sources using a notion of “concept definition frames,”
which are similar to the object definitions (“data frames”) in our conceptual model. An
advantage of our approach is that our conceptual model is richer, including, for example,
cardinality constraints, which we use in the heuristics for composing extracted attribute
values into object structures.

4

 Application Ontology

 Ontology
 Parser

Constant/Keyword
Matching Rules

Unstructured
Record

Documents

 Constant/Keyword
 Recognizer

 Database-Instance
 Generator

Populated Database

 Database Description

Record-Level
Objects,

Relationships,
and Constraints

Database
Scheme

Web Page

Record Extractor

Data-Record Table
(Descriptor/String/Position)

Object-Relationship
Model Instance

Data Frames

Lexicons

Figure 2: Data extraction and structuring process.

3 Web Data Extraction and Structuring

Figure 2 shows the overall process we use for extracting and structuring Web data. As
depicted in the figure, the input (upper left) is a Web page, and the output (lower right) is
a populated database. The figure also shows that the application ontology is an independent
input. This ontology describes the application of interest. When we change applications,
for example from car ads, to job ads, to obituaries, we change the ontology, and we apply
the process to different Web pages. Significantly, everything else remains the same: the
routines that extract records, parse the ontology, recognize constants and keywords, and
generate the populated database instance do not change. In this way, we make the process
generally applicable to any domain.

We proceed by describing in succeeding subsections each major component of Figure 2.

5

3.1 Ontological Specification

As Figure 2 shows, the application ontology consists of an object-relationship model in-
stance, data frames, and lexicons. An ontology parser takes all this information as input
and produces constant/keyword matching rules and a database description as output.

Figure 3 gives the object-relationship model instance for our obituary application in
graphical form, and Figure 4 gives part of this model instance in an equivalent textual
form. We use the Object-oriented Systems Model (OSM) [EKW92] to describe our ontol-
ogy. In OSM rectangles represent sets of objects. Dotted rectangles represent lexical object
sets (those such as Age and Birth Date whose objects are strings that represent themselves),
and solid rectangles represent nonlexical object sets (those such as Deceased Person and
Viewing whose objects are object identifiers that represent nonlexical real-world entities).
Lines connecting rectangles represent sets of relationships. Binary relationship sets have a
verb phrase and reading-direction arrow (e.g., Funeral is on Funeral Date names the rela-
tionship set between Funeral and Funeral Date), and n-ary relationships have a diamond
and a full descriptive name that includes the names of its connected object sets. Participa-
tion constraints near connection points between object and relationship sets designate the
minimum and maximum number of times an object in the set participates in the relation-
ship. In OSM a colon (:) after an object-set name (e.g., Birth Date: Date) denotes that
the object set is a specialization (e.g., the set of objects in Birth Date is a subset of the set
of objects in the implied Date object set).

For our ontologies, an object-relationship model instance gives both a global view (e.g.,
across all obituaries) and a local view (e.g., for a single obituary). We express the global view
as previously explained and specialize it for a particular obituary by imposing additional
constraints. We denote these specializing constraints in our notation by a “becomes” arrow
(->). In Figure 3, for example, the Deceased Person object set becomes a single object, as
denoted by “-> •”, and the 1:* participation constraint on both Deceased Name and Relative
Name becomes 1. We thus declare in our ontology that an obituary is for one deceased
person and that a name either identifies the deceased person or the family relationship of a
relative of the deceased person. From these specializing constraints, we can also derive other
facts about individual obituaries, such as that there is only one funeral and one interment,
although there may be several viewings and several relatives.

Since a model-equivalent language has already been defined for OSM [LEW95], we can
faithfully write any OSM model instance in an equivalent textual form. We use the textual
representation for parsing. Figure 4 shows part of the sample ontology written as text.
Deceased Person [-> object] in Figure 3, for example, denotes the Deceased Person object
set and the fact that it “becomes” an object in an individual obituary. Deceased Person [1]
has Deceased Name [1:* -> 1] denotes the relationship set between Deceased Person and
Deceased Name along with its participation constraints, including one that is specialized
for an individual obituary. Figure 4 shows a few other examples including the ternary
relationship set in our example and the specializations for the date object sets.

Whether an object set is lexical or nonlexical depends on whether its associated data
frame [Emb80] describes a set of possible strings as objects for the object set. In general a
data frame describes everything we wish to know about an object set. If the data frame is
for a lexical object set, it describes the string patterns for its constants (member objects).

6

Relative
Name: NameAge

Birth Date: Date

Death Date: Date

Relationship

Deceased
Person

1:*->1

1:*

Deceased Person
has Relationship
to Relative Name0:*

0:11:* died on

Funeral
Date: Date

Viewing

Funeral

0:1

1

has

0:*

1

has

Beginning Time: Time

Ending Time: Time

0:1

1:*
has

0:1

1:*

has

Viewing Date: Date

0:1
1:*

is on

Interment Date: Date

Funeral Time: Time

0:1

1:*

has

Interment

0:1

1

has

0:11:*

has

Viewing
Address:
Address

Interment
Address: Address

Funeral
Address:
Address

0:1

1:*

has

 ->

0:1

1:*

has

0:1

1:*

has

0:11:*

has

0:1
1:*

has

0:1

1:*

has

Deceased
Name: Name

1

1:*->1

has

Figure 3: Sample object-relationship model instance.

Deceased Person [-> object];
Deceased Person [1] has Deceased Name [1:* -> 1];
...
Deceased Person [0:*] has Relationship [1:*] to Relative Name [1:*->1];
...
Funeral [0:1] is on Funeral Date [1:*];
...
Birth Date, Death Date, Interment Date, Viewing Date, Funeral Date : Date;
...

Figure 4: Sample textual object-relationship model instance.

7

Whether lexical or nonlexical, an associated data frame can describe context keywords that
indicate the presence of an object in an object set. For example, we may have “died” or
“passed away” as context keywords for for Death Date and “buried” as a context keyword
for Interment. A data frame for lexical object sets also defines conversion routines to and
from a common representation and other applicable operations, but our main emphasis
here is on recognizing constants and context keywords.

In Figure 5 we show as examples part of the data frames for Name, Relative Name,
and Relationship. A number in brackets designates the longest expected constant for the
data frame; we use this number to generate upper-bounds for “varchar” declarations in our
database scheme. Inside a data frame we declare constant patterns, keyword patterns, and
lexicons of constants. We can declare patterns to be case sensitive/insensitive and switch
back and forth as needed. We write all our patterns using Perl 5 regular expression syntax.
The lexicons referenced in Name in Figure 5 are external files consisting of a simple list
of names: first.dict contains 16,167 first names from “aaren” to “zygmunt” and last.dict
contains 16,522 last names from “aalders” to “zywiel”. We use these lexicons in patterns
by referring to them respectively as First and Last. Thus for example the first constant
pattern in Name matches any one of the names in the first-name lexicon, followed by one
or more white-space characters, followed by any one of the names in the last-name lexicon.
The other pattern matches a string of letters starting with a capital letter (i.e., a first
name, not necessarily in the lexicon), followed by white space, optionally followed by a
capital-letter/period pair (a middle initial) and more white space, and finally a name in
the last-name lexicon.

The Relative Name data frame in Figure 5 is a specialization of the Name data frame.
In many obituaries, spouse names of blood relatives appear parenthetically inside names.
In Figure 1, for example, we find “Anne (Dale) Elkins”. Here, Anne Elkins is the sister of
the deceased, and Dale is the husband of Anne. To extract the name of the blood relative,
the Relative Name data frame applies a substitution that discards the parenthesized name,
if any, when it extracts a possible name of a relative. Besides extract and substitute, a data
frame may also have context and filter clauses, which we illustrate in the Relationship data
frame. The context and filter clauses respectively tell us what context we must have for an
extraction and what we filter out when we do the extraction. Thus, for example, as the
third rule in the Relationship data frame in Figure 5 shows, if we see “... step-father ...”,
we extract “step-father” and filter it to “stepfather”.

3.2 Unstructured Record Extraction

Obtaining pages of interest from the Web requires two steps: (1) classify pages as being of
interest or not of interest with respect to the given application ontology, and (2) separate
the information within the pages of interest into records, chunks of data that represent one
instance of the main item specified in the ontology. For our obituary application, we need
to find pages containing obituaries and separate the obituaries found within these pages
into individual obituaries. We have not yet considered the problem of classifying pages. We
believe that an approach to classification that uses the ontology to find pages of potential
interest has merit, but for now we leave this as future work. We have considered some
aspects of the problem of separating chunks of data into records. To extract records, we

8

...
Name matches [80] case sensitive

constant
{ extract First, "\s+", Last; },
...
{ extract "[A-Z][a-zA-Z]*\s+([A-Z]\.\s+)?", Last; },
...

lexicon {
First case insensitive;
filename "first.dict";

},{
Last case insensitive;
filename "last.dict";

};
end;
Relative Name matches [80] case sensitive

constant { extract First, "\s*\(", First, "\)\s*", Last;
substitute "\s*\([^)]*\)" -> "";

...
end;
...
Relationship matches [14]

constant
{ extract "brother"; context "\bbrothers?\b"; },
{ extract "sister"; context "\bsisters?\b"; },
...
{ extract "step-?father"; context "\bstep-?father\b";

filter "-"; },
...

keyword "\bspouse\b",
"\bmarried\b",

...
end;
...

Figure 5: Sample data frames.

first observe that in many cases each record is already in a separate page. Although we
have not yet automated this case, we believe that this is easier than the case when the
records are all on the same page. When multiple records are on the same page, it is usually
easy for a human to recognize boundaries that separate these records, but how do we have
the system recognize these boundaries automatically?

We report here on our implementation of one possible approach to the problem of
record extraction when multiple records are in a single HTML (or XML) Web page. The
approach we take builds a tree of the page’s structure, heuristically searches the tree for
the subtree most likely to contain the records, and then heuristically finds the most likely
separator among the siblings in this subtree of records. We explain the details in succeeding
paragraphs. There are other approaches that may work as well (e.g., we can preclassify
particular HTML tags as likely separators or match the given ontology against probable
records), but we leave these for future work.

HTML tags define discrete regions within an HTML document. Some start-tags have
corresponding end-tags that together determine the boundary of a region in an HTML
document. Between a start-tag/end-tag pair, other tags can be nested. Based on the

9

<html><head><title>Classifieds</title></head>

<body bgcolor="#FFFFFF">

<table width="475">

<tr><td>

<h1 align="left">Funeral Notices</h1>

<h4> </h4>

<hr size="4" noshade>

<h4> Lemar K. Adamson ...</h4>

<hr>

...

<h4> Brian Fielding Frost ...</h4>

<hr>

<h4> Leonard Kenneth Gunther ...</h4>

<hr>

...

<hr>

</td></tr>

</table>

All material is copyrighted.

</body>

</html>

(a) A sample obituary HTML docu-
ment.

html

head

title

body

table

tr

td

h1 h4 hr h4 hr ... h4 hr h4 hr h4...

(b) Tag-tree of HTML document in (a).

Figure 6: An HTML document and its tag-tree.

nested structure of start- and end-tags, we build a tree called a tag-tree. Figure 6(a) gives
part of a sample obituary HTML document, and Figure 6(b) gives its corresponding tag-
tree. As Figure 6(a) shows, the tag-pair <html>-</html> surrounds the entire document
and thus html becomes the root of the tag-tree. Similarly, we have title nested within head,
which is nested within html, and as a sibling of head we have body with its nested structure.
The leaves nested within the <td>-</td> pair are the ordered sequence of sibling of nodes
h1, h4, hr, h4, ... A node in a tag-tree has two fields: (1) the first tag of each start-tag/end-
tag pair or a lone tag (when there is no closing tag), and (2) the associated text. We
do not show the text in Figure 6(b), but, for example, the text field for the title node is
“Classifieds” and the text field for the first h4 field following the first ellipsis in the leaves
is the obituary for Brian Fielding Frost.

Using the tag-tree, we attempt to detect the region containing the records of interest by
searching for the subtree with the largest fan-out—td in Figure 6(b). For documents with
many records of interest, the subtree with the largest fan-out should contain these records;
other subtrees represent global headers or trailers.

To find the record separators within the highest fan-out subtree, we begin by counting
the number of appearances of each sibling tag below the root node of the subtree (the
number of appearances of h1, h4, and hr for our example). We ignore tags with relatively
few appearances (h1 in our example) and concentrate on dominant tags, tags with many
appearances (h4 and hr in our example). For the dominant tags, we apply two heuristics:
a Most-Appearance (MA) heuristic and a Standard-Deviation (SD) heuristic. If there is
only one dominant tag, the MA heuristic selects it as the separator. If there are several
dominant tags, the MA heuristic checks to see whether the dominant tags all have the
same number of appearances or are within one of having the same number of appearances.

10

Classifieds

Funeral Notices
#####
Lemar K. Adamson ...
#####
...
#####
Brian Fielding Frost ...
#####
Leonard Kenneth Gunther ...
#####
...
#####

All material is copyrighted.

Figure 7: Obituaries extracted from the HTML document.

If so, the MA heuristic selects any one of the dominant tags as the separator. If not,
we apply the SD heuristic. For the SD heuristic, we first find the length of each text
segment between identical dominant tags (e.g., the lengths of the text segments between
each successive pair of hr tags and between each successive pair of h4 tags). We then
calculate the standard deviation of these lengths for each tag. Since the records of interest
often all have approximately the same length, we choose the tags with the least standard
deviation to be the separator.

When the separator is found, we insert “#####” immediately after each tag chosen
as the separator. We then remove all tags and obtain the records of interest separated by
five pound signs. Figure 7 shows result for the sample HTML document in Figure 6(a). In
Figure 7 the obituaries (which are the records of interest) appear between pairs of separators.
Header and trailer information appears before the first and after the last separator.

3.3 Database Record Generation

With the output of the ontology parser and the record extractor in hand, we proceed with
the problem of populating the database. To populate the database, we iterate over two basic
steps for each unstructured record document. (1) We produce a descriptor/string/position
table consisting of constants and keywords recognized in the unstructured record. (2) Based
on this table, we match attributes with values and construct database tuples.

As Figure 2 shows, the constant/keyword recognizer applies the generated matching
rules to an unstructured document to produce a data-record table. Figure 8 gives the first
several lines of the data-record table produced from our sample obituary in Figure 1. Each
entry (a line in the table) describes either a constant or a keyword. We separate the fields
of an entry by a bar (|). The first field is a descriptor: for constants the descriptor is
an object-set name to which the constant may belong, and for keywords the descriptor
is KEYWORD(x) where x is an object-set name to which the keyword may apply. The
second field is the constant or keyword found in the document, possibly transformed as it
is extracted according to substitution rules provided in a data frame. The last two fields

11

RelativeName|Brian Fielding Frost|1|20
DeceasedName|Brian Fielding Frost|1|20
RelativeName|Brian Fielding Frost|36|55
DeceasedName|Brian Fielding Frost|36|55
KEYWORD(Age)|age|58|60
Age|41|62|63
KEYWORD(DeathDate)|passed away|66|76
BirthDate|March 7, 1998|96|108
DeathDate|March 7, 1998|96|108
IntermentDate|March 7, 1998|96|108
FuneralDate|March 7, 1998|96|108
ViewingDate|March 7, 1998|96|108
KEYWORD(Relationship)|born August 4, 1956 in Salt Lake City, to|172|212
Relationship|parent|172|212
KEYWORD(BirthDate)|born|172|175
BirthDate|August 4, 1956|177|190
DeathDate|August 4, 1956|177|190
IntermentDate|August 4, 1956|177|190
FuneralDate|August 4, 1956|177|190
ViewingDate|August 4, 1956|177|190
RelativeName|Donald Fielding|214|228
DeceasedName|Donald Fielding|214|228
RelativeName|Helen Glade Frost|234|250
DeceasedName|Helen Glade Frost|234|250
KEYWORD(Relationship)|married|257|263
Relationship|spouse|257|263

Figure 8: Sample entries in a data-record table.

give the position as the beginning and ending character count for the first and last symbol
of the recognized constant or keyword. To facilitate later processing, we sort this table on
the third field, the beginning character position of the recognized constant or keyword.

A careful consideration of Figure 8 reveals some interesting insights into the recognition
of constants and keywords and also into the processing required by the database-instance
generator. Notice in the first four lines, for example, that the string “Brian Fielding Frost”
is the same and that it could either be the name of the deceased or the name of a relative
of the deceased. To determine which one, we must heuristically resolve this conflict. Since
there is no keyword here for Deceased Person, no keyword directly resolves this conflict for
us. However, we know that the important item in a record is almost always introduced at
the beginning, a strong indication that the name is the name of the deceased, not the name
of one of the deceased’s relatives. More formally, since the constraints on DeceasedName in
Figure 9 require a one-to-one correspondence between DeceasedName and DeceasedPerson
(the central item of the record) and since DeceasedName is not optional, the first name that
appears is almost assuredly the name of the deceased person.

Keyword resolution of conflicts is common. In Figure 8, for example, consider the
resolution of the death date and the birth date. Since the various dates are all specializations
of Date, a particular date, without context, could be any one of the different dates (e.g.,
“March 7, 1998” might be any one of five possible kinds of date). Notice, however, that
“passed away”, a keyword for DeathDate, is only 20 characters away from the beginning of

12

Object: DeceasedPerson;
Nonlexical: Viewing {ViewingDate, ViewingAddress, ...
Lexical: Date, BirthDate, DeathDate, ...
DeceasedPerson: DeceasedName [1];
DeceasedPerson: Age [0:1];
DeceasedPerson: BirthDate [0:1];
DeceasedPerson: DeathDate [0:1];
DeceasedPerson: Funeral [0:1];
DeceasedPerson: FuneralDate [0:1];
...
Viewing: DeceasedPerson [0:*] has Viewing [1];
Viewing: Viewing [0:1] has ViewingDate [1:*];
...
DeceasedPersonRelationshipRelativeName:

DeceasedPerson [0:*] has Relationship [1:*] to RelativeName [1];

Figure 9: Generated description of record-level objects, relationships, and constraints.

“March 7, 1998”, giving a strong indication that it is the death date. Similarly, “born”, a
keyword for BirthDate, is within two characters of “August 4, 1956”. Keyword proximity
easily resolves these conflicts for us.

Continuing with one more example, consider the phrase “born August 4, 1956 in Salt
Lake City, to”, which is particularly interesting. Observe in Figure 8 that the recognizer
tags this phrase as a keyword for Relationship and also in the next line as constant for
Relationship, with “parent” substituted for the longer phrase. The regular expression that
the recognizer uses for this phrase matches “born to” with any number of intervening
characters. Since we have specified in our Relationship data frame that “born to” is a
keyword for a family relationship and is also a possible constant value for the Relationship
object set, with the substitution “parent”, we emit both lines as shown in Figure 8. Observe
further that we have “parent” close by (two characters away from) the beginning of the
name Donald Fielding and close by (twenty-two characters away from) the beginning of the
name Helen Glade Frost, which are indeed the parents of the deceased.

The database-instance generator takes the data-record table as input along with a de-
scription of the database and constructs tuples for the extracted raw data. Figure 9 gives
part of the generated record-level description, and Figure 10 gives part of the generated
database scheme. The database-instance generator uses the record-level description to pro-
cess a single obituary and generate appropriate insert statements for the database scheme.

The heuristics applied in the database-instance generator are motivated by observations
about the constraints in the record-level description. We classify these constraint-based
heuristics as singleton heuristics, functional-group heuristics, and nested-group heuristics.

• Singleton Heuristics. For values that should appear at most once, we use keyword
proximity to find the best match, if any, for the value. For example, for the gener-
ated data-record table in Figure 8 we match DeathDate with “March 7, 1998” and
BirthDate with “August 4, 1956” as explained earlier. For values that must appear at
least once, if keyword proximity fails to find a match, we choose the first appearance
of a constant belonging to the object set whose value must appear. If no such value
appears, we reject the record. For our ontology, only the name of the deceased must

13

create table DeceasedPerson (
DeceasedPerson integer,
DeceasedName varchar(80),
Age varchar(4),
DeathDate varchar(16),
...

create table Viewing (
Viewing integer,
DeceasedPerson integer,
ViewingDate varchar(80),
...

create table DeceasedPersonRelationshipRelativeName (
DeceasedPerson integer,
Relationship varchar(14),
RelativeName varchar(80))

Figure 10: Generated database scheme.

be found. Once we declare that a value associates with a singleton attribute for an
object set S, we cull the data-record table by removing all other constant entries
whose descriptor is S or whose position numbers overlap with the constant chosen
for S. Thus, once we declare that “March 7, 1998” is the death date, we remove all
other DeathDate entries and all constant entries that overlap the character positions
96-108.

• Functional-Group Heuristics. An object set whose objects can appear several times,
along with its functionally dependent object sets constitutes a functional group. In
our sample ontology Viewing and its functionally dependent attributes constitutes
such a group. Groups of such data generally appear as a unit within an unstructured
document; for human readability, other possibilities would necessitate repeated identi-
fication. We heuristically make use of this observation by looking for groups of values
in close proximity within the boundaries of a context switch that pertain to the item
of interest. Keywords that do not pertain to the item of interest provide boundaries
for context switches. For our example (see Figure 1), we have a Funeral context be-
fore the viewing information and an Interment context after the viewing information.
Within this context we search for ViewingDate / ViewingAddress / BeginningTime /
EndingTime groups.

• Nested-Group Heuristics. We use nested-group heuristics to process n-ary relation-
ship sets (for n > 2). Writers often produce these groups by a nesting structure
in which one value is given followed by its associated values, which may be nested,
and so forth. Cardinality constraints can simplify the nesting and suggest potential
orders. For our sample ontology, we have one n-ary relationship set for capturing
family relationships. This particular n-ary relationship set has some strong cardinal-
ity constraints that heuristically guide the nesting. Observe in Figure 3 that for a
single obituary, the n-ary relationship set connects the deceased person, and Relative
Name functionally determines the Relationship. This heuristically indicates that the
nesting is likely to be implicit for the deceased person and be otherwise hierarchical

14

with family relationships as roots of subtrees of information. Indeed, the obituaries
we considered consistently follow this pattern. In Figure 1 we see “sons” followed by
“Jordan”, “Travis”, and “Bryce”; “brothers” followed by “Donald”, “Kenneth”, and
“Alex”; and “sisters” followed by “Anne” and “Sally”.

The result of applying these heuristics to an unstructured obituary record is a set of
generated SQL insert statements. For the obituary in Figure 1, our extraction process
generated the insert statements in Figure 11. Observe that the values extracted are quite
accurate, but not perfect. For example, we missed the second viewing address, which
happens to have been correctly inserted as the funeral address, but not also as the viewing
address for the second viewing. Our implementation currently does not allow constants
to be inserted in two different places, but we plan to have future implementations allow
for this possibility. Also, we obtained neither of the viewing dates, both of which can be
inferred from “Thursday” and “Friday” in the obituary. We also did not obtain the full
name for some of the relatives, such as sons of the deceased, which can be inferred by
common rules for family names. At this point our implementation only finds constants
that actually appear in the document. In future implementations, we would like to add
procedures to our data frames to do the calculations and inferences needed to obtain better
results.

4 Results

For our test data, we took 38 obituaries from a Web page provided by the Salt Lake Tribune
(www.sltrib.com) and 90 obituaries from a Web page provided by the Arizona Daily Star
(www.azstarnet.com). Before running our extraction processor on these obituaries, we tried
it on several dozen other obituaries from these two newspapers. Based on this training set,
we made a number of adjustments. We then applied our developed application ontology to
the test sets and obtained the results in Table 1 for the Salt Lake Tribune and in Table 2
for the Arizona Daily Star.

As Tables 1 and 2 show, we counted the number of facts (attribute values) in the test-set
documents. Consistent with our implementation, which only extracts explicit constants,
we counted a string as being correct if we extracted the constant as it appeared in the text.
With this understanding, counting was basically straightforward. For names, however, we
often only obtained partial names. Because our name lexicon was incomplete and our
name-extraction expressions were not as rich as possible, we sometimes missed part of a
name or split a single name into two. We list the count for these cases after the + in the
Declared Correctly column. We noted that this also caused most of the problem of the
large number of incorrectly identified relatives. With a more accurate and complete lexicon
and with richer name-extraction expressions, we believe that we could achieve much higher
precision.

In information retrieval, recall is the ratio of the number relevant documents retrieved to
the total number of relevant documents, and precision is the ratio of the number of relevant
documents retrieved to the total number of documents retrieved [FBY92]. To compute our
recall and precision ratios, we let facts be documents. If N is the number of facts in the

15

Table 1: Salt Lake Tribune Obituaries

Number of Number of Facts Number of Facts Recall Precision
Facts in Source Declared Correctly Declared Incorrectly Ratio Ratio

+ Partially Correct
DeceasedPerson 38 38 0 100% 100%
DeceasedName 38 23+15 0 100% 100%
Age 22 20 1 91% 95%
Birthdate 30 30 1 100% 97%
DeathDate 33 31 0 94% 100%
FuneralDate 24 22 0 92% 100%
FuneralAddress 25 24 1 96% 96%
FuneralTime 29 28 0 97% 100%
IntermentDate 0 0 0 NA NA
IntermentAddress 4 4 0 100% 100%
Viewing 29 27 1 93% 96%
ViewingDate 10 7 0 70% 100%
ViewingAddress 17 13 0 76% 100%
BeginningTime 32 28 0 88% 100%
EndingTime 29 26 0 90% 100%
Relationship 453 359+9 29 81% 93%
RelativeName 453 322+75 159 88% 71%

Table 2: Arizona Daily Star Obituaries

Number of Number of Facts Number of Facts Recall Precision
Facts in Source Declared Correctly Declared Incorrectly Ratio Ratio

+ Partially Correct
DeceasedPerson 90 90 0 100% 100%
DeceasedName 90 80+10 0 100% 100%
Age 73 63 1 86% 98%
Birthdate 26 25 1 96% 96%
DeathDate 86 72 1 84% 99%
FuneralDate 45 43 3 96% 93%
FuneralAddress 33 27 6 82% 82%
FuneralTime 50 46 7 92% 87%
IntermentDate 1 1 0 100% 100%
IntermentAddress 0 0 1 NA 100%
Viewing 29 28 0 97% 100%
ViewingDate 25 25 0 100% 100%
ViewingAddress 21 20 0 95% 100%
BeginningTime 29 27 1 93% 96%
EndingTime 22 21 0 95% 100%
Relationship 626 566+11 20 92% 97%
RelativeName 626 446+150 211 95% 74%

16

insert into DeceasedPerson
values(1001, "Brian Fielding Frost", "41", "March 7, 1998",
"August 4, 1956", 5001, "March 13, 1998", "350 South 1600 East",
"12 noon", 0, "", "")

insert into Viewing
values(7001, 1001, "", "3401 S. Highland Drive", "5", "7 p.m .")

insert into Viewing
values(9001, 1001, "", "", "10:45", "11:45 a.m.")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "parent", "Donald Fielding")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "parent", "Helen Glade Frost")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "spouse", "Susan Fox")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "son", "Jordan")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "son", "Travis")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "son", "Bryce")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "brother", "Donald Glade")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "brother", "Kenneth Wesley")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "brother", "Alex Reed")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "sister", "Anne Elkins")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "sister", "Sally Britton")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "son", "Michael Brian Frost")

Figure 11: Generated SQL insert statements.

source, C is the number of facts declared correctly, and I is the number declared incorrectly,
the recall ratio is C

N
, and the precision ratio is C

C+I
.

5 Conclusions

We described a conceptual-modeling approach to extracting and structuring data from the
Web. The approach described fully automates wrapper generation for documents that
are rich in data, narrow in ontological breadth, and appear on a Web page with limited
structure. Instead of using the page structure as a guide to extracting data, we use a
predefined ontological model instance for the chosen application. An application ontology
provides the relationships among the objects of interest, the cardinality constraints for
these relationships, a description of the possible strings that can populate various sets of
objects, and possible context keywords expected to help match values with object sets. To
prepare unstructured documents for comparison with the ontology, we also provide a means
to identify the records of interest on a Web page. With the ontology and record extractor in

17

place, we can automatically extract records and feed them one at a time to a processor that
heuristically matches them with the ontology and populates a database with the extracted
data.

The results we obtained for our obituary example are encouraging. Because of the
richness of the ontology, we had initially expected much lower recall and precision ratios.
Achieving about 90% recall and 75% precision for names and 95% precision elsewhere was
a pleasant surprise.

Although we have accomplished our goal of showing that our conceptual-modeling ap-
proach to information extraction has promise, much remains to be done. We have already
mentioned several items of future work, including (1) using an ontological approach to find
and classify individual pages and sets of pages as being of interest for a given application
ontology, (2) strengthening our heuristics for unstructured record identification, (3) using
the application ontology as a means to design more sophisticated ways to identify records
of interest both within a page or on a set of related pages, (4) improving our heuristics for
identifying attribute-value pairs and constructing database tuples, (5) adding richer data
conversions and additional constraints to our data frames, and (6) providing a means to do
inferencing so that inferred data as well as extracted data can be inserted into the database.

References

[ACC+97] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, and Jérôme
Siméon. Querying documents in object databases. International Journal on
Digital Libraries, 1(1):5–19, April 1997.

[Ade98] B. Adelberg. Nodose - a tool for semi-automatically extracting structured
and semistructured data from text documents. To appear in Proceedings of
SIGMOD’98, 1998.

[AK97] N. Ashish and C. Knoblock. Wrapper generation for semi-structured internet
sources. SIGMOD Record, 26(4):8–15, December 1997.

[AM97] P. Atzeni and G. Mecca. Cut and paste. In Proceedings of the PODS’97, 1997.

[AM98] G.O. Arocena and A.O. Mendelzon. Weboql: Restructuring documents,
databases and webs. In Proceedings of the Fourteen International Conference
on Data Engineering, February 1998.

[Ape94] P. M. G. Apers. Identifying internet-related database research. In Proceed-
ings of the 2nd International East-West Database Workshop, pages 183–193,
Klagenfurt, 1994. Springer-Verlag.

[AQM+97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The lorel query
language for semistructured data. International Journal on Digital Libraries,
1(1), April 1997.

18

[BDHS96] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and
optimization techniques for unstructured data. In Proceedings of SIGMOD’96,
June 1996.

[CGMH+94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,
J. Ullman, and J Widom. The tsimis project: Integration of heterogeneous
information sources. In IPSJ Conference, pages 7–18, Tokyo, Japan, October
1994.

[CL96] J. Cowie and W. Lehnert. Information extraction. Communications of the
ACM, 39(1):80–91, January 1996.

[DEW97] R. Doorenbos, O. Etzioni, and D. Weld. A scalable comparison-shopping agent
for the world-wide web. In Proceedings of the first international conference on
autonomous agents 97, 1997.

[ECLS98] D.W. Embley, D.M. Campbell, S.W. Liddle, and R.D. Smith. Ontology-Based
Extraction and Structuring of Information from Data-Rich Unstructured Doc-
uments. Submitted for Publication, February 1998.

[EKW92] D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-oriented Systems Anal-
ysis: A Model-Driven Approach. Prentice Hall, Englewood Cliffs, New Jersey,
1992.

[Emb80] D.W. Embley. Programming with data frames for everyday data items. In
Proceedings of the 1980 National Computer Conference, pages 301–305, Ana-
heim, California, May 1980.

[FBY92] W.B. Frakes and R. Baeza-Yates. Information Retrieval: Data Structures &
Algorithms. Prentice Hall, Englewood Cliffs, New Jersey, 1992.

[GHR97] A. Gupta, V. Harinarayan, and A. Rajaraman. Virtual database technology.
SIGMOD Record, 26(4):57–61, December 1997.

[HGMC+97] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Extracting
semistructured information from the web. In Proceedings of the Workshop on
Management of Semistructured Data, Tucson, Arizona, May 1997.

[KS95] D. Konopnicki and O. Shmueli. W3QS: A Query System for the World-Wide
Web. In Proceedings of the Twenty-first International Conference on Very
Large Data Bases, pages 54–65, Zürich, Switzerland, 1995.

[KWD97] N. Kushmerick, D.S. Weld, and Doorenbos. Wrapper induction for informa-
tion extraction. In Proceedings of the 1997 International Joint Conference on
Artificial Intelligence, 1997.

[LEW95] S.W. Liddle, D.W. Embley, and S.N. Woodfield. Unifying Modeling and Pro-
gramming Through an Active, Object-Oriented, Model-Equivalent Program-
ming Language. In Proceedings of the Fourteenth International Conference on

19

Object-Oriented and Entity Relationship Modeling (OOER’95), Lecture Notes
in Computer Science, 1021, pages 55–64, Gold Coast, Queensland, Australia,
December 1995. Springer Verlag.

[LSS96] L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian. A declarative language
for querying and restructuring the web. In Proceedings of the 6th International
Workshop on Research issues in Data Engineering, RIDE’96, New Orleans,
Louisiana, 1996.

[MMM96] A. Mendelzon, G. Mihaila, and T. Milo. Querying the world wide web. In
Proceedings of the First International Conference on Parallel and Distributed
Information Systems (PDIS’96), 1996.

[MMM97] A.O. Mendelzon, G.A. Mihaila, and T. Milo. Querying the world wide web.
International Journal on Digital Libraries, 1(1):54–67, April 1997.

[SL97] D. Smith and M. Lopez. Information extraction for semi-structured docu-
ments. In Proceedings of the Workshop on Management of Semistructured
Data, Tucson, Arizona, May 1997.

[Sod97] S. Soderland. Learning to extract text-based information from the world wide
web. In Proceedings of the Third International Conference on Knowledge dis-
covery and Data Mining, pages 251–254, Newport Beach, California, August
1997.

20

