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Abstract

We seek to discover the object categories depicted in a set of
unlabelled images. We achieve this using a model developed
in the statistical text literature: probabilistic Latent Seman-
tic Analysis (pLSA). In text analysis this is used to discover
topics in a corpus using the bag-of-words document repre-
sentation. Here we discover topics as object categories, so
that an image containing instances of several categories is
modeled as a mixture of topics.

The model is applied to images by using a visual ana-
logue of a word, formed by vector quantizing SIFT-like re-
gion descriptors. The topic discovery approach successfully
translates to the visual domain: for a small set of objects,
we show that both the object categories and their approxi-
mate spatial layout are found without supervision.

We also demonstrate classification of new images and of
images containing multiple objects. Performance of the pro-
posed unsupervised method is compared to the supervised
approach of [6] on a set of images containing only one ob-
ject per image, and also compared with the ground truth
labeling on a set of images containing multiple objects per
image. These results demonstrate that we can successfully
build object class models from an unsupervised analysis of
images.

1. Introduction
Common approaches to object recognition involve some
form of supervision. This may range from specifying
the object’s location and segmentation, as in face detec-
tion [14, 19], to providing only auxiliary data indicating
the object’s identity [1, 5, 6, 20]. For a large dataset, any
annotation is expensive, or may introduce unforeseen bi-
ases. Results in speech recognition and machine translation
highlight the importance of huge amounts of training data.
The quantity of good, unsupervised training data – the set
of still images – is orders of magnitude larger than the vi-
sual data available with annotation. Thus, one would like
to observe many images and infer models for the classes of
visual objects contained within themwithout supervision.
This motivates the scientific question which, to our knowl-
edge, has not been convincingly answered before: Is it pos-
sible to learn visual object classes simply from looking at

images?

Given large quantities of training data there has been no-
table success in unsupervised topic discovery in text, and it
is this success that we wish to build on. We apply mod-
els used in statistical natural language processing to dis-
cover object categories and their image layout analogously
to topic discovery in text. In our setting, documents are im-
ages and we quantize local appearance descriptors to form
visual “words” [4, 15, 16, 21]. The two models we have
investigated are the probabilistic Latent Semantic Analysis
(pLSA) of Hofmann [7, 8], and the Latent Dirichlet Allo-
cation (LDA) of Blei et al. [3]. Each model consistently
gave similiar results and we focus our exposition in this pa-
per on the simpler pLSA method. Both models use the ‘bag
of words’ representation, where positional relationships be-
tween features are ignored. This greatly simplifies the anal-
ysis, since the data are represented by an observation ma-
trix, a talley of the counts of each word (rows) in every doc-
ument (columns).

The ‘bag of words’ model offers a rather impoverished
representation of the data because it ignores any spatial re-
lationships between the features. Nonetheless, it has been
surprisingly successful in the text domain, because of the
high discriminative power of some words and the redun-
dancy of language in general. But can it work for objects,
where the spatial layout of the features may be almost as
important as the features themselves? While it seems im-
plausible, there are several reasons for optimism: (i) as op-
posed to old corner detectors, modern feature descriptors
have become powerful enough to encode very complex vi-
sual stimuli, making them quite discriminative; (ii) because
visual features overlap in the image, some spatial informa-
tion is implicitly preserved (i.e. randomly shuffling bits of
the image around will almost certainly change the bag of
words description). In this paper, we show that this opti-
mism is not groundless.

While we ignore spatial position in our ‘bag of words’
object class models, our models are sufficiently discrimina-
tive to localize objects within each image, providing an ap-
proximate segmentation of each object topic from the other
within an image. Thus, these bag-of-features models are a
step towards top-down segmentation and spatial grouping.

We take this point on segmentation further by develop-
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Figure 1: (a) pLSA graphical model, see text. Nodes inside a given
box (plate notation) indicate that they are replicated the number
of times indicated in the top left corner. Filled circles indicate
observed random variables; unfilled are unobserved. (b) In pLSA
the goal is to find the topic specific word distributionsP (w|zk)
and corresponding document specific mixing proportionsP (z|dj)
which make up the document specific word distributionP (w|dj).

ing a second vocabulary which is sensitive to the spatial
layout of the words. This vocabularly is formed from spa-
tially neighbouring word pairs, which we dubdoublets. We
demonstrate that doublets provide a cleaner segmentation of
the various objects in each image. This means that both the
object category and image segmentation are determined in
an unsupervised fashion.

Sect. 2 describes the pLSA statistical model; various im-
plementation details are given in Sect. 3. To explain and
compare performance, in Sect. 4 we apply the models to sets
of images for which the ground truth labeling is known. We
also compare performance with a baseline model: a mixture
model of Gaussian word distributions. Results are presented
for object detection and segmentation. We summarize in
Sect. 5.

2. The topic discovery model

We will describe the models here using the original terms
‘documents’ and ‘words’ as used in the text literature. Our
visual application of these (as images and visual words) is
then given in the following sections.

Suppose we haveN documents containing words from
a vocabulary of sizeM . The corpus of text documents is
summarized in aM by N co-occurrence tableN, where
n(wi, dj) stores the number of occurrences of a wordwi

in documentdj . This is the bag of words model. In addi-
tion, there is a hidden (latent) topic variablezk associated
with each occurrence of a wordwi in a documentdj .

pLSA: The joint probabilityP (wi, dj , zk) is assumed to
have the form of the graphical model shown in figure 1(a).
Marginalizing over topicszk determines the conditional
probabilityP (wi|dj):

P (wi|dj) =
K∑

k=1

P (zk|dj)P (wi|zk), (1)

whereP (zk|dj) is the probability of topiczk occurring in
documentdj ; andP (wi|zk) is the probability of wordwi

occurring in a particular topiczk.
The model (1) expresses each document as a convex

combination ofK topic vectors. This amounts to a matrix
decomposition as shown in figure 1(b) with the constraint
that both the vectors and mixture coefficients are normal-
ized to make them probability distributions. Essentially,
each document is modelled as a mixture of topics – the his-
togram for a particular document being composed from a
mixture of the histograms corresponding to each topic.

Fitting the model involves determining the topic vectors
which are common to all documents and the mixture co-
efficients which are specific for each document. The goal
is to determine the model that gives high probability to the
words that appear in the corpus, and a maximum likelihood
estimation of the parameters is obtained by maximizing the
objective function:

L =
M∏
i=1

N∏
j=1

P (wi|dj)n(wi,dj), (2)

whereP (wi|dj) is given by (1).
This is equivalent to minimizing the Kullback-Leibler

divergence between the measured empirical distribution
P̃ (w|d) and the fitted model. The model is fitted using
the Expectation Maximization (EM) algorithm as described
in [8].

LDA: In contrast to pLSA, LDA treats the multinomial
weights over topics as latent random variables. The pLSA
model is extended by sampling those weights from a Dirich-
let distribution, the conjugate prior to the multinomial dis-
tribution. We consistently found similar performance with
the two algorithms, and focus our description here on the
simpler pLSA method. Reference [?] gives details of our
LDA implementation and results, and [3] compares LDA
with pLSA.

3. Implementation details
Obtaining visual words: We seek a vocabulary of vi-
sual words which will be insensitive to changes in view-
point and illumination. To achieve this we use vector quan-
tized SIFT descriptors [9] computed on affine covariant re-
gions [10, 11, 13]. Affine covariance gives us tolerance to
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viewpoint changes; SIFT descriptors, based on histograms
of local orientation, give some tolerance to illumination
change. Vector quantizing these descriptors gives tolerance
to morphology within an object category. Others have used
similar descriptors for object classification [4, 12], but in a
supervised setting.

Two types of affine co-variant regions are computed for
each image. The first is constructed by elliptical shape
adaptation about an interest point. The method is described
in [11, 13]. The second is constructed using the maximally
stable procedure of Mataset al. [10] where areas are se-
lected from an intensity watershed image segmentation. For
both of these we use the binaries provided at [18]. Both
types of regions are represented by ellipses. These are com-
puted at twice the originally detected region size in order
for the image appearance to be more discriminating.

Each ellipse is mapped to a circle by appropriate scaling
along its principal axes and a SIFT descriptor is computed.
There is no rotation of the patch. Alternatively, the SIFT
descriptor could be computed relative to the the dominant
gradient orientation within a patch, making the descriptor
rotation invariant [9]. The SIFT descriptors are then vector
quantized into the visual ‘words’ for the vocabulary. The
vector quantization is carried out here byk-means cluster-
ing computed from about 300K regions. The regions are
those extracted from a random subset (about one third of
each category) of images of airplanes, cars, faces, motor-
bikes and backgrounds (see experiment(2) in section 4).
About 1K clusters are used for each of the Shape Adapted
and Maximally Stable regions, and the resulting total vocab-
ulary has 2,237 words. The number of clusters,k, is clearly
an important parameter. The intention is to choose the size
of k to determine words which give some intra-class gen-
eralization. This vocabulary is used for all the experiments
throughout this paper.

In text, a word with two different meanings is called pol-
ysemous (e.g. ‘bank’ as in (i) a money keeping institution,
or (ii) a river side). Of course, we observe the analogue of
polysemy in our visual words, however, the topic discov-
ery models can cope with these. A polysemous word would
have a high probability in two different topics. The hid-
den topic variable associated with each word occurrence in
a particular document can assign such a word to particular
topic depending on the context of the document. We return
to this point in section 4.3.

Doublet visual words [[***** make this better ****]]
For the task of segmentation, we seek to increase the speci-
ficity of object description while at the same time allow-
ing for configurational changes. We thus augment our vo-
cabulary of words with “doublets”, pairs of visual words
which co-occur within a local neighborhood. As candidate
doublet words, we consider only the 200 words with high

Figure 2: The doublet formation process. We wish to form dou-
blets consisting of the two nearest neighbors with the word ellipse
outlined in black. The two green ellipses are the resulting words
that are used to form the doublets. The smaller red ellipse, while
actually closer than the two green ellipses, is significantly smaller
and consequently is not a nearest neighbor (after its distance is
scaled by the scale ratio of the ellipses). The larger red ellipse
significantly overlaps the black ellipse and is discarded.

probability in each topic after an initial run of pLSA. To
avoid trivial doublets (those with both words in the same
location), we discard those pairs of ellipses with significant
overlap. We then consider all pairs of the remaining words
that are within 4 nearest neighbor words of each. For scale-
invariance, we scale the distances between word pairs by
their relative sizes, multiplying the distance by the ratio of
the larger of the two ellipse major axes over the smaller.
Figure 2 shows the geometry and formation of the doublets.

Model learning: For pLSA, the EM algorithm is initial-
ized randomly, typically converges in 100-300 iterations,
and takes about 10 mins to run on 3K images (Matlab im-
plementation on a 2GHz PC).

Baseline method: Gaussian Mixture Model: To under-
stand the contributions of the topic discovery model to the
system performance, we also implemented an algorithm
with the same visual word local appearance descriptors, but
without the final statistical machinery. This comparison al-
gorithm looks for clusters of our local appearance descrip-
tors. Using EM, we fit the distribution of word histograms
over documents with mixture ofk Gaussians, wherek was
the number of assumed topics. This model allows for mul-
tiple topics per image, but treats the histograms as generic
observations rather than as word frequency distributions.

4. Experiments
Given a collection of unlabelled images, our goal is to auto-
matically discover/classify the visual categories present in
the data and localize them in the image. To understand how
the algorithms perform, we train on image collections for
which we know the desired visual topics.

We investigate three areas: (i) topic discovery – where
categories are discovered by pLSA clustering on all avail-
able images, (ii) classification of unseen images – where
topics corresponding to object categories are learnt on one
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set of images, and then used to determine the object cat-
egories present in another set, and (iii) object detection –
where we also wish to determine the location and approxi-
mate segmentation of in each image.

We use two datasets of objects, one from Caltech [?] and
the other from MIT [?]. The Caltech datasets depict one
object per image. The MIT dataset depicts multiple ob-
ject classes per image, and includes ground truth labeling
for where many of the objects are. We report results for
the three areas first on the Caltech images, and then in sec-
tion 4.4 show their application to the MIT images.

Caltech image data sets Our data set consists of images
of five categories from the Caltech 101 datasets (as previ-
ously used by Ferguset al. [6] for supervised classifica-
tion). The categories and their number of images are: faces,
435; motobikes, 800; airplanes, 800; cars rear, 1155; back-
ground, 900. The reason for picking these particular cat-
egories is pragmatic: they are the ones with the greatest
number of images per category. All images have been con-
verted to grayscale before processing. Otherwise they have
not been altered in any way, with one notable exception: a
large number of images in the motorbike category (2) and
airplane category (3) have a white border around the image
which we have removed since it was providing an artifactual
cue for object class.

4.1. Topic discovery
In each experiment images are pooled from a number of
original datasets, and the pLSA and baseline models are fit-
ted to the ensemble of images (with no knowledge of the im-
age’s labels) for a specified number of topics, K. For exam-
ple, in experiment (1) the images are pooled from four cat-
egories (airplanes, cars, faces and motorbikes) and models
with K = 4 objects (topics) are fitted. In the case of pLSA,
the model determines the mixture coefficientsP (zk|dj) for
each image (document)dj (wherez ∈ {z1, z2, z3, z4} for
the four topics). An imagedj is then classified as contain-
ing objectk according to the maximum ofP (zk|dj) overk.
This is essentially a one against many (the other categories)
test. Since here we know the object instances in each image,
we use this information as a performance measure. A con-
fusion matrix is then computed for each experiment. The
results are summarized in figure 3.

(1) Images of four object categories with cluttered
backgrounds. The four Caltech categories have cluttered
backgrounds and significant scale variations (in the case of
cars rear). An interesting observation comes from varying
the number of topics,K. In the case ofK = 4, we discover
the four different categories in the dataset with very high ac-
curacy (see figure 3). In the case ofK = 5, the car dataset

Ex Categories K pLSA Texture
% # % #

(1) 4 4 98 70 72 1060
(2) 4 + bg 5 78 931 73 1174
(2)* 4 + bg 6 76 1072 – –
(2)* 4 + bg 7 83 768 – –
(2)* 4 + bg-fxd 7 93 238 – –

Figure 3: Summary of the experiments. Column ‘%’ shows the
classification accuracy measured by the average of the diagonal
of the confusion matrix. Column ‘#’ shows the total number of
misclassifications. See text for a more detailed description of the
experimental results. In the case of (2)* the two/three background
topics are classified as one category.

splits into two subtopics. This is because the data contains
sets of many repeated images of the same car. Increasing
K to 6 splits the motorbike data into sets with a plain back-
ground and cluttered background. IncreasingK further to 7
and 8 ‘discovers’ two more sub-groups of car data contain-
ing again other repeated images of the same/similar cars.

It is also interesting to see the visual words which are
most probable for an object, by selecting those with high
topic specific probabilityP (wi|zk). These are shown for
the pLSA model for the case ofK = 4 in figure 4. Thus,
for these four object categories, topic discovery analysis
cleanly separates the images into object classes, with rea-
sonable behavior as the number of topics increases beyond
the number of objects. The most likely words for a topic
appear to be semantically meaningful regions.

(2) Images of four object categories plus “background”
category. Here we add images of an explicit “back-
ground” category (indoor and outdoor scenes around Cal-
tech campus) to the above experiment (1). The reason for
adding these additional images is to give the methods the
opportunity of discovering background “objects”.

The confusion tables asK is varied are shown as images
in figure 5. It is evident, for example, that for pLSA the first
topic confuses faces and backgrounds to some extent. The
case ofK = 7 with three topics allocated to the background
gives the best performance.

In the case of many of the Caltech images there is a
strong correlation of the foreground and backgrounds (e.g.
the faces are generally against an office background). This
means that in the absence of other information the learnt
topic (for faces for example) also includes words for the
background. In classification, then, some background im-
ages are errorenously classified as faces. If the background
distributions were to be fixed, then when determing the new
topics the foreground/backgrounds are decorrelated because
the backgrounds are entirely explained by the fixed topics,
and the foreground words would then need to be explained
by a new topic.
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(a)
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Figure 4: Two most likely words (shown by 5 examples in a row)
for four learnt topics in experiment (2): (a) Faces, (b) Motorbikes,
(c) Airplanes, (d) Cars.
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Figure 5: Confusion tables for pLSA for increasing number of
topics (K=5,6,7) and pLSA with 7 topics and fixed background re-
spectively. Brightness indicates number. The ideal is bright down
the diagonal. Note how the background (category 5 splits into 2
and 3 topics (for K=6 and 7 respectively) and that some amount of
the confusion between categories and background is removed.

Motivated by the above, we now carry out a variation in
the learning where we first learn three topics on a separate
set of 400 background images alone. This background set
is disjoint from the one used in experiment (2). These top-
ics are then frozen, and a pLSA decomposition with seven
topics (four to be learnt, three fixed) again determined for
experiment (2). The confusion table classification results
are given in figure 7. It is evident that the performance is
improved over not fixing the background topics above.

(a)

(b)

(c)

Figure 6: Two most likely words (shown by 5 examples in a row)
for the three background topics learned in experiment E: (a) topic
2,mainly local feature-like structure (b) topic 4, mainly corners
and edges coming from the office/building scenes, (c) topic 5,
mainly textured regions like grass and trees. For topic numbers
refer to figure 10(c).

True Class→ Faces Moto Airp Cars Backg
Topic 1 - Faces 94.02 0.00 0.38 0.00 1.00
Topic 2 - Motorb 0.00 83.62 0.12 0.00 1.25
Topic 3 - Airplan 0.00 0.50 95.25 0.52 0.50
Topic 4 - Cars rear 0.46 0.88 0.38 98.10 3.75
Topic 5 - Bg I 1.84 0.38 0.88 0.26 41.75
Topic 6 - Bg II 3.68 12.88 0.88 0.00 23.00
Topic 7 - Bg III 0.00 1.75 2.12 1.13 28.75

Figure 7: Confusion table for experiment (3) with three back-
ground topics fixed. The sum of the diagonal (counting the three
background topics as one) is 92.9%. The total number of miss-
classified images is 238.

Discussion: In the experiments it was necessary to spec-
ify the number of topicsK, however Bayesian [17] or mini-
mum complexity methods [2] can be used to infer the num-
ber of topics implied by a corpus.

4.2. Classifying new images
The learned topics can also be used for classifying new im-
ages, a task similar to the one in Ferguset al. [6]. In the
case of pLSA, the topic specific distributionsP (w|z) are
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True Class→ Faces Motorb Airplan Cars rear
Topic 1 - Faces 99.54 0.25 1.75 0.75
Topic 2 - Motorb 0.00 96.50 0.25 0.00
Topic 3 - Airplan 0.00 1.50 97.50 0.00
Topic 4 - Cars rear 0.46 1.75 0.50 99.25

Figure 8: Confusion table for unseen test images in experiment (3).
Note there is very little confusion between different categories.
See text.

learned from a separate set of ‘training’ images. When
observing a newunseen‘test’ image, the document spe-
cific mixing coefficientsP (z|dtest) are computed using the
‘fold-in’ heuristic described in [7]. In particular, the un-
seen image is ‘projected’ on the simplex spanned by learned
P (w|z), i.e. the mixing coefficientsP (zk|dtest) are sought
such that the Kullback-Leibler divergence between the mea-
sured empirical distributioñP (w|dtest) andP (w|dtest) =∑K

k=1 P (zk|dtest)P (w|zk) is minimized. This is achieved
by running EM in a similar manner to that used in learn-
ing, but now only the coefficientsP (zk|dtest) are updated
in each M-step. The learnedP (w|z) are kept fixed.

(3) Training images of four object categories plus “back-
ground” category. To compare performance with Fergus
et al. [6], experiment (2) was modified such that only the
‘training’ subsets for each category (and all background im-
ages) from [6] were used to fit the pLSA model with 7 top-
ics (four object topics and three background topics). The
‘test’ images from [6] were than ‘folded in’ as described
above. For example in the case of motorbikes the 800 im-
ages are divided into 400 training and 400 test images. In
the first test the confusion between different object cate-
gories is examined. Each test image is assigned to object
topic k with maximumP (zk|dtest) (background topics are
ignored here). The confusion table is shown in figure 8.
[[[**** we need to recite what Robs numbers were for these
diagonals, and to reflect on how good this is. or is that done
later? ****]]

(4) Binary classification of category against background.
Up to this point the classification test has been one against
many. In this test we examine performance in classify-
ing (unseen) images against (unseen) background images.
The pLSA model is fitted to training subsets of each cat-
egory and a training subset of only 400 (out of 900) back-
ground images. Testing images of each category and testing
background images are ‘folded-in’. The mixing proportion
P (zk|dtest) for topic k across the testing imagesdtest (i.e.
a row in the landscape matrixP (z|d) in figure 1b) is then
used to produce a ROC curve for the topick. Equal error
rates for the four object topics are reported in figure 9.

Object categ. pLSA (a) pLSA (b) Ferguset al. [6]
Faces 5.3 3.3 3.6
Motorbikes 15.4 8.0 6.7
Airplanes 3.4 1.6 7.0
Cars rear* 21.4 / 11.9 16.7 / 7.0 9.7

Figure 9: ** add fixed backgrounds here as well ** Equal er-
ror rates for image classification task for pLSA and the method
of [6]. Test images of a particular category were classified against
(a) testing background images (test performed in [6]) and (b) test-
ing background imagesand testing images of all other categories.
The improved performance in (b) is because our method exhibits
very little confusion between different categories. (*) The two
performance figures correspond to training on 400 / 900 back-
ground images respectively. In both cases, classification is per-
formed against an unseen test set of road backgrounds (as in [6]),
which was folded-in. See text for explanation.

Note that for Airplanes and Faces our performance is
similar to that of [6] despite the fact that our ‘training’ is
unsupervised in the sense that the identity of the object in
an image isnot known. This is in contrast to [6], where each
image is labelled with an identity of the object it contains,
i.e. about 5×400 items of supervisory data vs. one label
(the number of topics) in our case.

In the case of motorbikes we perform worse than [6]
mainly due to confusion between motorbike images con-
taining textured background and textured background topic.
The performance on Cars rear is poor because Car images
are split between two topics in training (a similar effect
happens in experiment D forK=6). This splitting can be
avoided by including more background images. In order to
make results comparable with [6], Cars rear images were
classified against completely new background dataset con-
taining mainly empty roads. This dataset was not seen in
the learning stage and had to be ‘folded-in’ which makes
the comparison on Cars rear slightly unfair to the topic dis-
covery approach.

4.3. Segmentation
In this section we evaluate the image’s spatial segmentation
that have been discovered by the model fitting. As a first
thought, it is absurd that a bag of words model could possi-
bly have anything useful to say about image segmentation,
since all spatial information has been thrown away. How-
ever, the pLSA model delivers the posteriors

P (zk|wi, dj) =
P (wi|zk)P (zk|dj)∑K
l=1 P (wi|zl)P (zl|dj)

, (3)

and consequently for a word occurrence in a particular doc-
ument we can examine the probability of different topics.

Figure 10 shows examples of ‘topic segmentation’ in-
duced byP (zk|wi, dj) for the case of experiment (2) with
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(a) (b)
Topic P (topic|image) # regions
1 Motorbikes (green) 0.07 1
2 Backg I (magenta) 0.09 1
3 Face (yellow) 0.48 128
4 Backg II (cyan) 0.17 12
5 Backg III (blue) 0.15 23
6 Cars (red) 0.03 0
7 Airplane (black) 0.00 0

(c)

Figure 10: Image as a mixture of visual topics (Experiment (2)) - I.
(a) Original frame. (b) Image as a mixture of a face topic (yellow)
and background topics (blue, cyan). Only elliptical regions with
topic posteriorP (z|w, d) greater than 0.8 are shown. In total 7
topics were learned for this dataset which contained (faces, motor-
bikes, airplanes, cars, and background images). The other topics
are not significantly present in the image since they mostly repre-
sent the other categories and other types of background. Table (c)
shows the mixture coefficientsP (z|d) for this particular image.
In total there are 693 elliptical regions in this image of which 165
(102 unique visual words) haveP (z|w, d) above 0.8 (those shown
in (b)).

7 topics. In particular, we show only visual words with
P (zk|wi, dj) greater than 0.8. There is an impressive align-
ment of the words with the corresponding object areas of
the image. Note the words shown are not simply those most
likely for that topic. Rather, from (3), they have high proba-
bility of that topicin this image. This is an example of over-
coming polysemy – the probability of the particular word
depends not only on the probability that it occurs within
that topic (face, say) but also on the probability that the face
topic has for that image, i.e. the evidence for the face topic
from other regions in the image.

(5) Image segmentation for faces Improving segmenta-
tion by local co-occurrences of visual words. Figure 11
compares segmentation on one example image of a face us-
ing singlets and doublets. Procedure is: learn background
topic as in experiment (2). Learn pLSA decomposition for
all training faces and training background ** yes ? ** with
fixed background topics. Doublet vocabulary is then formed
from the top 100 visual words of the face topic. pLSA de-
comoposition is learned again for the combined vocabulary
of singlets and doublets with the background topics fixed.
The reason for running the first level singleton pLSA is to
reduce the doublet vocabulary size to a managable size.

Note the level of supervision to achieve this segmenta-

a b

c d

e f

Figure 11: Improving object segmentation. (a) The original frame
with ground truth bounding box. (b) All 601 detected elliptical
regions superimposed on the image. (c) Segmentation obtained by
pLSA on single regions (d) Segmentation obtained using localized
spatial co-occurrences of pairs of regions. Note the extra regions
on the right-hand side background of (c) are removed in (d). (e)
and (f) show examples of locally co-occurring regions.

tion: the images are an unordered mix of faces and back-
grounds. It is not necessary to label which is which at any
stage, yet both the face imagesand their segmentationare
learnt.

Comparison with ground truth segmentation: The seg-
mentation is assessed on a set of 217 face images with
known bounding boxes. The performance score is the per-
centage of regions which fall inside the bounding box. Sin-
gleton segmentation score: 77.02% (Face specific doublets)
Doublet segmentation: 94.1% If doublets are formed from
top 40 visual words across all topics (including background
topics) the segmentation socre drops to 92.7%.

4.4. MIT image dataset results
MIT image data sets ** Number of images, stats on ob-
ject categories etc **. The MIT dataset contains 2873 im-
ages of outdoor and indoors scenes. with annotated objects.
We consider the following 16 object categories which have
more 200 labelled instances:

Again all images have been converted to grayscale be-
fore processing.

Topic discovery and classification ** Here put topic dis-
covery,K = 2, 10 for MIT. **
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(a)

(b)

Figure 12: pLSA on the MIT dataset for (a)K = 2 and (b)K =
10. Each topic is shown by a row of 10 images (resized to squares).
The images are a random sample from the top 100 most probable
images for each topic.

Here we fit pLSA/LDA with K topics to the entire
dataset. The topic discovery is shown forK = 2 and10.
ForK = 2 the images are mainly split into indoor and out-
door scenes. ForK = 10 the equal error rates are reported
in table??. Note that several objects might be covered by
the same topic, e.g. (a mouse, a keyboard, and a screen)
have best equal error rates for the same topic (10). Ten im-
ages for each discovered topic are shown in figure 12.

The MIT data set can have multiple objects in an im-
age e.g. a tree and a building. Therefore we do not perform
classification to the topic with a maximal weight. Instead
we compute an ROC curve for each category and a report a
topic with minimal equal error rate. This shows how well
the different categories are covered by the discovered top-
ics.

Segmentation of the mixed category imagesProcedure
is: Learn pLSA decomposition for 10 topics; form doublets
from top 50 pLSA words for each topic (** ?= how many
doublets **); relearn pLSA for 10 topics for new vocabu-
larly consisting of all singlets and all doublets. Figure 13
shows only the (top?) doublets for each topic.

Figure 13: Example segmentations on the MIT dataset for 10 topic
decomposition. (a) the original image. (b) all detected regions su-
perimposed (c) the topic induced segmentation. Note each image
is segmented into several ‘topics’.

5. Conclusions
1. We have demonstrated that it is possible to learn vi-

sual object classes simply by looking; we identify the
object categories for each image with the high relia-
bilities shown in figure 3, using a corpus of unlabelled
images.

2. Using these learnt topics for classification, we repro-
duce the experiments (training/testing) of [6], and ob-
tain very competitive performance – despite the fact
that [6] had to provide about400× number of classes
supervisory labels, and we provide one label.

3. Using visual words with the highest posterior probabil-
ities for each object correspond fairly well to the spa-
tial locations of each object. This is rather remarkable
considering our use of the bag of words model.

4. By introducing a second vocabularly built on spatial
co-occurrences of word pairs, cleaner and accurate
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segmentations are achieved. These enable objectde-
tection, rather than simply classification.

5. What’s next ?
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